WO2015072481A1 - 金属皮膜の成膜装置およびその成膜方法 - Google Patents

金属皮膜の成膜装置およびその成膜方法 Download PDF

Info

Publication number
WO2015072481A1
WO2015072481A1 PCT/JP2014/079953 JP2014079953W WO2015072481A1 WO 2015072481 A1 WO2015072481 A1 WO 2015072481A1 JP 2014079953 W JP2014079953 W JP 2014079953W WO 2015072481 A1 WO2015072481 A1 WO 2015072481A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
solid electrolyte
electrolyte membrane
film
suction
Prior art date
Application number
PCT/JP2014/079953
Other languages
English (en)
French (fr)
Inventor
平岡 基記
博 柳本
祐規 佐藤
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2015547772A priority Critical patent/JP6056987B2/ja
Priority to EP14861239.3A priority patent/EP3070191B1/en
Priority to US15/033,967 priority patent/US9752246B2/en
Priority to BR112016009844-7A priority patent/BR112016009844B1/pt
Priority to KR1020167011664A priority patent/KR101799710B1/ko
Priority to CN201480057154.2A priority patent/CN105637125B/zh
Publication of WO2015072481A1 publication Critical patent/WO2015072481A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes
    • C25D5/06Brush or pad plating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/005Contacting devices
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/14Electrodes, e.g. composition, counter electrode for pad-plating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/002Cell separation, e.g. membranes, diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor

Definitions

  • a metal film is suitably formed by applying a voltage between the anode and the base material to deposit metal on the surface of the base material from metal ions contained in the solid electrolyte membrane.
  • the present invention relates to an apparatus for forming a metal film and a method for forming the metal film.
  • a nickel film is formed on the surface of the substrate to form a nickel circuit pattern.
  • a metal film is formed on the surface of a semiconductor substrate such as Si by a plating process such as an electroless plating process, or a metal film is formed by a PVD method such as sputtering.
  • a film forming technique for forming a film has been proposed.
  • a metal film forming apparatus 9 including a film 93 and a power supply unit 94 for applying a voltage between the anode 91 and the base material B has been proposed (see, for example, Patent Document 1).
  • the anode 91 of the film forming apparatus 9 described above is made of a porous material that can transmit metal ions.
  • the solution L containing metal ions can be transmitted through the anode 91 during film formation and can be constantly supplied to the solid electrolyte membrane 93.
  • the solid electrolyte membrane 93 can be pressed onto the base material B through the anode 91. In this way, a metal film made of metal deposited via the solid electrolyte film 93 can be formed on the surface of the base material B placed on the mounting table 92.
  • the metal since the metal is initially deposited according to the position of the hole 91b of the anode 91 in a pressurized state, the deposited metal acts as a nucleus, and a metal crystal grows in the thickness direction of the metal film F. As a result, the metal crystal does not spread in the in-plane direction of the metal film F, but becomes columnar crystals grown in the thickness direction as shown in FIG. 7B, which causes film formation unevenness. Such a phenomenon becomes prominent when a porous body is used, but may also occur, for example, when there are fine irregularities on the surface of the anode.
  • the present invention has been made in view of these points, and the object of the present invention is to stably form a uniform metal film having a uniform film thickness regardless of the surface state of the anode.
  • An object of the present invention is to provide a film forming apparatus for forming a metal film and a film forming method therefor.
  • the inventors have found that when the anode is excessively pressed against the solid electrolyte membrane when the solid electrolyte membrane is made to follow the surface of the substrate during film formation, the surface state of the anode is changed. It was thought to depend on the metal film to be formed. Therefore, it was thought that if the solid electrolyte membrane was sucked from the substrate side and the solid electrolyte membrane was made to follow the surface of the substrate, the above-described pressurization of the anode to the solid electrolyte membrane could be eliminated or reduced. .
  • a metal film forming apparatus is a solid electrolyte membrane disposed between an anode and a base material serving as the anode and the cathode. And a power supply unit that applies a voltage between the anode and the base material, the solid electrolyte membrane is brought into contact with the surface of the base material, and between the anode and the base material.
  • a metal film forming apparatus for forming a metal film made of the metal by applying a voltage to deposit metal on the surface of the substrate from metal ions contained in the solid electrolyte film.
  • the solid electrolyte membrane is in close contact with the surface of the base placed on the placement base when placing the base on which the base is placed and forming the metal film.
  • the solid electrolyte membrane when forming a metal film, can be sucked from the substrate side so that the solid electrolyte membrane is in close contact with the surface of the substrate.
  • the solid electrolyte membrane sucked by the suction part is uniformly pressed on the surface of the substrate. be able to.
  • the pressure unevenness caused by the surface state of the anode generated between the solid electrolyte membrane and the anode is eliminated or reduced, and a uniform metal film having a uniform film thickness that hardly depends on the surface state of the anode is obtained. It is possible to form a film stably.
  • the solid electrolyte membrane is sucked from the substrate side during film formation, even if the substrate has a surface shape with irregularities, a curved shape, etc., the solid electrolyte membrane is pressed following the surface of the substrate. be able to. Thus, even if the surface of the substrate has the shape described above, a uniform metal film having a uniform film thickness can be formed on the surface.
  • the solid electrolyte membrane and the anode are in contact with each other. Any state of a contact state may be sufficient.
  • a solution containing a solution containing the metal ions while the solution containing the metal ions is in contact with the anode and the solid electrolyte membrane between the anode and the solid electrolyte membrane.
  • a housing portion is formed.
  • the solution containing portion contains a solution containing metal ions
  • the metal ions can always be supplied to the solid electrolyte membrane.
  • the solution storage portion it is possible to dispose the anode and the solid electrolyte membrane separately (to be in a non-contact state). Since the solid electrolyte membrane and the anode are in a non-contact state, the solid electrolyte membrane is not pressurized by the anode during film formation, and the surface of the substrate is pressurized by the solid electrolyte membrane by suction of the suction portion. As a result, the metal film to be formed is less affected by the surface condition of the anode. Even when an electrode made of a porous body is used, the anode and the solid electrolyte membrane are sufficiently separated from each other, so that a metal film depending on the shape of the pores in the porous body is difficult to form.
  • the film forming apparatus further includes a circulation mechanism for circulating the solution containing the metal ions in the solution storage unit.
  • the metal film can be formed while the solution containing the metal ions accommodated between the anode and the solid electrolyte membrane is circulated by the circulation mechanism.
  • the metal film can be stably formed while controlling the concentration of metal ions in the solution.
  • the above-described circulation mechanism is used to apply a constant hydraulic pressure. Is difficult.
  • the solid electrolyte membrane is pressurized to the base material by suction of the solid electrolyte membrane, so that the above-described circulation mechanism can be easily provided in the film forming apparatus.
  • the structure of the suction part is not particularly limited as long as the above-described suction part can uniformly pressurize the solid electrolyte membrane on the surface of the base material.
  • the suction part has a plurality of membrane suction ports for sucking the solid electrolyte membrane on the surface of the mounting table, and the plurality of film suction ports are arranged on the mounting table. It is formed along the peripheral edge of the base material placed on the substrate. According to this aspect, it is possible to suction along the peripheral edge of the base material and generate negative pressure in the surrounding space. Thereby, the solid electrolyte membrane which contacts the peripheral part of a base material can be attracted
  • the film suction port is formed such that the peripheral portion of the base material covers a part of each film suction port in a state where the base material is placed on the mounting table.
  • the solid electrolyte membrane in contact with the vicinity of the peripheral edge of the base material , Stronger suction force can be applied. Thereby, the whole film-forming area
  • the suction unit has a base material suction port on the surface of the mounting table for sucking the base material placed on the mounting table to the mounting table, and the base material suction port includes the base It is formed toward the center of the surface of the base material facing the mounting table in a state where the material is mounted on the mounting table, and the suction unit selects suction or non-suction by the film suction port.
  • a membrane suction port opening / closing valve connected to the membrane suction port to perform and a base material suction port opening / closing connected to the substrate suction port to select and perform suction and non-suction by the substrate suction port And a valve.
  • the base material suction port on-off valve is opened and suction by the base material suction port is selected, and the central portion of the surface of the base material facing the mounting table Therefore, the substrate can be sucked into the mounting table by the substrate suction port.
  • the membrane suction port on-off valve is opened, suction by the membrane suction port is selected, and the solid electrolyte membrane is opened at the membrane suction port from the position along the peripheral edge of the substrate with respect to the substrate sucked by the mounting table. Can be aspirated. In this way, air between the mounting table and the base material can be discharged from the center of the surface of the base material facing the mounting table toward the peripheral edge thereof.
  • a plurality of the membrane suction port on-off valves are provided so that the plurality of membrane suction ports can suck the solid electrolyte membrane at different timings.
  • the solid electrolyte membrane can be sucked by changing the timing of sucking the solid electrolyte membrane at different positions along the peripheral edge of the substrate.
  • the solid electrolyte membrane is not sucked at the periphery of the substrate at the same time, so that the air remaining between the solid electrolyte membrane and the substrate can be suppressed, and the air on the surface of the substrate can be suitably discharged. it can.
  • the shape of the mounting table is not particularly limited as long as the solid electrolyte membrane can be brought into close contact with the surface of the base material by the suction part during film formation.
  • the mounting table is formed with an accommodating recess for accommodating the base material when the metal film is formed on the surface of the base material.
  • the suction part can efficiently generate a negative pressure between the solid electrolyte membrane and the base material, thereby bringing them into close contact with each other.
  • the present application further discloses a film forming method capable of suitably forming a metal film.
  • a solid electrolyte membrane is disposed between an anode and a base material serving as a cathode, the solid electrolyte membrane is brought into contact with the base material, and the anode and the base material
  • a metal film made of the metal is formed on the surface of the base material by applying a voltage between the metal electrolyte and depositing metal on the surface of the base material from metal ions contained in the solid electrolyte membrane.
  • a method of forming a metal film wherein when forming the metal film, the solid electrolyte film is sucked from the substrate side so that the solid electrolyte film is in close contact with the surface of the substrate.
  • the solid electrolyte membrane and the anode are brought into a non-contact state and a metal film is formed, the solid electrolyte membrane is sucked from the substrate side so that the solid electrolyte membrane is in close contact with the surface of the substrate. Therefore, even if the solid electrolyte membrane is not directly pressurized with the anode (or the pressure is reduced more than before), the solid electrolyte membrane can be uniformly pressed on the surface of the substrate. This makes it possible to stably form a uniform metal film having a uniform film thickness that hardly depends on the surface state of the anode.
  • the solid electrolyte membrane is sucked from the substrate side during the film formation, the solid electrolyte membrane can be pressurized following the surface of the substrate even if the surface of the substrate has a shape other than a flat surface. In this way, a uniform metal film having a uniform film thickness can be formed on the surface of the substrate.
  • the solid electrolyte membrane and the anode are in contact with each other. Any state of a contact state may be sufficient.
  • the solution containing the metal ions while containing the solution containing the metal ions so that the solution containing the metal ions is in contact with the anode and the solid electrolyte membrane between the anode and the solid electrolyte membrane, The metal film is formed.
  • the metal ions can be constantly supplied to the solid electrolyte membrane.
  • the anode and the solid electrolyte membrane can be disposed apart (to be in a non-contact state). Since the solid electrolyte membrane and the anode are in a non-contact state, the solid electrolyte membrane is not pressurized by the anode during film formation, and the surface of the substrate is pressurized by the solid electrolyte membrane by suction of the suction portion. As a result, the metal film to be formed is more difficult to be affected by the surface state of the anode.
  • the metal film is formed while circulating a solution containing metal ions accommodated between the anode and the solid electrolyte membrane. According to this aspect, since the metal film is formed while circulating the solution containing the metal ions accommodated between the anode and the solid electrolyte film, the metal film is controlled while controlling the concentration of the metal ions in the solution. Can be formed stably.
  • the solid electrolyte membrane is sucked from a position along the peripheral edge of the substrate.
  • a negative pressure is generated along the peripheral edge of the base material, so that the solid electrolyte membrane that contacts the peripheral edge of the base material can be more efficiently sucked and uniformly applied to the surface of the base material. it can.
  • the film forming method forms the metal film in a state where the substrate is placed on a mounting table, and the peripheral portion of the substrate together with the suction of the solid electrolyte membrane Is sucked toward the mounting table.
  • a stronger suction force can be applied to the solid electrolyte membrane in contact with the vicinity of the peripheral edge of the substrate.
  • region of a base material can be pressurized more uniformly.
  • the substrate is sucked into the mounting table from the center of the surface of the substrate facing the mounting table in a state where the substrate is mounted on the mounting table. Then, the solid electrolyte membrane is sucked with respect to the substrate sucked by the mounting table.
  • the suction sequentially, air between the mounting table and the base material can be discharged from the central portion of the base material facing the mounting table toward the peripheral edge thereof. Thereby, it can suppress that an air pocket is formed between a mounting base and a base material at the time of film-forming, and can make a base material adsorb
  • the surface on which the metal film is formed on the substrate follows the surface of the mounting table, so that the solid electrolyte membrane can be more uniformly brought into contact with the substrate.
  • the solid electrolyte membrane is sucked at different positions along the peripheral edge of the base material, changing the timing of sucking the solid electrolyte membrane. According to this aspect, since the solid electrolyte membrane is not sucked at the periphery of the substrate at the same time, the air remaining between the solid electrolyte membrane and the substrate is suppressed, and the air on the surface of the substrate is suitably discharged. can do.
  • the mounting table has an accommodation recess for accommodating the base material, and the metal film is formed on the surface of the base material in a state where the base material is accommodated in the accommodation recess.
  • the suction part can efficiently generate a negative pressure between the solid electrolyte membrane and the base material, thereby bringing them into close contact with each other.
  • a uniform metal film having a uniform film thickness can be stably formed regardless of the surface state of the anode.
  • FIG. 3 is a schematic perspective sectional view for explaining a state around a film suction port of the film forming apparatus shown in FIG. 2 during film formation.
  • FIG. 2 is a plan view showing the positional relationship between the solid electrolyte membrane of the film forming apparatus shown in FIG. 1, the membrane suction port of the suction unit, the substrate suction port, and the substrate.
  • FIG. 1 is a schematic conceptual view of a metal film deposition apparatus according to a first embodiment of the present invention, and (a) is a schematic cross-sectional view for explaining a state before deposition of the film deposition apparatus.
  • FIG. 6B is a schematic cross-sectional view for explaining the state of the film formation apparatus during film formation.
  • FIG. 2 is a plan view showing the positional relationship between the solid electrolyte membrane of the film forming apparatus shown in FIG. 1, the membrane suction port of the suction portion, and the substrate.
  • FIG. 3 is a schematic perspective sectional view for explaining a state around the film suction port of the film forming apparatus shown in FIG. 2 during film formation.
  • a film forming apparatus 1A is an apparatus for depositing a metal from metal ions and depositing a metal film made of the deposited metal on the surface of a substrate B.
  • the base material B uses a base material made of a metal material such as aluminum, or a base material on which a metal underlayer is formed on the treated surface of a resin or silicon base material.
  • the film forming apparatus 1A includes a metal anode 11, a solid electrolyte film 13 disposed between the anode 11 and a base material B serving as a cathode, and a power source that applies a voltage between the anode 11 and the base material B. And at least a portion 14. Although not shown in detail in FIG. 1, the anode 11 and the base material B serving as the cathode are electrically connected to the power supply unit 14.
  • the solid electrolyte membrane 13 and the anode 11 are spaced apart and disposed in the casing 15, and the solid electrolyte membrane 13 and the anode 11 are in a non-contact state.
  • a solution storage portion 15a that stores a solution (hereinafter referred to as a metal solution) L containing metal ions is formed between the solid electrolyte membrane 13 and the anode 11.
  • the solution storage unit 15 a has a structure in which the stored metal solution L is in direct contact with the anode 11 and the solid electrolyte membrane 13.
  • the casing 15 is made of a metal material that is insoluble in the metal solution L, and the anode 11 is electrically connected to the positive electrode of the power supply unit 14 through the casing 15.
  • the anode 11 may be directly connected to the positive electrode of the power supply unit 11.
  • the anode 11 has a shape corresponding to the film formation region of the substrate B.
  • a water decomposition reaction (2H 2 O ⁇ O 2 + 2H + -2e ⁇ ) at the anode 11. That is, further progress of this reaction at the anode greatly contributes to the deposition rate of the metal film on the surface of the base material B that is the cathode.
  • the anode 11 As a material of the anode 11 having such conductivity that the reaction proceeds smoothly and can act as an anode, for example, ruthenium oxide, platinum, titanium, or a metal solution that is insoluble in the metal solution. Examples thereof include a soluble anode made of a metal.
  • the anode 11 may be a porous body, but is more preferably a nonporous body. By using the nonporous anode 11, the metal film F formed on the base material B becomes difficult to receive the surface state of the anode 11.
  • the metal solution L examples include an aqueous solution containing ions of copper, nickel, silver and the like.
  • a solution containing nickel nitrate, nickel sulfate, nickel sulfamate, and the like can be given.
  • the solid electrolyte membrane 13 can mention the film
  • the solid electrolyte membrane 13 can be impregnated with metal ions by bringing it into contact with the metal solution L described above, and a metal derived from metal ions may be deposited on the surface of the base material B when a voltage is applied. If possible, it is not particularly limited.
  • the material of the solid electrolyte membrane include ion exchange such as fluorine resin such as Nafion (registered trademark) manufactured by DuPont, hydrocarbon resin, polyamic acid resin, and selemion (CMV, CMD, CMF series) manufactured by Asahi Glass.
  • fluorine resin such as Nafion (registered trademark) manufactured by DuPont
  • hydrocarbon resin such as Nafion (registered trademark) manufactured by DuPont
  • CMV, CMD, CMF series selemion
  • the film forming apparatus 1A further includes a circulation mechanism (not shown) for circulating the metal solution L in the solution storage unit 15a.
  • a circulation mechanism for circulating the metal solution L in the solution storage unit 15a.
  • the metal solution L in which the concentration of metal ions is adjusted to a predetermined concentration is supplied from the supply port 15b to the solution storage unit 15a, and the metal solution used at the time of film formation in the solution storage unit 15a L can be discharged from the discharge port 15c.
  • the film forming apparatus 1A according to the present embodiment has a fixed structure in a structure in which a liquid pressure is applied to a solution containing metal ions in the solution storage unit 15a to press the solid electrolyte membrane against the substrate. Since the hydraulic pressure is applied, it is difficult to employ the above-described circulation mechanism.
  • the solid electrolyte membrane 13 is pressurized to the base material B by suction of the solid electrolyte membrane 13 by the suction portion 22, so that the circulation mechanism described above is used in the film forming apparatus. It can be easily provided.
  • the film forming apparatus 1 ⁇ / b> A forms the base 21 on which the base B is mounted and the metal film F
  • the solid electrolyte membrane 13 is in close contact with the surface of the base B placed on the base 21.
  • the suction unit 22 has a membrane suction passage 23 and a suction pump 24 connected to one end of the membrane suction passage 23.
  • the suction pump 24 is installed separately from the mounting table 21.
  • the suction pump may be provided on the mounting table, and the suction pump and the membrane suction passage may be combined to form a suction unit.
  • any device other than the suction pump may be used as long as the solid electrolyte membrane 13 can be sucked from the substrate B side through the membrane suction passage 23.
  • an accommodation recess 26 for accommodating the base material B is formed on the mounting table 21, and a plurality of bottom surfaces (surfaces of the mounting table 21) of the accommodation recess 26 are formed. .. Are formed.
  • the plurality of membrane suction ports 23a, 23a... Are suction ports for sucking the solid electrolyte membrane 13, and are formed at the other end of the membrane suction passage 23 and constitute a part thereof.
  • the film suction port 23a will be described later.
  • the depth of the accommodating recess 26 matches the thickness of the base material B.
  • the plurality of film suction ports 23 a, 23 a,... are equidistant along the peripheral edge b ⁇ b> 1 of the base material B placed on the placement table 21. Is formed.
  • Each film suction port 23a is formed so that the peripheral edge of the base material B covers a part of each film suction port 23a in a state where the base material B is placed (placed) in the accommodation recess 26 of the mounting table 21. ing.
  • an annular groove R is formed between the housing recess 26 and the base material B so as to go around the base material B.
  • an O-ring 19 is disposed in the casing 15 so as to surround the solid electrolyte membrane 13.
  • the O-ring 19 acts as a sealing member for forming a sealed space between the solid electrolyte membrane 13 and the mounting table 21 including the base material B during film formation.
  • the air in the sealed space is sucked by the suction portion, so that the solid electrolyte membrane 13 can be efficiently pressurized (adhered) to the surface of the base material B.
  • the base material B is placed in the housing recess 26 of the mounting table 21.
  • a plurality of film suction ports 23 a, 23 a... are arranged along the peripheral edge b ⁇ b> 1 of the base material B placed on the placement table 21, and each film suction port is arranged.
  • a part of 23a is closed by the peripheral edge b1 of the base material B.
  • the casing 15 is arranged above the base material B, and the solid electrolyte membrane 13 is brought into contact with the base material B. If the solid electrolyte membrane 13 can be sucked by the suction portion 22 described later and the solid electrolyte membrane 13 can be brought into close contact with the surface of the substrate B, the solid electrolyte membrane 13 and the substrate B are not necessarily brought into contact at this stage. You don't have to. In such a state, the anode 11 and the base material B which is a cathode are electrically connected to the power supply unit 14.
  • the suction pump 24 is driven so that the solid electrolyte film 13 is in close contact with the surface of the base material B.
  • the solid electrolyte membrane 13 is sucked from the base material side through the suction ports 23a, 23a, and the peripheral edge of the base material B is sucked to the mounting table side.
  • the air in the annular groove R covered (sealed) with the solid electrolyte membrane 13 is degassed from the membrane suction port 23a as indicated by the broken line arrow, and is solid on the surface of the substrate.
  • the electrolyte membrane 13 is pressed (adhered).
  • a plurality of film suction ports 23a are arranged along the peripheral edge b1 of the base material B, and a part of each film suction port 23a not covered by the peripheral edge b1 is a peripheral edge of the base material B. Since it is adjacent to b1, a stronger suction force can be applied to the solid electrolyte membrane 13 in contact with the vicinity of the peripheral edge of the base material B. Thereby, the whole film-forming area
  • a metal film can be formed on the surface of the substrate B.
  • the anode 11 and the solid electrolyte membrane 13 can be arranged separately. Since the solid electrolyte membrane and the anode are in a non-contact state, the solid electrolyte membrane 13 is not pressurized by the anode 11 at the time of film formation, and the surface of the substrate B is added by the solid electrolyte membrane 13 by suction of the suction portion 22. Pressed. As a result, the metal film to be formed is less affected by the surface condition of the anode. Even when an anode made of a porous material is used, the anode 11 and the solid electrolyte membrane 13 are sufficiently separated from each other, so that a metal film depending on the shape of the pores of the porous material is formed. hard.
  • the metal solution L accommodated between the anode 11 and the solid electrolyte film 13 is circulated by a circulation mechanism.
  • the metal film can be stably formed while controlling the concentration of metal ions in the solution.
  • the metal solution L can be supplied at any time, the metal film F having a desired film thickness is formed on the surfaces of the plurality of base materials B without being limited by the amount of metal that can be deposited. be able to.
  • the solid electrolyte membrane 13 when forming the metal film F, the solid electrolyte membrane 13 can be sucked from the substrate side so that the solid electrolyte membrane 13 is in close contact with the surface of the substrate B.
  • the solid electrolyte membrane 13 sucked by the suction portion 22 is removed from the surface of the substrate B.
  • the pressure unevenness caused by the surface state of the anode 11 generated between the solid electrolyte membrane 13 and the anode 11 is eliminated or reduced, and the film thickness has a uniform thickness that hardly depends on the surface state of the anode 11.
  • a homogeneous metal film F can be stably formed.
  • FIG. 4 is a schematic conceptual diagram of a metal film deposition apparatus according to a second embodiment of the present invention
  • FIG. 4A is a schematic sectional view for explaining a state before deposition of the film deposition apparatus
  • FIG. 4B is a plan view showing the positional relationship among the solid electrolyte membrane, the membrane suction port of the suction unit, the substrate suction port, and the substrate of the film forming apparatus shown in FIG. 1.
  • the metal film deposition apparatus 1B according to the second embodiment is different from the first embodiment in the structure of the suction unit 22. Accordingly, the other portions are denoted by the same reference numerals as those of the film forming apparatus 1A according to the first embodiment, and detailed description thereof is omitted.
  • the suction unit 22 of the film forming apparatus 1 ⁇ / b> B is configured so that the solid electrolyte film 13 is in close contact with the surface of the base material B placed on the mounting table 21 when the metal film F is formed.
  • a film suction passage 23 for sucking the film 13 and a base material suction passage 27 for sucking the base material B placed on the placement table 21 to the placement table 21 are provided.
  • One end of the membrane suction passage 23 is connected to the suction pump 24 via membrane suction port on-off valves (open / close switches) 28-1 and 28-2.
  • a plurality of membrane suction ports 23 a, 23 a... Are formed at the other end of the membrane suction passage 23.
  • a plurality of membrane suction port opening / closing valves 28-1 and 28-2 are provided so that the plurality of membrane suction ports 23a, 23a... Can suck the solid electrolyte membrane 13 at different timings.
  • the plurality of film suction ports 23a, 23a... are divided into two groups, and suction and non-suction by the film suction ports 23a, 23a.
  • Two membrane suction opening / closing valves 28-1 and 28-2 are provided according to the two groups.
  • a group of the film suction ports 23a, 23a,... Located on one side (specifically, located on the right side of the center line C in FIG. 4B) is a group of the film suction ports 23a, 23a,.
  • the membrane suction port on / off valve 28-1 are connected to the membrane suction port on / off valve 28-1.
  • the group of membrane suction ports 23a, 23a ... located on the other side is The passages connected to these are integrated and connected to the membrane suction opening / closing valve 28-2.
  • the plurality of membrane suction ports 23a, 23a,... are divided into two groups, and the plurality of membrane suction ports 23a, 23a,. 2 connected.
  • the number of the membrane suction port on / off valves may be three or more as long as it can be individually suctioned by the plurality of membrane suction ports 23a, 23a,.
  • two membrane suction opening / closing valves are provided, but one membrane suction connected to all the membrane suction openings 23a, 23a... Only the mouth opening / closing valve may be used.
  • the plurality of film suction ports 23a, 23a... are arranged on the bottom surface of the housing recess 26 of the mounting table 21 as in the first embodiment. Are formed at equal intervals.
  • Each film suction port 23a is formed so that the peripheral edge of the base material B covers a part of each film suction port 23a in a state where the base material B is placed in the housing recess 26 of the mounting table 21.
  • one end of the base material suction passage 27 is connected to the suction pump 24 via a base material suction port on / off valve (open / close switch) 29.
  • a base material suction port 27a is formed at the other end of the base material suction passage 27 (see FIG. 4A).
  • the suction pump 24 can perform suction from the base material suction port 27a of the base material suction passage 27.
  • the suction pump By switching the on / off valve 29 to the closed state, the suction pump The suction from the base material suction port 27a of the base material suction passage 27 by 24 can be stopped. In this way, suction and non-suction by the base material suction port 27a can be selected and performed by opening and closing the base material suction port opening / closing valve 29 connected to the base material suction port 27a.
  • the base material suction port 27a is a suction port for sucking the base material B placed on the placement table 21 to the placement table 21, and as shown in FIG. It is formed at the center of the bottom surface (the surface of the mounting table 21). More specifically, the base material suction port 27a is a surface of the base material B facing the mounting table 21 (that is, the base material) in a state where the base material B is mounted on the mounting table 21 so as to be stored in the storage recess 26. Is formed toward the center of the back surface of the substrate. That is, in the state where the base material B is placed on the placement table 21, the base material suction port 27 a is covered and blocked by the surface of the base material B.
  • the membrane suction passage opening / closing valves 28-1 and 28-2 and the substrate suction port opening / closing valve 29 are provided separately for the membrane suction passage 23 and the substrate suction passage 27, respectively.
  • the plurality of film suction ports 23a, 23a,... By the suction port opening / closing valves 28-1, 28-2 are individually sucked for each group, and further, the substrate suction port 27a is sucked by the substrate suction port opening / closing valve 29. Can be done individually.
  • FIG. 5 is a view for explaining a film forming method using the metal film forming apparatus according to the second embodiment of the present invention.
  • FIG. 5A shows a state in which the base material is sucked before film formation. It is typical sectional drawing for demonstrating, (b) is typical sectional drawing for demonstrating the state at the time of film-forming of the film-forming apparatus.
  • the base material B is placed in the accommodation recess 26 of the placement table 21.
  • a plurality of film suction ports 23a, 23a,... are arranged along the peripheral edge b1 of the base material B placed on the placement table 21, and each film A part of the suction port 23a is blocked by the peripheral edge b1 of the base material B.
  • the base material suction port 27a is covered and closed by the surface of the base material B at the center portion.
  • the casing 15 is disposed above the base material B, and the solid electrolyte membrane 13 is brought into contact with the base material B. If the base material B can be sucked to the mounting table 21 by the base material suction port 27a of the suction unit 22 to be described later, and the base material B can be brought into close contact with the mounting table 21, the solid electrolyte membrane 13 and the substrate are formed at this stage. The material B may not necessarily be brought into contact.
  • the membrane suction port on / off valves 28-1 and 28-2 are closed, the base material suction port on / off valve 29 is opened, and the suction pump 24 is turned on. Drive.
  • the suction by the base material suction port 27a can be selected, and the base material B can be sucked to the mounting table 21 by the base material suction port 27a from the central portion of the surface of the base material B facing the mounting table 21.
  • the membrane suction port on / off valve 28-1 and the membrane suction port on / off valve 28-2 are successively opened, and the on / off valve 29 is kept open and the suction pump 24 is continuously driven.
  • the suction by the membrane suction port 23a is selected, and the solid electrolyte membrane 13 is sucked by the membrane suction port 23a from the position along the peripheral edge of the base material B with respect to the base material B sucked by the mounting table 21. be able to.
  • the timing of sucking the solid electrolyte membrane 13 at different positions along the peripheral edge of the base material B is changed, and the solid electrolyte membrane 13 is changed. 13 suctions can be performed.
  • the solid electrolyte membrane 13 after the solid electrolyte membrane 13 is sucked from one side, the solid electrolyte membrane 13 can be sucked from the other side.
  • the remaining air between the solid electrolyte membrane 13 and the base material B is suppressed, and the air on the surface of the base material B is preferably used. Can be discharged. In this way, air between the mounting table 21 and the base material B can be discharged from the center portion of the surface of the base material B facing the mounting table 21 toward the peripheral edge thereof.
  • the base material B can be uniformly adsorbed to the mounting table 21.
  • the surface on which the metal film is formed on the substrate B follows the surface of the mounting table 21, so that the solid electrolyte film 13 can be brought into more uniform contact with the surface on which the film is formed.
  • a plurality of film suction ports 23a are arranged along the peripheral edge of the base material B, and a part of each film suction port 23a that is not covered by the peripheral edge of the base material B. Is adjacent to the peripheral edge b1 of the base material B, so that the entire film formation region of the base material B can be more uniformly pressurized.
  • the solid electrolyte membrane 13 can be made to follow the surface (film formation region) of the base material B uniformly.
  • the surface on which the metal film F is formed on the base material B is further planarized following the surface of the mounting table 21, and the solid electrolyte membrane 13 can be more uniformly brought into contact with this surface.
  • the suction by the film suction port 23a is performed while maintaining the suction by the substrate suction port 27a.
  • the air between the mounting table 21 and the substrate B can be discharged.
  • the suction by the substrate suction port 27a may be stopped, and then the suction by the film suction port 23a may be performed.
  • a voltage is applied between the anode 11 and the base material B serving as the cathode using the power supply unit 14 in the same manner as in the first embodiment, and contained in the solid electrolyte membrane 13.
  • a metal is deposited on the surface of the base material B from the formed metal ions, and a metal film F is formed on the surface of the base material B.
  • the surface of the anode 11 generated between the anode 11 and the solid electrolyte membrane 13 can be made to follow the base material B more uniformly. It becomes possible to eliminate or reduce the pressure unevenness due to the state. Thereby, it is possible to stably form a uniform metal film F having a uniform film thickness that does not depend on the surface state of the anode 11.
  • Example 1 Prepare a pure aluminum substrate (50 mm x 50 mm x thickness 1 mm) as the substrate for film formation on the surface, form a nickel plating film on this surface, and further form a gold plating film on the surface of the nickel plating film This was washed with running water with pure water.
  • a nickel film was formed as a metal film on the surface of the substrate using the film forming apparatus shown in FIG.
  • the suction pump was driven to suck the solid electrolyte membrane to the substrate side at the suction portion, and the solid electrolyte membrane was brought into close contact with the substrate, and the current density was 5 mA / cm 2 and the metal solution A nickel film was formed at a flow rate of 10 ml / min and a film formation time of 10 minutes.
  • Example 1 The same base material as in Example 1 was prepared, and a nickel film was formed on the surface of the base material under the same film forming conditions as in Example 1 using the film forming apparatus shown in FIG.
  • the difference from Example 1 is that a porous body (made by Mitsubishi Materials) made of expanded titanium coated with platinum is used for the anode, and the solid electrolyte membrane is formed by the anode at a pressure of 0.3 MPa at the time of film formation. This is a point where a nickel film was formed while pressing.
  • Example 1 since the solid electrolyte membrane was sucked by the suction portion and the surface of the substrate was pressed by the sucked solid electrolyte membrane, the nickel film to be formed was the anode Less susceptible to surface conditions.
  • Example 2 The same base material as in Example 2 was prepared, and a metal film (copper film) was formed on the surface of the base material using the film forming apparatus shown in FIG.
  • the difference from Example 1 is that a 1.0 mol / L copper sulfate aqueous solution is used for the metal solution (electrolyte), and first, as shown in FIG. Thereafter, this suction state is maintained, and as shown in FIG. 5 (b), the solid electrolyte membrane is sucked by the membrane suction port, and a copper film is formed on the substrate in the suction state of the child.
  • the copper film was formed at a current density of 5 mA / cm 2 , a metal solution flow rate of 15 ml / min, and a film formation time of 10 minutes.
  • Example 3 The same base material as in Example 2 was prepared, and a metal film (nickel film) was formed on the surface of the base material under the same film forming conditions as in the Example using the film forming apparatus shown in FIG. .
  • the difference from the example was that a nickel film was formed using a 1.0 mol / L nickel sulfate aqueous solution and a 0.5 mol / L acetic acid-sodium acetate buffer solution as a metal solution (electrolytic solution). .
  • Example 2 The same base material as in Example 2 was prepared, and a copper film was formed on the surface of the base material using the film forming apparatus shown in FIG.
  • the difference from Example 2 is that a porous body made of expanded titanium coated with platinum is used as the anode (manufactured by Mitsubishi Materials), and at the time of film formation, the solid electrolyte membrane is formed by the anode at a pressure of 0.3 MPa. This is a point where a copper film was formed while pressing.
  • a substrate having a flat substrate surface is used as a substrate on which a metal film is formed.
  • the substrate is not limited to this shape.
  • a plurality of protrusions are formed on the surface of the substrate. Even when a film is formed on the surface of the convex portion, the solid electrolyte membrane is sucked from the substrate side during the film formation, so that the solid electrolyte membrane is made to follow the substrate surface. Can be pressurized.
  • the membrane suction port on / off valves 28-1 and 28-2 and the base material suction port on / off valve 29 are not opened / closed using the control device. 28-2.
  • An electromagnetic valve may be used for the base material suction opening / closing valve 29, and the opening / closing thereof may be controlled by the control device. That is, after the opening / closing valve 29 is opened to perform suction through the substrate suction port using the control device, the membrane suction port on / off valves 28-1 and 28-2 are opened to perform suction through the membrane suction port.
  • the metal film may be deposited while the film suction port on / off valves 28-1 and 28-2 and the base material suction port on / off valve 29 are controlled by the control device so as to be sequentially performed.
  • the base material suction port on / off valve 29 is provided, but the base material suction port on / off valve 29 is omitted and the film suction port on / off valves 28-1 and 28-2 are provided.
  • the solid electrolyte membrane 13 may be sucked individually at different positions along the peripheral edge of the base material B.
  • 1A, 1B Film formation apparatus
  • 11 Anode
  • 13 Solid electrolyte membrane
  • 14 Power supply unit
  • 15 Casing
  • 15a Solution storage unit
  • 15b Supply port
  • 15c Discharge port
  • 19 O-ring
  • 21 Mounting table
  • 22 suction part
  • 23a membrane suction port
  • 24 suction pump
  • 27 base material suction passage
  • 27a base material suction port
  • 28-1, 28-2 membrane suction port On-off valve
  • 29 Substrate suction port on-off valve
  • 26 Housing recess
  • B Substrate (cathode)
  • b1 Peripheral part
  • F Metal film
  • L Metal solution
  • R Groove part

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Fuel Cell (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 陽極の表面状態によらず、均一な膜厚の均質な金属皮膜を安定して成膜することができる金属皮膜の成膜装置およびその成膜方法を提供する。成膜装置1Aは、陽極11と、陽極11と陰極となる基材Bとの間に配置された固体電解質膜13と、陽極11と基材Bとの間に電圧を印加する電源部14と、を備えている。固体電解質膜13を基材Bの表面に接触させ、陽極11と基材Bとの間に電圧を印加して、固体電解質膜13の内部に含有された金属イオンから金属を基材Bの表面に析出させることにより、金属からなる金属皮膜Fを成膜する装置である。成膜装置1Aは、基材Bを載置する載置台21を備えており、載置台21は、金属皮膜Fを成膜する際に、基材Bの表面に固体電解質膜13が密着するように基材B側から固体電解質膜13を吸引する吸引部22を有する。

Description

金属皮膜の成膜装置およびその成膜方法
 本発明は、陽極と基材との間に電圧を印加して、固体電解質膜の内部に含有された金属イオンから金属を基材の表面に析出させることにより、好適に金属皮膜を成膜することができる金属皮膜の成膜装置およびその成膜方法に関する。
 従来から、電子回路基材などを製造する際には、ニッケル回路パターンを形成すべく、基材の表面にニッケル皮膜が成膜される。たとえば、このような金属皮膜の成膜技術として、Siなどの半導体基材の表面に、無電解めっき処理などのめっき処理により金属皮膜を成膜したり、スパッタリングなどのPVD法により金属皮膜を成膜したりする成膜技術が提案されている。
 しかしながら、無電解めっき処理などのめっき処理を行なった場合には、めっき処理後の水洗が必要であり、水洗された廃液を処理する必要があった。また、スパッタリングなどのPVD法により基材表面に成膜を行った場合には、被覆された金属皮膜に内部応力が生じるため、膜厚を厚膜化するには制限があり、特に、スパッタリングの場合には、高真空化でしか、成膜できない場合があった。
 このような点を鑑みて、例えば、図6(a)に示すように、陽極91と、陰極となる基材Bと、陽極91と基材(陰極)Bとの間に配置される固体電解質膜93と、陽極91と基材Bとの間に電圧を印加する電源部94とを備えた金属皮膜の成膜装置9が提案されている(例えば特許文献1参照)。
 ここで、上述した成膜装置9の陽極91は、金属イオンが透過可能な多孔質体からなる。陽極91に多孔質体を用いることにより、成膜時において金属イオンを含む溶液Lを陽極91に透過させ、固体電解質膜93に常時供給することができる。さらに、成膜装置9の加圧部96を設けることにより、陽極91を介して固体電解質膜93を基材Bに加圧することができる。このようにして、載置台92に載置された基材Bの表面に、固体電解質膜93を介して析出した金属からなる金属皮膜を成膜することができる。
国際公開第2013-125643号公報
 しかしながら、特許文献1に示す如き成膜装置を用いた場合、図6(b)に示すように、固体電解質膜93が多孔質体である陽極91で加圧された状態で、陽極91と基材(陰極)Bとの間に電圧を印加して、基材Bの表面に金属皮膜Fを成膜すると、金属皮膜Fにピンホールが形成されたり、その膜厚にバラつき(成膜ムラ)(図7(a)参照)が生じたりすることがあった。
 これは、成膜時に陽極91に固体電解質膜93が加圧されるので、多孔質体からなる陽極91の骨格部分91aと孔91bの部分との間に圧力ムラが生じる。このため、陽極91である多孔質体の表面状態に依存して金属が析出してしまい、陽極91の表面形状が金属皮膜Fに転写されてしまう。
 また、加圧状態の陽極91の孔91bの位置に応じて金属が初期析出するため、析出した金属が核として作用し、金属皮膜Fの厚さ方向に金属結晶が成長する。これにより、金属結晶は金属皮膜Fの面内方向には広がらず、図7(b)に示すように厚さ方向に成長した柱状結晶となるため、これが成膜ムラの原因となる。このような現象は、多孔質体を用いた場合には、顕著なものとなるが、例えば、陽極の表面に微細な凹凸がある場合にも起こりうる。
 本発明は、このような点を鑑みてなされたものであり、その目的とするところは、陽極の表面状態によらず、均一な膜厚の均質な金属皮膜を安定して成膜することができる金属皮膜の成膜装置およびその成膜方法を提供することにある。
 発明者らは鋭意検討を重ねた結果、成膜時に、固体電解質膜を基材の表面に倣わせようとしたときに陽極が固体電解質膜に過度に加圧されると、陽極の表面状態が、成膜される金属皮膜に依存すると考えた。そこで、固体電解質膜を基材側から吸引して、固体電解質膜を基材の表面に倣わせれば、上述した陽極の固体電解質膜への加圧を無くすまたは低減することができると考えた。
 本発明は、このような考えに基づいてなされたものであり、本発明に係る金属皮膜の成膜装置は、陽極と、前記陽極と陰極となる基材との間に配置された固体電解質膜と、前記陽極と前記基材との間に電圧を印加する電源部と、を備えており、前記固体電解質膜を前記基材の表面に接触させると共に、前記陽極と前記基材との間に電圧を印加して、該固体電解質膜の内部に含有された金属イオンから金属を前記基材の表面に析出させることにより、前記金属からなる金属皮膜を成膜する金属皮膜の成膜装置であって、前記成膜装置は、前記基材を載置する載置台と、前記金属皮膜を成膜する際に、前記載置台に載置された前記基材の表面に前記固体電解質膜が密着するように該固体電解質膜を前記基材側から吸引する吸引部と、を備えることを特徴とする。
 本発明によれば、金属皮膜を成膜する際に、基材の表面に固体電解質膜が密着するように基材側から固体電解質膜を吸引することができる。これにより、陽極で固体電解質膜を直接的に加圧しなくても(またはこれまでよりも加圧を低減して)、吸引部で吸引された固体電解質膜を基材の表面に均一に加圧することができる。このような結果、固体電解質膜と陽極との間に生じる陽極の表面状態に起因した圧力ムラを無くすまたはこれを低減し、陽極の表面状態に依存し難い均一な膜厚の均質な金属皮膜を安定して成膜することができる。
 さらに、成膜時に基材側から固体電解質膜を吸引するので、基材が凹凸を有した表面形状、曲面形状などの形状であっても、固体電解質膜を基材表面に倣わせて加圧することができる。このようにして、基材の表面が上述した形状であっても、その表面に均一な膜厚の均質な金属皮膜を成膜することができる。
 ここで、固体電解質膜を吸引することにより、陽極と固体電解質膜と間の加圧力による圧力ムラをこれまでよりも低減することができるのであれば、固体電解質膜と陽極とは接触状態、非接触状態のいずれの状態であってもよい。しかしながら、より好ましい態様としては、前記陽極と前記固体電解質膜との間には、前記金属イオンを含む溶液が前記陽極と前記固体電解質膜とに接触しつつ前記金属イオンを含む溶液を収容する溶液収容部が形成されている。
 この態様によれば、溶液収容部には、金属イオンを含む溶液が収容されているので、金属イオンを常時固体電解質膜に供給することができる。また、溶液収容部を設けることにより、陽極と固体電解質膜とを離間して配置する(非接触状態にする)ことが可能となる。固体電解質膜と陽極とが非接触状態となるため、成膜時には陽極により固体電解質膜は加圧されることなく、吸引部の吸引により固体電解質膜で基材の表面は加圧される。このような結果、成膜される金属皮膜は陽極の表面状態の影響をより受け難くなる。また、多孔質体からなる電極を用いた場合であっても、陽極と固体電解質膜とは十分に離間しているので、多孔質体の孔の形状に依存した金属皮膜は成膜され難い。
 さらに好ましい態様としては、前記成膜装置は、該溶液収容部内に前記金属イオンを含む溶液を循環させるための循環機構をさらに備える。この態様によれば、陽極と固体電解質膜との間に収容された金属イオンを含む溶液を循環機構により循環させながら、金属皮膜の成膜を行うことができる。これにより、溶液中の金属イオンの濃度を管理しながら金属皮膜を安定して成膜することができる。また、溶液収容部内の金属イオンを含む溶液に液圧を作用させて、固体電解質膜を基材に加圧するような構造では、一定の液圧を作用させるため、上述した循環機構を採用することは難い。しかしながら、本発明では、固体電解質膜の基材への加圧を、固体電解質膜の吸引により行うので、上述した循環機構を成膜装置に簡単に設けることができる。
 また、上述した吸引部は、固体電解質膜を基材の表面に均一に加圧することができるのであれば、その吸引部の構造は特に限定されるものではない。しかしながら、より好ましい態様としては、前記吸引部は、前記固体電解質膜を吸引するための複数の膜吸引口を前記載置台の表面に有しており、該複数の膜吸引口は、前記載置台に載置された前記基材の周縁部に沿って形成されている。この態様によれば、基材の周縁部に沿って吸引しその周りの空間に負圧を発生させることができる。これにより、より効率的に基材の周縁部に接触する固体電解質膜を吸引し、これを基材の表面に均一に加圧することができる。
 さらに好ましい態様としては、前記載置台に前記基材を載置した状態で前記基材の周縁部が前記各膜吸引口の一部を覆うように、前記膜吸引口が形成されている。この態様によれば、基材の周縁部により覆われなかった各膜吸引口の一部が基材の周縁部に隣接することになるので、基材の周縁部近傍に接触する固体電解質膜に、より強い吸引力を作用させることができる。これにより、基材の成膜領域全体をより均一に加圧することができる。
 前記吸引部は、前記載置台に載置された前記基材を前記載置台に吸引するための基材吸引口を前記載置台の表面に有しており、前記基材吸引口は、前記基材を載置台に載置した状態で、前記載置台に対向した前記基材の表面の中央部に向かって形成されており、前記吸引部は、前記膜吸引口による吸引および非吸引を選択して行うように前記膜吸引口に接続された膜吸引口開閉弁と、前記基材吸引口による吸引および非吸引を選択して行うように前記基材吸引口に接続された基材吸引口開閉弁とをさらに備える。
 この態様によれば、基材を載置台に載置した状態で、基材吸引口開閉弁を開弁し基材吸引口による吸引を選択し、載置台に対向した基材の表面の中央部から、基材吸引口で基材を前記載置台に吸引することができる。続いて、膜吸引口開閉弁を開弁し膜吸引口による吸引を選択し、載置台に吸引された基材に対して、基材の周縁部に沿った位置から膜吸引口で固体電解質膜を吸引することができる。このようにして、載置台に対向した基材の表面の中央部からその周縁部に向かって、載置台と基材との間の空気を排出することができる。これにより、成膜時に載置台と基材との間に空気溜りが形成されることを抑え、載置台に基材を均一に吸着させることができる。この結果、基材に金属皮膜が成膜される表面は、載置台の表面に倣うため、基材に固体電解質膜をより均一に接触させることができる。
 さらに好ましい態様としては、前記複数の膜吸引口が異なるタイミングで前記固体電解質膜を吸引可能なように、前記膜吸引口開閉弁が複数設けられている。この態様によれば、基材の周縁部に沿った異なる位置で、固体電解質膜を吸引するタイミングを変えて、固体電解質膜の吸引を行うことができる。これにより、基材の周縁部で同時に固体電解質膜を吸引することが無いので、固体電解質膜と基材との間の空気の残存を抑え、基材の表面の空気を好適に排出することができる。
 さらに、成膜時において、吸引部により固体電解質膜を基材の表面に密着させることができるのであれば、載置台の形状は特に限定されるものではないが、より好ましい態様としては、前記載置台には、前記基材の表面に前記金属皮膜を成膜する際に、前記基材を収容するための収容凹部が形成されている。
 この態様によれば、載置台に基材を収容する収容凹部を設けることにより、載置台の表面と基材の表面とを高さ方向においてより近づけることができる(好ましくは面一にすることができる)。このような結果、吸引部により、固体電解質膜と基材との間に効率的に負圧を発生させ、これらを密着させることができる。
 本願では、金属皮膜を好適に成膜することができる成膜方法をさらに開示する。本発明に係る金属皮膜の成膜方法は、陽極と、陰極となる基材との間に固体電解質膜を配置し、前記固体電解質膜を基材に接触させると共に、前記陽極と前記基材との間に電圧を印加し、該固体電解質膜の内部に含有された金属イオンから金属を前記基材の表面に析出することにより、前記金属からなる金属皮膜を前記基材の表面に成膜する金属皮膜の成膜方法であって、前記金属皮膜を成膜する際に、前記基材の表面に前記固体電解質膜が密着するように前記基材側から前記固体電解質膜を吸引することを特徴とする。
 本発明によれば、固体電解質膜と陽極とを非接触状態にし、金属皮膜を成膜する際に、基材の表面に固体電解質膜が密着するように基材側から固体電解質膜を吸引するので、陽極で固体電解質膜を直接的に加圧しなくても(またはこれまでよりも加圧を低減して)、固体電解質膜を基材の表面に均一に加圧することができる。これにより、陽極の表面状態に依存し難い均一な膜厚の均質な金属皮膜を安定して成膜することができる。
 さらに、成膜時に基材側から固体電解質膜を吸引するので、基材の表面が平面以外の形状であっても、固体電解質膜を基材表面に倣わせて加圧することができる。このようにして、基材の表面に均一な膜厚の均質な金属皮膜を成膜することができる。
 ここで、固体電解質膜を吸引することにより、陽極と固体電解質膜と間の加圧力による圧力ムラをこれまでよりも低減することができるのであれば、固体電解質膜と陽極とは接触状態、非接触状態のいずれの状態であってもよい。しかしながら、さらに好ましい態様としては、前記陽極と前記固体電解質膜との間において、前記金属イオンを含む溶液を前記陽極と前記固体電解質膜とに接触するように金属イオンを含む溶液を収容しながら、前記金属皮膜の成膜を行う。
 この態様によれば、陽極と固体電解質膜との間に、金属イオンを含む溶液が収容されているので、金属イオンを常時固体電解質膜に供給することができる。また、金属イオンを含む溶液を収容するため、陽極と固体電解質膜とを離間して配置する(非接触状態にする)ことが可能となる。固体電解質膜と陽極とが非接触状態であるので、成膜時には陽極により固体電解質膜は加圧されることなく、吸引部の吸引により固体電解質膜で基材の表面は加圧される。このような結果、成膜される金属皮膜は、陽極の表面状態の影響をより一層受け難くなる。
 さらに好ましい態様としては、前記陽極と前記固体電解質膜との間に収容された金属イオンを含む溶液を循環させながら、前記金属皮膜の成膜を行う。この態様によれば、陽極と固体電解質膜との間に収容された金属イオンを含む溶液を循環させながら、金属皮膜の成膜を行うので、溶液中の金属イオンの濃度を管理しながら金属皮膜を安定して成膜することができる。
 さらに好ましい態様としては、前記固体電解質膜の吸引を前記基材の周縁部に沿った位置から行う。これにより、基材の周縁部に沿って負圧を発生させるので、より効率的に基材の周縁部に接触する固体電解質膜を吸引し、これを基材の表面に均一に加圧することができる。
 より好ましい態様としては、前記成膜方法は、前記基材を載置台に載置した状態で、前記金属皮膜を成膜するものであり、前記固体電解質膜の吸引と共に、前記基材の周縁部を前記載置台側に吸引する。基材の周縁部近傍に接触する固体電解質膜に、より強い吸引力を作用させることができる。これにより、基材の成膜領域全体をより均一に加圧することができる。
 より好ましい態様としては、前記成膜方法は、前記基材を載置台に載置した状態で、前記載置台に対向した前記基材の表面の中央部から、前記基材を前記載置台に吸引し、該載置台に吸引された基材に対して、前記固体電解質膜の吸引を行う。この態様によれば、上述した吸引を順次行うことにより、載置台に対向した基材の中央部からその周縁部に向かって、載置台と基材との間の空気を排出することができる。これにより、成膜時に載置台と基材との間に空気溜りが形成されることを抑え、載置台に基材を均一に吸着させることができる。この結果、基材に金属皮膜が成膜される表面は、載置台の表面に倣うので、基材に固体電解質膜をより均一に接触させることができる。
 さらに好ましい態様としては、前記基材の周縁部に沿った異なる位置で、前記固体電解質膜を吸引するタイミングを変えて、前記固体電解質膜の吸引を行う。この態様によれば、基材の周縁部で同時に固体電解質膜を吸引することが無いので、固体電解質膜と基材との間の空気の残存を抑え、基材の表面の空気を好適に排出することができる。
 より好ましい態様としては、前記載置台には、前記基材を収容するための収容凹部が形成されており、前記基材を前記収容凹部に収容した状態で、前記基材の表面に前記金属皮膜を成膜するこのような結果、吸引部により、固体電解質膜と基材との間に効率的に負圧を発生させ、これらを密着させることができる。
 本発明によれば、陽極の表面状態によらず、均一な膜厚の均質な金属皮膜を安定して成膜することができる。
本発明の第1実施形態に係る金属皮膜の成膜装置の模式的概念図であり、(a)は、成膜装置の成膜前状態を説明するための模式的断面図であり、(b)は、成膜装置の成膜時の状態を説明するための模式的断面図である。 図1に示す成膜装置の固体電解質膜、吸引部の膜吸引口、および基材の位置関係を示した平面図である。 成膜時において、図2に示す成膜装置の膜吸引口周りの状態を説明するための模式的斜視断面図である。 本発明の第2実施形態に係る金属皮膜の成膜装置の模式的概念図であり、(a)は、成膜装置の成膜前状態を説明するための模式的断面図であり、(b)は、図1に示す成膜装置の固体電解質膜、吸引部の膜吸引口、基材吸引口、および基材の位置関係を示した平面図である。 本発明の第2実施形態に係る金属皮膜の成膜装置を用いた成膜方法を説明するための図であり、(a)は、成膜前に基材を吸引した状態を説明するための模式的断面図であり、(b)は、成膜装置の成膜時の状態を説明するための模式的断面図である。 従来の成膜装置を説明するための模式図であり、(a)は、成膜装置の模式的概念図、(b)は、成膜装置による成膜を説明するための模式的概念図である。 (a)は、図6に示す成膜装置で成膜した金属皮膜の写真図であり、(b)は、(a)に示す金属皮膜の断面図である。
 以下に本発明の実施形態に係る金属皮膜の成膜方法を好適に実施することができる成膜装置について説明する。
〔第1実施形態〕
 図1は、本発明の第1実施形態に係る金属皮膜の成膜装置の模式的概念図であり、(a)は、成膜装置の成膜前状態を説明するための模式的断面図であり、(b)は、成膜装置の成膜時の状態を説明するための模式的断面図である。
 図2は、図1に示す成膜装置の固体電解質膜、吸引部の膜吸引口、および基材の位置関係を示した平面図である。図3は、成膜時において、図2に示す成膜装置の膜吸引口周りの状態を説明するための模式的斜視断面図である。
 図1に示すように、本発明に係る成膜装置1Aは、金属イオンから金属を析出させて、析出した金属からなる金属皮膜を基材Bの表面に成膜する装置である。ここで、基材Bは、アルミニウムなどの金属材料からなる基材、または樹脂またはシリコン基材の処理表面に金属下地層が形成されている基材を用いる。
 成膜装置1Aは、金属製の陽極11と、陽極11と陰極となる基材Bとの間に配置された固体電解質膜13と、陽極11と基材Bとの間に電圧を印加する電源部14と、を少なくとも備えている。図1では詳細に示してないが、陽極11と陰極となる基材Bとは、電源部14に電気的に接続されている。
 固体電解質膜13と陽極11とは離間してケーシング15に配置されており、固体電解質膜13と陽極11とは非接触状態にある。固体電解質膜13と陽極11との間には、金属イオンを含む溶液(以下、金属溶液という)Lを収容する溶液収容部15aが形成されている。ここで、溶液収容部15aは、収容された金属溶液Lが陽極11および固体電解質膜13に直接的に接触するような構造となっている。また、ケーシング15は、金属溶液Lに対して不溶性の金属材料からなり、ケーシング15を介して陽極11は、電源部14の正極に導通している。なお、陽極11が直接電源部11の正極に導通していてもよい。
 陽極11は、基材Bの成膜領域に応じた形状となっている。ここで、成膜時に金属イオンから金属をより効率的に析出させるためには、陽極11において水の分解反応(2HO→O+2H-2e)を円滑に発生させることが好ましい。すなわち、陽極におけるこの反応をより一層進行させることが、陰極である基材Bの表面の金属皮膜の成膜速度に大きく寄与することになる。
 したがってこのような反応が円滑に進みかつ陽極として作用可能な導電率を有している陽極11の材料として、例えば、金属溶液に対して不溶性を有した酸化ルテニウムまたは白金、チタンまたは、金属溶液の金属からなる可溶性の陽極などを挙げることができる。また、陽極11は、多孔質体でもよいが、無孔質体であることがより好ましい。無孔質体の陽極11を用いることにより、基材Bに成膜される金属皮膜Fは、陽極11の表面の状態を受け難くなる。
 金属溶液Lは、たとえば、銅、ニッケル、銀などのイオンを含む水溶液などを挙げることができる。たとえば、ニッケルイオンの場合には、硝酸ニッケル、硫酸ニッケル、スルファミン酸ニッケルなどを含む溶液を挙げることができる。そして、固体電解質膜13は、固体電解質からなる膜、フィルム等を挙げることができる。
 固体電解質膜13は、上述した金属溶液Lに接触させることにより、金属イオンを内部に含浸することができ、電圧を印加したときに基材Bの表面において金属イオン由来の金属が析出することができるのであれば、特に限定されるものではない。固体電解質膜の材質としては、たとえばデュポン社製のナフィオン(登録商標)などのフッ素系樹脂、炭化水素系樹脂、ポリアミック酸樹脂、旭硝子社製のセレミオン(CMV、CMD,CMFシリーズ)などのイオン交換機能を有した樹脂を挙げることができる。
 本実施形態では、成膜装置1Aは、溶液収容部15a内に金属溶液Lを循環させるための循環機構(図示せず)をさらに備えている。このような循環機構により、金属イオンの濃度が所定の濃度に調整された金属溶液Lを、供給口15bから溶液収容部15aに供給するとともに、溶液収容部15aで成膜時に使用された金属溶液Lを排出口15cから排出することができる。なお、本実施形態に係る成膜装置1Aは、また、溶液収容部15a内の金属イオンを含む溶液に液圧を作用させて、固体電解質膜を基材に加圧するような構造では、一定の液圧を作用させるため、上述した循環機構を採用することは難い。しかしながら、本実施形態では、以下に示すように、固体電解質膜13の基材Bへの加圧を、吸引部22による固体電解質膜13の吸引により行うので、上述した循環機構を成膜装置に簡単に設けることができる。
 さらに、成膜装置1Aは、基材Bを載置する載置台21と、金属皮膜Fを成膜する際に、載置台21に載置された基材Bの表面に固体電解質膜13が密着するように基材B(載置台21)側から固体電解質膜13を吸引する吸引部22と、をさらに備えている。
 吸引部22は、膜吸引通路23と、膜吸引通路23の一端に接続された吸引ポンプ24とを有している。なお、吸引ポンプ24は、載置台21とは別に設置されているが、この吸引ポンプを載置台に設け、吸引ポンプと膜吸引通路とを合わせて吸引部を構成してもよい。また、膜吸引通路23を介して固体電解質膜13を基材B側から吸引することができれば、吸引ポンプ以外の他の機器を用いてもよい。
 さらに、本実施形態では、図3に示すように、載置台21に基材Bを収容するための収容凹部26が形成されており、収容凹部26の底面(載置台21の表面)には複数の膜吸引口23a,23a…が形成されている。複数の膜吸引口23a,23a…は、固体電解質膜13を吸引するための吸引口であり、膜吸引通路23の他端に形成され、その一部を構成している。膜吸引口23aは後述する。
 ここで、収容凹部26の深さは、基材Bの厚さに一致している。これにより、基材Bを収容凹部26に収容した際に、基材Bの表面と載置台21の表面とが同一平面状に配置されることになる。このようにして、固体電解質膜13が収容凹部26の開口を塞いだ状態で、吸引部22により固体電解質膜13を吸引することができるため、固体電解質膜13により基材Bをより強い吸引力で押圧することができる。
 さらに、本実施形態では、図2および図3に示すように、複数の膜吸引口23a,23a,…が、載置台21に載置された基材Bの周縁部b1に沿って等間隔に形成されている。各膜吸引口23aは、載置台21の収容凹部26に基材Bを配置(載置)した状態で、基材Bの周縁部が各膜吸引口23aの一部を覆うように、形成されている。さらに、基材Bを収容凹部26に収容することにより、収容凹部26と基材Bとの間には、基材Bを周回するように環状の溝部Rが形成される。
 収容凹部26に基材Bを収容した際には、図3に示すように、収容凹部26と基材Bとの間に、基材Bを周回するように環状の溝部Rが形成され、環状の溝部Rの空間のエアは、各膜吸引口23aからの吸引により負圧となる。これにより、より効率的に基材Bの周縁部b1に接触する固体電解質膜13を吸引し、これを基材Bの表面に均一に加圧することができる。特に、基材Bの周縁部b1が、各膜吸引口23aの一部を覆いながら固体電解質膜13を吸引するので、基材Bの周縁部b1に接触する固体電解質膜により強い吸引力を作用させることができる。
 さらに、本実施形態では、ケーシング15には、固体電解質膜13を囲うようにOリング19が配置されている。これにより、成膜時にOリング19が固体電解質膜13と基材Bを含む載置台21との間に密閉空間を形成するための封止部材として作用する。このような結果、密閉空間内のエアを吸引部が吸引するので、効率的に固体電解質膜13を基材Bの表面に加圧(密着)させることができる。
 以下に本実施形態にかかる成膜方法について説明する。まず、載置台21の収容凹部26に基材Bを載置する。具体的には、図2に示すように、載置台21に載置された基材Bの周縁部b1に沿って、複数の膜吸引口23a,23a…が配置されるとともに、各膜吸引口23aの一部が基材Bの周縁部b1によって塞がれる。このように配置すると、基材Bと載置台21との間には、基材Bの周縁部b1を囲うように環状の溝部Rが形成される。
 このような配置状態で、ケーシング15を基材Bの上方に配置し、固体電解質膜13を基材Bに接触させる。後述する吸引部22で固体電解質膜13を吸引させて、固体電解質膜13を基材Bの表面に密着させることができるのであれば、この段階で固体電解質膜13と基材Bとを必ずしも接触させなくてもよい。このような状態で、陽極11と陰極である基材Bとを、電源部14に電気的に接続する。
 そして、金属皮膜Fを成膜する際に(具体的には成膜前から)、基材Bの表面に固体電解質膜13が密着するように、吸引ポンプ24を駆動させることにより、複数の膜吸引口23a,23a…で基材側から固体電解質膜13を吸引すると共に、基材Bの周縁部を載置台側に吸引する。図3に示すように、固体電解質膜13で覆われた(封止された)環状の溝部R内のエアが破線矢印に示すように膜吸引口23aから脱気され、基材の表面に固体電解質膜13が押圧される(密着する)。
 上述したように、基材Bの周縁部b1に沿って複数の膜吸引口23aが配置され、さらには周縁部b1により覆われなかった各膜吸引口23aの一部が基材Bの周縁部b1に隣接することになるので、基材Bの周縁部近傍に接触する固体電解質膜13に、より強い吸引力を作用させることができる。これにより、基材Bの成膜領域全体をより均一に加圧することができ、固体電解質膜13を基材Bの表面(成膜領域)に均一に倣わせることができる。さらに、溝部Rを設けることにより、吸引時に膜吸引口23aが閉塞されることを回避することができ、成膜時に副生成物として生成されるガス(水素ガス)も膜吸引口23aから排気しながら、基材Bの表面に金属皮膜を成膜することができる。
 次に、固体電解質膜13を基材Bの表面に接触させた状態で、電源部14を用いて、陽極11と陰極となる基材Bとの間に電圧を印加し、固体電解質膜13の内部に含有された金属イオンから金属を基材Bの表面に析出させ、基材Bの表面に金属皮膜Fを成膜する。この際、溶液収容部15aには、金属溶液Lが収容されているので、金属イオンを常時固体電解質膜13に供給することができる。
 また、溶液収容部15aを設けることにより、陽極11と固体電解質膜13とを離間して配置することが可能となる。固体電解質膜と陽極とが非接触状態となるため、成膜時には陽極11により固体電解質膜13は加圧されることなく、吸引部22の吸引により固体電解質膜13で基材Bの表面は加圧される。このような結果、成膜される金属皮膜は陽極の表面状態の影響をより受け難くなる。また、多孔質体からなる陽極を用いた場合であっても、陽極11と固体電解質膜13とは十分に離間しているので、多孔質体の孔の形状に依存した金属皮膜は成膜され難い。
 金属皮膜Fを連続して成膜する際には、陽極11と固体電解質膜13との間に収容された金属溶液Lを循環機構により循環させる。これにより、溶液中の金属イオンの濃度を管理しながら金属皮膜を安定して成膜することができる。また、金属溶液Lを随時供給することができるので、析出させることができる金属量に制限を受けることがなく、所望の膜厚の金属皮膜Fを、複数の基材Bの表面に成膜することができる。
 このように、本実施形態では、金属皮膜Fを成膜する際に、基材Bの表面に固体電解質膜13が密着するように基材側から固体電解質膜13を吸引することができる。これにより、陽極11で固体電解質膜13を直接的に加圧しなくても(またはこれまでよりも加圧を低減して)、吸引部22で吸引された固体電解質膜13を基材Bの表面に均一に加圧することができる。このような結果、固体電解質膜13と陽極11との間に生じる陽極11の表面状態に起因した圧力ムラを無くす、またはこれを低減し、陽極11の表面状態に依存し難い均一な膜厚の均質な金属皮膜Fを安定して成膜することができる。
〔第2実施形態〕
 図4は、本発明の第2実施形態に係る金属皮膜の成膜装置の模式的概念図であり、(a)は、成膜装置の成膜前状態を説明するための模式的断面図であり、(b)は、図1に示す成膜装置の固体電解質膜、吸引部の膜吸引口、基材吸引口、および基材の位置関係を示した平面図である。
 図4(a)に示すように、第2実施形態に係る金属皮膜の成膜装置1Bが、第1実施形態と異なる点は、吸引部22の構造である。したがって、これ以外の部分に関しては、第1実施形態に係る成膜装置1Aの部分と同じ符号を付して、その詳細な説明を省略する。
 本実施形態に係る成膜装置1Bの吸引部22は、金属皮膜Fを成膜する際に、載置台21に載置された基材Bの表面に固体電解質膜13が密着するように固体電解質膜13を吸引する膜吸引通路23と、載置台21に載置された基材Bを載置台21に吸引する基材吸引通路27と、を備えている。
 膜吸引通路23の一端は、膜吸引口開閉弁(開閉スイッチ)28-1、28-2を介して、吸引ポンプ24に接続さている。膜吸引通路23の他端には、複数の膜吸引口23a,23a…が形成されている。膜吸引口開閉弁28-1、28-2が開弁した状態で、吸引ポンプ24による膜吸引通路23の膜吸引口23aからの吸引が可能となり、膜吸引口開閉弁28-1、28-2を閉弁状態に切り替えることで、吸引ポンプ24による膜吸引通路23の膜吸引口23aからの吸引を停止することができる。このようにして、膜吸引口23aによる吸引および非吸引を、膜吸引口23a,23a…に接続された膜吸引口開閉弁28-1、28-2の開閉により選択して行うことができる。
 さらに、本実施形態では、複数の膜吸引口23a,23a…が異なるタイミングで固体電解質膜13を吸引可能なように、膜吸引口開閉弁28-1、28-2が複数設けられている。具体的には、本実施形態では、複数の膜吸引口23a,23a…を2つの群に分け、該群毎に、膜吸引口23a,23a…による吸引および非吸引を選択して行うように、2つの群に応じて、2つの膜吸引口開閉弁28-1、28-2が設けられている。複数の膜吸引口23a,23a…のうち、一方側に位置する(具体的には図4(b)の中心線Cよりも右側に位置する)膜吸引口23a,23a…の群は、これらに接続する通路が集約され、膜吸引口開閉弁28-1に接続されている。一方、複数の膜吸引口23a,23a…のうち、他方側に位置する(具体的には図4(b)の中心線Cよりも左側に位置する)膜吸引口23a,23a…の群は、これらに接続する通路が集約され、膜吸引口開閉弁28-2に接続されている。
 本実施形態では、複数の膜吸引口23a,23a…を2つの群に分けて、これらの各群の複数の膜吸引口23a,23a,…をそれぞれ膜吸引口開閉弁28-1,28-2に接続した。しかしながら、複数の膜吸引口23a,23a,…で個別に吸引することができるのであれば、膜吸引口開閉弁の個数は、3個以上であってもよい。また、本実施形態では、その好ましい例として、膜吸引口開閉弁を2つ設けたが、成膜に影響しない範囲であれば、すべての膜吸引口23a,23a…に連結する1つの膜吸引口開閉弁のみであってもよい。
 複数の膜吸引口23a,23a…は、第1実施形態と同様に、図4(b)に示すように、載置台21の収容凹部26の底面において、載置された基材Bの周縁部に沿って等間隔に形成されている。各膜吸引口23aは、載置台21の収容凹部26に基材Bを載置した状態で、基材Bの周縁部が各膜吸引口23aの一部を覆うように、形成されている。
 一方、基材吸引通路27の一端は、基材吸引口開閉弁(開閉スイッチ)29を介して、吸引ポンプ24に接続されている。基材吸引通路27の他端には、基材吸引口27aが形成されている(図4(a)参照)。基材吸引口開閉弁29が開弁した状態で、吸引ポンプ24による基材吸引通路27の基材吸引口27aからの吸引が可能となり、開閉弁29を閉弁状態に切り替えることで、吸引ポンプ24による基材吸引通路27の基材吸引口27aからの吸引を停止することができる。このようにして、基材吸引口27aによる吸引および非吸引を、基材吸引口27aに接続された基材吸引口開閉弁29の開閉により選択して行うことができる。
 基材吸引口27aは、載置台21に載置された基材Bを載置台21に吸引するための吸引口であり、図4(b)に示すように、載置台21の収容凹部26の底面(載置台21の表面)の中央に形成されている。より具体的には、基材吸引口27aは、収容凹部26に収容するように基材Bを載置台21に載置した状態で、載置台21に対向した基材Bの表面(すなわち基材の裏面)の中央部に向かって形成されている。すなわち、載置台21に基材Bを載置した状態では、基材吸引口27aは、基材Bの表面に覆われ、塞がれた状態となる。
 このように、本実施形態では、膜吸引通路23と基材吸引通路27とに個別に膜吸引口開閉弁28-1、28-2、基材吸引口開閉弁29を設けたことにより、膜吸引口開閉弁28-1、28-2による複数の膜吸引口23a,23a…吸引を群毎に個別に行うとともに、さらに、基材吸引口開閉弁29による基材吸引口27aの吸引をも個別に行うことができる。
 以下に、第2実施形態に係る成膜装置1Bを用いた成膜方法を図5(a),(b)を参照しながら説明する。図5は、本発明の第2実施形態に係る金属皮膜の成膜装置を用いた成膜方法を説明するための図であり、(a)は、成膜前に基材を吸引した状態を説明するための模式的断面図であり、(b)は、成膜装置の成膜時の状態を説明するための模式的断面図である。
 まず、第1実施形態と同様に、載置台21の収容凹部26に基材Bを載置する。この様態では、図4(b)に示すように、載置台21に載置された基材Bの周縁部b1に沿って、複数の膜吸引口23a,23a…が配置されるとともに、各膜吸引口23aの一部が基材Bの周縁部b1によって塞がれる。さらに、基材吸引口27aは、基材Bの表面の中央部において、その表面に覆われ塞がれる。このように配置すると、第1実施形態と同様に、基材Bと載置台21との間には、基材Bの周縁部を囲うように環状の溝部Rが形成される。
 次にケーシング15を基材Bの上方に配置し、固体電解質膜13を基材Bに接触させる。後述する吸引部22の基材吸引口27aで基材Bを載置台21に吸引させて、基材Bを載置台21に密着させることができるのであれば、この段階で固体電解質膜13と基材Bとを必ずしも接触させなくてもよい。
 次に、基材Bを載置台21に載置した状態で、膜吸引口開閉弁28-1、28-2を閉弁し、基材吸引口開閉弁29を開弁し、吸引ポンプ24を駆動させる。これにより、基材吸引口27aによる吸引を選択し、載置台21に対向した基材Bの表面の中央部から、基材吸引口27aで基材Bを載置台21に吸引することができる。
 続いて、膜吸引口開閉弁28-1、膜吸引口開閉弁28-2の順に連続してこれらを開弁し、開閉弁29は開弁状態のまま、吸引ポンプ24の駆動を継続する。これにより、膜吸引口23aによる吸引を選択し、載置台21に吸引された基材Bに対して、基材Bの周縁部に沿った位置から膜吸引口23aで固体電解質膜13を吸引することができる。また膜吸引口開閉弁28-1、28-2を別々に開弁することにより、基材Bの周縁部に沿った異なる位置で、固体電解質膜13を吸引するタイミングを変えて、固体電解質膜13の吸引を行うことができる。
 すなわち、本実施形態では、一方側から固体電解質膜13を吸引した後に、他方側から固体電解質膜13を吸引することができる。これにより、基材Bの周縁部で同時に固体電解質膜13を吸引することが無いので、固体電解質膜13と基材Bとの間の空気の残存を抑え、基材Bの表面の空気を好適に排出することができる。このようにして、載置台21に対向した基材Bの表面の中央部からその周縁部に向かって、載置台21と基材Bとの間の空気を排出することができる。
 これにより、成膜時に載置台21と基材Bとの間に空気溜りが形成されることを抑え、載置台21に基材Bを均一に吸着させることができる。この結果、基材Bに金属皮膜が成膜される表面は、載置台21の表面に倣うので、この成膜される表面に固体電解質膜13をより均一に接触させることができる。
 本実施形態も第1実施形態と同様に、基材Bの周縁部に沿って複数の膜吸引口23aが配置され、基材Bの周縁部で覆われなかった各膜吸引口23aの一部が基材Bの周縁部b1に隣接することになるので、基材Bの成膜領域全体をより均一に加圧することができる。これにより、固体電解質膜13を基材Bの表面(成膜領域)に均一に倣わせることができる。この結果、基材Bに金属皮膜Fが成膜される表面は、載置台21の表面に倣ってより平坦化され、この表面に固体電解質膜13をより均一に接触させることができる。
 なお、本実施形態では、基材吸引口27aによる吸引を維持しつつ、膜吸引口23aによる吸引を行ったが、載置台21と基材Bとの間の空気を排出することができるのであれば、基材吸引口27aによる吸引を停止し、その後、膜吸引口23aによる吸引を行ってもよい。
 上述した吸引状態を維持しつつ、第1実施形態と同様に、電源部14を用いて、陽極11と陰極となる基材Bとの間に電圧を印加し、固体電解質膜13の内部に含有された金属イオンから金属を基材Bの表面に析出させ、基材Bの表面に金属皮膜Fを成膜する。
 このようにして、載置台21と基材Bとの間の空気を排出するので、固体電解質膜13をより均一に基材Bに倣わせるとともに、陽極11との間に生じる陽極11の表面状態に起因した圧力ムラを無くすまたはこれを低減することが可能となる。これにより、陽極11の表面状態に依存し難い均一な膜厚の均質な金属皮膜Fを安定して成膜することができる。
 本発明を以下の実施例により説明する。
[実施例1]
 表面に成膜する基材して、純アルミニウム基材(50mm×50mm×厚さ1mm)を準備し、この表面にニッケルめっき皮膜を形成し、さらにニッケルめっき皮膜の表面に、金めっき皮膜を形成し、これを純水で流水洗浄した。
 次に、図1(a)に示す成膜装置を用いて、この基材の表面に金属皮膜としてニッケル皮膜を成膜した。金属溶液に、1.0mol/Lの硫酸ニッケル水溶液と、0.5mol/Lの酢酸-酢酸ナトリウム緩衝液を用い、陽極にはPt板((株)ニラコ社製)、固体電解質膜には、膜厚50μmのナフィオンN212(デュポン(株)社製)を使用した。また、試験条件としては、吸引ポンプを駆動させて吸引部で固体電解質膜を基材側に吸引し、固体電解質膜を基材に密着させた状態で、電流密度5mA/cm、金属溶液の流量を10ml/分、成膜時間10分間で、ニッケル皮膜を成膜した。
[比較例1]
 実施例1と同じ基材を準備して、図6(a)に示す成膜装置を用いて、実施例1と同じ成膜条件で、基材の表面にニッケル皮膜を成膜した。実施例1と相違する点は、陽極に、白金が被覆された発泡チタンからなる多孔質体(三菱マテリアル製)を用い、成膜時には、陽極により固体電解質膜を0.3MPaの圧力で基材に押圧しながらニッケル皮膜を成膜した点である。
<評価方法>
 実施例1および比較例1に係るニッケル皮膜の表面の被覆率とピンホールを評価した。この結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(結果1および考察1)
 表1から、実施例1では、比較例1に比べてニッケル皮膜の被覆率が高く、ピンホールもなかった。また、比較例に係るニッケル皮膜は、上述した図7(a)で示した如きムラがニッケル皮膜に発生していた。
 このような結果から、実施例1の場合には、吸引部で固体電解質膜を吸引し、この吸引された固体電解質膜で基材の表面を押圧したので、成膜されるニッケル皮膜は陽極の表面状態の影響を受け難い。
 一方、比較例1の場合には、陽極を多孔質体にし、この多孔質体で固体電解質膜を基材の表面に加圧しながら、ニッケル皮膜を成膜したので、陽極の表面状態がニッケル皮膜に影響を与えたものと考えられる。なお、比較例1の場合でも、吸引部を設け、吸引部で固体電解質膜を吸引し、陽極による固体電解質膜への押圧を低減すれば、実施例1の如く、ニッケル皮膜の被覆率を高めて、ピンホールの発生を抑えることができると考えられる。
[実施例2]
 実施例2と同じ基材を準備して、図4(a)に示す成膜装置を用いて、基材の表面に金属皮膜(銅皮膜)を成膜した。実施例1と相違する点は、金属溶液(電解液)に、1.0mol/Lの硫酸銅水溶液を用い、まず、図5(a)に示すように、基材吸引口で基材を吸引後、この吸引状態を維持し、図5(b)に示すように、膜吸引口で固体電解質膜を吸引し、子の吸引状態で基材に銅皮膜を成膜した点である。なお、電流密度5mA/cm、金属溶液の流量を15ml/分、成膜時間10分間で、銅皮膜の成膜を行った。
[実施例3]
 実施例2と同じ基材を準備して、図4(a)に示す成膜装置を用いて、実施例と同じ成膜条件で、基材の表面に金属皮膜(ニッケル皮膜)を成膜した。実施例と相違する点は、金属溶液(電解液)に、1.0mol/Lの硫酸ニッケル水溶液と0.5mol/Lの酢酸-酢酸ナトリウム緩衝液を用いて、ニッケル皮膜の成膜を行った。
[比較例2]
 実施例2と同じ基材を準備して、図6(a)に示す成膜装置を用いて、基材の表面に銅皮膜を成膜した。実施例2と相違する点は、陽極に、白金が被覆された発泡チタンからなる多孔質体(三菱マテリアル製)を用い、成膜時には、陽極により固体電解質膜を0.3MPaの圧力で基材に押圧しながら銅皮膜を成膜した点である。
<評価方法>
 実施例2、3および比較例2に係る金属皮膜の表面の被覆率とピンホールを評価した。この結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
(結果2および考察2)
 表2から、実施例2、3では、比較例2に比べて金属皮膜の被覆率が高く、ピンホールもなかった。また、比較例2に係る金属皮膜は、比較例1と同様に上述した図7(a)で示した如きムラが金属皮膜に発生していた。
 このような結果から、実施例2、3の場合には、吸引部で基材を吸引後、固体電解質膜を吸引し、この吸引された固体電解質膜で基材の表面を押圧したので、成膜される金属皮膜は陽極の表面状態の影響を受け難い。しかしながら、比較例2の場合には、陽極を多孔質体にし、この多孔質体で固体電解質膜を基材の表面に加圧しながら、金属皮膜を成膜したので、陽極の表面状態が金属皮膜に影響を与えたものと考えられる。
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。
 本実施形態では、金属皮膜を成膜する基材として基材表面が平面の基材を用いたが、この形状に限定されるものではなく、たとえば、基材の表面に複数の凸部が形成されたものであってもよく、この凸部の表面に成膜を行う場合であっても、成膜時に基材側から固体電解質膜を吸引するので、固体電解質膜を基材表面に倣わせて加圧することができる。
 第2実施形態では、膜吸引口開閉弁28-1、28-2、基材吸引口開閉弁29の開閉を制御装置を用いて行っていないが、たとえば、膜吸引口開閉弁28-1、28-2、基材吸引口開閉弁29に電磁弁を用いて、その開閉を制御装置で制御してもよい。すなわち、制御装置を用いて、基材吸引口による吸引をすべく開閉弁29を開弁した後、膜吸引口による吸引をすべく膜吸引口開閉弁28-1、28-2の開弁を順次行うように、膜吸引口開閉弁28-1、28-2、基材吸引口開閉弁29を制御装置で制御しながら、金属皮膜の成膜を行ってもよい。
また、第2実施形態に係る成膜装置1Bでは、基材吸引口開閉弁29を設けたが、基材吸引口開閉弁29を省略し、膜吸引口開閉弁28-1、28-2を用いて、基材Bの周縁部に沿った異なる位置で、個別に固体電解質膜13を吸引してもよい。
1A,1B:成膜装置、11:陽極、13:固体電解質膜、14:電源部、15:ケーシング、15a:溶液収容部、15b:供給口、15c:排出口、19:Oリング、21:載置台、22:吸引部、23:膜吸引通路、23a:膜吸引口、24:吸引ポンプ、27:基材吸引通路、27a:基材吸引口、28-1、28-2:膜吸引口開閉弁、29:基材吸引口開閉弁、26:収容凹部、B:基材(陰極)、b1:周縁部、F:金属皮膜、L:金属溶液、R:溝部

Claims (16)

  1.  陽極と、前記陽極と陰極となる基材との間に配置された固体電解質膜と、前記陽極と前記基材との間に電圧を印加する電源部と、を備えており、前記固体電解質膜を前記基材の表面に接触させると共に、前記陽極と前記基材との間に電圧を印加して、該固体電解質膜の内部に含有された金属イオンから金属を前記基材の表面に析出させることにより、前記金属からなる金属皮膜を成膜する金属皮膜の成膜装置であって、
     前記成膜装置は、前記基材を載置する載置台と、前記金属皮膜を成膜する際に、前記載置台に載置された前記基材の表面に前記固体電解質膜が密着するように前記基材側から該固体電解質膜を吸引する吸引部と、を備えることを特徴とする金属皮膜の成膜装置。
  2.  前記陽極と前記固体電解質膜との間には、前記金属イオンを含む溶液が前記陽極と前記固体電解質膜とに接触するように前記金属イオンを含む溶液を収容する溶液収容部が形成されていることを特徴とする請求項1に記載の金属皮膜の成膜装置。
  3.  前記成膜装置は、前記溶液収容部内に前記金属イオンを含む溶液を循環させるための循環機構をさらに備えることを特徴とする請求項2に記載の金属皮膜の成膜装置。
  4.  前記吸引部は、前記固体電解質膜を吸引するための複数の膜吸引口を前記載置台の表面に有しており、該複数の膜吸引口は、前記載置台に載置された前記基材の周縁部に沿って形成されていることを特徴とする請求項1~3のいずれかに記載の金属皮膜の成膜装置。
  5.  前記載置台に前記基材を載置した状態で前記基材の周縁部が前記各膜吸引口の一部を覆うように、前記膜吸引口が形成されていることを特徴とする請求項4に記載の金属皮膜の成膜装置。
  6.  前記吸引部は、前記載置台に載置された前記基材を前記載置台に吸引するための基材吸引口を前記載置台の表面に有しており、
     前記基材吸引口は、前記基材を載置台に載置した状態で、前記載置台に対向した前記基材の表面の中央部に向かって形成されており、
     前記吸引部は、前記膜吸引口による吸引および非吸引を選択して行うように前記膜吸引口に接続された膜吸引口開閉弁と、前記基材吸引口による吸引および非吸引を選択して行うように前記基材吸引口に接続された基材吸引口開閉弁とをさらに備えることを特徴とする請求項4または5に記載の金属皮膜の成膜装置。
  7.  前記複数の膜吸引口が異なるタイミングで前記固体電解質膜を吸引可能なように、前記膜吸引口開閉弁が複数設けられていることを特徴する請求項6に記載の金属皮膜の成膜装置。
  8.  前記載置台には、前記基材の表面に前記金属皮膜を成膜する際に、前記基材を収容するための収容凹部が形成されていることを特徴とする請求項1~7のいずれかに記載の金属皮膜の成膜装置。
  9.  陽極と、陰極となる基材との間に固体電解質膜を配置し、前記固体電解質膜を基材に接触させると共に、前記陽極と前記基材との間に電圧を印加し、該固体電解質膜の内部に含有された金属イオンから金属を前記基材の表面に析出することにより、前記金属からなる金属皮膜を前記基材の表面に成膜する金属皮膜の成膜方法であって、
     前記金属皮膜を成膜する際に、前記基材の表面に前記固体電解質膜が密着するように前記基材側から前記固体電解質膜を吸引することを特徴とする金属皮膜の成膜方法。
  10.  前記陽極と前記固体電解質膜との間において、前記金属イオンを含む溶液を前記陽極と前記固体電解質膜とに接触するように金属イオンを含む溶液を収容しながら、前記金属皮膜の成膜を行うことを特徴とする請求項9に記載の金属皮膜の成膜方法。
  11.  前記陽極と前記固体電解質膜との間に収容された金属イオンを含む溶液を循環させながら、前記金属皮膜の成膜を行うことを特徴とする請求項9に記載の金属皮膜の成膜方法。
  12.  前記固体電解質膜の吸引を前記基材の周縁部に沿った位置から行うことを特徴とする請求項9~11のいずれかに記載の金属皮膜の成膜方法。
  13.  前記成膜方法は、前記基材を載置台に載置した状態で、前記金属皮膜を成膜するものであり、前記固体電解質膜の吸引と共に、前記基材の周縁部を前記載置台側に吸引することを特徴とする請求項12に記載の金属皮膜の成膜方法。
  14.  前記成膜方法は、前記基材を載置台に載置した状態で、前記載置台に対向した前記基材の表面の中央部から、前記基材を前記載置台に吸引し、
     該載置台に吸引された基材に対して、前記固体電解質膜の吸引を行うことを特徴とする請求項12または13に記載の金属皮膜の成膜方法。
  15.  前記基材の周縁部に沿った異なる位置で、前記固体電解質膜を吸引するタイミングを変えて、前記固体電解質膜の吸引を行うことを特徴とする請求項14に記載の金属皮膜の成膜方法。
  16.  前記載置台には、前記基材を収容するための収容凹部が形成されており、
     前記基材を前記収容凹部に収容した状態で、前記基材の表面に前記金属皮膜を成膜することを特徴とする請求項13~15のいずれかに記載の金属皮膜の成膜方法。
PCT/JP2014/079953 2013-11-14 2014-11-12 金属皮膜の成膜装置およびその成膜方法 WO2015072481A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015547772A JP6056987B2 (ja) 2013-11-14 2014-11-12 金属皮膜の成膜装置およびその成膜方法
EP14861239.3A EP3070191B1 (en) 2013-11-14 2014-11-12 Film forming apparatus for metal coating film and film forming method therefor
US15/033,967 US9752246B2 (en) 2013-11-14 2014-11-12 Film formation apparatus and film formation method forming metal film
BR112016009844-7A BR112016009844B1 (pt) 2013-11-14 2014-11-12 Aparelho de formação de filme de filme metálico e método de formação de filme de filmemetálico
KR1020167011664A KR101799710B1 (ko) 2013-11-14 2014-11-12 금속 피막의 성막 장치 및 그 성막 방법
CN201480057154.2A CN105637125B (zh) 2013-11-14 2014-11-12 金属被膜的成膜装置及其成膜方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-235552 2013-11-14
JP2013235552 2013-11-14

Publications (1)

Publication Number Publication Date
WO2015072481A1 true WO2015072481A1 (ja) 2015-05-21

Family

ID=53057415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079953 WO2015072481A1 (ja) 2013-11-14 2014-11-12 金属皮膜の成膜装置およびその成膜方法

Country Status (7)

Country Link
US (1) US9752246B2 (ja)
EP (1) EP3070191B1 (ja)
JP (1) JP6056987B2 (ja)
KR (1) KR101799710B1 (ja)
CN (1) CN105637125B (ja)
BR (1) BR112016009844B1 (ja)
WO (1) WO2015072481A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088918A (ja) * 2015-11-04 2017-05-25 トヨタ自動車株式会社 金属皮膜の成膜装置
EP3249081A1 (en) * 2016-05-23 2017-11-29 Toyota Jidosha Kabushiki Kaisha Film forming method for metal film and film forming apparatus therefor
JP7484865B2 (ja) 2021-10-14 2024-05-16 トヨタ自動車株式会社 金属皮膜の成膜装置および金属皮膜の成膜方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6819531B2 (ja) * 2017-09-28 2021-01-27 トヨタ自動車株式会社 金属皮膜の成膜方法および金属皮膜の成膜装置
JP2020097764A (ja) * 2018-12-18 2020-06-25 トヨタ自動車株式会社 成膜装置、及びそれを用いた金属膜の形成方法
JP7306337B2 (ja) * 2020-06-25 2023-07-11 トヨタ自動車株式会社 配線基板の製造方法
JP2022184365A (ja) * 2021-06-01 2022-12-13 トヨタ自動車株式会社 金属皮膜の成膜方法および金属皮膜の成膜装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216585A (ja) * 1994-01-28 1995-08-15 Casio Comput Co Ltd メッキ装置
JPH11191550A (ja) * 1997-12-25 1999-07-13 Denso Corp 表面加工装置
JP2000064087A (ja) * 1998-08-17 2000-02-29 Dainippon Screen Mfg Co Ltd 基板メッキ方法及び基板メッキ装置
WO2013125643A1 (ja) 2012-02-23 2013-08-29 トヨタ自動車株式会社 金属被膜の成膜装置および成膜方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH634881A5 (de) * 1978-04-14 1983-02-28 Bbc Brown Boveri & Cie Verfahren zum elektrolytischen abscheiden von metallen.
JPH01165786A (ja) * 1987-12-22 1989-06-29 Hitachi Cable Ltd 固相めっき方法
US6277261B1 (en) * 1998-05-08 2001-08-21 Forschungszentrum Jülich GmbH Method of producing electrolyte units by electrolytic deposition of a catalyst
US6610190B2 (en) * 2000-11-03 2003-08-26 Nutool, Inc. Method and apparatus for electrodeposition of uniform film with minimal edge exclusion on substrate
FR2885913B1 (fr) * 2005-05-18 2007-08-10 Centre Nat Rech Scient Element composite comprenant un substrat conducteur et un revetement metallique nanostructure.
DE102006043163B4 (de) * 2006-09-14 2016-03-31 Infineon Technologies Ag Halbleiterschaltungsanordnungen
JP5708182B2 (ja) * 2011-04-13 2015-04-30 トヨタ自動車株式会社 固体電解質膜を用いた金属膜形成方法
US9890464B2 (en) * 2012-01-12 2018-02-13 Oceanit Laboratories, Inc. Solid electrolyte/electrode assembly for electrochemical surface finishing applications
JP5995906B2 (ja) * 2014-05-19 2016-09-21 株式会社豊田中央研究所 隔膜の製造方法、及び金属被膜の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216585A (ja) * 1994-01-28 1995-08-15 Casio Comput Co Ltd メッキ装置
JPH11191550A (ja) * 1997-12-25 1999-07-13 Denso Corp 表面加工装置
JP2000064087A (ja) * 1998-08-17 2000-02-29 Dainippon Screen Mfg Co Ltd 基板メッキ方法及び基板メッキ装置
WO2013125643A1 (ja) 2012-02-23 2013-08-29 トヨタ自動車株式会社 金属被膜の成膜装置および成膜方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3070191A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088918A (ja) * 2015-11-04 2017-05-25 トヨタ自動車株式会社 金属皮膜の成膜装置
EP3249081A1 (en) * 2016-05-23 2017-11-29 Toyota Jidosha Kabushiki Kaisha Film forming method for metal film and film forming apparatus therefor
US10337116B2 (en) 2016-05-23 2019-07-02 Toyota Jidosha Kabushiki Kaisha Film forming method for metal film and film forming apparatus therefor
US10760172B2 (en) 2016-05-23 2020-09-01 Toyota Jidosha Kabushiki Kaisha Film forming method for metal film and film forming apparatus therefor
JP7484865B2 (ja) 2021-10-14 2024-05-16 トヨタ自動車株式会社 金属皮膜の成膜装置および金属皮膜の成膜方法

Also Published As

Publication number Publication date
CN105637125A (zh) 2016-06-01
BR112016009844B1 (pt) 2022-02-22
EP3070191B1 (en) 2017-08-16
CN105637125B (zh) 2017-10-13
EP3070191A1 (en) 2016-09-21
JP6056987B2 (ja) 2017-01-11
US20160265129A1 (en) 2016-09-15
EP3070191A4 (en) 2016-11-09
KR20160065193A (ko) 2016-06-08
JPWO2015072481A1 (ja) 2017-03-16
US9752246B2 (en) 2017-09-05
KR101799710B1 (ko) 2017-11-20
BR112016009844A2 (ja) 2017-08-01

Similar Documents

Publication Publication Date Title
JP6056987B2 (ja) 金属皮膜の成膜装置およびその成膜方法
JP5692268B2 (ja) 金属被膜の成膜装置および成膜方法
US20020020627A1 (en) Plating apparatus and plating method for substrate
US20060144699A1 (en) Systems and methods for electrochemically processing microfeature workpieces
CN105765111A (zh) 具有远距离阴极电解液流体管理的电化学沉积设备
TW201036712A (en) Wetting a workpiece surface in a fluid-processing system
US9752249B2 (en) Film forming apparatus and film forming method
KR101735254B1 (ko) 금속 피막을 형성하기 위한 성막 시스템 및 성막 방법
US20120255864A1 (en) Electroplating method
JP2008098449A (ja) 基板処理装置及び基板処理方法
US10151042B2 (en) Coating forming device and coating forming method for forming metal coating
CN103109365B (zh) 微观特征中的种子层沉积
KR20110056455A (ko) 성막 방법 및 기억 매체
US9840786B2 (en) Film deposition device of metal film and film deposition method
US20090045067A1 (en) Apparatus and method for processing a substrate
US20040055893A1 (en) Wafer backside electrical contact for electrochemical deposition and electrochemical mechanical polishing
JP5949696B2 (ja) 金属皮膜の成膜装置および成膜方法
JPH11293493A (ja) 電解めっき装置
JP2022001658A (ja) 金属皮膜の成膜装置
JP2007113082A (ja) めっき装置及びめっき方法
JP2018178140A (ja) 金属皮膜の成膜装置
JP3578204B2 (ja) 基板メッキ装置
TWI228157B (en) ECP method and apparatus thereof
JP2002332598A (ja) 液処理装置
KR20190051387A (ko) 전력 공급용 지그

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861239

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015547772

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167011664

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15033967

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014861239

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014861239

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016009844

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016009844

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160502