WO2015072130A1 - 漏洩判定システムおよび漏洩判定方法 - Google Patents

漏洩判定システムおよび漏洩判定方法 Download PDF

Info

Publication number
WO2015072130A1
WO2015072130A1 PCT/JP2014/005641 JP2014005641W WO2015072130A1 WO 2015072130 A1 WO2015072130 A1 WO 2015072130A1 JP 2014005641 W JP2014005641 W JP 2014005641W WO 2015072130 A1 WO2015072130 A1 WO 2015072130A1
Authority
WO
WIPO (PCT)
Prior art keywords
leakage
vibration
determination
leak
leakage determination
Prior art date
Application number
PCT/JP2014/005641
Other languages
English (en)
French (fr)
Inventor
翔平 木下
佐々木 康弘
三上 伸弘
尚武 高橋
慎 冨永
茂樹 篠田
宗一朗 高田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US15/034,027 priority Critical patent/US10036684B2/en
Priority to JP2015547634A priority patent/JPWO2015072130A1/ja
Priority to GB1606962.7A priority patent/GB2534750A/en
Publication of WO2015072130A1 publication Critical patent/WO2015072130A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • G01M3/243Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/002Investigating fluid-tightness of structures by using thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2807Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
    • G01M3/2815Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes using pressure measurements

Definitions

  • the present invention relates to a leakage determination system and a leakage determination method, and more particularly to a leakage determination system and a leakage determination method for determining whether or not a fluid leaks in a pipe.
  • Social infrastructure includes large-scale facilities such as water and sewage networks, high-pressure chemical pipelines such as gas and oil, and high-speed railway networks, large buildings such as long bridges and skyscrapers, and transportation equipment such as large passenger aircraft and automobiles.
  • piping A fluid such as water is passed through the pipe. Therefore, if the piping fails, it will lead to fluid leakage. Therefore, it is necessary to quickly detect the leakage and repair the failed part. Therefore, detection of fluid leakage in the piping is important as an initial action.
  • inspecting piping to detect fluid leakage in the piping is referred to as leakage inspection.
  • the leak test is generally an auditory sensory test in which the leaked sound is heard manually.
  • piping is often installed in the ground or high places. Therefore, the work of listening to the leaked sound manually involves great labor and danger. Therefore, a technique for causing a dedicated apparatus to perform a leakage inspection has been proposed.
  • Patent Literature 1 describes a leakage detection device.
  • a sound detected around a pipe is converted into an electric signal, and leakage is detected by analyzing the electric signal. More specifically, the electric signal obtained from the acquired sound is decomposed into different frequencies using a plurality of bandpass filters. And the magnitude
  • the frequency of the characteristic peak waveform of the leak vibration waveform decreases as the pressure in the pipe decreases, and the specific frequency The peak waveform may deviate from the band. For this reason, when performing leakage determination by monitoring a specific frequency band, the characteristic peak waveform of the leakage vibration waveform cannot be observed even though leakage has occurred, and it is determined that there is no leakage. was there.
  • the amplitude of the leak vibration decreases with a decrease in pressure in the pipe and may fall below the specific threshold value. For this reason, when performing leakage determination by setting a specific threshold, it may be determined that there is no leakage even though leakage has occurred.
  • An object of the present invention is to provide a leakage determination system and a leakage determination method that solve the above-described problem that an erroneous determination occurs in a leakage determination with a change in the state of a fluid in a pipe.
  • the leak determination system of the present invention includes a first detection unit that detects a predetermined physical quantity indicating a state of fluid in a pipe, a second detection unit that detects vibration propagating through the pipe, and a first detection unit.
  • Leakage determining means for performing leakage determination based on the detected physical quantity and the vibration detected by the second detecting means.
  • the leak determination method of the present invention detects a physical quantity indicating the state of a fluid in a pipe, detects a vibration propagating through the pipe, and performs a leak determination based on the physical quantity and the vibration.
  • the leakage determination system and the leakage determination method of the present invention it is possible to reduce the erroneous determination of the leakage determination due to the change in the state of the fluid in the pipe, and to increase the accuracy of the leakage detection.
  • FIG. 1 is a block diagram showing the configuration of the first embodiment.
  • the leakage determination system 1-1 according to the present embodiment includes at least a first detection unit 101, a second detection unit 102, and a leakage determination unit (leakage determination unit) 103.
  • the first detection unit 101 and the second detection unit 102 are connected to the leakage determination unit 103 so that they can communicate with each other.
  • Each component of FIG. 1 will be described below.
  • the first detection means 101 detects a physical quantity indicating the state of the fluid in the pipe.
  • the physical quantity indicating the fluid state include pressure, flow rate, flow velocity, etc., fluid temperature, etc., indicating the fluid flow state.
  • the first detection unit 101 include a pressure measurement device, a flow rate measurement device, and a flow velocity measurement device.
  • a pressure indicating a fluid flow state is measured as a physical quantity indicating a fluid state.
  • the present embodiment is not limited to this, and other physical quantities as described above can be used. .
  • the second detection means 102 detects vibration propagating through the pipe.
  • the vibration is, for example, vibration acceleration, vibration speed, or vibration displacement.
  • Examples of the second detection unit 102 include a vibration acceleration sensor 702, a vibration speed sensor, and a vibration displacement sensor.
  • the second detection means 102 is preferably one that has high sensitivity and can detect signals in a wide frequency band.
  • the vibration acceleration sensor 702 is a piezoelectric vibration sensor, and preferably includes a signal amplification circuit.
  • the second detection unit 102 may be, for example, a contact type detection unit installed in a pipe.
  • the installation location of the second detection unit 102 in the pipe is not particularly limited, and can be installed in an appropriate place of the pipe according to the application of the leakage determination system 1-1.
  • the second detection means 102 can be a non-contact type detection means that can be installed away from the piping.
  • the non-contact type detection means is effective when the weight of the detection means itself has a great influence on the vibration of the pipe when the detection means is attached, such as when detecting vibration of a light pipe.
  • the non-contact type detection means is also effective when it is difficult to attach the detection means to the pipe, such as when detecting vibration of the pipe through which high-temperature fluid flows.
  • the leakage determination unit 103 is intended to set leakage determination conditions and determine the presence or absence of fluid leakage in the piping.
  • the leakage determination condition include a frequency band monitored in leakage determination, a leakage determination threshold value of vibration amplitude, and the like.
  • the determination of the presence / absence of leakage includes, for example, extracting a feature amount from a detection value detected by the vibration detection unit 102 in accordance with a leakage determination condition, and comparing the feature amount with a leakage determination threshold value. When the feature amount is larger than the leakage determination threshold, it is determined that there is leakage.
  • the feature amount includes, for example, vibration amplitude in vibration, resonance sharpness Q value in vibration, and the like.
  • the resonance sharpness Q value is a value calculated by the following equation (1).
  • f is the frequency of vibration that resonates the pipe (the natural frequency of the pipe)
  • ⁇ f is the full width at half maximum of the frequency characteristic of the amplitude of vibration that propagates through the pipe.
  • the leakage determination unit 103 sets a leakage determination condition in consideration of a physical quantity indicating the fluid state of the pipe detected by the first detection unit 101.
  • Setting the leakage determination condition in consideration of the physical quantity means changing and setting the leakage determination condition such as the frequency band monitored in the leakage determination, the leakage determination threshold value of the vibration amplitude, etc. according to the physical quantity.
  • the leak determination unit 103 may be configured to calculate and set a leak determination condition from a physical quantity indicating the state of the fluid in the pipe detected by the first detection unit 101 using a calculation formula as described later. Further, the leakage determination unit 103 may be configured to read out and set the leakage determination condition with reference to data prepared in advance according to the physical quantity. Data is a table showing the correspondence between physical quantities and vibration feature quantities.
  • FIG. 2 is a flowchart illustrating a leakage determination method according to the embodiment.
  • the leakage determination method in the present embodiment includes at least a flow state detection step S301, a leakage determination condition setting step S302, a vibration detection step S303, and a leakage determination step S304.
  • the first detection means 101 detects a physical quantity indicating the state of the fluid in the pipe.
  • the leakage determination unit 103 sets a leakage determination condition using the physical quantity detected by the first detection means 101 in the flow state detection step S301. For example, the frequency band to be monitored and the leakage determination threshold value are calculated in order to perform the leakage determination from the physical quantity indicating the state of the fluid in the pipe detected in the flow state detection step S301.
  • Equation (2) a0, a1, a2, and a3 are coefficients (parameters) for calculating the frequency f, and are constants that can be determined by the material and shape of the piping.
  • the frequency band to be monitored can be determined by separately setting the bandwidth with the frequency f calculated from Equation (2) as the center frequency.
  • a filtering process can be performed to extract a signal in the determined frequency band to be monitored using the signal detected by the second detection unit 102.
  • parameters for filtering processing are calculated and set based on the frequency band to be monitored.
  • the value A calculated by the following method can be used as the leakage determination threshold A for determining leakage. It is assumed that the vibration amplitude of fluid leakage is proportional to the fluid flow velocity in the pipe. At this time, according to Bernoulli's theorem, the flow velocity v is approximately proportional to the square root of the pressure P. For this reason, the leakage determination threshold A can be calculated from the equation (3) using the pressure P. Therefore, it is possible to calculate the leakage determination threshold A by detecting the pressure in the pipe by the first detection means 101.
  • b0 and b1 are coefficients (parameters), which are constants that can be determined by the material and shape of the piping.
  • the second detection means 102 detects vibration propagating through the pipe.
  • the leakage determination unit 103 determines a fluid leakage using the leakage determination condition set in the leakage determination condition setting step S302 and the detection value detected in the vibration detection step S303. For example, a feature amount is extracted from the detected value, and the feature amount is compared with a leakage determination threshold value that is a leakage determination condition. Then, when the feature amount is larger than the leakage determination threshold, it is determined that there is leakage.
  • this embodiment it is possible to make a leak determination in consideration of the state of the fluid in the pipe.
  • the leak determination condition is set based on the pressure in the piping, the peak waveform deviates from the specific frequency band. It becomes possible to prevent. As a result, erroneous determination can be reduced and leakage detection can be performed with high accuracy.
  • the order of the flow state detection step S301, the leakage determination condition setting step S302, and the vibration detection step S303 may be different from the order shown in FIG.
  • the vibration detection step S303 may be performed first, the flow state detection step S301 may be performed next, and the leakage determination condition setting step S302 may be performed last.
  • the vibration detection step S303 may be performed in parallel with the flow state detection step S301 and the leakage determination condition setting step S304.
  • the flow state detection step S301 may be performed first, and the vibration detection step S303 and the leakage determination condition setting step S304 may be performed in parallel. Either method has the same effect as the leakage determination method according to the present embodiment.
  • multiple frequency bands to be monitored may be set. Specifically, a plurality of frequency bands to be monitored are set in the leakage determination condition setting step S302.
  • vibration detection step S303 vibration propagating from the pipe is detected for a plurality of frequency bands.
  • leakage determination condition setting step S304 fluid leakage is determined for each frequency band, and the overall determination is performed by combining these determination results. By doing so, leakage detection accuracy is improved.
  • FIG. 6 is a block diagram showing another configuration of the first embodiment.
  • the leakage determination system 1-2 installs a plurality of second detection means (102-1 and 102-2) at different locations of the piping, for example.
  • the respective leakage determinations are performed, and each leakage determination result is statistically processed to perform overall determination.
  • the characteristics of vibrations detected by the positions of the plurality of second detection means (102-1, 102-2) installed at different positions and the plurality of second detection means (102-1, 102-2) respectively.
  • This analysis can be configured, for example, by the leakage determination unit 103, or can be configured to further include a processing unit for performing the analysis.
  • FIG. 7 is a block diagram illustrating a configuration of the second embodiment.
  • the present embodiment includes a leakage determination condition providing unit 104.
  • the purpose of the leakage determination condition providing unit 104 is to provide the leakage determination unit 103 with a leakage determination condition corresponding to the physical quantity detected by the first detection unit 101.
  • Examples of the leakage determination condition providing unit 104 include a data storage unit.
  • the leakage determination condition providing unit 104 stores in advance a table indicating the correspondence between physical quantities and vibration feature quantities. Then, the leakage determination unit 103 acquires the physical quantity of the pipe via the first detection unit 101. Next, the leakage determination unit 103 reads out a leakage determination condition corresponding to the physical quantity from the leakage determination condition providing unit 104. Then, the leakage determination unit 103 sets a leakage determination condition based on the detected physical quantity.
  • the leakage determination condition providing unit 104 By adopting such a configuration using the leakage determination condition providing unit 104, it is possible to set the leakage determination condition without performing calculation related to the leakage determination. For this reason, it is possible to set the leakage determination condition at high speed. Further, since the leakage determination condition is not calculated, power consumption in the entire leakage determination system 1-3 can be suppressed.
  • the leakage determination condition providing unit 104 may be a data storage unit located at a remote location and wirelessly communicate with the leakage determination unit 103. In such a configuration, the leakage determination condition providing unit 104 can be carried separately. For this reason, the maintenance of the leakage determination condition providing means 104 is facilitated.
  • the leakage determination condition providing means 104 can be shared by a plurality of leakage determination systems 1-3. With such a configuration, it is possible to collectively change the correspondence table between the physical quantities and the leakage determination conditions of the plurality of leakage determination systems 1-3.
  • FIG. 8 is a diagram showing the configuration of an experimental system for measuring leakage vibration.
  • the leakage vibration measurement experimental system 7 includes at least a pressure sensor 701, a vibration acceleration sensor 702, a vibration analyzer 703, a pipe 704, a leak hole 705, a pump 706, and a plug 707.
  • An example of the pipe 704 is a metal pipe.
  • the pressure sensor 701 corresponds to the first detection unit 101.
  • the vibration acceleration sensor 702 and the vibration analysis device 703 correspond to the second detection unit 102.
  • the leak determination unit 103 that performs data communication with the pressure sensor 701, the vibration acceleration sensor 702, and the vibration analyzer 703 to determine whether or not there is a fluid leak, and a physical quantity prepared in advance
  • a metal pipe having a length of 500 mm, an outer diameter of 7.2 mm, and an inner diameter of 6.0 mm was used.
  • a leak hole 705 having a diameter of 1 mm was provided at a location 250 mm from the end. Both ends of the pipe 704 are supported.
  • the water pressure value inside the pipe 704 was detected by a pressure sensor 701 connected to the pipe 704.
  • vibration due to leakage was detected by a vibration acceleration sensor 702 installed on the opposite side of the leakage hole 705 on the pipe 704.
  • a voltage output proportional to the vibration amplitude of the pipe 704 in the vicinity of the leakage hole 705 was detected.
  • the vibration acceleration sensor 702 installed in the pipe 704 was further connected to the vibration analyzer 703.
  • the experiment was performed by making the inside of the pipe 704 constant pressure by the pump 706 and then leaking water from the leakage hole 705.
  • the vibration frequency characteristic of the pipe 704 was analyzed by the vibration analyzer 703 using the leakage vibration measurement experimental system 7, and the correlation between the water pressure in the pipe 704 when the leak occurred and the frequency characteristic of the vibration caused by the leak was investigated. .
  • a characteristic peak waveform in the frequency domain was observed in the vibration waveform caused by the leakage.
  • a frequency at which a characteristic peak waveform is observed is referred to as a peak frequency.
  • FIG. 9 is a diagram showing the correlation between the water pressure and the peak frequency in the first embodiment.
  • the water pressure is shown as a pressure difference from the atmospheric pressure. Further, the water pressure and the peak frequency indicate values normalized based on the numerical value in the state a. In state b, the water pressure was 2.2 times that in state a. At this time, the peak frequency increased by 70% to 1.7 times. That is, it was confirmed that the peak frequency changes according to the water pressure.
  • the related leak judgment method not considering the peak frequency change accompanying the water pressure change, and the peak frequency accompanying the water pressure change which is the leak judgment method of this embodiment Compare the leak detection rate with the leak detection method considering changes.
  • the leak detection rate is the probability of determining that there is a leak when the leak has occurred.
  • a leak judgment was made in which the frequency band monitored by the leak judgment was fixed in advance regardless of the peak frequency change accompanying the water pressure change.
  • the frequency band monitored by the leakage determination is referred to as a monitoring frequency band.
  • FIG. 10 is a correspondence table between the water pressure and the monitoring frequency band in the first embodiment.
  • FIG. 11 is a correspondence table between the related technology and the leakage detection rate of the first embodiment.
  • the leak detection rate is 70% in the leak determination method that does not consider the change in the peak frequency due to the change in water pressure, whereas it is 85% in the leak determination method of the present embodiment. That is, the leakage detection rate has been improved. Therefore, it was confirmed that by using the leakage determination method of the present embodiment, it is possible to follow the change of the peak frequency accompanying the change in water pressure and to improve the accuracy of leakage detection.
  • the frequency band to be monitored is changed and set according to the water pressure. Therefore, even when the peak frequency in the leakage vibration is changed with the change of the water pressure, it is possible to detect the leakage with high accuracy.
  • the vibration analysis device 703 analyzed the vibration amplitude of the pipe 704, and investigated the change in the water pressure in the pipe 704 when the leak occurred and the change in the vibration amplitude caused by the leak. .
  • vibration amplitude the amplitude at the peak frequency of the vibration waveform in the frequency domain.
  • FIG. 12 shows the correlation between the water pressure and the vibration amplitude in the second embodiment.
  • the water pressure indicates a pressure difference from the atmospheric pressure.
  • the water pressure and the vibration amplitude indicate values normalized based on the numerical value in the state c.
  • the vibration amplitude is increased 30 times. That is, it was confirmed that the vibration amplitude changes according to the water pressure.
  • the related leak determination method not considering the change in vibration amplitude accompanying the water pressure change, and the change in vibration amplitude accompanying the water pressure change which is the leak determination method of this embodiment
  • the leakage detection rate is compared with the leakage determination method that performs leakage determination in consideration of the above.
  • a leakage determination was performed in which the threshold used for the leakage determination was fixed in advance regardless of the amplitude change associated with the water pressure change.
  • a threshold value used for leak determination is referred to as a leak determination threshold value.
  • FIG. 13 is a correspondence table between the water pressure and the leakage determination threshold in the second embodiment.
  • the unit of the leakage determination threshold is dBV
  • 1V is the reference.
  • the unit of dBV is based on 1V.
  • FIG. 14 is a correspondence table of the related technology and the leakage detection rate of the second embodiment.
  • the leak detection rate is 70%, whereas in the leak determination method of the present embodiment, it is 85%. That is, the leakage detection rate has been improved. Therefore, it was confirmed that by using the leakage determination method of the present embodiment, it was possible to follow the change in the amplitude of the leakage vibration accompanying the change in water pressure and to improve the accuracy of leakage detection.
  • the leakage determination threshold is changed and set according to the water pressure. As a result, even when the amplitude of the leakage vibration changes with the change in water pressure, it is possible to detect leakage with high accuracy.
  • the peak frequency and vibration amplitude of the leakage vibration waveform changed according to the water pressure in the pipe.
  • a related leak determination method that does not take into account changes in leak vibration due to changes in water pressure
  • a leak determination method that takes into account changes in peak frequency and vibration amplitude due to changes in water pressure, which are leak determination methods of the present embodiment. Compare leak detection rates.
  • a leakage determination was performed in which two leakage determination conditions of a monitoring frequency band and a leakage determination threshold were fixed in advance.
  • leakage determination was performed in which two leakage determination conditions, that is, a monitoring frequency band and a leakage determination threshold, were set according to changes in water pressure.
  • a correspondence table between water pressure, monitoring frequency band and leakage determination threshold was created, and leakage determination was performed to determine the monitoring frequency band and leakage determination threshold.
  • FIG. 15 is a correspondence table of the water pressure, the monitoring frequency band, and the leakage determination threshold in the third embodiment.
  • FIG. 16 is a correspondence table of the related technology and the leakage detection rate of the third embodiment.
  • the leak detection rate in the related leak determination method that does not take into account the change in leak vibration due to the change in water pressure is 70%, whereas in the leak determination method of the present embodiment, it is 90%. That is, the leakage detection rate has been improved. Therefore, it was confirmed that by using the leakage determination method of this embodiment, it was possible to follow the change in leakage vibration accompanying the change in water pressure and to improve the accuracy of leakage detection.
  • a leak determination system comprising: a leak determination unit that performs a leak determination based on the physical quantity detected by the first detection unit and the vibration detected by the second detection unit.
  • the leakage determination means The determination condition set based on the physical quantity detected by the first detection means is compared with the vibration feature quantity detected by the second detection means, The leakage determination system according to appendix 1, wherein it is determined that there is leakage when the feature amount exceeds a threshold value in the determination condition.
  • Appendix 7 The leakage determination system according to appendix 6, wherein the plurality of second detection means are installed at different locations in the vicinity of the pipe.
  • Appendix 8 The leak according to appendix 6 or 7, wherein the leak determination unit specifies a leak position from a correlation between a position of a plurality of the second detection units and a feature amount of vibration detected by each of the second detection units. Judgment system.
  • Appendix 12 The fluid leakage determination system according to any one of appendices 1 to 11, wherein the second detection unit is a contact-type vibration detection unit.
  • Appendix 20 The leakage determination method according to any one of appendices 15 to 19, wherein the physical quantity is a pressure in the pipe.
  • Leakage determination system 1-1, 1-2, 1-3 Leakage determination system 7 Leakage vibration measurement experimental system 101 First detection means 102, 102-1 and 102-2 Second detection means 103 Leakage determination unit 104 Leakage determination condition provision Means S301 Flow state detection step S302 Leakage determination condition setting step S303 Vibration detection step S304 Leakage determination step 701 Pressure sensor 702 Vibration acceleration sensor 703 Vibration analyzer 704 Piping 705 Leakage hole 706 Pump 707 Plug

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

 関連する流体漏洩検出装置においては、配管内の流体の状態の変化に伴い漏洩判定に誤判定が生じる。 本発明の漏洩判定システムは、配管内の流体の状態を示す所定の物理量を検出する第一の検出手段と、配管を伝播する振動を検出する第二の検出手段と、第一の検出手段で検出した物理量および第二の検出手段で検出した振動に基づいて漏洩判定を行う漏洩判定手段とを有する。

Description

漏洩判定システムおよび漏洩判定方法
 本発明は、漏洩判定システムおよび漏洩判定方法に関し、特に配管における流体の漏洩の有無について判定する漏洩判定システムおよび漏洩判定方法に関する。
 社会基盤には、上下水道網や、ガスや石油などの高圧化学パイプライン、高速鉄道網等の大型設備から、長大橋、超高層建築等の大型建造物、そして大型旅客機、自動車などの輸送機器がある。これらの設備や機器において重要な機構の一つに、配管がある。この配管には水などの流体が通される。そのため、配管がもしも故障した場合には流体の漏洩につながる。従って、漏洩をいち早く検知し、故障した箇所を修復する必要がある。
そこで、配管における流体の漏洩の検知が初動として重要となる。以下、配管における流体の漏洩を検知するために配管を検査することを、漏洩検査と呼ぶ。
 漏洩検査は、人手により漏洩音を聴き取る聴感官能検査が一般的である。その一方で、配管は地中や高所に設置されている場合が多い。そのため、人手により漏洩音を聴き取る作業は多大な労力や危険を伴う。そこで、漏洩検査を専用の装置に行わせる技術が提案されている。
 そのような漏洩検査技術の一例として、特許文献1には漏洩検出装置が記載されている。特許文献1によれば、配管周辺で検知した音を電気信号に変換し、その電気信号を解析することで漏洩を検出する。より具体的には、取得した音から得た電気信号を、複数のバンドパスフィルタを利用して異なる周波数にそれぞれ分解する。そして、各周波数の電気信号の振幅の大きさを閾値と比較する。その結果、上記複数の信号全てにおいて、電気信号の振幅の大きさが閾値を超えた場合に、漏洩であると判定するとしている。
特開昭62-055540号公報
 しかしながら、上述の特許文献1に記載された関連する流体漏洩検出装置においては、配管内の流体の通流状態の変化に伴い、流体の漏洩に起因する振動である漏洩振動が変化する。その結果、上述の特許文献1の流体漏洩検出装置では、漏洩判定に誤判定が生じる可能性がある。
 例えば、関連する流体漏洩検出装置では、特定の周波数帯域を監視して漏洩判定を行う場合、配管内の圧力低下に伴い漏洩振動の波形の特徴的なピーク波形の周波数が低下し、特定の周波数帯域からピーク波形が逸脱することがある。このため、特定の周波数帯域を監視して漏洩判定を行う場合、漏洩が発生しているにも関わらず漏洩振動波形の特徴的なピーク波形を観測できず、漏洩が無いと判定してしまうことがあった。
 また、関連する流体漏洩検出装置では、特定の閾値を設け漏洩判定を行う場合、配管内の圧力低下に伴い漏洩振動の振幅が減少し、特定の閾値を下回ることがある。このため、特定の閾値を設け漏洩判定を行う場合、漏洩が発生しているにも関わらず漏洩が無いと判定してしまうことがあった。
 このように、関連する流体漏洩検出装置においては、配管内の流体の状態の変化に伴い漏洩判定に誤判定が生じる、という課題があった。
 本発明の目的は、上述した課題である、配管内の流体の状態の変化に伴い漏洩判定に誤判定が生じる、という課題を解決する漏洩判定システムおよび漏洩判定方法を提供することにある。
 本発明の漏洩判定システムは、配管内の流体の状態を示す所定の物理量を検出する第一の検出手段と、配管を伝播する振動を検出する第二の検出手段と、第一の検出手段で検出した物理量および第二の検出手段で検出した振動に基づいて漏洩判定を行う漏洩判定手段とを有する。
 本発明の漏洩判定方法は、配管内の流体の状態を示す物理量を検出し、配管を伝播する振動を検出し、物理量および振動に基づいて漏洩判定を行う。
 本発明の漏洩判定システムおよび漏洩判定方法によれば、配管内の流体の状態の変化に伴う漏洩判定の誤判定を低減し、漏洩検出を高精度化することができる。
第1の実施形態の構成を示すブロック図である。 実施形態における漏洩判定方法を示すフローチャートである。 実施形態の他の動作を示すフローチャートである。 実施形態の他の動作を示すフローチャートである。 実施形態の他の動作を示すフローチャートである。 第1の実施形態の別の構成を示すブロック図である。 第2の実施形態の構成を示すブロック図である。 漏洩振動測定用実験系の構成を示す図である。 第1の実施例における水圧とピーク周波数との相関を示す図である。 第1の実施例における水圧と監視周波数帯域の対応表である。 関連技術と第1の実施例の漏洩検出率の対応表である。 第2の実施例における水圧と振動振幅の値の相関である。 第2の実施例における水圧と漏洩判定閾値との対応表である。 関連技術と第2の実施例の漏洩検出率の対応表である。 第3の実施例における水圧と監視周波数帯域および漏洩判定閾値との対応表である。 関連技術と第3の実施例の漏洩検出率の対応表である。
 以下に、図面を参照しながら、本発明の実施形態および実施例について詳細に説明する。
 なお、以下の説明では、同じ機能を有するものには同じ符号をつけ、その説明を省略する場合がある。
 (第1の実施形態)
 図1は、第1の実施形態の構成を示すブロック図である。図1に示すように、本実施形態における漏洩判定システム1-1は、第一の検出手段101と、第二の検出手段102と、漏洩判定部(漏洩判定手段)103を少なくとも備える。第一の検出手段101と前記第二の検出手段102は前記漏洩判定部103に、通信可能に接続されている。以下に図1の各構成要素について説明する。
 第一の検出手段101は、配管の流体の状態を示す物理量を検出する。流体の状態を示す物理量とは、例えば、流体の通流状態を示す圧力、流量、流速等や流体の温度等が挙げられる。第一の検出手段101としては、例えば、圧力測定装置、流量測定装置、流速測定装置などが挙げられる。以下、流体の状態を示す物理量として流体の通流状態を示す圧力を測定する場合について主に説明するが、本実施形態はこれに限定されず、上述したような他の物理量を用いることができる。
 第二の検出手段102は、配管を伝播する振動を検出する。ここで、振動とは、例えば、振動加速度、振動速度、振動変位のことである。第二の検出手段102としては、例えば、振動加速度センサ702、振動速度センサ、振動変位センサなどが挙げられる。
 なお、第二の検出手段102は、感度が高く、広い周波数帯域の信号を検出できるものであることが好ましい。例えば、振動加速度センサ702は、圧電振動センサであり、信号増幅回路を内蔵したものが好ましい。また、第二の検出手段102は、例えば、配管に設置する接触型の検出手段を用いることができる。第二の検出手段102の配管への設置場所は特に制限されず、漏洩判定システム1-1の用途に応じて、配管の適切な場所に設置できる。
 また、第二の検出手段102は、配管から離して設置することができる非接触型の検出手段を用いることもできる。非接触型の検出手段は、例えば軽い配管の振動を検出する際等、検出手段を取り付けた時に検出手段自体の重さが配管の振動に与える影響が大きい場合に有効である。非接触型である第二の検出手段102を配管から離して設置することによって、第二の検出手段102自体の重さが配管の振動に影響を与えることを防ぐことができる。また、非接触型の検出手段は、高温の流体が内部を流れる配管の振動を検出する際等、配管に検出手段を取り付けることが困難な場合にも有効である。
 漏洩判定部103は、漏洩判定条件を設定し、配管における流体の漏洩の有無を判定することを目的とする。漏洩判定条件とは、例えば、漏洩判定において監視を行う周波数帯域、振動振幅の漏洩判定閾値等が挙げられる。また、漏洩の有無の判定とは、例えば、漏洩判定条件に従って、振動検出手段102により検出した検出値から特徴量を抽出し、特徴量と漏洩判定閾値とを比較すること等が挙げられる。特徴量が漏洩判定閾値より大きい場合に、漏洩があると判定する。特徴量とは、例えば、振動における振動振幅や、振動における共振尖鋭度Q値等が挙げられる。ここで、共振尖鋭度Q値とは、次のような式(1)で計算される値である。式(1)において、fは、配管を共振させる振動の周波数(配管の固有振動数)であり、Δfは、配管を伝播する振動の振幅の周波数特性の半値全幅である。
Figure JPOXMLDOC01-appb-I000001

      式(1)
 次に、漏洩判定条件の設定について詳細に説明する。
 漏洩判定部103は、第一の検出手段101により検出した配管の流体の状態を示す物理量を考慮して漏洩判定条件を設定する。物理量を考慮して漏洩判定条件を設定するとは、物理量に応じて、漏洩判定において監視を行う周波数帯域、振動振幅の漏洩判定閾値等である漏洩判定条件を変更し設定することである。また、漏洩判定部103は、第一の検出手段101により検出した配管の流体の状態を示す物理量から、後述するような計算式を用いて、漏洩判定条件を算出し設定する構成としても良い。また、漏洩判定部103では、物理量に応じて、予め用意するデータを参照して、漏洩判定条件を読み出して設定する構成としても良い。データとは、物理量と振動の特徴量との対応関係を示す表である。
 (漏洩判定方法)
 図2は、実施形態における漏洩判定方法を示すフローチャートである。図2に示すように、本実施形態における漏洩判定方法は、通流状態検出工程S301と、漏洩判定条件設定工程S302と、振動検出工程S303と、漏洩判定工程S304とを少なくとも備える。
 通流状態検出工程S301では、第一の検出手段101が、配管内の流体の状態を示す物理量を検出する。
 漏洩判定条件設定工程S302では、漏洩判定部103が、通流状態検出工程S301において第一の検出手段101が検出した物理量を用いて漏洩判定条件を設定する。例えば、通流状態検出工程S301において検出した配管内の流体の状態を示す物理量から、漏洩判定を行うために監視する周波数帯域や、漏洩判定閾値を算出する。
 ここで、通流状態検出工程S301において検出した配管内の流体の状態を示す物理量をXとし、漏洩判定のために監視する周波数帯域の中心周波数をfとする。このとき、中心周波数fは物理量Xの多項式で表すことができる。多項式の一例を式(2)に示す。式(2)において、a0、a1、a2、a3は、周波数fを算出するための係数(パラメータ)であり、配管の材質、形状などによって決定することができる定数である。式(2)から算出した周波数fを中心周波数として、帯域幅を別途設定することで、監視する周波数帯域を決定することができる。
Figure JPOXMLDOC01-appb-I000002
                       式(2)
 また、漏洩判定条件設定工程S302では、第二の検出手段102により検出した信号を用いて、決定した監視する周波数帯域の信号を抽出するために、フィルタリング処理を行う構成とすることができる。この場合、監視する周波数帯域に基づいてフィルタリング処理のパラメータを算出し設定する。
 例えば、漏洩を判定するための漏洩判定閾値Aは、以下の方法により算出する値Aを用いることができる。流体漏洩の振動振幅が配管内の流体の流速に比例すると考える。このとき、ベルヌーイの定理に従い、流速vは圧力Pの平方根に略比例する。このため、圧力Pを用いて、式(3)から漏洩判定閾値Aを算出することができる。従って、第一の検出手段101により配管内の圧力を検出することで、漏洩判定閾値Aを算出することが可能である。式(3)において、b0、b1は、係数(パラメータ)であり、配管の材質、形状などによって決定することができる定数である。
Figure JPOXMLDOC01-appb-I000003
             式(3)
 次に、振動検出工程S303では、第二の検出手段102が、配管を伝播する振動を検出する。
 漏洩判定工程S304では、漏洩判定部103が、漏洩判定条件設定工程S302において設定した漏洩判定条件と、振動検出工程S303において検出した検出値とを用いて、流体の漏洩を判定する。例えば、検出値から特徴量を抽出し、特徴量と漏洩判定条件である漏洩判定閾値を比較する。そして、特徴量が漏洩判定閾値よりも大きい場合に、漏洩があると判定する。
 上記のような構成とすることにより、本実施形態では、配管内の流体の状態を考慮して漏洩判定を行うことが可能となる。このように、本実施形態では、特定の周波数帯域を監視して漏洩判定を行う場合、配管内の圧力に基づいて漏洩判定条件が設定されているため、特定の周波数帯域からピーク波形の逸脱を防ぐことが可能になる。その結果、誤判定を低減できて、漏洩検出を高精度化できる。
 なお、本実施形態において、通流状態検出工程S301と、漏洩判定条件設定工程S302と、振動検出工程S303は、その順序が図2に示す順序と異なってもよい。例えば、図3に示すように、まず振動検出工程S303を行い、次に通流状態検出工程S301を行い、最後に漏洩判定条件設定工程S302を行ってもよい。また、図4に示すように、振動検出工程S303は、通流状態検出工程S301および漏洩判定条件設定工程S304と並行して行うこととしてもよい。また、図5に示すように、最初に通流状態検出工程S301を行い、振動検出工程S303と漏洩判定条件設定工程S304とを並行して行うこととしてもよい。いずれの方法においても、本実施形態に係る漏洩判定方法と同等の効果を奏する。
 また、監視する周波数帯域は複数設定してよい。具体的には、漏洩判定条件設定工程S302においては監視する周波数帯域を複数設定する。振動検出工程S303においては配管から伝搬する振動を複数の周波数帯域について検出する。漏洩判定条件設定工程S304においてはそれぞれの周波数帯域について流体の漏洩を判定し、それら複数の判定結果を総合して全体の判定を行う。このようにすることで、漏洩検出精度が向上する。
 図6は、第1の実施形態の別の構成を示すブロック図である。図6に示すように、本実施形態における漏洩判定システム1-2は、複数の第二の検出手段(102-1,102-2)をそれぞれ配管の例えば異なる場所に設置する。複数の第二の検出手段(102-1,102-2)で検出した検出値を使って、それぞれ漏洩判定を行い、それぞれの漏洩判定結果を統計的に処理し全体の判定を行う構成とすることで、漏洩検出を高精度化し、誤判定を低減する効果が期待できる。また、異なる位置に設置された複数の第二の検出手段(102-1,102-2)の位置と複数の第二の検出手段(102-1,102-2)それぞれで検出する振動の特徴量との相関を分析することで、漏洩発生位置の特定等を行うことができる。この分析は、例えば漏洩判定部103が行う構成とすることができるし、または分析を行うための処理部をさらに備える構成とすることもできる。
 (第2の実施形態)
 図7は、第2の実施形態の構成を示すブロック図である。図7に示すように、本実施形態は、漏洩判定条件提供手段104を備える。漏洩判定条件提供手段104は、第一の検出手段101により検出した物理量に応じた漏洩判定条件を漏洩判定部103へ提供することが目的である。漏洩判定条件提供手段104としては、例えば、データ記憶手段が挙げられる。
 まず、漏洩判定条件提供手段104は物理量と振動の特徴量との対応関係を示す表を予め記憶する。そして、漏洩判定部103は第一の検出手段101を介して配管の物理量を取得する。次に、漏洩判定部103はその物理量に対応する漏洩判定条件を漏洩判定条件提供手段104から読み出す。そして、漏洩判定部103は検出した物理量に基づいて漏洩判定条件を設定する。
 このような、漏洩判定条件提供手段104を用いた構成とすることにより、漏洩判定に関する計算を行わずに漏洩判定条件を設定できる。このため、高速で漏洩判定条件を設定することができる。また、漏洩判定条件の計算を行わないため、漏洩判定システム1-3全体における消費電力を抑制することができる。
 なお、漏洩判定条件提供手段104は離れた位置にあるデータ記憶手段とし、漏洩判定部103と無線通信する構成としてもよい。このような構成とした場合、漏洩判定条件提供手段104を分離して持ち運ぶことができる。このため、漏洩判定条件提供手段104のメンテナンスが容易となる。
 また、漏洩判定条件提供手段104を複数の漏洩判定システム1-3で共有化することもできる。このような構成とした場合、複数の漏洩判定システム1-3の物理量と漏洩判定条件との対応表を一括で変更することができる。
 続いて、漏洩振動測定用実験系を用いた漏洩判定方法の確認結果について説明する。
 図8は漏洩振動測定用実験系の構成を示す図である。図8に示すように、漏洩振動測定用実験系7は、圧力センサ701と、振動加速度センサ702と、振動分析装置703と、配管704と、漏洩孔705と、ポンプ706と、栓707を少なくとも有する。配管704としては、例えば金属管がある。
 圧力センサ701は、第一の検出手段101に対応する。また、振動加速度センサ702および振動分析装置703は第二の検出手段102に対応する。また、図8では図示していないが、圧力センサ701や振動加速度センサ702および振動分析装置703とデータの通信を行い、流体の漏洩の有無を判定する漏洩判定部103や、予め用意する物理量と漏洩判定条件との対応関係を示す表を記憶する漏洩判定条件提供手段104を有する。
 実験では、配管704に設けられた漏洩孔705から流体が漏洩する場合の、配管704内部の圧力(水圧)と、漏洩に起因する振動との相関を調査した。
 配管704としては、長さ500mm、外径7.2mm、内径6.0mmの金属管を用いた。配管704の長さ方向において、端から250mmの箇所に、直径1mmの漏洩孔705を設けた。配管704の両端は支持する構成とした。
 配管704内部の水圧値の検出は、配管704に接続した圧力センサ701により行った。また、漏洩に起因する振動の検出は、配管704上の漏洩孔705の反対側へ設置した振動加速度センサ702により行った。振動加速度センサ702では、漏洩孔705付近における配管704の振動振幅に比例する電圧出力が検出された。配管704に設置した振動加速度センサ702には、さらに振動分析装置703に接続した。
 実験は、ポンプ706により配管704内を一定の水圧にした後、漏洩孔705から水を漏洩させて行った。
 (第1の実施例)
 漏洩振動測定用実験系7を用いて、振動分析装置703によって配管704の振動周波数特性を分析し、漏洩発生時の配管704内の水圧と漏洩に起因する振動の周波数特性の相関関係を調査した。
 漏洩時には、漏洩に起因する振動波形において、周波数領域で特徴的なピーク波形が見られた。以下、特徴的なピーク波形が観察された周波数をピーク周波数と呼ぶ。
 図9は第1の実施例における水圧とピーク周波数との相関を示す図である。なお、水圧は大気圧との圧力差として示す。また、水圧とピーク周波数は、状態aにおける数値を基準として、規格化した値を示す。状態bにおいて、状態aの場合と比較して水圧が2.2倍となった。この時、ピーク周波数は1.7倍と70%高くなった。つまり、水圧に応じてピーク周波数が変化することが確認できた。
 以下では、水圧変化に伴う漏洩振動のピーク周波数の変化に着目し、水圧変化に伴うピーク周波数変化を考慮しない関連する漏洩判定方法と、本実施例の漏洩判定方法である水圧変化に伴うピーク周波数変化を考慮した漏洩判定方法との、漏洩検出率について比較する。ここで、漏洩検出率とは、漏洩が発生している場合に漏洩有りと判定する確率である。
 水圧変化に伴うピーク周波数変化を考慮しない関連する漏洩判定方法として、水圧変化に伴うピーク周波数変化にかかわらず、漏洩判定で監視する周波数帯域を予め固定する漏洩判定を行った。以下、漏洩判定で監視する周波数帯域を監視周波数帯域と呼ぶ。
 また、本実施例の漏洩判定方法として、水圧変化に伴う周波数変化を考慮するために、水圧と監視周波数帯域の対応表を作成し、水圧変化に応じて対応表を参照し監視周波数帯域を決定する漏洩判定を行った。図10は、第1の実施例における水圧と監視周波数帯域の対応表である。
 図11は、関連技術と第1の実施例の漏洩検出率の対応表である。実験の結果、水圧変化に伴うピーク周波数変化を考慮しない漏洩判定方法では漏洩検出率が70%であるのに対して、本実施例の漏洩判定方法では85%であった。つまり、漏洩検出率が向上していた。従って、本実施例の漏洩判定方法を用いることで、水圧変化に伴うピーク周波数の変化に追随し、漏洩検出を高精度化できることが確認できた。
 (効果)
 本実施例の漏洩判定方法では、水圧に応じて監視する周波数帯域を変更し設定する。これにより、水圧変化に伴って漏洩振動におけるピーク周波数が変化した場合でも、高精度な漏洩検出が可能になる。
 (第2の実施例)
 漏洩振動測定用実験系7を用いて、振動分析装置703によって配管704の振動の振幅を分析し、漏洩発生時の配管704内の水圧の変化と漏洩に起因する振動の振幅の変化を調査した。
 漏洩時には、漏洩に起因する振動波形において、周波数領域で特徴的なピーク波形が見られた。以下、周波数領域における、振動波形のピーク周波数での振幅を、振動振幅と呼ぶ。
 図12は、第2の実施例における水圧と振動振幅の値の相関である。ここで、水圧は大気圧との圧力差を示す。また、水圧と振動振幅は、状態cにおける数値を基準として、規格化した値を示す。図12に示すように、状態dにおいて、状態cの場合と比較して水圧が2.2倍となった際に、振動振幅は30倍に増大した。つまり、水圧に応じて振動振幅が変化することが確認できた。
 以下では、水圧変化に伴う振動振幅の変化に着目し、水圧変化に伴う振動振幅の変化を考慮しない関連する漏洩判定方法と、本実施例の漏洩判定方法である水圧変化に伴う振動振幅の変化を考慮して漏洩判定を行う漏洩判定方法との、漏洩検出率について比較する。
 水圧変化に伴う振動振幅の変化を考慮しない関連する漏洩判定方法として、水圧変化に伴う振幅変化にかかわらず、漏洩判定のために用いる閾値を予め固定する漏洩判定を行った。以下、漏洩判定のために用いる閾値を漏洩判定閾値と呼ぶ。
 また、本実施例の漏洩判定方法として、水圧変化に伴う振幅変化を考慮するために、水圧と漏洩判定閾値との対応表を作成し、水圧変化に応じて対応表を参照し漏洩判定閾値を決定する漏洩検出を行った。図13は、第2の実施例における水圧と漏洩判定閾値との対応表である。図13において、漏洩判定閾値の単位はdBVとし、1Vを基準とする。以下、dBV単位は、1Vを基準とする。
 図14は、関連技術と第2の実施例の漏洩検出率の対応表である。水圧変化に伴う振動振幅の変化を考慮しない関連する漏洩判定方法では漏洩検出率が70%であるのに対して、本実施例の漏洩判定方法では85%であった。つまり、漏洩検出率が向上していた。従って本実施例の漏洩判定方法を用いることで、水圧変化に伴う漏洩振動の振幅変化に追随し、漏洩検出を高精度化できることが確認できた。
 (効果)
 本実施例の漏洩判定方法では、水圧に応じて漏洩判定閾値を変更し設定する。これにより、水圧変化に伴って漏洩振動の振幅が変化した場合でも、高精度な漏洩検出が可能になる。
 (第3の実施例)
 上述したように、配管内の水圧に応じて、漏洩振動の波形のピーク周波数および振動振幅は変化した。以下では、水圧変化に伴う漏洩振動の変化を考慮しない関連する漏洩判定方法と、本実施例の漏洩判定方法である、水圧変化に伴うピーク周波数の変化および振動振幅変化を考慮する漏洩判定方法との、漏洩検出率を比較する。
 水圧変化に伴う漏洩振動の変化を考慮しない関連する漏洩判定方法として、監視周波数帯域および漏洩判定閾値の二つの漏洩判定条件を予め固定する漏洩判定を行った。
 また、本実施例の漏洩判定方法として、水圧変化に応じて、監視周波数帯域および漏洩判定閾値の二つの漏洩判定条件を設定する漏洩判定を行った。水圧変化に伴う漏洩振動の変化を考慮するために、水圧と監視周波数帯域および漏洩判定閾値との対応表を作成し、監視周波数帯域および漏洩判定閾値を決定する漏洩判定を行った。図15は、第3の実施例における水圧と監視周波数帯域および漏洩判定閾値との対応表である。
 図16は、関連技術と第3の実施例の漏洩検出率の対応表である。水圧変化に伴う漏洩振動の変化を考慮しない関連する漏洩判定方法では漏洩検出率が70%であるのに対して、本実施例の漏洩判定方法では90%であった。つまり、漏洩検出率が向上していた。従って、本実施例の漏洩判定方法を用いることで、水圧変化に伴う漏洩振動の変化に追随し、漏洩検出を高精度化できることが確認できた。
 (効果)
 本実施例の漏洩判定方法では、流体の圧力変化に対して監視周波数帯域および漏洩判定閾値の二つの漏洩判定条件を変更し設定する。これにより、漏洩検出を高精度化できる。
 本発明は上記実施形態および実施例に限定されることなく、特許請求の範囲に記載の発明の範囲内で、種々の変形が可能であり、それらも本発明の範囲内に含まれるものであることはいうまでもない。
 上記の実施形態および実施例の一部または全部は、以下の付記のように記載されうるが、以下に限られない。
  (付記1)
 配管内の流体の状態を示す所定の物理量を検出する第一の検出手段と、
 前記配管を伝播する振動を検出する第二の検出手段と、
 前記第一の検出手段で検出した物理量および前記第二の検出手段で検出した振動に基づいて漏洩判定を行う漏洩判定手段と
 を有する漏洩判定システム。
  (付記2)
 前記漏洩判定手段は、
 前記第一の検出手段で検出した物理量に基づいて設定される判定条件と、前記第二の検出手段で検出した振動の特徴量とを比較し、
 前記特徴量が前記判定条件における閾値を超えた場合に漏洩ありと判定する
 付記1に記載の漏洩判定システム。
  (付記3)
 前記判定条件は、前記第二の検出手段で監視を行う周波数帯域および振動振幅の少なくとも一つを含む付記2に記載の漏洩判定システム。
  (付記4)
 前記漏洩判定手段は、前記振動の特徴量を規定する計算式を用いて前記判定条件を設定する付記2または3に記載の漏洩判定システム。
  (付記5)
 前記第一の検出手段の対象となる物理量と前記振動の特徴量を対応付けて記憶する漏洩判定条件提供手段をさらに有し、
 前記漏洩判定手段は、前記漏洩判定条件提供手段が提供する前記対応を用いて前記判定条件を設定する付記2または3に記載の漏洩判定システム。
  (付記6)
 前記第二の検出手段を複数備え、漏洩判定手段は、前記第一の検出手段と複数の前記第二の検出手段で検出した振動に基づいて漏洩判定を行う付記1から5のいずれか1項に記載の漏洩判定システム。
  (付記7)
 複数の前記第二の検出手段が、前記配管近傍の異なる場所に設置されている、付記6に記載の漏洩判定システム。
  (付記8)
 前記漏洩判定手段は、複数の前記第二の検出手段の位置と前記第二の検出手段のそれぞれで検出する振動の特徴量との相関から漏洩位置を特定する、付記6または7に記載の漏洩判定システム。
  (付記9)
 前記所定の物理量は前記配管内の流体の圧力である付記1から8のいずれか1項に記載の漏洩判定システム。
  (付記10)
 前記所定の物理量は前記配管内の流体の流量である付記1から8のいずれか1項に記載の漏洩判定システム。
  (付記11)
 前記所定の物理量は前記配管内の流体の流速である付記1から8のいずれか1項に記載の漏洩判定システム。
  (付記12)
 前記第二の検出手段は、接触型振動検出手段である、付記1から11のいずれか1項に記載の流体の漏洩判定システム。
  (付記13)
 前記第二の検出手段は、圧電振動センサである、付記12に記載の流体の漏洩判定システム。
  (付記14)
 前記第二の検出手段は、非接触型振動検出手段である、付記1か9のいずれか1項に記載の漏洩判定システム。
  (付記15)
 配管内の流体の状態を示す物理量を検出し、
 前記配管を伝播する振動を検出し、
 前記物理量および前記振動に基づいて漏洩判定を行う、
 漏洩判定方法。
  (付記16)
 前記物理量に基づいて設定される判定条件と、前記振動の特徴量とを比較し、
 前記特徴量が前記判定条件における閾値を超えた場合に漏洩ありと判定する、
 付記15に記載の漏洩判定方法。
  (付記17)
 前記判定条件は、監視を行う周波数帯域および振動振幅の少なくとも一つを含む付記16に記載の漏洩判定方法。
  (付記18)
 前記物理量に基づいて前記振動の特徴量を規定する計算式を用いて前記判定条件を設定する付記16または17のいずれか1項に記載の漏洩判定方法。
  (付記19)
 前記第一の検出手段の対象となる物理量と前記振動の特徴量を対応付けて記憶し、
 前記対応を用いて前記判定条件を設定する
 付記16または17のいずれか1項に記載の漏洩判定方法。
  (付記20)
 前記物理量は前記配管内の圧力である付記15から19のいずれか1項に記載の漏洩判定方法。
  (付記21)
 前記物理量は前記配管内の流量である付記15から19のいずれか1項に記載の漏洩判定方法。
  (付記22)
 前記物理量は前記配管内の流速である付記15から19のいずれか1項に記載の漏洩判定方法。
 以上、実施形態(及び実施例)を参照して本願発明を説明したが、本願発明は上記実施形態(及び実施例)に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2013年11月12日に出願された日本出願特願2013-233848を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1-1,1-2,1-3  漏洩判定システム
 7  漏洩振動測定用実験系
 101  第一の検出手段
 102,102-1,102-2  第二の検出手段
 103  漏洩判定部
 104  漏洩判定条件提供手段
 S301  通流状態検出工程
 S302  漏洩判定条件設定工程
 S303  振動検出工程
 S304  漏洩判定工程
 701  圧力センサ
 702  振動加速度センサ
 703  振動分析装置
 704  配管
 705  漏洩孔
 706  ポンプ
 707  栓

Claims (10)

  1.  配管内の流体の状態を示す所定の物理量を検出する第一の検出手段と、
     前記配管を伝播する振動を検出する第二の検出手段と、
     前記第一の検出手段で検出した物理量および前記第二の検出手段で検出した振動に基づいて漏洩判定を行う漏洩判定手段と
     を有する漏洩判定システム。
  2.  前記漏洩判定手段は、
     前記第一の検出手段で検出した物理量に基づいて設定される判定条件と、前記第二の検出手段で検出した振動の特徴量とを比較し、
     前記特徴量が前記判定条件における閾値を超えた場合に漏洩ありと判定する
     請求項1に記載の漏洩判定システム。
  3.  前記判定条件は、前記第二の検出手段で監視を行う振動の周波数帯域および振動振幅の少なくとも一つを含む
     請求項2に記載の漏洩判定システム。
  4.  前記漏洩判定手段は、前記振動の特徴量を規定する計算式を用いて前記判定条件を設定する請求項2または3に記載の漏洩判定システム。
  5.  前記第一の検出手段の対象となる物理量と前記振動の特徴量を対応付けて記憶する漏洩判定条件提供手段をさらに有し、
     前記漏洩判定手段は、前記漏洩判定条件提供手段が提供する前記対応を用いて前記判定条件を設定する請求項2または3に記載の漏洩判定システム。
  6.  前記第二の検出手段を複数備え、漏洩判定手段は、前記第一の検出手段と複数の前記第二の検出手段で検出した振動に基づいて漏洩判定を行う請求項1から5のいずれか1項に記載の漏洩判定システム。
  7.  前記漏洩判定手段は、複数の前記第二の検出手段の位置と前記第二の検出手段のそれぞれで検出する振動の特徴量との相関から漏洩位置を特定する、請求項6に記載の漏洩判定システム。
  8.  前記所定の物理量は前記配管内の流体の圧力である請求項1から7のいずれか1項に記載の漏洩判定システム。
  9.  配管内の流体の状態を示す物理量を検出し、
     前記配管を伝播する振動を検出し、
     前記物理量および前記振動に基づいて漏洩判定を行う、
     漏洩判定方法。
  10.  前記物理量に基づいて設定される判定条件と、前記振動の特徴量とを比較し、
     前記特徴量が前記判定条件における閾値を超えた場合に漏洩ありと判定する
     請求項9に記載の漏洩判定方法。
PCT/JP2014/005641 2013-11-12 2014-11-10 漏洩判定システムおよび漏洩判定方法 WO2015072130A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/034,027 US10036684B2 (en) 2013-11-12 2014-11-10 Leakage determination system and leakage determination method
JP2015547634A JPWO2015072130A1 (ja) 2013-11-12 2014-11-10 漏洩判定システムおよび漏洩判定方法
GB1606962.7A GB2534750A (en) 2013-11-12 2014-11-10 Leakage determination system and leakage determination method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-233848 2013-11-12
JP2013233848 2013-11-12

Publications (1)

Publication Number Publication Date
WO2015072130A1 true WO2015072130A1 (ja) 2015-05-21

Family

ID=53057080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005641 WO2015072130A1 (ja) 2013-11-12 2014-11-10 漏洩判定システムおよび漏洩判定方法

Country Status (4)

Country Link
US (1) US10036684B2 (ja)
JP (1) JPWO2015072130A1 (ja)
GB (1) GB2534750A (ja)
WO (1) WO2015072130A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017078004A1 (ja) * 2015-11-04 2018-09-13 日本電気株式会社 配管状態検知装置、配管状態検知方法、コンピュータ読み取り可能記録媒体および配管状態検知システム
CN108593221A (zh) * 2018-05-08 2018-09-28 杜卫卫 家中装修时水管漏水检测装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11181923B2 (en) * 2015-06-23 2021-11-23 Nec Corporation Detection system, detection method, and program
US11029196B2 (en) * 2016-10-13 2021-06-08 South East Water Corporation Vibration sensor for fluid leak detection
DE102017205777A1 (de) * 2017-04-05 2018-10-11 Robert Bosch Gmbh Verfahren zur Überwachung des Volumenstroms eines Dosierventils eines fluidischen Dosiersystems einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
CN109567717B (zh) * 2019-01-22 2022-01-28 佛山市顺德区美的洗涤电器制造有限公司 家用电器和家用电器的控制方法
US11022517B2 (en) 2019-04-12 2021-06-01 Goodrich Corporation Leak detection for aircraft

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01180729U (ja) * 1988-06-03 1989-12-26
JPH03279833A (ja) * 1990-03-28 1991-12-11 Toshiba Corp チューブリーク検知装置
JP2576917B2 (ja) * 1991-03-26 1997-01-29 高圧ガス保安協会 ガス漏洩検知装置
JP2005265663A (ja) * 2004-03-19 2005-09-29 Jfe Steel Kk 埋設配管および漏洩位置の特定方法
JP4745170B2 (ja) * 2006-08-28 2011-08-10 株式会社東芝 漏水検出装置および漏水検出方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571944A (en) * 1980-06-05 1982-01-07 Yagyu Susumu Detecting method for underground leakage of water
JPS5810623A (ja) * 1981-07-14 1983-01-21 Toshiba Corp 漏水検出装置
JPS6255540A (ja) 1985-09-04 1987-03-11 Hitachi Ltd 漏洩検出装置
US5117676A (en) * 1991-02-25 1992-06-02 Hughes Aircraft Company Leak detector for natural gas pipelines
US5272646A (en) * 1991-04-11 1993-12-21 Farmer Edward J Method for locating leaks in a fluid pipeline and apparatus therefore
US5675506A (en) * 1992-10-09 1997-10-07 Rensselaer Polytechnic Institute Detection of leaks in vessels
US5388445A (en) * 1992-10-16 1995-02-14 Nkk Corporation Method for determining arrival and amplitude of a wave front and apparatus therefor
US5531099A (en) * 1994-11-09 1996-07-02 At&T Corp. Underground conduit defect localization
GB2369677B (en) * 2000-09-01 2002-10-30 Roke Manor Research Improvements in or relating to fluid flow sensors & leak detection systems
US7107822B2 (en) * 2001-03-19 2006-09-19 Sis-Tech Applications, L.P. Apparatus and method for on-line detection of leaky valve seals and defective flow diverters
JP2003279833A (ja) * 2002-03-20 2003-10-02 Sanyo Electric Co Ltd カメラ
GB0914463D0 (en) * 2009-08-19 2009-09-30 Sev Trent Water Ltd Leak detector
US8346492B2 (en) * 2009-10-21 2013-01-01 Acoustic Systems, Inc. Integrated acoustic leak detection system using intrusive and non-intrusive sensors
US8665101B2 (en) * 2009-11-16 2014-03-04 Aquarius Spectrum Ltd. System method and device for leak detection and localization in a pipe network
JP6248933B2 (ja) * 2012-09-27 2017-12-20 日本電気株式会社 漏洩検査装置、漏洩検査方法、及び漏洩検査プログラム
JP6308212B2 (ja) * 2013-03-27 2018-04-11 日本電気株式会社 漏洩検出システム、振動検出装置、情報処理装置、及び漏洩検出方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01180729U (ja) * 1988-06-03 1989-12-26
JPH03279833A (ja) * 1990-03-28 1991-12-11 Toshiba Corp チューブリーク検知装置
JP2576917B2 (ja) * 1991-03-26 1997-01-29 高圧ガス保安協会 ガス漏洩検知装置
JP2005265663A (ja) * 2004-03-19 2005-09-29 Jfe Steel Kk 埋設配管および漏洩位置の特定方法
JP4745170B2 (ja) * 2006-08-28 2011-08-10 株式会社東芝 漏水検出装置および漏水検出方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017078004A1 (ja) * 2015-11-04 2018-09-13 日本電気株式会社 配管状態検知装置、配管状態検知方法、コンピュータ読み取り可能記録媒体および配管状態検知システム
CN108593221A (zh) * 2018-05-08 2018-09-28 杜卫卫 家中装修时水管漏水检测装置

Also Published As

Publication number Publication date
GB2534750A (en) 2016-08-03
JPWO2015072130A1 (ja) 2017-03-16
US10036684B2 (en) 2018-07-31
US20160282219A1 (en) 2016-09-29

Similar Documents

Publication Publication Date Title
WO2015072130A1 (ja) 漏洩判定システムおよび漏洩判定方法
US20180292292A1 (en) Pipe condition detection device, pipe condition detection method, computer-readable recording medium, and pipe condition detection system
JP6248933B2 (ja) 漏洩検査装置、漏洩検査方法、及び漏洩検査プログラム
CN107869654B (zh) 一种油气管道爆管检测定位方法
US10697861B2 (en) Structure abnormality detection device, structure abnormality detection method, storage medium, and structure abnormality detection system
CN109254077B (zh) 结构件的劣化侦测方法
JP6502821B2 (ja) 弁シートリーク検査装置および弁シートリーク検査方法
WO2018164102A1 (ja) 診断コスト出力装置、診断コスト出力方法及びコンピュータ読み取り可能記録媒体
CN104696711A (zh) 管道泄漏点快速准确定位的方法
JP6519477B2 (ja) 漏洩位置算出装置、漏洩位置算出方法、コンピュータ読み取り可能な記録媒体、振動算出装置、及び演算装置
JPWO2016194331A1 (ja) 劣化分析装置、劣化分析方法および劣化分析プログラムおよび記録媒体
CN114127519A (zh) 光纤感测系统、光纤感测装置和用于检测管道劣化的方法
JP2017083291A (ja) 異常音の発生位置特定方法および異常音の発生位置特定装置
JP6557576B2 (ja) 異常音の発生位置特定方法および異常音の発生位置特定装置
US10156493B2 (en) Position determination device, position determination system, position determination method, and computer-readable recording medium
JP2014219342A (ja) 埋設管路の漏洩検出方法および装置
US20210262886A1 (en) Fluid leakage diagnosis device, fluid leakage diagnosis system, fluid leakage diagnosis method, and recording medium storing fluid leakage diagnosis program
TWI649543B (zh) 結構件的劣化偵測方法
KR102568086B1 (ko) 음향방출신호 및 진동가속도의 측정에 의한 유체수송관의 누수 탐지 장치 및 방법
JP6349861B2 (ja) 漏洩検知装置、漏洩検知システム、漏洩検知方法及びプログラム
CN105486447A (zh) 管道压力检测装置
WO2016185726A1 (ja) 状態判定装置、状態判定方法及びプログラム記録媒体
RU108840U1 (ru) Блок датчиков системы технологической защиты трубопроводов
JP2023132383A (ja) ガスメータ及び地震判定方法
JP2017083292A (ja) 管路の異常の判定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201606962

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20141110

Ref document number: 2015547634

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15034027

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862274

Country of ref document: EP

Kind code of ref document: A1