WO2015072206A1 - 高分子材料のシミュレーション方法 - Google Patents

高分子材料のシミュレーション方法 Download PDF

Info

Publication number
WO2015072206A1
WO2015072206A1 PCT/JP2014/072318 JP2014072318W WO2015072206A1 WO 2015072206 A1 WO2015072206 A1 WO 2015072206A1 JP 2014072318 W JP2014072318 W JP 2014072318W WO 2015072206 A1 WO2015072206 A1 WO 2015072206A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer material
model
filler
coarse
grained
Prior art date
Application number
PCT/JP2014/072318
Other languages
English (en)
French (fr)
Inventor
隆司 坂牧
和加奈 伊藤
容正 尾藤
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to EP14862920.7A priority Critical patent/EP3062092A4/en
Priority to US15/036,695 priority patent/US20160283624A1/en
Priority to CN201480060012.1A priority patent/CN105683740B/zh
Priority to KR1020167013551A priority patent/KR102251914B1/ko
Publication of WO2015072206A1 publication Critical patent/WO2015072206A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; Plastics; Rubber; Leather
    • G01N33/442Resins; Plastics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/30Prediction of properties of chemical compounds, compositions or mixtures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C10/00Computational theoretical chemistry, i.e. ICT specially adapted for theoretical aspects of quantum chemistry, molecular mechanics, molecular dynamics or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30403Field emission cathodes characterised by the emitter shape
    • H01J2201/30419Pillar shaped emitters

Definitions

  • the present invention relates to a simulation method for calculating deformation of a polymer material containing a filler.
  • fillers such as carbon black and silica are blended in polymer materials such as tire rubber. It has been found that the dispersibility of the filler in the polymer material greatly affects the rubber strength and the like, but the details are not clarified so much. For this reason, it is important to accurately observe the dispersion state of the filler in the polymer material and perform a simulation using a model based on the dispersion state.
  • a polymer material model is set based on a three-dimensional structure of a polymer material constructed from an electron beam transmission image. Therefore, in the following Patent Document 1, a polymer material model can be set based on the dispersion state of the filler.
  • JP 2013-57638 A JP 2013-57638 A
  • a polymer material model is set based on the finite element method.
  • the polymer material model includes a filler model in which the filler is divided by a finite number of elements and a polymer material model in which the polymer material is divided by a finite number of elements.
  • the conventional simulation method has a problem that the behavior of the polymer material at the time of large deformation cannot be expressed with high accuracy.
  • the present invention has been devised in view of the above circumstances, and has as its main object to provide a simulation method of a polymer material that can accurately express the behavior of the polymer material at the time of large deformation.
  • the present invention is a simulation method for calculating deformation of a polymer material containing a filler using a computer, and an imaging step of acquiring an electron beam transmission image of the polymer material using a scanning transmission electron microscope And a step of constructing a three-dimensional image of a polymer material based on the electron beam transmission image by a tomography method, and a computer comprising a polymer based on the three-dimensional image of the polymer material.
  • Filler model arrangement in which at least one filler model that models the filler is arranged in the filler portion using a process, a plurality of filler particle models, and a bond chain model that connects adjacent filler particle models
  • At least one coarse-grained model in which a polymer chain of the polymer material is modeled using a process, a plurality of coarse-grained particle models, and a bond chain model that connects adjacent coarse-grained particle models
  • a coarse-grained model placement step in which the polymer material portion is placed, and the computer calculates structural relaxation based on molecular dynamics calculation using the filler model and the coarse-grained model. It is characterized by including.
  • a small region selection step in which the computer selects a small region that is partitioned within the three-dimensional structure of the polymer material and has a predetermined size. Further, the filler model arranging step arranges the filler model in the filler portion of the small region, and the coarse-grained model arranging step includes the coarse-grained in the polymer material portion of the small region. It is desirable to arrange a model.
  • the small region selecting step includes a step of calculating a volume fraction of the filler portion in a three-dimensional structure of the polymer material, and 3 of the polymer material. Calculating a volume fraction of the filler portion in each of the small regions in a plurality of small regions divided at different positions in the dimensional structure; and among the plurality of small regions, the small region It is desirable that the method includes a step of selecting the small region where the volume fraction of the filler portion is closest to the volume fraction of the filler portion in the three-dimensional structure of the polymer material.
  • the filler model is arranged in a face-centered cubic lattice.
  • the bond chain model of the filler model is defined based on a bond function or an interparticle distance constraint method.
  • the polymer material simulation method of the present invention includes an imaging step of acquiring an electron beam transmission image of a polymer material using a scanning transmission electron microscope, and a tomography method based on the electron beam transmission image.
  • the method includes a step of constructing a three-dimensional structure, a model setting step of setting a polymer material model based on the three-dimensional structure of the polymer material, and a step of performing deformation simulation based on the polymer material model. According to such a method, an accurate polymer material model can be set based on an actual polymer material.
  • model setting process based on a three-dimensional image of the polymer material, a three-dimensional structure of the polymer material in which the filler portion where the filler is arranged and the polymer material portion around the filler portion is identified.
  • the process of building is included.
  • At least one filler model in which the filler is modeled is arranged in the filler portion using a plurality of filler particle models and a bond chain model that connects adjacent filler particle models.
  • a plurality of coarse-grained particle models, and a coupled chain model that connects adjacent coarse-grained particle models at least one coarse-grained model that models a polymer chain of a polymer material is enhanced. Placing in the molecular material portion and computing a structural relaxation based on a molecular dynamics calculation using a filler model and a coarse-grained model.
  • the filler model and the coarse-grained model are independently modeled based on the molecular dynamics method. Therefore, in the polymer material simulation method of the present invention, the behavior of the polymer material at the time of large deformation can be expressed with high accuracy.
  • model setting step structural relaxation calculation based on molecular dynamics calculation is performed, so that the equilibrium state of the filler model and the coarse-grained model can be calculated.
  • the simulation accuracy can be improved.
  • FIG. 1 It is a perspective view of the computer with which the simulation method of this invention is performed. It is a schematic partial expanded sectional view of a polymeric material. It is a structural formula of polybutadiene. It is the flowchart in which an example of the process sequence of the simulation method of this embodiment was shown. It is the schematic by which an example of the scanning transmission electron microscope of this embodiment was shown. It is explanatory drawing by which the state which inclined the sample was shown. (A), (b) is a side view which shows the positional relationship of the focus and sample in an imaging process. It is a perspective view which shows the three-dimensional structure of this embodiment. It is a flowchart which shows an example of the process sequence of a model setting process. It is a perspective view which shows a virtual space notionally.
  • Three-dimensional structure 26 Polymer material model 27 Filler part 28 Polymer material part 35 Filler model 36 Coarse-grained model
  • the deformation of the polymer material containing the filler is calculated using a computer.
  • FIG. 1 is a perspective view of a computer for executing the simulation method of the present invention.
  • the computer 1 includes a main body 1a, a keyboard 1b, a mouse 1c, and a display device 1d.
  • the main body 1a is provided with, for example, an arithmetic processing unit (CPU), a ROM, a working memory, a storage device such as a magnetic disk, and disk drive devices 1a1 and 1a2.
  • the storage device stores in advance software or the like for executing the simulation method of the present embodiment.
  • FIG. 2 is a schematic partial enlarged cross-sectional view of the polymer material of the present embodiment.
  • FIG. 3 is a structural formula of polybutadiene.
  • the polymer material 2 include rubber, resin, or elastomer.
  • the polymer material 2 of the present embodiment include cis-1,4 polybutadiene (hereinafter sometimes simply referred to as “polybutadiene”).
  • the polymer chain constituting the polybutadiene has a polymerization degree n of a monomer ⁇ — [CH 2 —CH ⁇ CH—CH 2 ] — ⁇ composed of a methylene group (—CH 2 —) and a methine group (—CH—). It is comprised by connecting with.
  • a polymer material a polymer material other than polybutadiene may be used.
  • the filler 3 contained in the polymer material 2 for example, carbon black, silica, alumina, or the like is included.
  • FIG. 4 is a flowchart illustrating an example of a processing procedure of the simulation method of the present embodiment.
  • an electron beam transmission image of the polymer material 2 is acquired using a scanning transmission electron microscope (imaging step S1).
  • FIG. 5 is a schematic view showing an example of a scanning transmission electron microscope of the present embodiment.
  • the scanning transmission electron microscope apparatus 4 includes an electron gun 5, a focusing lens 8, an X-direction scanning coil 9x, and a Y-direction scanning coil 9y, as in a conventional scanning transmission electron microscope.
  • the focusing lens 8 is for focusing the primary electron beam 6 emitted from the electron gun 5 at a right angle to the horizontal plane and downward onto the sample 7 made of the polymer material 2.
  • the X direction scanning coil 9x and the Y direction scanning coil 9y are for scanning the primary electron beam 6 on the sample 7 in the X direction and the Y direction.
  • the sample 7 is formed in a plate shape having a constant thickness t.
  • the sample 7 is fixed to the sample holder 11.
  • An electron beam passage hole 13 that penetrates along the optical axis O of the electron beam is provided at the center of the sample holder 11. Through the electron beam passage hole 13, the transmitted electrons 12 that have passed through the sample 7 pass.
  • the sample holder 11 is attached to the sample stage 14.
  • An electron beam transmission hole 19 penetrating along the electron beam optical axis O is provided at the center of the sample stage 14.
  • the electron beam transmission hole 19 and the electron beam passage hole 13 are continuous along the electron beam optical axis O.
  • a scattering angle limiting stop 15 for limiting the passage of the transmitted electrons 12 is provided on the downstream side of the sample stage 14.
  • a scintillator 16 that converts the transmitted electrons 12 into light and a photomultiplier tube 17 that converts the converted light into an electronic signal are provided downstream of the scattering angle limiting diaphragm 15.
  • the scintillator 16 and the photomultiplier tube 17 constitute a transmission electron detector 18.
  • the sample stage 14, the scattering angle limiting aperture 15, the scintillator 16, and the photomultiplier tube 17 are arranged in a sample chamber (not shown) of the scanning transmission electron microscope apparatus 4. Further, the scanning transmission electron microscope apparatus 4 is provided with a sample tilt portion (not shown) that tilts (rotates) the sample 7 with respect to the electron beam.
  • FIG. 6 is an explanatory view showing a state in which the sample 7 is tilted.
  • the sample inclined portion can hold the sample 7 with respect to the horizontal plane H while being inclined by an angle ⁇ ( ⁇ ⁇ 0). Therefore, the sample inclined portion is useful for imaging the sample 7 in a plurality of angular states in which the angles of the electron beam e with respect to the optical axis O are different.
  • the sample holder 11 on which the sample 7 is fixed is mounted on the sample stage 14 by the operator.
  • the primary electron beam 6 emitted from the electron gun 5 is focused by the focusing lens 8 and scanned onto the sample 7 by the X direction and Y direction scanning coils 9x and 9y.
  • the transmitted electrons 12 scattered and transmitted in the sample 7 or the transmitted electrons 12 transmitted without being scattered in the sample 7 are transmitted from the lower surface of the sample 7. Emitted.
  • the transmitted electrons 12 emitted from the lower surface of the sample 7 pass through the electron beam passage hole 13 of the sample holder 11 and the electron beam passage hole 19 of the sample stage 14 and then reach the scattering angle limiting stop 15.
  • the transmitted electrons 12 having a specific scattering angle pass through the scattering angle limiting diaphragm 15, collide with the scintillator 16, are converted into light, and then are converted into electric signals by the photomultiplier tube 17.
  • This electrical signal is sent to display means (both not shown) via the A / D converter.
  • the transmitted signal is subjected to luminance modulation, and an electron beam transmission image reflecting the internal structure of the sample 7 is displayed. Thereby, a plurality of images according to the scanning position can be acquired.
  • the sample 7 is tilted (rotated) by the sample tilt portion (not shown).
  • the sample 7 is imaged in a plurality of angular states in which the angles of the electron beam e with respect to the optical axis O are different.
  • the sample 7 is tilted in units of a predetermined angle from the measurement start angle to the measurement end angle. And acquisition of an electron beam transmission image is repeated for every angle.
  • a rotation series image (a plurality of electron beam transmission images) is obtained.
  • Such a rotation series image is stored in the computer 1.
  • FIG. 7A and 7B are side views showing the positional relationship between the focal point F and the sample 7 in the imaging step S1. It is desirable that the focal point F of the scanning transmission electron microscope apparatus 4 be adjusted to the central region C of the thickness t of the sample 7 (rubber material) in a plurality of angular states with different angles with respect to the optical axis O of the electron beam. . As a result, a range in which a clear image can be obtained, that is, a region with a focal depth f can be secured more widely inside the sample 7.
  • the central region C is desirably a region that is 30% or less of the thickness t with the center position of the thickness t of the sample 7 as the center. As shown in FIG.
  • the sample 7 when the upper surface 7 a and the lower surface 7 b of the sample 7 are not orthogonal to the optical axis O of the electron beam e, the sample 7 extends along the optical axis direction of the electron beam e that crosses the sample 7. Desirably, it is defined as the apparent thickness t ′ (ie, t / cos ⁇ ).
  • FIG. 8 is a perspective view showing a three-dimensional image (three-dimensional structure) of the present embodiment.
  • step S2 a plurality of electron beam transmission images acquired for each angle are converted into three-dimensional images (hereinafter simply referred to as “three-dimensional images”) of a polymer material as shown in FIG. 8 based on the tomography method. Yes.) Reconstructed as 21.
  • three-dimensional images the dispersion state of the filler 3 (shown in FIG. 2) in the polymer material 2 is clearly shown in three dimensions.
  • Such a three-dimensional image 21 is stored in the computer 1.
  • FIG. 9 is a flowchart illustrating an example of a processing procedure of the model setting step S3.
  • step S3 of the present embodiment first, based on the three-dimensional image 21 shown in FIG. 8, the filler portion 27 in which the filler 3 (shown in FIG. 2) is arranged, and the periphery of the filler portion 27.
  • the three-dimensional structure (hereinafter, simply referred to as “three-dimensional structure”) 22 of the polymer material identified from the polymer material portion 28 is constructed (step S31).
  • a cross-sectional position is designated in the three-dimensional image 21, and a plurality of two-dimensional slice images are acquired.
  • each slice image is subjected to image processing to be divided into at least a filler portion 27 and a polymer material portion 28.
  • a threshold is set in advance for information such as brightness and luminance of an image.
  • the slice image is automatically identified into the filler portion 27 and the polymer material portion 28.
  • a three-dimensional structure 22 (shown in FIG. 8) in which the filler portion 27 and the polymer material portion 28 are respectively identified is constructed.
  • the three-dimensional structure 22 is image data.
  • the three-dimensional structure 22 is stored in the computer 1.
  • the computer 1 selects a small area 31 divided in the three-dimensional structure 22 (small area selection step S32).
  • the small area 31 has a predetermined size.
  • the size of the small region 31 is the same as the size of the virtual space 32 (shown in FIG. 10) to be calculated in the molecular dynamics calculation described later. Thereby, in the simulation to be described later, the calculation target is limited to the range of the small region 31, so that the calculation time can be reduced.
  • the small region 31 can be divided at an arbitrary position of the three-dimensional structure 22. Such a small area 31 is stored in the computer 1.
  • FIG. 10 is a perspective view conceptually showing the virtual space 32.
  • the virtual space 32 of the present embodiment is defined as, for example, a cube having at least a pair of faces 33 and 33 facing each other, in the present embodiment.
  • a plurality of filler models 35 and a coarse-grained model 36 described later are arranged inside the virtual space 32.
  • the distance between the pair of surfaces 33 and 33 (that is, the length L1 of one side) is desirably set to, for example, 50 nm to 1000 nm (76 ⁇ to 1515 ⁇ in the unit of molecular dynamics calculation).
  • Such a virtual space 32 is stored in the computer 1.
  • FIG. 11 is a conceptual diagram of the filler model 35.
  • FIG. 12 is a conceptual diagram showing the filler particle model 39 and the bond chain model 40.
  • the filler model 35 includes a plurality of filler particle models 39 and a bond chain model 40 that connects adjacent filler particle models 39 and 39.
  • the filler particle model 39 is handled as a mass point of the equation of motion in the molecular dynamics calculation. That is, the filler particle model 39 defines parameters such as mass, volume, diameter, charge, or initial coordinates.
  • step S33 of the present embodiment first, as shown in FIG. 10, in the computer 1, image data (not shown) of the small area 31 (shown in FIG. 8) is superimposed on the virtual space 32. Next, a plurality of filler particle models 39 (shown in FIG. 11) are arranged in the region of the filler portion 27 (shown in FIG. 8) represented in the virtual space 32.
  • the filler particle model 39 is desirably arranged in a face-centered cubic lattice.
  • the movement of the filler particle model 39 can be firmly restrained, so that the rigidity of the filler model 35 (shown in FIG. 11) can be set high.
  • Such a filler model 35 can approximate the physical properties of the filler 3 (shown in FIG. 2) in the molecular dynamics calculation described later.
  • the filler particle model 39 may be arranged in a crystal lattice such as a body-centered cubic lattice or a simple lattice, for example.
  • the bond chain model 40 is defined.
  • the bond chain model 40 of this embodiment is defined based on a bond function. That is, the bond chain model 40 is defined by, for example, the potential defined by the following formula (1) (hereinafter, also referred to as “LJ potential U LJ (r ij )”) and the following formula (2). It is set by the potential P1 indicated by the sum with the coupling potential U FENE .
  • the constants and variables are parameters of Lennard-Jones and FENE potentials, and are as follows.
  • r ij distance between the particles
  • r c cutoff distance
  • k spring constant between grains
  • epsilon the intensity of the LJ potential which is defined between the particles sigma: corresponds to the diameter of the particles
  • R 0 Nobikiri length
  • the distance r ij The cut-off distance r c and the extension length R 0 are defined as the distance between the centers 39 c of each filler particle model 39.
  • the potential P1 defines a restoring force for returning the distance r ij to a position where the LJ potential U LJ (r ij ) and the coupling potential U FENE are balanced with each other.
  • the LJ potential U LJ (r ij ) increases infinitely as the distance r ij between the filler particle models 39 and 39 decreases.
  • the coupling potential U FENE is set to ⁇ when the distance r ij is not less than the full length R 0 . Therefore, the potential P1 is not allowed to have a distance r ij that is not less than the full length R 0 .
  • the intensity of the LJ potential U LJ (r ij) and the potential of FENE epsilon, Nobikiri length R 0, for a diameter ⁇ and cutoff distance r c of the particles can be appropriately set. These constants are described in, for example, paper 1 (Kurt Kremer & Gary S. Grest, “Dynamics of entangled linear polymer melts: A molecular-dynamics simulation”, J. Chem Phys. Vol. 92, No. 8, 15 April 1990). Based on the above, it is desirable to set as follows. Strength ⁇ : 1.0 Full length R 0 : 1.5 Distance ⁇ : 1.0 Cut-off distance r c : 2 1/6 ⁇
  • the spring constant k is a parameter that determines the rigidity of the filler model 35 (shown in FIG. 11). Therefore, it is desirable that the spring constant k is set within a range of 10 to 5000 based on the rigidity of the filler 3. In addition, when the spring constant k is less than 10, the rigidity of the filler model 35 becomes excessively small, and the simulation accuracy may be reduced. On the other hand, even if the spring constant k exceeds 5000, the deformation of the filler model 35 is substantially not allowed, and the molecular dynamics calculation may become unstable. From such a viewpoint, the spring constant k is more preferably 20 or more, further preferably 25 or more, more preferably 3000 or less, and further preferably 2500 or less.
  • the rigidity of the filler model 35 (shown in FIG. 11) is increased.
  • the filler model 35 approximated to the filler 3 (shown in FIG. 2) can be set.
  • the filler model 35 shown in FIG. 10 is set by sequentially modeling the filler particle model 39 and the bond chain model 40.
  • the filler model 35 since the filler model 35 is set based on the filler portion 27 (shown in FIG. 8) identified from the actual polymer material 2, a highly accurate polymer material model 26 can be defined. .
  • Such a filler model 35 is stored in the computer 1.
  • the bond chain model 40 is defined based on the bond function, but the present invention is not limited to this.
  • the bond chain model 40 can be defined based on, for example, an interparticle distance constraint method.
  • the inter-particle distance constraint method for example, the SHAKE method can be adopted.
  • the SHAKE method the binding force of the filler particle models 39 and 39 is derived based on Lagrange's undetermined multiplier method. Therefore, in the bond chain model 40 defined by the SHAKE method, the interparticle distance is fixed to a constant value.
  • the bond chain model 40 defined by the bond function the interparticle distance changes at high speed near the equilibrium length. For this reason, even if the unit time in the molecular dynamics calculation described later is set large, the bond chain model 40 defined by the SHAKE method is more stable than the bond chain model 40 defined by the bond function. Yes.
  • FIG. 10 is a conceptual diagram showing the coarse-grained model 36.
  • Each coarse-grained model 36 includes a plurality of coarse-grained particle models 41 and a coupled chain model 42 that connects adjacent coarse-grained particle models 41, 41.
  • the coarse-grained particle model 41 is obtained by replacing the monomer of the polymer material 2 (shown in FIG. 2) or a structural unit forming a part of the monomer as one particle. As shown in FIG. 2 and FIG. 13, when the polymer chain of the polymer material 2 is polybutadiene, for example, 1.55 monomers are used as the structural unit 37, and the coarse unit includes one structural unit 37. It is replaced with the particle model 41. As a result, a plurality (eg, 10 to 5000) of coarse-grained particle models 41 are set as the coarse-grained particle models 41.
  • the structural unit 37 In addition, 1.55 monomers are used as the structural unit 37 because the above paper 1 and the above paper 2 (L, J. Fetters., DJ Lohse and RHColby, "Chain Dimension and Entanglement Spacings” PhysicalPhysProperties of Polymers Handbook Second Edition 448)). Even if the polymer chain is other than polybutadiene, the structural unit 37 can be defined based on, for example, the above papers 1 and 2.
  • the coarse-grained particle model 41 is handled as a mass point of the equation of motion in the molecular dynamics calculation. That is, parameters such as mass, volume, diameter, or electric charge are defined in the coarse-grained particle model 41, for example.
  • FIG. 14 is a conceptual diagram showing the filler model 35 and the coarse-grained model 36 in an enlarged manner.
  • the bond chain model 42 is defined by a potential P2 in which a full length is set between the coarse-grained particle models 41 and 41.
  • the potential P2 of the present embodiment is set by the sum of the LJ potential U LJ (r ij ) defined by the above formula (1) and the coupling potential U FENE defined by the above formula (2).
  • the values of the constants and variables of the LJ potential U LJ (r ij ) and the coupling potential U FENE can be set as appropriate. In the present embodiment, the following values are set based on the paper 1.
  • Spring constant k 30 Full length R 0 : 1.5 Strength ⁇ : 1.0 Distance ⁇ : 1.0 Cut-off distance r c : 2 1/6 ⁇
  • the linear coarse-grained model 36 in which the adjacent coarse-grained particle models 41, 41 are constrained to be stretchable can be set by such a connected chain model 42.
  • the coarse-grained model 36 is set by sequentially modeling the coarse-grained particle model 41 and the coupled chain model 42.
  • step S34 of the present embodiment in the computer 1, in the virtual space 32 (shown in FIG. 10) in which the image data (not shown) of the small area 31 (shown in FIG. 8) is superimposed, the data is displayed in the virtual space 32.
  • a plurality of (for example, 10 to 1,000,000) coarse-grained models 36 are arranged on the polymer material portion 28 (shown in FIG. 8). Thereby, since the coarse-grained model 36 is set based on the polymer material portion 28 identified from the actual polymer material 2, the highly accurate polymer material model 26 can be defined.
  • These coarse-grained models 36 are stored in the computer 1.
  • a potential P3 is defined between the coarse-grained particle models 41 and 41 of the adjacent coarse-grained models 36 and 36 (step S35).
  • This potential P3 is defined by the LJ potential U LJ (r ij ) in the above equation (1).
  • the strength ⁇ and the constant ⁇ of the potential P3 can be set as appropriate.
  • the strength ⁇ and constant ⁇ of the potential P3 in the present embodiment are desirably set in the same range as the strength ⁇ and constant ⁇ of the potential P2 of the bond chain model 42.
  • the potential P3 is stored in the computer 1.
  • the potential P4 is defined between the filler particle models 39 and 39 of the adjacent filler model 35, and between the coarse-grained particle model 41 and the filler particle model 39 (step S36).
  • the potential P4 is defined by the LJ potential U LJ (r ij ) in the above formula (1). Note that the values of the constants and the variables of the potential P4 can be set as appropriate. It is desirable that each constant and each variable of the potential P4 of the present embodiment is set based on the above paper 1.
  • the potential P4 is stored in the computer 1.
  • the computer 1 calculates structure relaxation based on molecular dynamics calculation using the filler model 35 and the coarse-grained model 36 shown in FIG. 10 (step S37).
  • molecular dynamics calculation of the present embodiment for example, Newton's equation of motion is applied on the assumption that the filler model 35 and the coarse-grained model 36 follow classical mechanics for a predetermined time with respect to the virtual space 32. Then, the movements of the filler model 35 and the coarse-grained model 36 at each time are tracked every unit time.
  • the pressure and temperature are constant or the volume and temperature are kept constant in the virtual space 32.
  • step S37 the initial arrangement of the filler model 35 and the coarse-grained model 36 can be relaxed with high accuracy by approximating the molecular motion of the actual polymer material.
  • COGNAC included in a soft material synthesis simulator (J-OCTA) manufactured by JSOL Corporation is used.
  • step S38 determines whether or not the initial arrangement of the filler model 35 and the coarse-grained model 36 has been sufficiently relaxed.
  • step S38 when it is determined that the initial arrangement of the filler model 35 and the coarse-grained model 36 has been sufficiently relaxed (“Y” in step S38), the next step S4 is performed.
  • the unit time is advanced (step S39), and the steps S37 and S37 are performed.
  • Step S38 is performed again.
  • the computer 1 performs a deformation simulation based on the polymer material model 26 (step S4).
  • the polymer material model 26 (shown in FIG. 10) is set in one direction (for example, based on a uniaxial tensile test generally performed on the polymer material 2 (shown in FIG. 2)).
  • the physical quantity of the polymer material model 26 (for example, a stress-strain curve) is calculated.
  • Such physical quantities of the polymer material model 26 are stored in the computer 1.
  • the movement of the filler particle model 39 and the coarse-grained particle model 41 accompanying the deformation of the polymer material model 26 increases Large deformations can be simulated such that holes are created in the molecular material 2 (shown in FIG. 2).
  • a finite element model generally used for a long time in material simulation adjacent elements share the same node, and therefore it is impossible in principle to express that holes are generated.
  • the finite element model if the element is crushed during large deformation, the Courant condition is not satisfied and the calculation fails. Therefore, in the present embodiment, the behavior of the polymer material 2 during large deformation can be expressed with high accuracy.
  • the filler model 35 and the coarse-grained model 36 are set based on the filler portion 27 and the polymer material portion 28 identified from the actual polymer material 2 (shown in FIG. 2). Therefore, a high-precision polymer material model 26 can be defined. Therefore, in the present embodiment, the behavior of the polymer material 2 during large deformation can be expressed with high accuracy.
  • the method of deforming the polymer material model 26 is not limited to the above method.
  • a method of deforming by applying a cyclic strain of ⁇ 1% or a method of compressing or shearing the polymer material model 26 may be used.
  • the computer 1 determines whether or not the physical quantity of the polymer material model 26 is within a preset allowable range (step S5).
  • step S5 when it is determined that the physical quantity of the polymer material model 26 is within the allowable range (“Y” in step S5), the polymer material 2 is manufactured based on the polymer material model 26 ( Step S6).
  • step S7 when it is determined that the physical quantity of the polymer material model 26 is not within the allowable range (“N” in step S5), the blending of the filler 3 is changed (step S7), and steps S1 to S5 are performed. Will be implemented again. Thereby, in the simulation method of the present embodiment, the polymer material 2 having an allowable physical quantity can be manufactured.
  • the small region 31 is illustrated as being partitioned at an arbitrary position of the three-dimensional structure 22, but the present invention is not limited to this. Absent.
  • the small region 31 may be divided based on the volume fraction of the filler portion 27 in the three-dimensional structure 22.
  • FIG. 15 is a flowchart illustrating an example of a processing procedure of the small region selection step S32 according to another embodiment of the present invention.
  • the volume fraction of the filler portion 27 (shown in FIG. 8) in the three-dimensional structure 22 is calculated (step S321).
  • the volume fraction ⁇ b of the filler portion 27 in the three-dimensional structure 22 is obtained based on the following formula (3).
  • ⁇ b Vb / Va (3) here, ⁇ b: Volume fraction of filler part in the three-dimensional structure of the polymer material Va: Volume of the three-dimensional structure of the polymer material (mm 3 )
  • Vb Volume of the filler portion arranged in the three-dimensional structure of the polymer material (mm 3 )
  • the volume Va of the three-dimensional structure of the polymer material is the entire volume of the three-dimensional structure 22 as shown in FIG.
  • the volume Vb of the filler portion in the three-dimensional structure is the volume of all the filler portions 27 arranged in the three-dimensional structure 22.
  • the volume Vb of the filler portion can be easily calculated by the computer 1 based on the filler portion 27 divided by image processing. Then, the volume Vb of the filler part in the three-dimensional structure is obtained by dividing the volume Vb of the filler part by the volume Va of the three-dimensional structure.
  • Such a volume fraction ⁇ b is stored in the computer 1.
  • FIG. 16 is a flowchart illustrating an example of the processing procedure of the small region volume fraction calculation step S322.
  • FIG. 17 is a perspective view showing a small region 31 in the three-dimensional structure 22. In FIG. 17, the filler portion 27 and the polymer material portion 28 shown in FIG. 8 are omitted.
  • the volume fraction of the filler portion 27 (shown in FIG. 8) in the small region 31 is obtained. Is calculated (step S41).
  • the initial position can be set as appropriate.
  • a reference point 47 defined by one vertex 21a of the three-dimensional structure 22 and a reference point 48 defined by one vertex 31a of the small region 31 are coincident with each other. Is set.
  • the volume fraction ⁇ d of the filler portion 27 in the small region 31 is obtained based on the following formula (4).
  • ⁇ d Vd / Vc (4) here, ⁇ d: Volume fraction of the filler in the small area
  • Vc Volume of the small area (nm 3 )
  • Vd Volume of the filler portion arranged in the small region (nm 3 )
  • the small area volume Vc is the volume of the entire small area 31.
  • the volume Vd of the filler portion disposed in the small region is the volume of all the filler portions 27 (shown in FIG. 8) disposed in the small region 31.
  • the volume Vd of the filler portion can be calculated by the computer 1 based on the filler portion 27 arranged in the small region 31 of the filler portion 27 of the three-dimensional structure 22. Then, the volume fraction ⁇ d of the filler in the small region is obtained by dividing the volume Vd of the filler portion in the small region by the volume Vc of the small region. Such a volume fraction ⁇ d is stored in the computer 1.
  • a new small region 31 is divided (step S42), and the volume fraction ⁇ d of the filler portion 27 in the new small region 31 is calculated (step S43).
  • the volume fraction ⁇ d of the filler portion in this new small area 31 is stored in the computer 1.
  • step S42 a new small region 31 is divided at a position different from the small region 31 divided up to the previous time.
  • the previously selected small region 31 is moved along the x-axis direction, the y-axis direction, or the z-axis direction, whereby a new small region 31 is formed. It is divided. Further, an interval (not shown) for moving the small region 31 can be set as appropriate. The interval in this embodiment is preferably set to 1 nm to 100 nm. As a result, the small regions 31 can be uniformly divided in the three-dimensional structure 22.
  • step S44 it is determined whether or not the small area 31 is divided in the entire area of the three-dimensional structure 22 (step S44).
  • step S44 when it is determined that the small region 31 is divided in the entire area of the three-dimensional structure 22 (“Y” in step S44), the next step S323 is performed.
  • step S42 and step S43 are performed again.
  • the volume fraction ⁇ d of the filler portion in the small region 31 can be calculated over the entire area in the three-dimensional structure 22.
  • one small region 31 is selected from the plurality of small regions 31 (step S323).
  • the volume fraction ⁇ d of the filler portion 27 in each of the small regions 31 among the plurality of small regions 31 is the smallest that most closely approximates the volume fraction ⁇ b of the filler portion 27 in the three-dimensional structure 22.
  • Region 31 is selected.
  • the selected small area 31 is stored in the computer 1.
  • the polymer material model 26 is defined in the steps after step S33 shown in FIG.
  • the polymer material model 26 is defined based on the small region 31 having a volume fraction ⁇ d that is significantly different from the volume fraction ⁇ b of the filler portion 27 of the three-dimensional structure 22. Therefore, the accuracy of the simulation can be improved.
  • the volume fraction ⁇ d of the filler portion 27 is calculated in the plurality of small regions 31 in step S322
  • the volume fraction ⁇ d of each small region 31 and the filling in the three-dimensional structure 22 are performed.
  • the present invention is not limited to this.
  • the volume fraction ⁇ d of the small region 31 and the volume fraction ⁇ b of the three-dimensional structure 22 are sequentially compared, and the volume fraction ⁇ b of the three-dimensional structure 22 is the closest.
  • the small area 31 to be selected may be sequentially selected. According to such a method, it is not necessary to store the volume fraction ⁇ d of all the small regions 31, so that the data amount can be reduced.
  • a polymer material containing the following composition was manufactured.
  • the following microtome was used, and a sample having a thickness of 500 nm was prepared from a polymer material (experimental example). Based on the specifications shown below, a uniaxial tensile test was performed on the sample, and the average absolute deviation of the stress-strain curve was determined. Furthermore, the coefficient obtained by fitting the autocorrelation function of the filler's three-dimensional density distribution to the power function by the least square method is used, and the fractal indicates how the aggregate structure of the filler contained in the polymer material spreads. A dimension was sought.
  • a three-dimensional structure of the polymer material was constructed based on the electron beam transmission image obtained by imaging the polymer material with a scanning transmission electron microscope.
  • a polymer material model was set based on the three-dimensional structure of the polymer material (Example 1, Example 2).
  • the filler portion in the three-dimensional structure is divided into a plurality of small regions divided at different positions in the three-dimensional structure of the polymer material according to the procedure shown in FIGS. 15 and 16. The small region that best approximated the volume fraction of was selected.
  • a plurality of filler models are arranged at regular intervals in the virtual space without using a three-dimensional structure of the polymer material, and a plurality of coarse-grained models are arranged around the filler model.
  • a polymer material model was defined from the three-dimensional structure of the polymer material (Comparative Example 2).
  • each average absolute deviation of Example 1 to Comparative Example 2 is displayed as an index with the experimental example being 1.0. It shows that the behavior at the time of large deformation of the polymer material can be expressed with higher accuracy as each average absolute deviation is closer to 1.0.
  • the fractal dimension of Example 1 to Comparative Example 2 indicates that the closer to the numerical value of the fractal dimension of the experimental example, the more accurately the filler compounded in the polymer material can be expressed.
  • each numerical value such as potential is as described in the specification, and other common specifications are as follows. The results are shown in Table 1.
  • Styrene butadiene rubber 100 parts by mass Silica: 50 parts by mass Sulfur: 1.5 parts by mass
  • Vulcanization accelerator CZ 1 part by mass Vulcanization accelerator DPG: 1 part by mass Details of each formulation: Styrene butadiene rubber (SBR): E15 manufactured by Asahi Kasei Chemicals Corporation Silica: Ultrasil VN3 manufactured by Degussa Sulfur: Powder sulfur manufactured by Karuizawa Sulfur Co., Ltd.
  • Vulcanization accelerator CZ Noxeller CZ manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
  • Vulcanization accelerator DPG NOCELLER D manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
  • Example 1 and Example 2 can be approximated to the average absolute deviation and fractal dimension of the experimental example as compared with the polymer material model of Comparative Example 1 and Comparative Example 2. did it. Therefore, it was confirmed that the simulation method of Example 1 and Example 2 can express the behavior of the polymer material at the time of large deformation with high accuracy. Further, it was confirmed that the polymer material model of Example 2 can be approximated to the average absolute deviation of the experimental example as compared with the polymer material model of Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computing Systems (AREA)
  • Operations Research (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

 高分子材料の大変形時の挙動を高精度に表現する。 【解決手段】本発明の高分子材料のシミュレーション方法は、高分子材料2の電子線透過画像を取得する撮像工程S1と、高分子材料の3次元画像21を構築する工程S2と、高分子材料モデル26を設定するモデル設定工程S3と、高分子材料モデル26に基づいて変形シミュレーションを行う工程S4とを含む。モデル設定工程S3は、高分子材料の3次元画像21に基づいて、充填剤部分27と高分子材料部分28とが識別された高分子材料の3次元構造を構築する工程S31、フィラーモデル35を充填剤部分27に配置する工程S33、粗視化モデル36を高分子材料部分28に配置する工程S34、及び、フィラーモデル35と粗視化モデル36とを用いて、分子動力学計算に基づく構造緩和を計算する工程S37を含む。

Description

高分子材料のシミュレーション方法
 本発明は、充填剤を含有する高分子材料の変形を計算するシミュレーション方法に関する。
 タイヤのゴムなどの高分子材料には、補強性の観点より、カーボンブラックやシリカなどの充填剤が配合されている。高分子材料中の充填剤の分散性は、ゴム強度などに大きく影響することが判明しているが、その詳細はあまり明らかにされていない。このため、高分子材料中の充填剤の分散状態を正確に観察し、その分散状態に基づいたモデルを用いてシミュレーションを行うことが重要である。
 下記特許文献1では、電子線透過画像から構築された高分子材料の3次元構造に基づいて、高分子材料モデルが設定されている。従って、下記特許文献1では、充填剤の分散状態に基づいて、高分子材料モデルが設定されうる。
特開2013-57638号公報
 上記特許文献1では、有限要素法に基づいて、高分子材料モデルが設定されている。この高分子材料モデルは、充填剤が有限個の要素で分割された充填剤モデルと、高分子材料が有限個の要素で分割された高分子材料モデルとを含んでいる。
 充填剤モデル及び高分子材料モデルは、隣接する要素同士において、同一の節点が共有されている。このため、充填剤モデル及び高分子材料モデルの変形が、一定の範囲に限定される。従って、従来のシミュレーション方法では、高分子材料の大変形時の挙動を、高精度に表現できないという問題があった。
 本発明は、以上のような実状に鑑み案出されたもので、高分子材料の大変形時の挙動が高精度に表現されうる高分子材料のシミュレーション方法を提供することを主たる目的としている。
 本発明は、コンピュータを用いて、充填剤を含有する高分子材料の変形を計算するシミュレーション方法であって、走査型透過電子顕微鏡を用いて前記高分子材料の電子線透過画像を取得する撮像工程と、前記コンピュータが、トモグラフィー法により、前記電子線透過画像に基づいて、高分子材料の3次元画像を構築する工程と、前記コンピュータが、前記高分子材料の3次元画像に基づいて、高分子材料モデルを設定するモデル設定工程と、前記コンピュータが、前記高分子材料モデルに基づいて変形シミュレーションを行う工程とを含み、前記モデル設定工程は、前記高分子材料の3次元画像に基づいて、前記充填剤が配された充填剤部分と、前記充填剤部分の周囲の高分子材料部分とが識別された高分子材料の3次元構造を構築する工程、複数のフィラー粒子モデルと、隣接するフィラー粒子モデル間を結合する結合鎖モデルとを用いて、前記充填剤をモデル化した少なくとも一つのフィラーモデルを、前記充填剤部分に配置するフィラーモデル配置工程、複数の粗視化粒子モデルと、隣接する前記粗視化粒子モデル間を結合する結合鎖モデルとを用いて、前記高分子材料の高分子鎖をモデル化した少なくとも一つの粗視化モデルを、前記高分子材料部分に配置する粗視化モデル配置工程、及び前記コンピュータが、前記フィラーモデルと、前記粗視化モデルとを用いて、分子動力学計算に基づく構造緩和を計算する工程を含むことを特徴とする。
 本発明に係る前記高分子材料のシミュレーション方法において、前記コンピュータが、前記高分子材料の3次元構造内で区分され、かつ、予め定められた大きさを有する小領域を選択する小領域選択工程をさらに含み、前記フィラーモデル配置工程は、前記小領域の前記充填剤部分に、前記フィラーモデルを配置し、前記粗視化モデル配置工程は、前記小領域の前記高分子材料部分に、前記粗視化モデルを配置するのが望ましい。
 本発明に係る前記高分子材料のシミュレーション方法において、前記小領域選択工程は、前記高分子材料の3次元構造での前記充填剤部分の体積分率を計算する工程と、前記高分子材料の3次元構造内の異なる位置で区分された複数の小領域において、前記各小領域での前記充填剤部分の体積分率を計算する工程と、複数の前記小領域のうち、前記小領域での前記充填剤部分の体積分率が、前記高分子材料の3次元構造での前記充填剤部分の体積分率と最も近似する前記小領域を選択する工程とを含むのが望ましい。
 本発明に係る前記高分子材料のシミュレーション方法において、前記フィラーモデルは、前記フィラー粒子モデルが面心立方格子状に配置されるのが望ましい。
 本発明に係る前記高分子材料のシミュレーション方法において、前記フィラーモデルの前記結合鎖モデルは、ボンド関数又は粒子間距離拘束法に基づいて定義されるのが望ましい。
 本発明の高分子材料のシミュレーション方法は、走査型透過電子顕微鏡を用いて高分子材料の電子線透過画像を取得する撮像工程と、トモグラフィー法により、電子線透過画像に基づいて、高分子材料の3次元構造を構築する工程と、高分子材料の3次元構造に基づいて高分子材料モデルを設定するモデル設定工程と、高分子材料モデルに基づいて変形シミュレーションを行う工程とが含まれる。このような方法によれば、実際の高分子材料に基づいて、正確な高分子材料モデルが設定されうる。 
 モデル設定工程は、高分子材料の3次元画像に基づいて、充填剤が配された充填剤部分と、充填剤部分の周囲の高分子材料部分とが識別された高分子材料の3次元構造を構築する工程が含まれる。
 さらに、モデル設定工程は、複数のフィラー粒子モデルと、隣接するフィラー粒子モデル間を結合する結合鎖モデルとを用いて、充填剤をモデル化した少なくとも一つのフィラーモデルを、充填剤部分に配置する工程、複数の粗視化粒子モデルと、隣接する粗視化粒子モデル間を結合する結合鎖モデルとを用いて、高分子材料の高分子鎖をモデル化した少なくとも一つの粗視化モデルを高分子材料部分に配置する工程、及び、コンピュータが、フィラーモデルと、粗視化モデルとを用いて、分子動力学計算に基づく構造緩和を計算する工程が含まれる。
 このような高分子材料モデルでは、隣接する要素が同一の節点を共有する有限要素法とは異なり、分子動力学法に基づいて、フィラーモデル及び粗視化モデルが独立してモデル化される。このため、本発明の高分子材料のシミュレーション方法では、高分子材料の大変形時の挙動が、高精度に表現されうる。
 しかも、モデル設定工程は、分子動力学計算に基づく構造緩和の計算が実施されるため、フィラーモデル及び粗視化モデルの平衡状態が計算されうる。このような高分子材料モデルが用いられることにより、シミュレーション精度が高められうる。
本発明のシミュレーション方法が実行されるコンピュータの斜視図である。 高分子材料の概略的な部分拡大断面図である。 ポリブタジエンの構造式である。 本実施形態のシミュレーション方法の処理手順の一例が示されたフローチャートである。 本実施形態の走査型透過電子顕微鏡の一例が示された概略図である。 試料を傾斜させた状態が示された説明図である。 (a)、(b)は、撮像工程での焦点と試料との位置関係を示す側面図である。 本実施形態の3次元構造を示す斜視図である。 モデル設定工程の処理手順の一例を示すフローチャートである。 仮想空間を概念的に示す斜視図である。 フィラーモデルを示す概念図である。 フィラー粒子モデル及び結合鎖モデルを示す概念図である。 粗視化モデルを示す概念図である。 フィラーモデル及び粗視化モデルを拡大して示す概念図である。 本発明の他の実施形態の小領域選択工程の処理手順の一例を示すフローチャートである。 小領域体積分率計算工程の処理手順の一例を示すフローチャートである。 3次元構造内の小領域を示す斜視図である。
21   3次元構造
26   高分子材料モデル
27   充填剤部分
28   高分子材料部分
35   フィラーモデル
36   粗視化モデル
 以下、本発明の実施の一形態が図面に基づき説明される。
 本実施形態の高分子材料のシミュレーション方法(以下、単に「シミュレーション方法」ということがある)では、コンピュータを用いて、充填剤を含有する高分子材料の変形が計算される。
 図1は、本発明のシミュレーション方法を実行するためのコンピュータの斜視図である。コンピュータ1は、本体1a、キーボード1b、マウス1c及びディスプレイ装置1dが含まれている。この本体1aには、例えば、演算処理装置(CPU)、ROM、作業用メモリ、磁気ディスクなどの記憶装置、及び、ディスクドライブ装置1a1、1a2が設けられている。また、記憶装置には、本実施形態のシミュレーション方法を実行するためのソフトウェア等が予め記憶されている。
 図2は、本実施形態の高分子材料の概略的な部分拡大断面図である。図3は、ポリブタジエンの構造式である。高分子材料2としては、例えば、ゴム、樹脂、又は、エラストマー等が含まれる。本実施形態の高分子材料2としては、cis-1,4ポリブタジエン(以下、単に「ポリブタジエン」ということがある。)が例示される。このポリブタジエンを構成する高分子鎖は、メチレン基(-CH-)とメチン基(-CH-)とからなるモノマー{-[CH-CH=CH-CH]-}が、重合度nで連結されることによって構成されている。なお、高分子材料には、ポリブタジエン以外の高分子材料が用いられてもよい。また、高分子材料2に含有される充填剤3としては、例えば、カーボンブラック、シリカ、又は、アルミナ等が含まれる。
 図4は、本実施形態のシミュレーション方法の処理手順の一例を示すフローチャートである。本実施形態のシミュレーション方法では、先ず、走査型透過電子顕微鏡を用いて、高分子材料2の電子線透過画像が取得される(撮像工程S1)。
 図5は、本実施形態の走査型透過電子顕微鏡の一例を示す概略図である。走査型透過電子顕微鏡装置4は、従来の走査型透過電子顕微鏡と同様に、電子銃5と、集束レンズ8と、X方向走査コイル9x及びY方向走査コイル9yとを含んで構成されている。集束レンズ8は、電子銃5から水平面と直角かつ下方に放出された一次電子線6を、高分子材料2からなる試料7上に集束させるためのものである。また、X方向走査コイル9x及びY方向走査コイル9yは、試料7上に、一次電子線6をX方向、Y方向に走査させるためのものである。試料7は、一定の厚さtを有する板状に形成されている。
 試料7は、試料ホルダー11に固定される。試料ホルダー11の中央部には、電子線の光軸Oに沿って貫通する電子線通過孔13が設けられている。電子線通過孔13は、試料7を透過した透過電子12が通過する。また、試料ホルダー11は、試料ステージ14に装着される。試料ステージ14の中央部には、電子線光軸Oに沿って貫通する電子線透過孔19が設けられる。電子線透過孔19と、電子線通過孔13とは、電子線光軸Oに沿って連続している。また、試料ステージ14の下流側には、透過電子12の通過を制限する散乱角制限絞り15が設けられている。
 散乱角制限絞り15の下流側には、透過電子12を光に変換するシンチレーター16と、該変換された光を電子信号に変換する光電子増倍管17とが設けられる。これらのシンチレーター16及び光電子増倍管17によって、透過電子の検出器18が構成される。なお、試料ステージ14、散乱角制限絞り15、シンチレーター16及び光電子増倍管17は、走査型透過電子顕微鏡装置4の試料室(図示せず)内に配置される。さらに、走査型透過電子顕微鏡装置4には、試料7を電子線に対して傾斜(回転)させる試料傾斜部(図示省略)が設けられている。図6は、試料7を傾斜させた状態を示す説明図である。試料傾斜部は、水平面Hに対して、試料7を角度θ(θ≠0)だけ傾斜させて保持しうる。従って、試料傾斜部は、電子線eの光軸Oに対する角度を異ならせた複数の角度状態において、試料7を撮像するのに役立つ。
 このような走査型透過電子顕微鏡を用いた撮像工程S1では、先ず、図5に示されるように、オペレーターにより、試料7が固定された試料ホルダー11が、試料ステージ14上に装着される。次に、電子銃5から放出された一次電子線6は、集束レンズ8によって集束され、X方向、Y方向走査コイル9x、9yによって試料7上に走査される。このような一次電子線6による試料7上の走査により、試料7中で散乱して透過した透過電子12、又は、試料7中で散乱することなく透過した透過電子12が、試料7の下面から出射される。
 試料7の下面から出射した透過電子12は、試料ホルダー11の電子線通過孔13と、試料ステージ14の電子線透過孔19とをそれぞれ通過した後、散乱角制限絞り15に達する。特定の散乱角を有する透過電子12は、散乱角制限絞り15を通過し、シンチレーター16に衝突して光に変換された後、光電子増倍管17によって電気信号に変換される。この電気信号は、A/D変換器を介して表示手段(ともに図示せず)に送られる。表示手段では、送られてきた信号が輝度変調されて、試料7の内部構造を反映した電子線透過像が表示される。これにより、走査位置に応じた複数の像が取得されうる。
 さらに、撮像工程S1では、図6に示されるように、試料傾斜部(図示省略)によって、試料7が傾斜(回転)される。そして、電子線eの光軸Oに対する角度を異ならせた複数の角度状態において、試料7が撮像される。本実施形態では、測定開始角度から測定終了角度までの間、予め定められた角度の単位で試料7が傾斜されている。そして、角度ごとに、電子線透過画像の取得が繰り返される。これにより、撮像工程S1では、回転シリーズ像(複数の電子線透過画像)が得られる。このような回転シリーズ像は、コンピュータ1に記憶される。
 図7(a)、(b)は、撮像工程S1での焦点Fと試料7との位置関係を示す側面図である。走査型透過電子顕微鏡装置4の焦点Fは、電子線の光軸Oに対する角度を異ならせた複数の角度状態において、試料7(ゴム材料)の厚さtの中央領域Cに合わせられるのが望ましい。これにより、鮮明な像が得られる範囲、即ち、焦点深度fの領域が、試料7の内部により広く確保されうる。中央領域Cは、試料7の厚さtの中心位置を中心として、厚さtの30%以下の領域とするのが望ましい。図7(b)に示されるように、試料7の上面7a及び下面7bが、電子線eの光軸Oに対して非直交する場合、試料7を横切る電子線eの光軸方向に沿った見かけ厚さt’(即ち、t/cosθ)として定められるのが望ましい。
 次に、図4に示されるように、コンピュータ1が、トモグラフィー法により、電子線透過画像に基づいて、高分子材料2の3次元画像を構築する(工程S2)。図8は、本実施形態の3次元画像(3次元構造)を示す斜視図である。
 工程S2では、角度ごとに取得された複数の電子線透過画像が、トモグラフィー法に基づいて、図8に示されるような高分子材料の3次元画像(以下、単に「3次元画像」ということがある。)21として再構築される。このような3次元画像21では、高分子材料2中の充填剤3(図2に示す)の分散状態が、3次元で明確に示される。このような3次元画像21は、コンピュータ1に記憶される。
 次に、図4に示されるように、コンピュータ1が、高分子材料の3次元画像21に基づいて、高分子材料モデルを設定する(モデル設定工程S3)。図9は、モデル設定工程S3の処理手順の一例を示すフローチャートである。
 本実施形態のモデル設定工程S3は、先ず、図8に示した3次元画像21に基づいて、充填剤3(図2に示す)が配された充填剤部分27と、充填剤部分27の周囲の高分子材料部分28とが識別された高分子材料の3次元構造(以下、単に「3次元構造」ということがある。)22が構築される(工程S31)。
 この工程S31では、先ず、3次元画像21に断面の位置が指定されて、2次元のスライス画像が複数個取得される。次に、各スライス画像が画像処理されることにより、少なくとも充填剤部分27と、高分子材料部分28との2つに区分される。画像処理では、先ず、予め画像の明度や輝度などの情報に対して閾値が設定される。次に、設定された閾値に基づいて、スライス画像が、充填剤部分27と高分子材料部分28とに自動的に識別される。そして、識別された複数のスライス画像に基づいて、充填剤部分27及び高分子材料部分28がそれぞれ識別された3次元構造22(図8に示す)が構築される。3次元構造22は、画像データである。3次元構造22は、コンピュータ1に記憶される。
 次に、コンピュータ1が、3次元構造22内で区分される小領域31を選択する(小領域選択工程S32)。小領域31は、予め定められた大きさを有している。小領域31の大きさは、後述する分子動力学計算において計算対象となる仮想空間32(図10に示す)の大きさと同一である。これにより、後述するシミュレーションでは、計算対象が小領域31の範囲に限定されるため、計算時間が短縮されうる。なお、小領域31は、3次元構造22の任意の位置において区分されうる。このような小領域31は、コンピュータ1に記憶される。
 図10は、仮想空間32を概念的に示す斜視図である。本実施形態の仮想空間32は、例えば、互いに向き合う少なくとも一対、本実施形態では3対の面33、33を有する立方体として定義される。仮想空間32の内部には、後述するフィラーモデル35、及び、粗視化モデル36が複数個配置される。一対の面33、33の間隔(即ち、1辺の長さL1)については、例えば、50nm~1000nm(分子動力学計算の単位では、76σ~1515σ)に設定されるのが望ましい。このような仮想空間32は、コンピュータ1に記憶される。
 次に、小領域31の充填剤部分27に、充填剤3(図2に示す)をモデル化した少なくとも一つのフィラーモデルが配置される(工程S33)。図11は、フィラーモデル35の概念図である。図12は、フィラー粒子モデル39及び結合鎖モデル40を示す概念図である。フィラーモデル35は、複数のフィラー粒子モデル39と、隣接するフィラー粒子モデル39、39間を結合する結合鎖モデル40とを含んで構成されている。
 フィラー粒子モデル39は、分子動力学計算において、運動方程式の質点として取り扱われる。即ち、フィラー粒子モデル39には、質量、体積、直径、電荷又は初期座標などのパラメータが定義される。
 本実施形態の工程S33では、先ず、図10に示されるように、コンピュータ1において、仮想空間32に、小領域31(図8に示す)の画像データ(図示省略)が重ね合わされる。次に、仮想空間32に表された充填剤部分27(図8に示す)の領域内に、複数のフィラー粒子モデル39(図11に示す)が配置される。
 図12に示されるように、フィラー粒子モデル39は、面心立方格子状に配置されるのが望ましい。これにより、フィラー粒子モデル39が結晶格子状に結合されることにより、フィラー粒子モデル39の動きが強固に拘束されうるため、フィラーモデル35(図11に示す)の剛性が高く設定されうる。このようなフィラーモデル35は、後述する分子動力学計算において、充填剤3(図2に示す)の物性に近似しうる。なお、フィラー粒子モデル39は、例えば、体心立方格子や、単純格子等の結晶格子状に配置されてもよい。
 次に、工程S33では、結合鎖モデル40が定義される。本実施形態の結合鎖モデル40は、ボンド関数に基づいて定義される。即ち、結合鎖モデル40は、例えば、下記式(1)で定義されるポテンシャル(以下、「LJポテンシャルULJ(rij)」ということがある。)と、下記式(2)で定義される結合ポテンシャルUFENEとの和で示されるポテンシャルP1によって設定される。
Figure JPOXMLDOC01-appb-M000001

Figure JPOXMLDOC01-appb-M000002

 ここで、各定数及び変数は、Lennard-Jones及びFENEの各ポテンシャルのパラメータであり、次のとおりである。
  rij:粒子間の距離
  rc:カットオフ距離
  k:粒子間のばね定数
  ε:粒子間に定義されるLJポテンシャルの強度
  σ:粒子の直径に相当
  R0:伸びきり長
 なお、距離rij、カットオフ距離rc、及び、伸びきり長R0は、各フィラー粒子モデル39の中心39c間の距離として定義される。
 上記式(1)において、フィラー粒子モデル39、39間の距離rijが小さくなると、斥力が作用するLJポテンシャルULJ(rij)が大きくなる。一方、上記式(2)において、フィラー粒子モデル39、39間の距離rij が大きくなると、引力が作用する結合ポテンシャルUFENEが大きくなる。従って、ポテンシャルP1は、距離rijを、LJポテンシャルULJ(rij)と結合ポテンシャルUFENEとが互いに釣り合う位置に戻そうとする復元力が定義される。
 また、上記式(1)では、フィラー粒子モデル39、39間の距離rijが小さくなるほど、LJポテンシャルULJ(rij)が無限に大きくなる。一方、上記式(2)では、距離rijが伸びきり長R0以上となる場合に、結合ポテンシャルUFENEが∞に設定される。従って、ポテンシャルP1は、伸びきり長R0以上の距離rijが許容されない。
 なお、LJポテンシャルULJ(rij)及びFENEの各ポテンシャルの強度ε、伸びきり長R0、粒子の直径σ及びカットオフ距離rcについては、適宜設定されうる。これらの定数は、例えば、論文1( Kurt Kremer & Gary S. Grest 著 「Dynamics of entangled linear polymer melts: A molecular-dynamics simulation」、J. Chem Phys. vol.92, No.8, 15 April 1990)に基づいて、下記のように設定されるのが望ましい。
 強度ε:1.0
 伸びきり長R0:1.5
 距離σ:1.0
 カットオフ距離rc:21/6σ
 ばね定数kは、フィラーモデル35(図11に示す)の剛性を決定するパラメータである。このため、ばね定数kは、充填剤3の剛性に基づいて、10~5000の範囲内で設定されるのが望ましい。なお、ばね定数kが10未満の場合には、フィラーモデル35の剛性が過度に小さくなり、シミュレーション精度が低下するおそれがある。逆に、ばね定数kが5000を超えても、フィラーモデル35の変形が実質的に許容されなくなり、分子動力学計算が不安定になるおそれがある。このような観点より、ばね定数kは、より好ましくは20以上、さらに好ましくは25以上であり、また、より好ましくは3000以下、さらに好ましくは2500以下である。
 このような結合鎖モデル40が定義されることにより、フィラーモデル35(図11に示す)の剛性が高められる。これにより、後述する分子動力学計算において、充填剤3(図2に示す)に近似したフィラーモデル35が設定されうる。このように、フィラー粒子モデル39と、結合鎖モデル40とが順次モデル化されることにより、図10に示したフィラーモデル35が設定される。本実施形態では、実際の高分子材料2から識別された充填剤部分27(図8に示す)に基づいて、フィラーモデル35が設定されるため、精度の高い高分子材料モデル26が定義されうる。このようなフィラーモデル35は、コンピュータ1に記憶される。
 本実施形態では、結合鎖モデル40が、ボンド関数に基づいて定義されるものが例示されたが、これに限定されるわけではない。結合鎖モデル40は、例えば、粒子間距離拘束法に基づいて定義されうる。粒子間距離拘束法としては、例えば、SHAKE法が採用されうる。SHAKE法では、Lagrangeの未定乗数法に基づいて、フィラー粒子モデル39、39の拘束力が導出される。従って、SHAKE法で定義された結合鎖モデル40は、粒子間距離が一定値に固定される。他方、ボンド関数で定義された結合鎖モデル40は、粒子間距離が、平衡長付近で高速に変化する。このため、後述する分子動力学計算での単位時間が大きく設定されたとしても、SHAKE法で定義された結合鎖モデル40は、ボンド関数で定義された結合鎖モデル40に比べて、計算が安定しうる。
 次に、図10に示されるように、小領域31の高分子材料部分28(図8に示す)に、高分子材料2の高分子鎖がモデル化された少なくとも一つの粗視化モデル36が配置される(工程S34)。図13は、粗視化モデル36を示す概念図である。各粗視化モデル36は、複数の粗視化粒子モデル41と、隣接する粗視化粒子モデル41、41間を結合する結合鎖モデル42とを含んで構成されている。
 粗視化粒子モデル41は、高分子材料2(図2に示す)のモノマー又はモノマーの一部分をなす構造単位が、一つの粒子として置換されたものである。図2及び図13に示されるように、高分子材料2の高分子鎖がポリブタジエンである場合には、例えば1.55個分のモノマーを構造単位37として、構造単位37が1個の粗視化粒子モデル41に置換される。これにより、粗視化粒子モデル41には、複数個(例えば、10個~5000個)の粗視化粒子モデル41が設定される。
 なお、1.55個分のモノマーを構造単位37としたのは、上記論文1、及び、上記論文2(L,J.Fetters ,D.J.Lohse and R.H.Colby 著、「Chain Dimension and Entanglement Spacings 」Physical Properties of Polymers Handbook Second Edition P448」)の記載に基づくものである。また、高分子鎖がポリブタジエン以外の場合であっても、例えば、上記論文1及び2に基づいて、構造単位37が定義されうる。
 粗視化粒子モデル41は、分子動力学計算において、運動方程式の質点として取り扱われる。即ち、粗視化粒子モデル41には、例えば、質量、体積、直径又は電荷などのパラメータが定義される。
 図14は、フィラーモデル35及び粗視化モデル36を拡大して示す概念図である。結合鎖モデル42は、粗視化粒子モデル41、41間に、伸びきり長が設定されたポテンシャルP2によって定義される。本実施形態のポテンシャルP2は、上記式(1)で定義されるLJポテンシャルULJ(rij)と、上記式(2)で定義される結合ポテンシャルUFENEとの和によって設定される。LJポテンシャルULJ(rij)及び結合ポテンシャルUFENEの各定数及び各変数の値としては、適宜設定されうる。本実施形態では、上記論文1に基づいて、次の値が設定される。
 ばね定数k:30
 伸びきり長R0:1.5
 強度ε:1.0
 距離σ:1.0
 カットオフ距離rc:21/6σ
 このような結合鎖モデル42により、隣接する粗視化粒子モデル41、41が伸縮自在に拘束された直鎖状の粗視化モデル36が設定されうる。このように、粗視化粒子モデル41と、結合鎖モデル42とが順次モデル化されることにより、粗視化モデル36が設定される。
 そして、本実施形態の工程S34では、コンピュータ1において、小領域31(図8に示す)の画像データ(図示省略)が重ね合わされた仮想空間32(図10に示す)において、仮想空間32に表された高分子材料部分28(図8に示す)に、複数個(例えば、10個~1,000,000個)の粗視化モデル36が配置される。これにより、実際の高分子材料2から識別された高分子材料部分28に基づいて、粗視化モデル36が設定されるため、精度の高い高分子材料モデル26が定義されうる。これらの粗視化モデル36は、コンピュータ1に記憶される。
 次に、隣接する粗視化モデル36、36の粗視化粒子モデル41、41間に、ポテンシャルP3が定義される(工程S35)。このポテンシャルP3は、上記式(1)のLJポテンシャルULJ(rij)によって定義される。なお、ポテンシャルP3の強度ε及び定数σについては、適宜設定されうる。本実施形態のポテンシャルP3の強度ε及び定数σは、結合鎖モデル42のポテンシャルP2の強度ε及び定数σと同一範囲に設定されるのが望ましい。ポテンシャルP3は、コンピュータ1に記憶される。
 次に、隣接するフィラーモデル35のフィラー粒子モデル39、39間、及び、粗視化粒子モデル41とフィラー粒子モデル39との間に、ポテンシャルP4が定義される(工程S36)。ポテンシャルP4は、上記式(1)のLJポテンシャルULJ(rij)によって定義される。なお、ポテンシャルP4の各定数及び各変数の値としては、適宜設定されうる。本実施形態のポテンシャルP4の各定数及び各変数は、上記論文1に基づいて設定されるのが望ましい。ポテンシャルP4は、コンピュータ1に記憶される。
 次に、コンピュータ1が、図10に示したフィラーモデル35と、粗視化モデル36とを用いて、分子動力学計算に基づく構造緩和を計算する(工程S37)。本実施形態の分子動力学計算では、例えば、仮想空間32について所定の時間、フィラーモデル35及び粗視化モデル36が古典力学に従うものとして、ニュートンの運動方程式が適用される。そして、各時刻でのフィラーモデル35及び粗視化モデル36の動きが、単位時間毎に追跡される。
 本実施形態の構造緩和の計算は、仮想空間32において、圧力及び温度が一定、又は、体積及び温度が一定に保たれる。これにより、工程S37では、実際の高分子材料の分子運動に近似させて、フィラーモデル35及び粗視化モデル36の初期配置が、精度よく緩和されうる。このような構造緩和の計算には、例えば(株)JSOL社製のソフトマテリアル総合シミュレーター(J-OCTA)に含まれるCOGNACが用いられる。
 次に、コンピュータ1が、フィラーモデル35及び粗視化モデル36の初期配置を十分に緩和できたか否かを判断する(工程S38)。この工程S38では、フィラーモデル35及び粗視化モデル36の初期配置が十分に緩和したと判断された場合(工程S38で「Y」)、次の工程S4が実施される。一方、フィラーモデル35及び粗視化モデル36の初期配置が十分に緩和していないと判断された場合(工程S38で「N」)は、単位時間が進められて(工程S39)、工程S37及び工程S38が再度実施される。これにより、本実施形態では、フィラーモデル35及び粗視化モデル36の平衡状態(構造が緩和した状態)が、確実に計算されうる。従って、モデル設定工程S3では、精度の高い高分子材料モデル26が設定されるため、後述する変形シミュレーションの精度が高められうる。
 次に、図4に示されるように、コンピュータ1が、高分子材料モデル26に基づいて変形シミュレーションを実施する(工程S4)。この工程S4では、高分子材料2(図2に示す)に対して一般的に行われている単軸引張り試験に基づいて、高分子材料モデル26(図10に示す)を一方向に(例えば、y軸方向に0%~20%)伸長して、高分子材料モデル26の物理量(例えば、応力-ひずみ曲線)が計算される。このような高分子材料モデル26の物理量は、コンピュータ1に記憶される。
 本実施形態では、フィラーモデル35及び粗視化モデル36が独立してモデル化されているため、高分子材料モデル26の変形に伴うフィラー粒子モデル39及び粗視化粒子モデル41の移動により、高分子材料2(図2に示す)に空孔が生成されるような大変形がシミュレーションされ得る。一方、材料のシミュレーションで古くから一般に用いられる有限要素モデルでは、隣接する要素が同一の節点を共有しているため、空孔が生成されるように表現することが原理的に不可能である。さらに、有限要素モデルでは、大変形時に要素が潰れると、クーラン条件を満たさなくなり、計算が破綻する。従って、本実施形態では、高分子材料2の大変形時の挙動が、高精度に表現されうる。
 しかも、本実施形態では、実際の高分子材料2(図2に示す)から識別された充填剤部分27及び高分子材料部分28に基づいて、フィラーモデル35及び粗視化モデル36が設定されるため、精度の高い高分子材料モデル26が定義されうる。従って、本実施形態では、高分子材料2の大変形時の挙動が、高精度に表現されうる。
 なお、高分子材料モデル26を変形させる方法については、上記のような方法に限定されるわけではない。例えば、高分子材料モデル26を10%初期伸張させた後に、周期的な歪を±1%与えて変形させる方法や、高分子材料モデル26を圧縮又はせん断変形させる方法でもよい。
 次に、図4に示されるように、コンピュータ1が、高分子材料モデル26の物理量が、予め設定された許容範囲内であるか否かが判断される(工程S5)。この工程S5では、高分子材料モデル26の物理量が許容範囲内であると判断された場合(工程S5で「Y」)、高分子材料モデル26に基づいて、高分子材料2が製造される(工程S6)。一方、高分子材料モデル26の物理量が、許容範囲内でないと判断された場合(工程S5で「N」)は、充填剤3の配合を変更して(工程S7)、工程S1~工程S5が再度実施される。これにより、本実施形態のシミュレーション方法では、許容範囲の物理量を有する高分子材料2が製造されうる。
 本実施形態の小領域選択工程S32では、図8に示されるように、小領域31が、3次元構造22の任意の位置において区分されるものが例示されたが、これに限定されるわけではない。例えば、小領域選択工程S32では、3次元構造22での充填剤部分27の体積分率に基づいて、小領域31が区分されてもよい。図15は、本発明の他の実施形態の小領域選択工程S32の処理手順の一例を示すフローチャートである。
 この実施形態の小領域選択工程S32では、先ず、3次元構造22での充填剤部分27(図8に示す)の体積分率が計算される(工程S321)。3次元構造22での充填剤部分27の体積分率φbは、下記式(3)に基づいて求められる。
 φb=Vb/Va … (3)
 ここで、
   φb:高分子材料の3次元構造での充填剤部分の体積分率
   Va:高分子材料の3次元構造の体積(mm3
   Vb:高分子材料の3次元構造内に配置される充填剤部分の体積(mm3
 高分子材料の3次元構造の体積Vaは、図8に示されるように、3次元構造22の全域の体積である。3次元構造内の充填剤部分の体積Vbは、3次元構造22内に配置される全ての充填剤部分27の体積である。この充填剤部分の体積Vbは、画像処理によって区分された充填剤部分27に基づいて、コンピュータ1によって容易に計算されうる。そして、充填剤部分の体積Vbが、3次元構造の体積Vaで除されることにより、3次元構造での充填剤部分の体積分率φbが求められる。このような体積分率φbは、コンピュータ1に記憶される。
 次に、3次元構造22内での位置が異なる複数の小領域31において、各小領域31での充填剤部分27の体積分率が計算される(小領域体積分率計算工程S322)。図16は、小領域体積分率計算工程S322の処理手順の一例を示すフローチャートである。図17は、3次元構造22内の小領域31を示す斜視図である。なお、図17では、図8に示した充填剤部分27及び高分子材料部分28が省略されている。
 小領域体積分率計算工程S322では、先ず、3次元構造22内に小領域31が最初に配置される初期位置において、小領域31での充填剤部分27(図8に示す)の体積分率が計算される(工程S41)。初期位置については、適宜設定されうる。この実施形態の初期位置としては、例えば、3次元構造22の一つの頂点21aで定義される基準点47と、小領域31の一つの頂点31aで定義される基準点48とが一致する位置として設定される。小領域31での充填剤部分27の体積分率φdは、下記式(4)に基づいて求められる。
 φd=Vd/Vc … (4)
 ここで、
   φd:小領域での充填剤部分の体積分率
   Vc:小領域の体積(nm3
   Vd:小領域内に配置される充填剤部分の体積(nm3
 小領域の体積Vcは、小領域31の全域の体積である。小領域内に配置される充填剤部分の体積Vdは、小領域31内に配置される全ての充填剤部分27(図8に示す)の体積である。この充填剤部分の体積Vdは、3次元構造22の充填剤部分27のうち、小領域31内に配置される充填剤部分27に基づいて、コンピュータ1によって計算されうる。そして、小領域内の充填剤部分の体積Vdが、小領域の体積Vcで除されることにより、小領域での充填剤の体積分率φdが求められる。このような体積分率φdは、コンピュータ1に記憶される。
 次に、3次元構造22内において、新たな小領域31が区分され(工程S42)、新たな小領域31での充填剤部分27の体積分率φdが計算される(工程S43)。この新たな小領域31での充填剤部分の体積分率φdは、コンピュータ1に記憶される。
 工程S42では、前回までに区分された小領域31とは異なる位置において、新たな小領域31が区分される。工程S42では、3次元構造22内において、例えば、前回選択された小領域31が、x軸方向、y軸方向、又は、z軸方向に沿って移動されることにより、新たな小領域31が区分される。また、小領域31を移動させる間隔(図示省略)については、適宜設定されうる。この実施形態の間隔は、1nm~100nmに設定されるのが望ましい。これにより、3次元構造22内において、小領域31が満遍なく区分されうる。
 次に、3次元構造22内の全域において、小領域31が区分されたか否かが判断される(工程S44)。この工程S44では、3次元構造22内の全域において、小領域31が区分されたと判断された場合(工程S44で「Y」)、次の工程S323が実施される。一方、小領域31が区分されていないと判断された場合(工程S44で「N」)は、工程S42及び工程S43が再度実施される。これにより、小領域体積分率計算工程S322では、3次元構造22内の全域において、小領域31での充填剤部分の体積分率φdが計算されうる。
 次に、複数の小領域31から一つの小領域31が選択される(工程S323)。この工程S323では、複数の小領域31のうち、各小領域31での充填剤部分27の体積分率φdが、3次元構造22での充填剤部分27の体積分率φbと最も近似する小領域31が選択される。選択された小領域31は、コンピュータ1に記憶される。そして、選択された小領域31に基づいて、図9に示した工程S33以降の工程において、高分子材料モデル26が定義される。
 従って、この実施形態では、例えば、3次元構造22の充填剤部分27の体積分率φbと大きく異なる体積分率φdを有する小領域31に基づいて、高分子材料モデル26が定義されるのを防ぐことができるため、シミュレーションの精度が高められうる。
 なお、この実施形態では、工程S322において、複数の小領域31において充填剤部分27の体積分率φdが計算された後に、各小領域31の体積分率φdと、3次元構造22での充填剤部分27の体積分率φbとが比較されるものが例示されたが、これに限定されるわけではない。例えば、小領域31が区分される度に、小領域31の体積分率φdと、3次元構造22での体積分率φbとが順次比較され、3次元構造22の体積分率φbに最も近似する小領域31が逐次選択される方法でもよい。このような方法によれば、全ての小領域31の体積分率φdが記憶される必要がないため、データ量が低減されうる。
 以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。
 下記の配合を含む高分子材料が製造された。下記のミクロトームが用いられ、高分子材料から、厚さ500nmの試料が作成された(実験例)。下記に示される仕様に基づいて、試料に対して単軸引張り試験が実施され、応力-ひずみ曲線の平均絶対偏差が求められた。さらに、フィラーの三次元密度分布の自己相関関数を、べき関数に最小二乗法でフィッティングして得られた係数が用いられ、高分子材料内に含まれる充填剤の凝集構造の広がり方を示すフラクタル次元が求められた。
 図4及び図9に示した手順に従って、高分子材料が走査型透過電子顕微鏡で撮像された電子線透過画像に基づいて、高分子材料の3次元構造が構築された。そして、高分子材料の3次元構造に基づいて、高分子材料モデルが設定された(実施例1、実施例2)。
 実施例1の小領域選択工程では、3次元構造の任意の位置で区分される小領域が選択された。実施例2の小領域選択工程では、図15及び図16に示した手順に従って、高分子材料の3次元構造内の異なる位置で区分された複数の小領域において、3次元構造での充填剤部分の体積分率と最も近似する小領域が選択された。
 また、比較のために、高分子材料の3次元構造を用いずに、仮想空間にフィラーモデルが一定間隔で複数個配置されるとともに、フィラーモデルの周囲に、複数個の粗視化モデルが配置された(比較例1)。さらに、有限要素法に基づいて、高分子材料の3次元構造から高分子材料モデルが定義された(比較例2)。
 そして、実施例1、実施例2、比較例1、及び、比較例2の各高分子材料モデルが用いられて、単軸引張り試験に基づく変形計算が実施され、応力-ひずみ曲線の平均絶対偏差が求められた。さらに、実施例1、実施例2、比較例1、及び、比較例2の各高分子材料モデルについて、高分子材料モデル内に含まれるフィラーモデルの凝集構造の広がり方を示すフラクタル次元が求められた。
 なお、実施例1~比較例2の各平均絶対偏差は、実験例を1.0とする指数で表示されている。各平均絶対偏差が1.0に近いほど、高分子材料の大変形時の挙動が、高精度に表現されうることを示している。また、実施例1~比較例2のフラクタル次元は、実験例のフラクタル次元の数値に近いほど、高分子材料に配合される充填剤が精度よく表現されうることを示している。なお、ポテンシャル等の各数値は、明細書中の記載の通りであり、その他の共通仕様は次のとおりである。結果を表1に示す。
 高分子材料の配合:
    スチレンブタジエンゴム(SBR):100質量部
    シリカ:50質量部
    硫黄:1.5質量部
    加硫促進剤CZ:1質量部
    加硫促進剤DPG:1質量部
 各配合の詳細:
    スチレンブタジエンゴム(SBR):旭化成ケミカルズ(株)製のE15
    シリカ:デグサ(株)製のUltrasil VN3
    硫黄:軽井沢硫黄(株)製の粉末硫黄
    加硫促進剤CZ:大内新興化学工業(株)製のノクセラーCZ
    加硫促進剤DPG:大内新興化学工業(株)製のノクセラーD
 走査型透過電子顕微鏡:JEM2100F(加速電圧200kV)
 ミクロトーム:LEICA社製のウルトラミクロトームEM VC6
 仮想空間(立方体):
    一辺の長さL1:158nm(240σ)
 フィラーモデル:
      仮想空間に配置される個数:420個
      フィラー粒子モデルの合計個数:252万個
 粗視化モデル:
      仮想空間に配置される個数:11500個
      1個の粗視化モデルを構成する粗視化粒子モデルの個数:1000個
 高分子材料モデルの単軸引張り試験:
      変形量:y軸方向に500%
Figure JPOXMLDOC01-appb-T000003
 
 テストの結果、実施例1及び実施例2の高分子材料モデルは、比較例1及び比較例2の高分子材料モデルに比べて、実験例の平均絶対偏差及びフラクタル次元に近似させうることが確認できた。従って、実施例1及び実施例2のシミュレーション方法では、高分子材料の大変形時の挙動を高精度に表現しうることが確認できた。さらに、実施例2の高分子材料モデルは、実施例1の高分子材料モデルに比べて、実験例の平均絶対偏差に近似させうることが確認できた。

Claims (5)

  1.  コンピュータを用いて、充填剤を含有する高分子材料の変形を計算するシミュレーション方法であって、
     走査型透過電子顕微鏡を用いて前記高分子材料の電子線透過画像を取得する撮像工程と、
     前記コンピュータが、トモグラフィー法により、前記電子線透過画像に基づいて、高分子材料の3次元画像を構築する工程と、
     前記コンピュータが、前記高分子材料の3次元画像に基づいて、高分子材料モデルを設定するモデル設定工程と、
     前記コンピュータが、前記高分子材料モデルに基づいて変形シミュレーションを行う工程とを含み、
     前記モデル設定工程は、前記高分子材料の3次元画像に基づいて、前記充填剤が配された充填剤部分と、前記充填剤部分の周囲の高分子材料部分とが識別された高分子材料の3次元構造を構築する工程、
     複数のフィラー粒子モデルと、隣接するフィラー粒子モデル間を結合する結合鎖モデルとを用いて、前記充填剤をモデル化した少なくとも一つのフィラーモデルを、前記充填剤部分に配置するフィラーモデル配置工程、
     複数の粗視化粒子モデルと、隣接する前記粗視化粒子モデル間を結合する結合鎖モデルとを用いて、前記高分子材料の高分子鎖をモデル化した少なくとも一つの粗視化モデルを、前記高分子材料部分に配置する粗視化モデル配置工程、及び
     前記コンピュータが、前記フィラーモデルと、前記粗視化モデルとを用いて、分子動力学計算に基づく構造緩和を計算する工程を含むことを特徴とする高分子材料のシミュレーション方法。
  2.  前記コンピュータが、前記高分子材料の3次元構造内で区分され、かつ、予め定められた大きさを有する小領域を選択する小領域選択工程をさらに含み、
     前記フィラーモデル配置工程は、前記小領域の前記充填剤部分に、前記フィラーモデルを配置し、
     前記粗視化モデル配置工程は、前記小領域の前記高分子材料部分に、前記粗視化モデルを配置する請求項1に記載の高分子材料のシミュレーション方法。
  3.  前記小領域選択工程は、前記高分子材料の3次元構造での前記充填剤部分の体積分率を計算する工程と、
     前記高分子材料の3次元構造内の異なる位置で区分された複数の小領域において、前記各小領域での前記充填剤部分の体積分率を計算する工程と、
     複数の前記小領域のうち、前記小領域での前記充填剤部分の体積分率が、前記高分子材料の3次元構造での前記充填剤部分の体積分率と最も近似する前記小領域を選択する工程とを含む請求項2に記載の高分子材料のシミュレーション方法。
  4.  前記フィラーモデルは、前記フィラー粒子モデルが面心立方格子状に配置される請求項1乃至3のいずれかに記載の高分子材料のシミュレーション方法。
  5.  前記フィラーモデルの前記結合鎖モデルは、ボンド関数又は粒子間距離拘束法に基づいて定義される請求項1乃至4のいずれかに記載の高分子材料のシミュレーション方法。
PCT/JP2014/072318 2013-11-14 2014-08-26 高分子材料のシミュレーション方法 WO2015072206A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14862920.7A EP3062092A4 (en) 2013-11-14 2014-08-26 Polymer material simulation method
US15/036,695 US20160283624A1 (en) 2013-11-14 2014-08-26 Simulation method for polymer material
CN201480060012.1A CN105683740B (zh) 2013-11-14 2014-08-26 高分子材料的模拟方法
KR1020167013551A KR102251914B1 (ko) 2013-11-14 2014-08-26 고분자 재료의 시뮬레이션 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013236152A JP5913260B2 (ja) 2013-11-14 2013-11-14 高分子材料のシミュレーション方法
JP2013-236152 2013-11-14

Publications (1)

Publication Number Publication Date
WO2015072206A1 true WO2015072206A1 (ja) 2015-05-21

Family

ID=53057151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072318 WO2015072206A1 (ja) 2013-11-14 2014-08-26 高分子材料のシミュレーション方法

Country Status (6)

Country Link
US (1) US20160283624A1 (ja)
EP (1) EP3062092A4 (ja)
JP (1) JP5913260B2 (ja)
KR (1) KR102251914B1 (ja)
CN (1) CN105683740B (ja)
WO (1) WO2015072206A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018025937A (ja) * 2016-08-09 2018-02-15 住友ゴム工業株式会社 高分子材料モデルの作成方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10296682B2 (en) * 2013-02-07 2019-05-21 Airbus Group India Private Limited System and method for extracting relevant computational data for design analysis and validation
US11232241B2 (en) 2018-07-16 2022-01-25 Uchicago Argonne, Llc Systems and methods for designing new materials for superlubricity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069781A (ja) * 2009-09-28 2011-04-07 Bridgestone Corp ゴム材料の変形挙動予測方法およびそれに用いられる装置
JP2013057638A (ja) 2011-09-09 2013-03-28 Sumitomo Rubber Ind Ltd ゴム材料のシミュレーション方法
JP2013061877A (ja) * 2011-09-14 2013-04-04 Sumitomo Rubber Ind Ltd ゴム材料のシミュレーション方法
JP2013186746A (ja) * 2012-03-08 2013-09-19 Sumitomo Rubber Ind Ltd 高分子材料のシミュレーション方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6199026B1 (en) * 1997-11-25 2001-03-06 Sumitomo Rubber Industries, Ltd. Method of and apparatus for simulating rolling tire
EP1526468B1 (en) * 2003-10-17 2009-09-30 Sumitomo Rubber Industries Limited Method of simulating viscoelastic material
JP4594043B2 (ja) * 2004-11-15 2010-12-08 住友ゴム工業株式会社 ゴム材料のシミュレーション方法
WO2009003677A1 (en) * 2007-07-02 2009-01-08 Magma Giessereitechnologie Gmbh Method and apparatus for describing the statistical orientation distribution of particles in a simulation of a mould filling process
JP4253822B2 (ja) * 2007-07-18 2009-04-15 株式会社テクニカルスルー 粒子法の解析プログラム
JP4603082B2 (ja) * 2009-02-03 2010-12-22 株式会社ブリヂストン ゴム材料の変形挙動予測装置及びゴム材料の変形挙動予測方法
JP5559594B2 (ja) * 2010-05-20 2014-07-23 住友ゴム工業株式会社 ゴム材料のシミュレーション方法
JP5474726B2 (ja) * 2010-10-05 2014-04-16 株式会社ブリヂストン ゴム製品の弾性応答性能の予測方法、設計方法、及び弾性応答性能予測装置
JP5186015B2 (ja) * 2011-03-07 2013-04-17 住友ゴム工業株式会社 フィラー配合ゴムの有限要素モデルの作成方法
JP5266366B2 (ja) * 2011-06-16 2013-08-21 住友ゴム工業株式会社 ゴム材料のシミュレーション方法
US20130051656A1 (en) * 2011-08-23 2013-02-28 Wakana Ito Method for analyzing rubber compound with filler particles
JP5395864B2 (ja) * 2011-09-14 2014-01-22 住友ゴム工業株式会社 ゴム材料のシミュレーション方法
JP5503618B2 (ja) * 2011-10-03 2014-05-28 住友ゴム工業株式会社 ゴム材料のシミュレーション方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069781A (ja) * 2009-09-28 2011-04-07 Bridgestone Corp ゴム材料の変形挙動予測方法およびそれに用いられる装置
JP2013057638A (ja) 2011-09-09 2013-03-28 Sumitomo Rubber Ind Ltd ゴム材料のシミュレーション方法
JP2013061877A (ja) * 2011-09-14 2013-04-04 Sumitomo Rubber Ind Ltd ゴム材料のシミュレーション方法
JP2013186746A (ja) * 2012-03-08 2013-09-19 Sumitomo Rubber Ind Ltd 高分子材料のシミュレーション方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
GUSKOS,N. ET AL.: "In situ synthesis, morphology and magnetic properties of poly(ether-ester) multiblock copolymer/carbon-covered nickel nanosystems", JOURNAL OF NON-CRYSTALLINE SOLIDS, vol. 356, no. ISSUES, 15 August 2010 (2010-08-15), pages 1893 - 1901, XP055339651 *
HIROYUKI TAKAHASHI ET AL.: "Viscoelastic Analysis of Filled rubber by Molecular Dynamics Simulation 2", DAI 24 KAI ELASTOMER TORONKAI KOEN YOSHISHU, 29 November 2012 (2012-11-29), pages 29 - 30, XP008183428 *
KURT KREMER; GARY S. GREST: "Dynamics of entangled linear polymer melts: A molecular-dynamics simulation", J CHEM PHYS, vol. 92, no. 8, 15 April 1990 (1990-04-15)
L,J.FETTERS; D.J.LOHSE; R.H.COLBY: "Physical Properties of Polymers Handbook", article "Chain Dimension and Entanglement Spacings", pages: 448
RIGGLEMAN,R.A. ET AL.: "Entanglement network in nanoparticle reinforced polymers", THE JOURNAL OF CHEMICAL PHYSICS, vol. 130, no. 24, 29 June 2009 (2009-06-29), XP008183088 *
See also references of EP3062092A4
YOSHIHIRO TOMITA: "Modeling and Simulation of Viscoelastic Deformation Behavior of Rubber Containing Fillers", JOURNAL OF THE SOCIETY OF RUBBER INDUSTRY, JAPAN, vol. 82, no. 11, November 2009 (2009-11-01), pages 464 - 471, XP055339654 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018025937A (ja) * 2016-08-09 2018-02-15 住友ゴム工業株式会社 高分子材料モデルの作成方法

Also Published As

Publication number Publication date
CN105683740B (zh) 2019-06-18
EP3062092A4 (en) 2017-08-30
EP3062092A1 (en) 2016-08-31
US20160283624A1 (en) 2016-09-29
JP2015094750A (ja) 2015-05-18
KR20160086850A (ko) 2016-07-20
JP5913260B2 (ja) 2016-04-27
CN105683740A (zh) 2016-06-15
KR102251914B1 (ko) 2021-05-13

Similar Documents

Publication Publication Date Title
US9990450B2 (en) Simulation method for high polymer material
BR112015022879B1 (pt) Aparelho compreendendo uma espuma compósita uniforme e método para medir tensão de compressão usando o dito aparelho
JP5923069B2 (ja) 高分子材料のシミュレーション方法
WO2015072206A1 (ja) 高分子材料のシミュレーション方法
JP6492439B2 (ja) 特定物質の解析用モデルの作成方法、特定物質の解析用モデルの作成用コンピュータプログラム、特定物質のシミュレーション方法及び特定物質のシミュレーション用コンピュータプログラム
JP7456135B2 (ja) 成型支援装置および成型支援方法
JP2022052102A (ja) 情報処理装置、学習装置、情報処理システム、情報処理方法、プログラム、および、記録媒体
JP2012177609A (ja) 高分子材料のモデル作成方法
McElwain et al. Yield criterion of porous materials subjected to complex stress states
JP2013024711A (ja) フィラー充填ポリマーの平衡モデルの作成方法
Wei et al. 3D nanostructural characterisation of grain boundaries in atom probe data utilising machine learning methods
JP2014016163A (ja) 高分子材料のシミュレーション方法
Padmanathan et al. Influence of silica specific surface area on the viscoelastic and fatigue behaviors of silica-filled SBR composites
JP2010205254A (ja) 複合材料の力学的材料定数の算出方法、複合材料中の材料の体積分率の算出方法および記録メディア
JP6072525B2 (ja) フィラー充填ポリマーモデルの作成装置、その方法及びプログラム
JP2014193596A (ja) 強化樹脂の熱伝導率予測方法、及び、その装置
JP5395864B2 (ja) ゴム材料のシミュレーション方法
JP2015064242A (ja) 複合材料の解析用モデルの作成方法、複合材料の解析用コンピュータプログラム、複合材料のシミュレーション方法及び複合材料のシミュレーション用コンピュータプログラム
JP2020177375A (ja) 複合材料のモデル作成方法、複合材料の解析方法、及び複合材料の解析用コンピュータプログラム
JP2013054578A (ja) ゴム材料のシミュレーション方法
JP6743570B2 (ja) 高分子材料モデルの作成方法
JP2018112525A (ja) 高分子材料のシミュレーション方法
JP2019032278A (ja) 高分子材料のシミュレーション方法及び高分子材料の破壊特性評価方法
JP2017162331A (ja) 複合材料の解析方法及び複合材料の解析用コンピュータプログラム
Molazadeh et al. Anisotropic modeling of material behavior for additively manufactured parts made by material extrusion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862920

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15036695

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167013551

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014862920

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014862920

Country of ref document: EP