WO2015071977A1 - 充放電システム - Google Patents

充放電システム Download PDF

Info

Publication number
WO2015071977A1
WO2015071977A1 PCT/JP2013/080675 JP2013080675W WO2015071977A1 WO 2015071977 A1 WO2015071977 A1 WO 2015071977A1 JP 2013080675 W JP2013080675 W JP 2013080675W WO 2015071977 A1 WO2015071977 A1 WO 2015071977A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
power
charge
secondary battery
discharge
Prior art date
Application number
PCT/JP2013/080675
Other languages
English (en)
French (fr)
Inventor
邦彦 肥喜里
孝幸 土屋
Original Assignee
ボルボ ラストバグナー アクチエボラグ
邦彦 肥喜里
孝幸 土屋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボルボ ラストバグナー アクチエボラグ, 邦彦 肥喜里, 孝幸 土屋 filed Critical ボルボ ラストバグナー アクチエボラグ
Priority to US15/036,068 priority Critical patent/US10315522B2/en
Priority to EP13897596.6A priority patent/EP3070809B1/en
Priority to JP2015547323A priority patent/JP6227003B2/ja
Priority to PCT/JP2013/080675 priority patent/WO2015071977A1/ja
Priority to CN201380080921.7A priority patent/CN105794073B/zh
Publication of WO2015071977A1 publication Critical patent/WO2015071977A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/16Dynamic electric regenerative braking for vehicles comprising converters between the power source and the motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/91Battery charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/11Electric energy storages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/61Arrangements of controllers for electric machines, e.g. inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/907Electricity storage, e.g. battery, capacitor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/951Assembly or relative location of components

Definitions

  • the present invention relates to a charge / discharge system capable of supplying electric power to a motor generator and charging regenerative power from the motor generator.
  • a battery is used to supply electric power to an electric motor as a driving force source of a vehicle or the like.
  • a secondary battery such as a lead storage battery or a lithium ion battery is used.
  • an apparatus that charges and discharges electric energy using an electric double layer capacitor or the like is also known.
  • a battery has a large capacity that can be stored, but has a characteristic that its life is shortened when charging / discharging frequently or charging / discharging at a large depth.
  • a capacitor has a characteristic that it has a long life and is relatively small in charge and discharge with high frequency and charge and discharge with a large depth, but has a relatively small capacity.
  • JP2008-035670A discloses a power supply device that secures a charge amount of a capacitor having output performance superior to that of a battery in a vehicle equipped with a plurality of charging mechanisms including a battery and a capacitor.
  • the present invention has been made in view of the above problems, and an object thereof is to improve the energy efficiency of a charge / discharge system including a capacitor and a secondary battery.
  • a charge / discharge system capable of supplying electric power to a motor generator and charging regenerative power from the motor generator, wherein the capacitor is connected to the motor generator;
  • a secondary battery connected in parallel with a capacitor; a power converter interposed between the capacitor and the secondary battery; and a control for controlling the power converter.
  • a required power calculation unit that calculates the required input / output power of the motor generator based on the current and voltage of the capacitor and the input / output current of the power converter, and the request Capacitor discharge bias that regulates the proportion of power supplied from the capacitor to the motor generator out of the required input power calculated by the power calculator based on the SOC of the capacitor
  • a capacitor charge bias coefficient map that defines a ratio of power charged from the motor generator to the capacitor out of the required output power calculated by the required power calculator, based on the SOC of the capacitor;
  • a subtractor that subtracts the charge / discharge power of the capacitor obtained from the capacitor discharge bias coefficient map or the capacitor charge bias coefficient map from the required input / output power to calculate the charge / discharge power of the secondary battery.
  • a charge / discharge system is provided.
  • FIG. 1 is a configuration diagram of a vehicle to which a charge / discharge system according to an embodiment of the present invention is applied.
  • FIG. 2 is a block diagram of a control device in the charge / discharge system.
  • FIG. 3A is a diagram illustrating an example of a capacitor discharge bias coefficient map.
  • FIG. 3B is a diagram illustrating an example of a capacitor charging bias coefficient map.
  • FIG. 4A is a diagram illustrating an example of a charge / discharge map of the secondary battery.
  • FIG. 4B is a diagram illustrating an example of a charge / discharge map of the secondary battery.
  • FIG. 1 is a configuration diagram of a vehicle to which a charge / discharge system according to an embodiment of the present invention is applied.
  • FIG. 2 is a block diagram of a control device in the charge / discharge system.
  • FIG. 3A is a diagram illustrating an example of a capacitor discharge bias coefficient map.
  • FIG. 3B is a diagram illustrating an example of a capacitor charging
  • FIG. 5A is a diagram for explaining the operation of the charge / discharge system at the time of discharging, and is a diagram showing a case where the SOC of the capacitor is in the range of x4 to x3.
  • FIG. 5B is a diagram for explaining the operation of the charge / discharge system at the time of discharging, and is a diagram showing a case where the SOC of the capacitor is in the range of x3 to x2.
  • FIG. 5C is a diagram for explaining the operation of the charge / discharge system at the time of discharging, and is a diagram showing a case where the SOC of the capacitor is in the range of x2 to x1.
  • FIG. 5A is a diagram for explaining the operation of the charge / discharge system at the time of discharging, and is a diagram showing a case where the SOC of the capacitor is in the range of x4 to x3.
  • FIG. 5B is a diagram for explaining the operation of the charge / discharge system at the time of discharging
  • FIG. 6A is a diagram illustrating the operation of the charge / discharge system during charging, and is a diagram illustrating a case where the SOC of the capacitor is in the range of x1 to x2.
  • FIG. 6B is a diagram illustrating the operation of the charge / discharge system during charging, and is a diagram illustrating a case where the SOC of the capacitor is in the range of x2 to x3.
  • FIG. 6C is a diagram illustrating the operation of the charge / discharge system during charging, and is a diagram illustrating a case where the SOC of the capacitor is in the range of x3 to x4.
  • the charge / discharge system 1 includes a motor generator 2 as a motor generator, an inverter 3 that drives the motor generator 2, a capacitor 10 that is connected to the motor generator 2 via the inverter 3, and a capacitor 10 that is connected in parallel.
  • the entire vehicle including the secondary battery 20, the power conversion device 30 interposed between the capacitor 10 and the secondary battery 20, the control device 50 for controlling the power conversion device 30, and the charge / discharge system 1 is controlled.
  • ECU Electronic Control Unit: electronic control unit
  • the charge / discharge system 1 can supply power to the motor generator 2 and can charge regenerative power from the motor generator 2.
  • the capacitor 10 is constituted by an electric double layer capacitor, and charges and discharges electric power.
  • the secondary battery 20 is composed of, for example, a nickel hydride secondary battery or a lithium ion secondary battery, and charges and discharges power.
  • the capacitor 10 and the secondary battery 20 supply the charged electric power to the motor generator 2 via the inverter 3.
  • Capacitor 10 and secondary battery 20 are charged with electric power generated by motor generator 2 via inverter 3.
  • Inverter 3 performs AC / DC conversion between capacitor 10 and secondary battery 20 and motor generator 2.
  • the power conversion device 30 is configured by, for example, a DC / DC converter.
  • the power conversion device 30 boosts the voltage of power discharged from the secondary battery 20 and supplies the boosted voltage to the motor generator 2.
  • the power conversion device 30 steps down the voltage of the regenerative power from the motor generator 2 and charges the secondary battery 20. As described above, the power conversion device 30 boosts or lowers the charge / discharge voltage of the secondary battery 20.
  • the secondary battery 20 is connected to the electric auxiliary machine 9, and the secondary battery 20 supplies electric power to the electric auxiliary machine 9.
  • the electric auxiliary machine 9 includes an air conditioner, a cooling water circuit pump, a radiator fan, and other electrically driven devices.
  • the motor generator 2 functions as a driving force source for the vehicle and rotates the driving wheels 5. Further, the motor generator 2 functions as a generator when the vehicle is decelerated, and collects it as regenerative power.
  • the engine 4 functions as a driving force source of the vehicle together with the motor generator 2 or alone. The engine 4 can also drive the motor generator 2 to cause the motor generator 2 to generate power.
  • ECU100 controls operation of inverter 3 and engine 4.
  • ECU 100 is electrically connected to control device 50 in a communicable manner.
  • the ECU 100 starts the vehicle by supplying the electric power charged in the capacitor 10 and the secondary battery 20 to the motor generator 2 via the inverter 3.
  • the ECU 100 operates the engine 4 when the SOC of the capacitor 10 and the secondary battery 20 are both low, or when a large output is required, for example, with the driving force of the engine 4 and the driving force of the motor generator 2. Let it be a hybrid running.
  • the ECU 100 drives the motor generator 2 as a generator, and charges the generated power to the capacitor 10 and the secondary battery 20 via the inverter 3. .
  • the secondary battery 20 is composed of a lithium ion secondary battery.
  • the secondary battery 40 When the secondary battery 40 is charged / discharged with high output and high frequency or charged / discharged with a large depth, the life of the secondary battery is remarkably reduced. Therefore, it is necessary to control the secondary battery 40 so as to avoid such charging / discharging.
  • the charging capacity of the capacitor 10 is smaller than that of the secondary battery 20, it is difficult for the life of the capacitor 10 to be reduced due to high-output and high-frequency charging / discharging or charging / discharging with a large depth.
  • energy efficiency can be improved without reducing the life of the secondary battery 20 by performing appropriate power charge / discharge control in accordance with the characteristics of the capacitor 10 and the secondary battery 20. This can improve the fuel efficiency of the vehicle.
  • the ECU 100 controls whether the motor generator 2 is driven or the motor generator 2 is generated based on the state of the vehicle in the charge / discharge system 1 configured as shown in FIG.
  • Control device 50 controls power conversion device 30 to determine the ratio of the input / output voltages of capacitor 10 and secondary battery 20 during charging and discharging. The control in the control device 50 will be described later in detail.
  • ECU100 drives the motor generator 2 and generates power based on, for example, the acceleration / deceleration request by the driver, the vehicle speed, and the SOC of the capacitor 10, and also controls the operation of the engine 4.
  • control device 50 will be described with reference to FIGS. 2 to 4B.
  • the control device 50 includes a capacitor SOC detection unit 51 that detects SOC (State of Charge) [%] of the capacitor 10 and a current Ic [A] that is input to and output from the capacitor 10.
  • a capacitor current detection unit 52 for detecting, a capacitor voltage detection unit 53 for detecting the voltage Vc [V] of the capacitor 10, and an input / output current Ibref [A] of the power converter 30 between the motor generator 2 are detected.
  • An output current detection unit 54 and a secondary battery SOC detection unit 55 that detects the SOC [%] of the secondary battery 20 are provided.
  • the control device 50 controls the operation of the power conversion device 30.
  • the present invention is not limited to this, and the capacitor 10 may be provided with an SOC detector that detects the SOC, a current detector that detects the input / output current value, and a voltage detector that detects the voltage.
  • the secondary battery 20 may be provided with an SOC detector that detects the SOC
  • the power converter 30 may be provided with a current detector that detects the input / output current.
  • Capacitor SOC detector 51 may be configured to calculate the SOC from the voltage of capacitor 10 detected by capacitor voltage detector 53.
  • Control device 50 is calculated by required power calculation unit 61 that calculates the required input / output power of motor generator 2 based on the current and voltage of capacitor 10 and the input / output current of power conversion device 30, and required power calculation unit 61.
  • the capacitor discharge bias coefficient map 62 that defines the proportion of power supplied from the capacitor 10 to the motor generator 2 based on the SOC of the capacitor 10
  • the required output power calculated by the required power calculator 61 is provided.
  • the required power calculation unit 61 calculates Vc ⁇ (Ic + Ibref) from the current Ic [A] and voltage Vc [V] of the capacitor 10 and the input / output current Ibref [A] of the power converter 30 between the motor generator 2.
  • the requested input / output power Preq [W] is power required when the motor generator 2 operates as a motor, or regenerative power output when the motor generator 2 operates as a generator.
  • the input / output current Ibref [A] is a current that flows from the power conversion device 30 to the motor generator 2 when power is supplied to the motor generator 2. When the regenerative power from the motor generator 2 is charged, the input / output current Ibref [A] This is a current flowing from the generator 2 to the power converter 30.
  • the capacitor discharge bias coefficient map 62 determines the bias coefficient according to the SOC of the capacitor 10 input from the capacitor SOC detector 51.
  • the capacitor discharge bias coefficient map 62 outputs 1.0 when the SOC of the capacitor 10 is equal to or higher than a predetermined first set value x2 [%].
  • the capacitor discharge bias coefficient map 62 is set so that the amount of electric power discharged from the capacitor 10 decreases as the SOC of the capacitor 10 that falls below x2 [%] decreases, and becomes 0 when it decreases to x1 [%]. At this time, the amount of power discharged from the secondary battery 20 is increased by the amount by which the amount of power discharged from the capacitor 10 is reduced.
  • x1 [%] is set to an SOC corresponding to a voltage obtained by adding a margin to the minimum operable voltage of the inverter 3
  • x2 [%] is from x1 [%] to x4 [to prevent hunting.
  • %] Is set to SOC obtained by adding about 5 to 10% to x1 [%].
  • the capacitor discharge bias coefficient map 62 supplies electric power only from the capacitor 10 if the SOC of the capacitor 10 is x2 [%] or more. Is set to supply part or all of the electric power from the secondary battery 20 when it falls below x2 [%].
  • the capacitor charging bias coefficient map 63 determines the bias coefficient according to the SOC of the capacitor 10 input from the capacitor SOC detection unit 51.
  • the capacitor charging bias coefficient map 63 outputs 1.0 when the SOC of the capacitor 10 is less than or equal to a predetermined second set value x3 [%].
  • the capacitor charging bias coefficient map 63 is set so that the amount of power charged in the capacitor 10 decreases as the SOC of the capacitor 10 exceeding x3 [%] increases, and becomes 0 when the SOC increases to x4 [%]. At this time, the amount of power charged in the secondary battery 20 is increased by the amount that the amount of power charged in the capacitor 10 is reduced.
  • X4 [%] is set to the SOC corresponding to the voltage when the capacitor 10 is fully charged, and x3 [%] is from x1 [%] to x4 [%] in order to prevent hunting.
  • the SOC is set by subtracting about 5 to 10% of the range from x4 [%].
  • the capacitor charge bias coefficient map 63 charges the regenerative power only to the capacitor 10 if the SOC of the capacitor 10 is less than x3 [%].
  • the secondary battery 20 is set to charge a part or all of the regenerative power.
  • the control device 50 obtains the required input power from the capacitor charging bias coefficient map 63 and the integrating unit 64 that integrates the bias coefficient obtained from the capacitor discharge bias coefficient map 62 and the required output power.
  • An integration unit 65 that integrates the bias coefficient
  • a charge / discharge changeover switch 66 that switches between discharging from the capacitor 10 or charging the capacitor 10 based on the required input / output power
  • a capacitor discharge bias coefficient map 62 or capacitor A subtractor 67 that subtracts the charge / discharge power of the capacitor 10 obtained from the charge bias coefficient map 63 from the required input / output power to calculate the charge / discharge power of the secondary battery 20.
  • the integrating unit 64 integrates the bias coefficient obtained from the capacitor discharge bias coefficient map 62 with the required input / output power Preq [W] calculated by the required power calculating unit 61. At this time, the bias coefficient is a value between 0 and 1.0. Therefore, the integration unit 64 calculates the size of the target capacitor output supplied from the capacitor 10 to the motor generator 2 in the required input / output power Preq [W].
  • the integrating unit 65 integrates the bias coefficient obtained from the capacitor charging bias coefficient map 63 with the required input / output power Preq [W] calculated by the required power calculating unit 61.
  • the bias coefficient is a value between 0 and 1.0. Therefore, the integration unit 65 calculates the magnitude of the target capacitor output charged from the motor generator 2 to the capacitor 10 out of the required input / output power Preq [W].
  • the charge / discharge switch 66 determines whether the required input / output power Preq [W] calculated by the required power calculation unit 61 is a positive value or a negative value. When the required input / output power Preq [W] is a positive value, the charge / discharge changeover switch 66 switches the capacitor 10 to discharge (the target capacitor output is positive), and the required input / output power Preq [W]. Is negative, the capacitor 10 is switched to charge (the target capacitor output is negative).
  • the subtracting unit 67 subtracts the target capacitor output of the capacitor 10 from the required input / output power Preq [W] calculated by the required power calculating unit 61. Thereby, the target secondary battery output of the secondary battery 20 is calculated.
  • the control device 50 also includes a charge / discharge map 71 that defines the upper limit of the usable SOC range of the secondary battery 20, a charge / discharge map 72 that defines the lower limit, and the two obtained from the charge / discharge maps 71 and 72.
  • a charge / discharge limiter 73 that limits the output of the secondary battery 20 based on the upper and lower limit values of the output of the secondary battery 20 is provided.
  • the SOC [%] of the secondary battery 20 is input from the secondary battery SOC detector 55 to the charge / discharge maps 71 and 72.
  • a predetermined value X4 when the SOC of the secondary battery 20 is larger than a predetermined value X4, the output to the positive side is restricted, that is, the charging from the motor generator 2 to the secondary battery 20 is restricted. To do.
  • the SOC of the secondary battery 20 is smaller than the predetermined value X1, the output on the negative side is limited. That is, the discharge from the secondary battery 20 to the motor generator 2 is limited.
  • the charge / discharge map 71 is for the purpose of preventing the charge / discharge power of the secondary battery 20 from changing suddenly due to the change in the SOC, while the SOC is between the predetermined value X3 and X4 larger than X3.
  • the output is set so as to decrease as it increases, and the output is not performed when the predetermined value X4 is reached, that is, the motor generator 2 is set not to be charged into the secondary battery 20.
  • the charge / discharge map 72 is set so that the negative output decreases as the SOC decreases during the period from the predetermined value X2 to X1 that is smaller than X2, and the predetermined value X1. At this time, the output is not performed, that is, the discharge from the secondary battery 20 to the motor generator 2 is not performed.
  • the upper limit value of the charge / discharge amount of the charge / discharge maps 71 and 72 is set as the maximum output of the power conversion device 30.
  • the SOC of the capacitor 10 when the SOC of the capacitor 10 is in the range of x3 to x2, similarly, the SOC of the capacitor 10 has a sufficient margin, so that power is supplied from only the capacitor 10 to the motor generator 2. .
  • the integration unit 64 integrates the bias coefficient and the required input / output power Preq [W], and calculates the magnitude of the power supplied from the capacitor 10 to the motor generator 2.
  • the subtracting unit 67 subtracts the power output from the capacitor 10 from the required input / output power Preq [W] calculated by the required power calculating unit 61. Thereby, the magnitude of the electric power supplied from the secondary battery 20 to the motor generator 2 is calculated.
  • the SOC of the capacitor 10 when the SOC of the capacitor 10 is in the range of x2 to x1, the sum of the power output from the capacitor 10 and the power output from the secondary battery 20 is the required input / output power Preq [W]. In addition, the magnitude of each power is determined. At this time, as the SOC of the capacitor 10 decreases from x2 to x1, the magnitude of power output from the secondary battery 20 gradually increases. Then, when the SOC of the capacitor 10 becomes x1, electric power is supplied to the motor generator 2 only from the secondary battery 20.
  • the ratio of the power that the capacitor 10 discharges is obtained from the capacitor discharge bias coefficient map 62. Further, the subtraction unit 67 subtracts the discharge power of the capacitor 10 obtained from the capacitor discharge bias coefficient map 62 from the required input / output power Preq [W] to determine the ratio of the power that the secondary battery 20 discharges. The Thus, the sum of the electric power that each of the capacitor 10 and the secondary battery 20 discharges becomes the required input / output power Preq [W].
  • the SOC of the capacitor 10 when the SOC of the capacitor 10 is in the range of x2 to x3, the SOC of the capacitor 10 has sufficient free capacity, so that the regenerative power from the motor generator 2 is only in the capacitor 10. Charged.
  • the integration unit 65 integrates the bias coefficient and the required input / output power Preq [W], and calculates the magnitude of the regenerative power charged from the motor generator 2 to the capacitor 10.
  • the subtracting unit 67 subtracts the power charged in the capacitor 10 from the required input / output power Preq [W] calculated by the required power calculating unit 61. Thereby, the magnitude of the electric power charged from the motor generator 2 to the secondary battery 20 is calculated.
  • the SOC of the capacitor 10 when the SOC of the capacitor 10 is in the range of x3 to x4, the sum of the power charged in the capacitor 10 and the power charged in the secondary battery 20 becomes the required input / output power Preq [W]. In addition, the magnitude of each power is determined. At this time, as the SOC of the capacitor 10 increases from x3 to x4, the magnitude of power charged in the secondary battery 20 gradually increases. When the SOC of capacitor 10 becomes x4, regenerative power is charged from motor generator 2 only to secondary battery 20.
  • the ratio of the power that the capacitor 10 charges is obtained from the capacitor charging bias coefficient map 63. Further, the subtraction unit 67 subtracts the charging power of the capacitor 10 obtained from the capacitor charging bias coefficient map 63 from the required input / output power Preq [W] to determine the ratio of the power that the secondary battery 20 charges.
  • the total power for charging the capacitor 10 and the secondary battery 20 is the required input / output power Preq [W].
  • the capacitor 10 is charged / discharged only between the motor generator 2 and is not charged / discharged between the capacitor 10 and the secondary battery 20. Therefore, energy loss due to extra charge / discharge is suppressed, and the capacity of the capacitor 10 can be utilized to the maximum. Therefore, the energy efficiency of the charge / discharge system 1 including the capacitor 10 and the secondary battery 20 can be improved.
  • the secondary battery 20 is charged / discharged only with the motor generator 2. Therefore, since the charge / discharge frequency of the secondary battery 20 can be reduced, the life of the secondary battery 20 can be extended. In addition, the capacity of the secondary battery 20 can be reduced, and the size and weight of the secondary battery 20 can be suppressed. Alternatively, instead of reducing the capacity of the secondary battery 20, for example, an inexpensive lead storage battery can be used as the secondary battery 20. Therefore, the cost of the secondary battery 20 can be reduced.
  • the above control can be realized only by the control for distributing the electric power between the capacitor 10 and the secondary battery 20 by the control device 50 without depending on the host system controlled by the ECU 100. Therefore, the charge / discharge system 1 including the capacitor 10 and the secondary battery 20 can be used as if it were a single storage battery.
  • the required input / output power Preq [W] of the motor generator 2 is calculated by the required power calculation unit 61. Then, from the capacitor discharge bias coefficient map 62 and the capacitor charge bias coefficient map 63 that are defined based on the SOC of the capacitor 10, the ratio of the power that the capacitor 10 charges and discharges is determined. Further, the subtraction unit 67 subtracts the charge / discharge power of the capacitor 10 obtained from the capacitor discharge bias coefficient map 62 or the capacitor charge bias coefficient map 63 from the required input / output power Preq [W] to charge the secondary battery 20. The proportion of power for discharging is determined.
  • the total power for charging / discharging the capacitor 10 and the secondary battery 20 is the required input / output power Preq [W]
  • charging / discharging is performed between the capacitor 10 and the secondary battery 20. Absent. Therefore, the energy efficiency of the charge / discharge system 1 including the capacitor 10 and the secondary battery 20 can be improved.
  • the secondary battery 20 has been described as a lithium ion secondary battery, but is not limited thereto, and may be another secondary battery such as a lead storage battery or a nickel hydride battery.
  • the capacitor 10 is not limited to an electric double layer capacitor, and may be another capacitor such as a lithium ion capacitor.

Abstract

 充放電システムは、互いに並列に接続されるキャパシタと二次電池との間に介装される電力変換装置を制御する制御装置を備える。前記制御装置は、前記キャパシタの電流及び電圧と前記電力変換装置の入出力電流とに基づいて電動発電機の要求入出力電力を演算する要求電力演算部と、前記電動発電機の要求入力電力のうち、前記キャパシタから前記電動発電機に供給する電力の割合を規定するキャパシタ放電バイアス係数マップと、前記電動発電機の要求出力電力のうち、前記電動発電機から前記キャパシタに充電される電力の割合を規定するキャパシタ充電バイアス係数マップと、前記キャパシタの充放電電力を前記要求入出力電力から減算して前記二次電池の充放電電力を演算する減算部と、を備える。

Description

充放電システム
 本発明は、電動発電機に電力を供給可能であり電動発電機からの回生電力を充電可能な充放電システムに関する。
 従来から、車両等の駆動力源としての電動機に電力を供給するためにバッテリが用いられる。バッテリとしては、例えば、鉛蓄電池やリチウムイオン電池等の二次電池が用いられる。また、バッテリとは別に、電気二重層キャパシタ等により電気エネルギを充放電する装置も知られている。
 バッテリは、蓄積可能な容量が大きいが、高頻度の充放電や深度の大きな充放電を行うと寿命が低下するという特性である。一方、キャパシタは、高頻度の充放電や深度の大きな充放電には強く寿命は長いが、蓄積可能な容量が比較的小さいという特性である。このように、バッテリとキャパシタとは特性が異なるため、バッテリとキャパシタとを同時に搭載する場合には、それぞれの特性に応じた制御を行う必要がある。
 JP2008-035670Aには、バッテリとキャパシタとによる複数の充電機構を搭載する車両において、出力性能がバッテリよりも優れているキャパシタの充電量を確保する電力供給装置が開示されている。
 JP2008-035670Aに記載の電力供給装置では、バッテリの定格電圧を昇圧コンバータによって昇圧した昇圧電圧よりもキャパシタの電圧が低い場合には、バッテリから供給される電力によってキャパシタが充電される。そのため、バッテリとキャパシタとの間で充放電が行われることによって、エネルギ効率が低下するおそれがある。
 本発明は、上記の問題点に鑑みてなされたものであり、キャパシタと二次電池とを備える充放電システムのエネルギ効率を向上させることを目的とする。
 本発明のある態様によれば、電動発電機に電力を供給可能であり前記電動発電機からの回生電力を充電可能な充放電システムであって、前記電動発電機に接続されるキャパシタと、前記キャパシタと並列に接続される二次電池と、前記キャパシタと前記二次電池との間に介装され前記二次電池の充放電電圧を昇降圧する電力変換装置と、前記電力変換装置を制御する制御装置と、を備え、前記制御装置は、前記キャパシタの電流及び電圧と前記電力変換装置の入出力電流とに基づいて前記電動発電機の要求入出力電力を演算する要求電力演算部と、前記要求電力演算部によって演算された要求入力電力のうち、前記キャパシタから前記電動発電機に供給する電力の割合を前記キャパシタのSOCに基づいて規定するキャパシタ放電バイアス係数マップと、前記要求電力演算部によって演算された要求出力電力のうち、前記電動発電機から前記キャパシタに充電される電力の割合を前記キャパシタのSOCに基づいて規定するキャパシタ充電バイアス係数マップと、前記キャパシタ放電バイアス係数マップ又は前記キャパシタ充電バイアス係数マップから得られた前記キャパシタの充放電電力を前記要求入出力電力から減算して前記二次電池の充放電電力を演算する減算部と、を備える充放電システムが提供される。
図1は、本発明の実施の形態に係る充放電システムが適用された車両の構成図である。 図2は、充放電システムにおける制御装置のブロック図である。 図3Aは、キャパシタ放電バイアス係数マップの一例を説明する図である。 図3Bは、キャパシタ充電バイアス係数マップの一例を説明する図である。 図4Aは、二次電池の充放電マップの一例を説明する図である。 図4Bは、二次電池の充放電マップの一例を説明する図である。 図5Aは、放電時における充放電システムの動作を説明する図であり、キャパシタのSOCがx4からx3の範囲の場合を示す図である。 図5Bは、放電時における充放電システムの動作を説明する図であり、キャパシタのSOCがx3からx2の範囲の場合を示す図である。 図5Cは、放電時における充放電システムの動作を説明する図であり、キャパシタのSOCがx2からx1の範囲の場合を示す図である。 図6Aは、充電時における充放電システムの動作を説明する図であり、キャパシタのSOCがx1からx2の範囲の場合を示す図である。 図6Bは、充電時における充放電システムの動作を説明する図であり、キャパシタのSOCがx2からx3の範囲の場合を示す図である。 図6Cは、充電時における充放電システムの動作を説明する図であり、キャパシタのSOCがx3からx4の範囲の場合を示す図である。
 以下、図面を参照して、本発明の実施の形態について説明する。
 まず、図1を参照して、本発明の実施の形態に係る充放電システム1の構成について説明する。
 充放電システム1は、電動発電機としてのモータジェネレータ2と、モータジェネレータ2を駆動するインバータ3と、インバータ3を介してモータジェネレータ2に接続されるキャパシタ10と、キャパシタ10と並列に接続される二次電池20と、キャパシタ10と二次電池20との間に介装される電力変換装置30と、電力変換装置30を制御する制御装置50と、充放電システム1を含む車両全体を制御するECU(Electronic Control Unit:電子制御装置)100とを備える。充放電システム1は、モータジェネレータ2に電力を供給可能であり、モータジェネレータ2からの回生電力を充電可能である。
 キャパシタ10は、電気二重層キャパシタによって構成され、電力を充放電する。二次電池20は、例えば、ニッケル水素二次電池やリチウムイオン二次電池によって構成され、電力を充放電する。
 キャパシタ10及び二次電池20は、インバータ3を介して、充電された電力をモータジェネレータ2に供給する。また、キャパシタ10及び二次電池20は、モータジェネレータ2によって発電された電力を、インバータ3を介して充電する。インバータ3は、キャパシタ10及び二次電池20とモータジェネレータ2との間で交直流の変換を行う。
 電力変換装置30は、例えばDC/DCコンバータによって構成される。電力変換装置30は、二次電池20から放電される電力の電圧を昇圧してモータジェネレータ2に供給する。電力変換装置30は、モータジェネレータ2からの回生電力の電圧を降圧して二次電池20に充電する。このように、電力変換装置30は、二次電池20の充放電電圧を昇降圧する。
 二次電池20には、電動補機9が接続されており、二次電池20は電動補機9に電力を供給する。電動補機9には、エアコンや冷却水回路のポンプ,ラジエータのファン,その他電気駆動される装置等が含まれる。
 モータジェネレータ2は、車両の駆動力源として機能し、駆動輪5を回転させる。また、モータジェネレータ2は、車両の減速時に発電機として機能し、回生電力として回収する。エンジン4は、モータジェネレータ2と共に、又は単体で車両の駆動力源として機能する。また、エンジン4は、モータジェネレータ2を駆動してモータジェネレータ2に発電をさせることもできる。
 ECU100は、インバータ3及びエンジン4の動作を制御する。ECU100は、制御装置50と通信可能に電気的に接続されている。車両が停止状態から発進を要求されたときには、ECU100は、キャパシタ10及び二次電池20に充電された電力を、インバータ3を介してモータジェネレータ2に供給することによって、車両を発進させる。ECU100は、例えば、キャパシタ10及び二次電池20のSOCが共に低い場合や、大きな出力が必要な場合には、エンジン4を運転して、エンジン4の駆動力とモータジェネレータ2の駆動力とで走行するハイブリッド走行とする。
 その後、車両が走行状態から減速を要求された場合には、ECU100は、モータジェネレータ2を発電機として駆動させ、発電された電力を、インバータ3を介してキャパシタ10及び二次電池20に充電する。
 次に、上記のように構成された充放電システム1の動作を説明する。
 二次電池20は、リチウムイオン二次電池によって構成されている。二次電池40は、高出力高頻度の充放電や深度の大きな充放電を行うと寿命が著しく低下するため、このような充放電を避けるように制御をする必要がある。キャパシタ10は、充電容量は二次電池20と比較して小さいものの、高出力高頻度の充放電や深度の大きな充放電による寿命低下が起こりにくい。
 このような特性により、例えば、車両の発進時など、モータジェネレータ2に短時間内に大きな電力を供給するような場合には、キャパシタ10に充電された電力を用いることが好適である。一方、キャパシタ10が蓄積できる電力は限られるため、二次電池20に充電された電力を適宜利用できるような仕組みを設けることが好適である。
 このように、キャパシタ10と二次電池20とのそれぞれの特性に合わせた適切な電力の充放電制御を行うことによって、二次電池20の寿命を低下させることなく、エネルギ効率を向上することができて、車両の燃費を向上できる。
 ECU100は、図1のように構成された充放電システム1において、車両の状態に基づいてモータジェネレータ2を駆動させるかモータジェネレータ2を発電させるかの制御を行う。制御装置50は、電力変換装置30を制御して、充放電時におけるキャパシタ10と二次電池20との各々の入出力電圧の割合を決定する。この制御装置50における制御については、後で詳細に説明する。
 ECU100は、例えば、運転者による加減速要求,車速,及びキャパシタ10のSOCに基づいてモータジェネレータ2の駆動及び発電を行うと共に、エンジン4の運転も制御する。
 次に、図2から図4Bを参照して、制御装置50について説明する。
 図2に示すように、制御装置50は、キャパシタ10のSOC(State of Charge:充電状態)[%]を検出するキャパシタSOC検出部51と、キャパシタ10に入出力される電流Ic[A]を検出するキャパシタ電流検出部52と、キャパシタ10の電圧Vc[V]を検出するキャパシタ電圧検出部53と、モータジェネレータ2との間の電力変換装置30の入出力電流Ibref[A]を検出する入出力電流検出部54と、二次電池20のSOC[%]を検出する二次電池SOC検出部55とを備える。制御装置50は、電力変換装置30の動作を制御する。
 これに限らず、キャパシタ10に、SOCを検出するSOC検出器と、入出力される電流値を検出する電流検出器と、電圧を検出する電圧検出器とを設けてもよい。同様に、二次電池20に、SOCを検出するSOC検出器を設け、電力変換装置30に、入出力電流を検出する電流検出器を設けてもよい。また、キャパシタSOC検出部51は、キャパシタ電圧検出部53が検出したキャパシタ10の電圧からSOCを演算する構成であってもよい。
 制御装置50は、キャパシタ10の電流及び電圧と電力変換装置30の入出力電流とに基づいてモータジェネレータ2の要求入出力電力を演算する要求電力演算部61と、要求電力演算部61によって演算された要求入力電力のうち、キャパシタ10からモータジェネレータ2に供給する電力の割合をキャパシタ10のSOCに基づいて規定するキャパシタ放電バイアス係数マップ62と、要求電力演算部61によって演算された要求出力電力のうち、モータジェネレータ2からキャパシタ10に充電される電力の割合をキャパシタ10のSOCに基づいて規定するキャパシタ充電バイアス係数マップ63とを備える。
 要求電力演算部61は、キャパシタ10の電流Ic[A]及び電圧Vc[V]と、モータジェネレータ2との間の電力変換装置30の入出力電流Ibref[A]とから、Vc×(Ic+Ibref)によって要求入出力電力Preq[W]を演算する。要求入出力電力Preq[W]は、モータジェネレータ2がモータとして動作する際に必要となる電力、又はモータジェネレータ2が発電機として動作する際に出力する回生電力である。入出力電流Ibref[A]は、モータジェネレータ2に電力を供給する場合には、電力変換装置30からモータジェネレータ2に流れる電流であり、モータジェネレータ2からの回生電力を充電する場合には、モータジェネレータ2から電力変換装置30に流れる電流である。
 図3Aに示すように、キャパシタ放電バイアス係数マップ62は、キャパシタSOC検出部51から入力されたキャパシタ10のSOCに応じてバイアス係数を決定する。キャパシタ放電バイアス係数マップ62は、キャパシタ10のSOCが予め定められた第一設定値であるx2[%]以上の場合には、1.0を出力する。
 キャパシタ放電バイアス係数マップ62は、x2[%]を下回ったキャパシタ10のSOCが小さくなるほど、キャパシタ10から放電する電力量が小さくなり、x1[%]まで小さくなると0になるように設定される。このとき、キャパシタ10から放電する電力量が小さくなった分だけ、二次電池20から放電する電力量が大きくなる。なお、x1[%]は、インバータ3の最低動作可能電圧に余裕分を加えた電圧に対応するSOCに設定され、x2[%]は、ハンチングを防止するために、x1[%]からx4[%]の範囲の5~10%程度をx1[%]に加えたSOCに設定される。
 このように、キャパシタ放電バイアス係数マップ62は、モータジェネレータ2に電力を供給する際には、キャパシタ10のSOCがx2[%]以上であればキャパシタ10のみから電力を供給し、キャパシタ10のSOCがx2[%]を下回ったら電力の一部又は全部を二次電池20から供給するように設定される。
 同様に、図3Bに示すように、キャパシタ充電バイアス係数マップ63は、キャパシタSOC検出部51から入力されたキャパシタ10のSOCに応じてバイアス係数を決定する。キャパシタ充電バイアス係数マップ63は、キャパシタ10のSOCが予め定められた第二設定値であるx3[%]以下の場合には、1.0を出力する。
 キャパシタ充電バイアス係数マップ63は、x3[%]を上回ったキャパシタ10のSOCが大きくなるほど、キャパシタ10に充電する電力量が小さくなり、x4[%]まで大きくなると0になるように設定される。このとき、キャパシタ10に充電する電力量が小さくなった分だけ、二次電池20に充電する電力量が大きくなる。なお、x4[%]は、キャパシタ10がフル充電されている場合の電圧に対応するSOCに設定され、x3[%]は、ハンチングを防止するために、x1[%]からx4[%]の範囲の5~10%程度をx4[%]から減じたSOCに設定される。
 このように、キャパシタ充電バイアス係数マップ63は、モータジェネレータ2からの回生電力を充電する際には、キャパシタ10のSOCがx3[%]以下であれば回生電力をキャパシタ10のみに充電し、キャパシタ10のSOCがx3[%]を上回ったら回生電力の一部又は全部を二次電池20に充電するように設定される。
 また、図2に示すように、制御装置50は、要求入力電力にキャパシタ放電バイアス係数マップ62から得られたバイアス係数を積算する積算部64と、要求出力電力にキャパシタ充電バイアス係数マップ63から得られたバイアス係数を積算する積算部65と、要求入出力電力に基づいてキャパシタ10から放電を行うかキャパシタ10に充電を行うかを切り換える充放電切換スイッチ66と、キャパシタ放電バイアス係数マップ62又はキャパシタ充電バイアス係数マップ63から得られたキャパシタ10の充放電電力を要求入出力電力から減算して二次電池20の充放電電力を演算する減算部67とを備える。
 積算部64は、要求電力演算部61によって演算された要求入出力電力Preq[W]に、キャパシタ放電バイアス係数マップ62から得られたバイアス係数を積算する。このとき、バイアス係数は、0から1.0の間の値である。よって、積算部64では、要求入出力電力Preq[W]のうちキャパシタ10からモータジェネレータ2に供給する目標キャパシタ出力の大きさが演算される。
 同様に、積算部65は、要求電力演算部61によって演算された要求入出力電力Preq[W]に、キャパシタ充電バイアス係数マップ63から得られたバイアス係数を積算する。このとき、バイアス係数は、0から1.0の間の値である。よって、積算部65では、要求入出力電力Preq[W]のうちモータジェネレータ2からキャパシタ10に充電される目標キャパシタ出力の大きさが演算される。
 充放電切換スイッチ66は、要求電力演算部61によって演算された要求入出力電力Preq[W]が正の値か負の値かを判定する。充放電切換スイッチ66は、要求入出力電力Preq[W]が正の値である場合には、キャパシタ10が放電を行うように切り換え(目標キャパシタ出力が正)、要求入出力電力Preq[W]が負の値である場合には、キャパシタ10が充電を行うように切り換える(目標キャパシタ出力が負)。
 減算部67は、要求電力演算部61によって演算された要求入出力電力Preq[W]から、キャパシタ10の目標キャパシタ出力を減算する。これにより、二次電池20の目標二次電池出力が演算される。
 また、制御装置50は、二次電池20の使用可能なSOCの範囲の上限を規定する充放電マップ71と、下限を規定する充放電マップ72と、充放電マップ71,72から得られた二次電池20の出力の上下限値に基づいて二次電池20の出力を制限する充放電リミッター73とを備える。
 充放電マップ71,72には、二次電池SOC検出部55から二次電池20のSOC[%]が入力される。図4A及び図4Bに示すように、二次電池20のSOCが所定値X4よりも大きい場合は、正側への出力を制限する、すなわち、モータジェネレータ2から二次電池20への充電を制限する。また、二次電池20のSOCが所定値X1よりも小さい場合は、負側の出力を制限する。すなわち、二次電池20からモータジェネレータ2への放電を制限する。
 図4Aにおいて、充放電マップ71は、二次電池20の充放電電力がSOCの変化により急変することを防ぐ目的で、SOCが所定値X3から、X3よりも大きいX4までの間は、SOCが大きくなるにつれて出力が小さくなるように設定され、所定値X4となったところで出力を行わないように、すなわちモータジェネレータ2から二次電池20への充電を行わないように設定されている。
 同様に、図4Bにおいて、充放電マップ72は、SOCが所定値X2から、X2よりも小さいX1までの間は、SOCが小さくなるにつれて負側の出力が小さくなるように設定され、所定値X1となったところで出力を行わないように、すなわち二次電池20からモータジェネレータ2への放電を行わないように設定されている。
 また、これら充放電マップ71,72の充放電量の上限値は、電力変換装置30の最大出力として設定されている。
 以下、図5Aから図6Cを参照して、充放電システム1の動作について説明する。
 まず、主に図5Aから図5Cを参照して、キャパシタ10及び二次電池20からモータジェネレータ2に電力を供給する際における充放電システム1の動作について説明する。
 図5Aに示すように、キャパシタ10のSOCがx4からx3の範囲である場合には、キャパシタ10のSOCに充分な余裕があるため、キャパシタ放電バイアス係数マップ62から得られるバイアス係数は1.0である。よって、キャパシタ10から出力される電力が要求入出力電力Preq[W]と等しくなるため、キャパシタ10のみからモータジェネレータ2へ電力が供給される。
 図5Bに示すように、キャパシタ10のSOCがx3からx2の範囲である場合にも同様に、キャパシタ10のSOCに充分な余裕があるため、キャパシタ10のみからモータジェネレータ2へ電力が供給される。
 図5Cに示すように、キャパシタ10のSOCがx2からx1の範囲である場合には、キャパシタ放電バイアス係数マップ62から得られるバイアス係数は0以上1.0未満の値である。よって、積算部64にて、バイアス係数と要求入出力電力Preq[W]とが積算されて、キャパシタ10からモータジェネレータ2に供給する電力の大きさが演算される。
 また、減算部67にて、要求電力演算部61によって演算された要求入出力電力Preq[W]から、キャパシタ10から出力される電力を減算する。これにより、二次電池20からモータジェネレータ2に供給する電力の大きさが演算される。
 したがって、キャパシタ10のSOCがx2からx1の範囲である場合には、キャパシタ10から出力される電力と二次電池20から出力される電力との合計が要求入出力電力Preq[W]となるように、各々の電力の大きさが決定される。このとき、キャパシタ10のSOCがx2からx1へと減っていくのに連れて、二次電池20から出力される電力の大きさが徐々に大きくなる。そして、キャパシタ10のSOCがx1になると、二次電池20のみからモータジェネレータ2に電力が供給されることとなる。
 以上のように、要求電力演算部61によって演算されるモータジェネレータ2の要求入出力電力Preq[W]のうち、キャパシタ10が放電を行う電力の割合が、キャパシタ放電バイアス係数マップ62から得られる。また、減算部67によって、キャパシタ放電バイアス係数マップ62から得られたキャパシタ10の放電電力を要求入出力電力Preq[W]から減算して、二次電池20が放電を行う電力の割合が決定される。このように、キャパシタ10と二次電池20とが各々放電を行う電力の合計が要求入出力電力Preq[W]となる。
 次に、主に図6Aから図6Cを参照して、モータジェネレータ2からの回生電力をキャパシタ10及び二次電池20に充電する際における充放電システム1の動作について説明する。
 図6Aに示すように、キャパシタ10のSOCがx1からx2の範囲である場合には、キャパシタ10のSOCに充分な空き容量があるため、キャパシタ充電バイアス係数マップ63から得られるバイアス係数は1.0である。よって、キャパシタ10に充電される電力が要求入出力電力Preq[W]と等しくなるため、モータジェネレータ2からの回生電力はキャパシタ10のみに充電される。
 図6Bに示すように、キャパシタ10のSOCがx2からx3の範囲である場合にも同様に、キャパシタ10のSOCに充分な空き容量があるため、モータジェネレータ2からの回生電力はキャパシタ10のみに充電される。
 図6Cに示すように、キャパシタ10のSOCがx3からx4の範囲である場合には、キャパシタ充電バイアス係数マップ63から得られるバイアス係数は0以上1.0未満の値である。よって、積算部65にて、バイアス係数と要求入出力電力Preq[W]とが積算されて、モータジェネレータ2からキャパシタ10に充電される回生電力の大きさが演算される。
 また、減算部67にて、要求電力演算部61によって演算された要求入出力電力Preq[W]から、キャパシタ10に充電される電力を減算する。これにより、モータジェネレータ2から二次電池20に充電される電力の大きさが演算される。
 したがって、キャパシタ10のSOCがx3からx4の範囲である場合には、キャパシタ10に充電される電力と二次電池20に充電される電力との合計が要求入出力電力Preq[W]となるように、各々の電力の大きさが決定される。このとき、キャパシタ10のSOCがx3からx4へと増えていくのに連れて、二次電池20に充電される電力の大きさが徐々に大きくなる。そして、キャパシタ10のSOCがx4になると、モータジェネレータ2から二次電池20のみに回生電力が充電されることとなる。
 以上のように、要求電力演算部61によって演算されるモータジェネレータ2の要求入出力電力Preq[W]のうち、キャパシタ10が充電を行う電力の割合が、キャパシタ充電バイアス係数マップ63から得られる。また、減算部67によって、キャパシタ充電バイアス係数マップ63から得られたキャパシタ10の充電電力を要求入出力電力Preq[W]から減算して、二次電池20が充電を行う電力の割合が決定される。このように、キャパシタ10と二次電池20とが各々充電を行う電力の合計が要求入出力電力Preq[W]となる。
 図5Aから図6Cを参照して説明したように、キャパシタ10はモータジェネレータ2との間でのみ充放電を行い、キャパシタ10と二次電池20との間で充放電が行われることはない。よって、余計な充放電によるエネルギのロスが抑えられ、キャパシタ10の容量を最大限に活用できる。したがって、キャパシタ10と二次電池20とを備える充放電システム1のエネルギ効率を向上させることができる。
 また、二次電池20も同様に、モータジェネレータ2との間でのみ充放電を行う。したがって、二次電池20の充放電頻度を低減できるため、二次電池20の寿命を延ばすことができる。また、二次電池20の容量を小さくすることができ、二次電池20の大きさ及び重さを抑えることができる。もしくは、二次電池20の容量を小さくするのに代えて、例えば、安価な鉛蓄電池を二次電池20として使用することができる。したがって、二次電池20のコストを削減することができる。
 また、上記の制御は、ECU100によって制御される上位のシステムに依存することなく、制御装置50によるキャパシタ10と二次電池20との電力を分配する制御だけで実現することができる。よって、キャパシタ10と二次電池20とを備える充放電システム1を、あたかも単一の蓄電池であるように使用することができる。
 以上の実施の形態によれば、以下に示す効果を奏する。
 充放電システム1では、モータジェネレータ2の要求入出力電力Preq[W]が要求電力演算部61によって演算される。そして、キャパシタ10のSOCに基づいて規定されるキャパシタ放電バイアス係数マップ62及びキャパシタ充電バイアス係数マップ63から、キャパシタ10が充放電を行う電力の割合が決定される。また、減算部67によって、キャパシタ放電バイアス係数マップ62又はキャパシタ充電バイアス係数マップ63から得られたキャパシタ10の充放電電力を要求入出力電力Preq[W]から減算して、二次電池20が充放電を行う電力の割合が決定される。よって、キャパシタ10と二次電池20とが各々充放電を行う電力の合計が要求入出力電力Preq[W]となるため、キャパシタ10と二次電池20との間で充放電が行われることはない。したがって、キャパシタ10と二次電池20とを備える充放電システム1のエネルギ効率を向上させることができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 例えば、上記実施形態では、二次電池20をリチウムイオン二次電池として説明したが、これに限られず、鉛蓄電池やニッケル水素電池等の他の二次電池であってもよい。また、キャパシタ10は、電気二重層キャパシタに限られず、リチウムイオンキャパシタ等、他のキャパシタであってもよい。

Claims (5)

  1.  電動発電機に電力を供給可能であり前記電動発電機からの回生電力を充電可能な充放電システムであって、
     前記電動発電機に接続されるキャパシタと、
     前記キャパシタと並列に接続される二次電池と、
     前記キャパシタと前記二次電池との間に介装され前記二次電池の充放電電圧を昇降圧する電力変換装置と、
     前記電力変換装置を制御する制御装置と、を備え、
     前記制御装置は、
     前記キャパシタの電流及び電圧と前記電力変換装置の入出力電流とに基づいて前記電動発電機の要求入出力電力を演算する要求電力演算部と、
     前記要求電力演算部によって演算された要求入力電力のうち、前記キャパシタから前記電動発電機に供給する電力の割合を前記キャパシタのSOCに基づいて規定するキャパシタ放電バイアス係数マップと、
     前記要求電力演算部によって演算された要求出力電力のうち、前記電動発電機から前記キャパシタに充電される電力の割合を前記キャパシタのSOCに基づいて規定するキャパシタ充電バイアス係数マップと、
     前記キャパシタ放電バイアス係数マップ又は前記キャパシタ充電バイアス係数マップから得られた前記キャパシタの充放電電力を前記要求入出力電力から減算して前記二次電池の充放電電力を演算する減算部と、を備える充放電システム。
  2.  請求項1に記載の充放電システムであって、
     前記キャパシタ放電バイアス係数マップは、前記電動発電機に電力を供給する際には、前記キャパシタのSOCが予め設定された第一設定値以上であれば前記キャパシタのみから電力を供給し、前記キャパシタのSOCが前記第一設定値を下回ったら電力の一部又は全部を前記二次電池から供給するように設定される充放電システム。
  3.  請求項2に記載の充放電システムであって、
     前記キャパシタ放電バイアス係数マップは、前記第一設定値を下回った前記キャパシタのSOCが小さくなるほど前記二次電池から放電する電力量が大きくなるように設定される充放電システム。
  4.  請求項1から3のいずれか一つに記載の充放電システムであって、
     前記キャパシタ充電バイアス係数マップは、前記電動発電機からの回生電力を充電する際には、前記キャパシタのSOCが予め設定された第二設定値以下であれば回生電力を前記キャパシタのみに充電し、前記キャパシタのSOCが前記第二設定値を上回ったら回生電力の一部又は全部を前記二次電池に充電するように設定される充放電システム。
  5.  請求項4に記載の充放電システムであって、
     前記キャパシタ充電バイアス係数マップは、前記第二設定値を上回った前記キャパシタのSOCが大きくなるほど前記二次電池に充電する電力量が大きくなるように設定される充放電システム。
     
PCT/JP2013/080675 2013-11-13 2013-11-13 充放電システム WO2015071977A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/036,068 US10315522B2 (en) 2013-11-13 2013-11-13 Charge/discharge system
EP13897596.6A EP3070809B1 (en) 2013-11-13 2013-11-13 Charge/discharge system
JP2015547323A JP6227003B2 (ja) 2013-11-13 2013-11-13 充放電システム
PCT/JP2013/080675 WO2015071977A1 (ja) 2013-11-13 2013-11-13 充放電システム
CN201380080921.7A CN105794073B (zh) 2013-11-13 2013-11-13 充放电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/080675 WO2015071977A1 (ja) 2013-11-13 2013-11-13 充放電システム

Publications (1)

Publication Number Publication Date
WO2015071977A1 true WO2015071977A1 (ja) 2015-05-21

Family

ID=53056946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080675 WO2015071977A1 (ja) 2013-11-13 2013-11-13 充放電システム

Country Status (5)

Country Link
US (1) US10315522B2 (ja)
EP (1) EP3070809B1 (ja)
JP (1) JP6227003B2 (ja)
CN (1) CN105794073B (ja)
WO (1) WO2015071977A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017073934A (ja) * 2015-10-09 2017-04-13 株式会社デンソー 電源制御装置
JP2017139843A (ja) * 2016-02-01 2017-08-10 川崎重工業株式会社 電力貯蔵システムおよびその制御方法
JP2017210039A (ja) * 2016-05-23 2017-11-30 本田技研工業株式会社 動力システム及び輸送機器、並びに、電力伝送方法
JP2019180211A (ja) * 2018-03-30 2019-10-17 本田技研工業株式会社 車両電源システム
JP2019180209A (ja) * 2018-03-30 2019-10-17 本田技研工業株式会社 車両電源システム
JP2019180210A (ja) * 2018-03-30 2019-10-17 本田技研工業株式会社 車両電源システム
JP2019187188A (ja) * 2018-04-17 2019-10-24 株式会社デンソー 電源制御装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10875397B2 (en) 2017-06-30 2020-12-29 Hamilton Sundstrand Corporation HESM fast recharge algorithm
US10814740B2 (en) * 2017-06-30 2020-10-27 Hamilton Sundstrand Corporation HESM high pulse power algorithm
JP2022144647A (ja) * 2021-03-19 2022-10-03 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
KR102583265B1 (ko) 2021-10-07 2023-09-26 동국대학교 와이즈캠퍼스 산학협력단 무인 비행체의 전력 시스템 및 이를 갖는 무인 비행체

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249236A (ja) * 2001-12-19 2003-09-05 Toyota Motor Corp 電源装置
JP2006136143A (ja) * 2004-11-08 2006-05-25 Toyota Motor Corp 駆動装置およびこれを搭載する自動車
JP2008035670A (ja) 2006-07-31 2008-02-14 Toyota Motor Corp 車両の電力供給装置、電力供給装置の制御方法、その制御方法を実現するためのプログラム、およびそのプログラムを記録した記録媒体
JP2008295123A (ja) * 2007-05-22 2008-12-04 Mitsubishi Electric Corp 車載用電源装置
JP2010041847A (ja) * 2008-08-06 2010-02-18 Aisan Ind Co Ltd 複合電源を用いた電動車両
JP2010272247A (ja) * 2009-05-19 2010-12-02 Toyota Motor Corp 電源装置およびハイブリッド車

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06319287A (ja) * 1993-04-30 1994-11-15 Aqueous Res:Kk モータ駆動用電源装置
JP3505517B2 (ja) * 2001-03-23 2004-03-08 三洋電機株式会社 電動車両のバッテリー制御装置
JP3882703B2 (ja) * 2002-07-22 2007-02-21 日産自動車株式会社 蓄電システム
JP4622863B2 (ja) * 2006-01-10 2011-02-02 トヨタ自動車株式会社 モータの制御装置
JP4978082B2 (ja) * 2006-03-31 2012-07-18 トヨタ自動車株式会社 電源システムおよびそれを備えた車両
JP5011940B2 (ja) 2006-10-16 2012-08-29 トヨタ自動車株式会社 電源装置、および車両
JP4285578B1 (ja) * 2008-01-15 2009-06-24 トヨタ自動車株式会社 車両の充電装置
JP4811446B2 (ja) 2008-10-21 2011-11-09 トヨタ自動車株式会社 電源システムおよびそれを備えた車両、ならびに電源システムの制御方法
US8648565B2 (en) * 2008-12-09 2014-02-11 Toyota Jidosha Kabushiki Kaisha Power supply system of vehicle
CN102414043B (zh) * 2009-04-23 2014-03-19 丰田自动车株式会社 电动车辆的电源系统及其控制方法
JP5350067B2 (ja) * 2009-04-28 2013-11-27 本田技研工業株式会社 電源システム
JP5189607B2 (ja) * 2010-02-04 2013-04-24 トヨタ自動車株式会社 車両用電源装置
JP5459394B2 (ja) 2010-04-28 2014-04-02 トヨタ自動車株式会社 蓄電装置の制御装置およびそれを搭載する車両
JP5605436B2 (ja) * 2010-12-20 2014-10-15 トヨタ自動車株式会社 電動車両およびその制御方法
JP2012157209A (ja) 2011-01-28 2012-08-16 Mitsubishi Electric Corp 電源制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249236A (ja) * 2001-12-19 2003-09-05 Toyota Motor Corp 電源装置
JP2006136143A (ja) * 2004-11-08 2006-05-25 Toyota Motor Corp 駆動装置およびこれを搭載する自動車
JP2008035670A (ja) 2006-07-31 2008-02-14 Toyota Motor Corp 車両の電力供給装置、電力供給装置の制御方法、その制御方法を実現するためのプログラム、およびそのプログラムを記録した記録媒体
JP2008295123A (ja) * 2007-05-22 2008-12-04 Mitsubishi Electric Corp 車載用電源装置
JP2010041847A (ja) * 2008-08-06 2010-02-18 Aisan Ind Co Ltd 複合電源を用いた電動車両
JP2010272247A (ja) * 2009-05-19 2010-12-02 Toyota Motor Corp 電源装置およびハイブリッド車

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017073934A (ja) * 2015-10-09 2017-04-13 株式会社デンソー 電源制御装置
JP2017139843A (ja) * 2016-02-01 2017-08-10 川崎重工業株式会社 電力貯蔵システムおよびその制御方法
JP2017210039A (ja) * 2016-05-23 2017-11-30 本田技研工業株式会社 動力システム及び輸送機器、並びに、電力伝送方法
JP2019180211A (ja) * 2018-03-30 2019-10-17 本田技研工業株式会社 車両電源システム
JP2019180209A (ja) * 2018-03-30 2019-10-17 本田技研工業株式会社 車両電源システム
JP2019180210A (ja) * 2018-03-30 2019-10-17 本田技研工業株式会社 車両電源システム
US11260771B2 (en) 2018-03-30 2022-03-01 Honda Motor Co., Ltd. Vehicle power supply system
JP7081958B2 (ja) 2018-03-30 2022-06-07 本田技研工業株式会社 車両電源システム
JP7149093B2 (ja) 2018-03-30 2022-10-06 本田技研工業株式会社 車両電源システム
JP7158166B2 (ja) 2018-03-30 2022-10-21 本田技研工業株式会社 車両電源システム
JP2019187188A (ja) * 2018-04-17 2019-10-24 株式会社デンソー 電源制御装置

Also Published As

Publication number Publication date
EP3070809A1 (en) 2016-09-21
JP6227003B2 (ja) 2017-11-08
EP3070809A4 (en) 2017-07-05
JPWO2015071977A1 (ja) 2017-03-09
US10315522B2 (en) 2019-06-11
CN105794073A (zh) 2016-07-20
US20160288662A1 (en) 2016-10-06
CN105794073B (zh) 2019-07-19
EP3070809B1 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
JP6227003B2 (ja) 充放電システム
JP6310938B2 (ja) 充放電システム
JP6055483B2 (ja) 充放電システム
JP7068893B2 (ja) 車両電源システム
US10239530B2 (en) Vehicle control apparatus for a regenerative braking system based on the battery input power
WO2011021266A1 (ja) 電気車推進用電力変換装置
US9834100B2 (en) Charge/discharge system
JP7081959B2 (ja) 車両電源システム
JP6909694B2 (ja) 作業車両の電力回生システム
JP6989431B2 (ja) 車両電源システム
JP7096046B2 (ja) 車両電源システム
JP5419745B2 (ja) シリーズハイブリッド車両の制御装置
JP2017162652A (ja) 電力供給システム
JP2022093977A (ja) 電源システム
JP2005268122A (ja) 電気システムの制御装置
WO2014073107A1 (ja) 充放電システム
JP2019145335A (ja) 車両の電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897596

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015547323

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15036068

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016010830

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2013897596

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013897596

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112016010830

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160512