WO2015070465A1 - 可控制多晶硅生长方向的多晶硅制作方法 - Google Patents

可控制多晶硅生长方向的多晶硅制作方法 Download PDF

Info

Publication number
WO2015070465A1
WO2015070465A1 PCT/CN2013/087362 CN2013087362W WO2015070465A1 WO 2015070465 A1 WO2015070465 A1 WO 2015070465A1 CN 2013087362 W CN2013087362 W CN 2013087362W WO 2015070465 A1 WO2015070465 A1 WO 2015070465A1
Authority
WO
WIPO (PCT)
Prior art keywords
polysilicon
buffer layer
amorphous silicon
layer
growth direction
Prior art date
Application number
PCT/CN2013/087362
Other languages
English (en)
French (fr)
Inventor
张翔
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/235,764 priority Critical patent/US9082615B2/en
Publication of WO2015070465A1 publication Critical patent/WO2015070465A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams

Definitions

  • the invention relates to display.
  • it relates to a controllable polysilicon growth direction
  • the traditional video image display is mainly the cathode ray tube CRT (Cartiode ray iubes); and the main difference between the flat panel display and the aspect is the change.
  • the weight and the thickness of the conventional display are not more than 10 cm, and of course there are other differences, such as the display principle, manufacturing materials, processes, and various technologies for video image display driving.
  • Flat panel displays are fully planarized. Light, straight and power-saving, and the development of high resolution, low power consumption, high integration, but the traditional amorphous silicon is limited by its own characteristics can not meet the above requirements, as the best satisfaction of amorphous silicon
  • the flat panel shows the demand for He Liang, so low temperature polysilicon (ITPS) display technology has become the darling of the display field.
  • ITPS low temperature polysilicon
  • FIG. 1 it is a flow chart of manufacturing polysilicon in the prior art. Specifically, a layer of silicon oxynitride (SiN x ) is formed on the glass substrate 100, and then deposited on the layer of silicon nitride compound 200.
  • SiN x silicon oxynitride
  • a silicon oxide (SiO x ) layer 300 Forming a silicon oxide (SiO x ) layer 300, and then depositing an amorphous silicon (a-Si) layer 400 on the silicon oxide layer 300, and performing the hydrogen fluoride (HF) cleaning on the amorphous silicon layer 400, and then
  • the cleaned amorphous silicon layer 400 is irradiated with the laser 500 to complete a laser annealing process to crystallize the amorphous silicon in the amorphous silicon layer 400 to form the polysilicon layer 600.
  • the above-described fabrication method can degrade the crystallization effect by adjusting the parameters of the laser, the growth direction of the polysilicon 600 during the annealing process cannot be effectively controlled, and the region where the grain boundaries appear cannot be effectively controlled.
  • the concentrating action of the lens-like structure of the first buffer layer is used to regularly generate seed crystals at the bottom of the amorphous silicon layer under strong light irradiation. Thereby controlling the growth direction of the polysilicon in the final laser annealing process.
  • the present invention provides a polysilicon manufacturing method capable of controlling the growth direction of polysilicon, comprising the following steps:
  • Step 1 depositing a first buffer layer on the substrate
  • Step 2 forming a lens-like structure on the surface of the first buffer layer by a mask process; Step 3, depositing an amorphous silicon layer on the first buffer layer having a lens-like structure formed on the surface;
  • Step 4 cleaning the amorphous silicon layer
  • Step 5 illuminating the amorphous silicon layer from the substrate by using strong light to generate seed rafts at the bottom of the amorphous silicon layer.
  • Step 6 Laser-annealing the amorphous silicon layer having the seed crystals to form amorphous silicon crystals in the amorphous silicon layer to form a polysilicon layer.
  • the surface of the first buffer layer is formed on the surface of the first buffer layer by an exposure process and a thousand-method process as needed; and a regularly distributed lens-like structure is engraved.
  • the step 3 further includes depositing a second buffer layer on the first buffer layer, the amorphous silicon layer being formed on the second buffer layer; and spraying the hydrogen fluoride on the amorphous silicon layer in the step 4. .
  • the refractive index of the first buffer layer is greater than the refractive index of the second buffer layer, the refractive index of the first buffer layer is L7-2, and the refractive index of the second buffer layer is 1.2-1.7. .
  • the first buffer layer has a refractive index of 1.9 and the second buffer layer has a refractive index of 1.5.
  • the first buffer layer is formed by deposition of a nitrogen-silicon compound, and the second buffer layer is formed by deposition of silicon oxide.
  • the selection of the wavelength of the strong light is determined by the absorption spectrum of the first and second buffer layers, the absorption coefficient of the amorphous silicon layer, and the focal length of the lens-like structure.
  • the lens-like structure is a protrusion, and the protrusion shape is a curved surface.
  • the laser annealing treatment is an amorphous silicon layer in which a seed crystal is generated by laser irradiation, and the wavelength of the laser light is 308 nm.
  • the plate is a glass substrate or a plastic substrate.
  • the invention also provides a method for fabricating polysilicon capable of controlling the growth direction of polysilicon, including Step 2: forming a lens-like structure on the surface of the first buffer layer by a mask process; Step 3, depositing amorphous silicon on the first buffer layer having a lens-like structure formed on the surface, step 4, and amorphous silicon The layer is cleaned;
  • Step 5 irradiating the amorphous silicon layer from the substrate with strong light to generate a seed step at the bottom of the amorphous silicon layer, and performing laser annealing treatment on the amorphous silicon layer having the seed crystal to make the amorphous silicon layer Amorphous silicon crystals form a polysilicon layer;
  • a regularly distributed lens-like structure is etched on the surface of the first buffer layer by an exposure process and a thousand etching process as needed;
  • the step 3 further includes depositing a second buffer layer on the first buffer layer, the amorphous silicon layer being formed on the second buffer layer; spraying the amorphous silicon layer in the step 4 Hydrogen fluoride for cleaning;
  • the refractive index of the first buffer layer is greater than the refractive index of the second buffer layer, the refractive index of the first buffer layer is 1.7-2.1, and the refractive index of the second buffer layer is 1.2- 1,7;
  • the refractive index of the first buffer layer is 1.9
  • the refractive index of the second buffer layer is
  • the lens-like structure is a protrusion
  • the protrusion shape is a curved surface
  • the first buffer layer is formed by deposition of a nitrogen-silicon compound, and the second buffer layer is formed by deposition of silicon oxide.
  • the selection of the wavelength of the strong light is determined by the absorption spectrum of the first and second buffer layers, the absorption coefficient of the amorphous silicon layer, and the focal length of the lens-like structure.
  • the laser annealing treatment is to generate a seeded amorphous silicon layer by laser irradiation, and the laser has a wavelength of 308.
  • the substrate is a glass substrate or a plastic substrate.
  • the present invention can control a polycrystalline silicon in a polycrystalline silicon growth direction, and a lens-like structure is formed on the surface of the first buffer layer by an exposure process and a thousand etching process, by the condensing action of the lens structure Under the strong light irradiation, the temperature of the bottom of the amorphous silicon layer is not uniform, and the seed crystal can be generated at the corresponding portion of the bottom portion of the amorphous silicon layer as needed, and the growth direction of the polycrystalline silicon is controlled from the final laser annealing process.
  • FIG. 7 is a schematic structural view of an amorphous silicon layer formed on a second buffer layer in the present invention
  • FIG. 8 is a schematic view showing cleaning of an amorphous silicon layer in the present invention
  • FIG. 9 is a schematic view showing intense light irradiation of an amorphous silicon layer in the present invention.
  • Fig. 10 is a schematic view showing the laser annealing treatment of the amorphous silicon layer in the present invention. Specific travel mode
  • the present invention provides a method for fabricating polysilicon capable of controlling the growth direction of polysilicon, including the following steps:
  • Step 1 Depositing a first buffer layer 20 on the substrate 10.
  • the refractive index of the first buffer layer 20 is 1 scratch7-2.1.
  • the refractive index of the first buffer layer 20 is preferably L9.
  • the first buffer layer 20 is composed of nitrogen.
  • a silicon compound (SiN x ) is deposited to form.
  • the substrate 10 is a glass substrate or a plastic substrate.
  • Step 2 Forming a lens-like structure on the surface of the first buffer layer 20 by a mask process
  • a regularly distributed lens-like structure 22 is etched on the surface of the first buffer layer 20 by an exposure process and a thousand etching process as needed (the required polysilicon growth direction).
  • the lens-like structure 22 is a protrusion having a curved shape for concentrating light.
  • Step 3 Depositing an amorphous silicon layer 40 on the first buffer layer 20 having the lens-like structure 22 formed on the surface.
  • the step further includes depositing a second buffer layer 30 on the first buffer layer 20, and the amorphous silicon layer 40 is formed on the second buffer layer 30.
  • the fold of the first buffer layer 20 The incident rate is greater than the refractive index of the second buffer layer 30, and the light is emitted from the optically dense medium to the light-dissipating medium to refract the light to facilitate the convergence of the light.
  • the refractive index of the second buffer layer 30 is 1 relieve2- L7 , and in the embodiment, the refractive index of the second buffer layer 30 is preferably 1,5.
  • the second buffer layer 30 is formed by deposition of silicon oxide (SiO x ).
  • Step 4 The amorphous silicon layer 40 is cleaned to complete the hydrogen fluoride cleaning process.
  • the amorphous silicon layer 40 is sprayed with hydrogen fluoride for cleaning, and the specific operation can be performed according to the prior art.
  • Step 5 The amorphous silicon layer 40 is irradiated from the substrate 10 side by the strong light 50 to cause seed crystals to be formed at the bottom of the amorphous silicon layer 40.
  • the strong light 50 may be a parallel light beam generated by an LED lamp or other lamps, and the wavelength of the strong light 50 is selected by the absorption spectrum of the first and second buffer layers 20, 30, the absorption coefficient of the amorphous silicon layer 40,
  • the focal length of the lens-like structure 22 is determined in common, and the intense light 50 is condensed by the lens-like structure 22 of the first buffer layer 20 and then irradiated to the amorphous silicon layer 40, so that the seed crystal can be generated at the bottom of the amorphous silicon layer 40.
  • the specific selection criteria are as follows: the first and second buffer layers 20 and 30 have a small extinction coefficient for the strong light 50, and the amorphous silicon layer 40 has a large absorption coefficient for the strong light 50.
  • the lens-like structure is The focal length of 22 matches the thickness of the second buffer layer 30 (i.e., the focus of the intense light 50 is ensured at the bottom of the amorphous silicon layer 40).
  • the light is collected by the lens-like structure 22 of the first buffer layer 20, thereby achieving uneven distribution of the temperature at the bottom of the amorphous silicon layer 40, thereby generating seed crystals at corresponding portions of the bottom portion of the amorphous silicon layer 40 as needed, and finally
  • the growth direction of the polycrystalline silicon grains can be controlled in the laser annealing process.
  • Step 6 The amorphous silicon layer 40 having the seed crystal is subjected to laser annealing treatment to crystallize the amorphous silicon in the amorphous silicon layer 40 to form the polysilicon layer 70.
  • the laser annealing treatment is to irradiate the amorphous silicon layer 40 which generates the seed crystal by the laser 60 to control the growth direction of the polycrystalline silicon crystal grains.
  • the wavelength of the laser light 60 is preferably 308 nm.
  • the present invention provides a method for fabricating polycrystalline silicon capable of controlling the growth direction of polycrystalline silicon.
  • a lens-like structure is formed on the surface of the first buffer layer by an exposure process and a thousand etching process, and the light collecting effect of the lens structure is adopted.
  • the seed crystal can be generated at the corresponding portion of the bottom of the amorphous silicon layer as needed, and the growth direction of the polycrystalline silicon is controlled from the final laser annealing process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本发明提供一种可控制多晶硅生长方向的多晶硅制作方法,包括以下步骤:步骤1、在基板(10)上沉积形成第一缓冲层(20);步骤2、通过光罩制程在该第一缓冲层(20)的表面上形成类透镜结构(22);步骤3、在表面形成有类透镜结构(22)的第一缓沖层(20)上沉积形成非晶硅层(40);步骤4、对非晶硅层(40)进行清洗;步骤5、采用强光(50)从基板(10)侧照射非晶硅层(40),以使非晶硅层(40)底部产生籽晶;步骤6、对产生有籽晶的非晶硅层(40)进行激光退火处理,以使非晶硅层(40)中的非晶硅结晶形成多晶硅层(70)。本发明可以控制多晶硅的生长方向。

Description

可控制多晶硅 曰 -珪制
本发明涉及显示. 尤其涉及一种可控制多晶硅生长方向的多
器以其完全不同的显示和制造技
Figure imgf000002_0001
传统的视频图像显示器主 要为阴极射线管 CRT(Cartiode ray iubes); 而平板显示器与之的主要区别在 方面的变化, 通一向
于重量和 · 常 示器的厚度不超.过 10cm, 当然还有其它的不同, 如显示原理、 制造. 料、 工艺以及视频图像显示驱 动方面的各项技术等。
平板显示器具有完全平面化。 轻、 直 省电等特点, 并朝着高分辨 低功耗、 高集成度的方向发展, 但传统的非晶硅受限于自身的特性无 法满足上述要求, 作为非晶硅的最佳 够满足平板显示 禾 · 良的需求, 因此低温多晶硅(ITPS )显示技术成为显示领域的宠 儿。
作为低温多晶硅显示技术的核心工艺环节, 多晶 ^
特性决定着显示器的性能。 目前已知的多晶硅制备方式包括: 低压化学气 相、沉积 ( Low Pressure Chemical Vapor Deposition, LPCVD ) 、 固相结晶、 金属诱导和激光退火等。 目前业界应用最为广泛的制备方式是激光退火工 艺, 通过激光产生的高温将非晶硅熔融重结晶成多晶硅。 如图 i 所示, 其 为现有技术中多晶硅的制作流程图, 具体: 先在玻璃基板 100 上沉积形成 一层氮硅化合物 (SiNx )层 200, 接着在该氮硅化合物层 200 上沉积形成 一层氧化硅 ( SiOx )层 300, 之后再在该氧化硅层 300上沉积形成一非晶 硅(a- Si )层 400, 对该非晶硅层 400 进行氟化氢( HF ) 清洗, 然后采用 激光 500 照射清洗后的非晶硅层 400, 完成激光退火工艺, 以使非晶硅层 400 中的非晶硅结晶形成多晶硅层 600。 虽然上述制作方法通过调节激光 的参数可以使得结晶效果得到俛化, 但无法有效地控制退火过程中多晶硅 600的生长方向, 进而无法有效地控制晶界出现的区域。 发明内容 本发明的目的在于提供一种可控制多晶硅生长方向的多晶硅制作方 法, 通过第一缓冲层的类透镜结构的聚光作用, 以在强光照射下在非晶硅 层底部有规律地产生籽晶, 从而在最终的激光退火工艺中控制多晶硅的生 长方向。
为实现上述目的, 本发明提供一种可控制多晶硅生长方向的多晶硅制 作方法, 包括以下步骤:
步骤 1、 在基板上沉积形成第一缓冲层;
步骤 2、 通过光罩制程在该第一緩冲层的表面上形成类透镜结构; 步驟 3、 在表面形成有类透镜结构的第一緩冲层上沉积形成非晶硅 层;
步骤 4、 对非晶硅层进行清洗;
步骤 5、 采用强光从基板倒照射非晶硅层, 以使非晶硅层底部产生籽 曰曰 ,
步骤 6、 对产生有籽晶的非晶硅层进行激光退火处理, 以使非晶硅层 中的非晶硅结晶形成多晶硅层。
所述步骤 2 中根据需要通过曝光工序及千法独刻工艺在第一緩沖层表 面 ;刻出有规律分布的类透镜结构。
所述步骤 3 还包括在所述第一缓冲层上沉积形成第二缓冲层, 所述非 晶硅层形成于该第二缓冲层上; 所述步骤 4 中对非晶硅层喷洒氟化氢进行 清洗。
所述第一緩冲层的折射率大于所述第二緩冲层的折射率, 所述第一缓 沖层的折射率为 L7- 2丄 所述第二緩沖层的折射率为 1.2-1.7。
所述第一緩冲层的折射率为 1.9 , 所述第二緩冲层的折射率为 1.5。 所述第一緩冲层由氮硅化合物沉积而形成, 所述第二缓冲层由氧化硅 沉积而形成。
所述强光波长的选取由第一、 第二緩冲层的吸收频谱、 非晶硅层的吸 收系数、 及类透镜结构的焦距共同决定。
所述类透镜结构为一凸起, 所述凸起形状呈弧面型。
所述激光退火处理为采用激光照射产生有籽晶的非晶硅层, 所述激光 的波长为 308nm。
所述 板为玻璃基板或塑料基板。
本发明还提供一种可控制多晶硅生长方向的多晶硅制作方法, 包括以 步骤 2、 通过光罩制程在该第一緩冲层的表面上形成类透镜结构; 步骤 3、 在表面形成有类透镜结构的第一缓冲层上沉积形成非晶硅 步骤 4、 对非晶硅层进行清洗;
步骤 5、 采用强光从基板倒照射非晶硅层, 以使非晶硅层底部产生籽 步骤 6、 对产生有籽晶的非晶硅层进行激光退火处理, 以使非晶硅层 中的非晶硅结晶形成多晶硅层;
其中, 所述步驟 2 中根据需要通过曝光工序及千法蚀刻工艺在第一缓 冲层表面蚀刻出有规律分布的类透镜结构;
其中, 所述步骤 3还包括在所述第一缓冲层上沉积形成第二緩沖层, 所述非晶硅层形成于该第二緩冲层上; 所述步骤 4 中对非晶硅层喷洒氟化 氢进行清洗;
其中, 所述第一缓冲层的折射率大于所述第二缓冲层的折射率, 所述 第一緩冲层的折射率为 1.7-2.1, 所述第二緩冲层的折射率为 1.2-1,7;
其中, 所述第一缓沖层的折射率为 1.9, 所述第二缓冲层的折射率为
1.5:
其中, 所述类透镜结构为一凸起, 所述凸起形状呈弧面型。
所述第一緩冲层由氮硅化合物沉积而形成, 所述第二缓冲层由氧化硅 沉积而形成。
所述强光波长的选取由第一、 第二緩冲层的吸收频谱、 非晶硅层的吸 收系数、 及类透镜结构的焦距共同决定。
所述激光退火处理为采用激光照射产生有籽晶的非晶硅层, 所述激光 的波长为 308
所述基板为玻璃基板或塑料基板。
本发明的有益效果: 本发明可控制多晶硅生长方向的多晶硅制作方 法, 通过曝光工序与千法蚀刻工序在第一緩冲层的表面形成类透镜结构, 通过该类透镜结构的聚光作用, 以在强光照射下使非晶硅层底部温度不均 匀, 进 可以根据需要在非晶硅层底部相应部位产生籽晶, 从 在最终的 激光退火工艺中控制多晶硅的生长方向。
为了能更进一步了解本发明的特征以及技术内容, 请参阔以下有关本 发明的详细说明与附图, 然而附图仅提供参考与说明用, 并非用来对本发 明加以限制。 附图说
通过对本发明的具体实施方式详细描述, 将使本发明 的技术方案及其它有益效果显而易见。
Figure imgf000005_0001
图 7为本发明中非晶硅层形成于第二緩冲层上的结构示意图; 图 8为本发明中对非晶硅层进行清洗的示意图;
图 9为本发明中对非晶硅层进行强光照射的示意图;
图 10为本发明中对非晶硅层进行激光退火处理的示意图。 具体实旅方式
为更进一步阐述本发明所采取的技术手段及其效果, 以下结合本发明 的优选实施例及其附图进行详 ·细描述.0
请参阅图 2至图 10, 本发明提供一种可控制多晶硅生长方向的多晶硅 制作方法, 包括以下步驟:
步骤 1、 在基板 10上沉积形成第一緩冲层 20。
所述第一缓冲层 20 的折射率为 1„7- 2.1 , 在本实施例中, 所述第一缓 冲层 20的折射率优选为 L9。 进一步地, 所述第一緩冲层 20 由氮硅化合 物 (SiNx ) 沉积而形成。
所述基板 10为玻璃基板或塑料基板。
步骤 2、 通过光罩制程在该第一缓沖层 20 的表面上形成类透镜结构
22。
该步骤中根据需要(所需要的多晶硅生长方向)通过曝光工序及千法 蚀刻工艺在第一緩沖层 20表面蚀刻出有规律分布的类透镜结构 22。 所述 类透镜结构 22为一凸起, 所述凸起形状呈弧面型, 用于进行光线汇聚。
步骤 3、 在表面形成有类透镜结构 22的第一緩冲层 20上沉积形成非 晶硅层 40。
该步骤还包括在所述第一缓冲层 20 上沉积形成第二缓冲层 30, 所述 非晶硅层 40形成于该第二緩沖层 30上。 其中, 所述第一缓冲层 20的折 射率大于所述第二缓冲层 30 的折射率, 光线从光密介质射向光疏介质, 使光线发生折射, 以利于光线的汇聚。 所述第二缓沖层 30的折射率为 1„2- L7 , 在本实施例中, 所述第二缓冲层 30的折射率优选为 1 ,5。 进一步地, 所述第二緩冲层 30由氧化硅 ( SiOx )沉积而形成。
步骤 4、 对非晶硅层 40进行清洗, 以完成氟化氢清洗工艺。
本步骤中对非晶硅层 40 喷洒氟化氢进行清洗, 具体操作按照现有技 术进行作业即可„
步骤 5、 采用强光 50从基板 10侧照射非晶硅层 40 , 以使非晶硅层 40 底部产生籽晶。
所述强光 50可以由 LED灯或其它灯等产生的平行光束, 所述强光 50 波长的选取由第一、 第二緩沖层 20、 30的吸收频谱、 非晶硅层 40的吸收 系数、 及类透镜结构 22的焦距共同决定, 且该强光 50经过第一缓冲层 20 的类透镜结构 22进行聚光后照射至非晶硅层 40, 能够使得非晶硅层 40底 部产生籽晶。 具体的选取标准为: 所述第一、 第二缓冲层 20、 30 对该强 光 50的消光系数小, 所述非晶硅层 40对该强光 50的吸收系数大, 所述 类透镜结构 22的焦距与第二緩冲层 30的厚度匹配(即保证强光 50的聚 焦点在非晶硅层 40的底部 ) 。
通过第一缓冲层 20的类透镜结构 22进行聚光, 进而可以实现非晶硅 层 40底部温度的不均勾分布, 从而根据需要预先在非晶硅层 40底部相应 部位产生籽晶, 最终在激光退火工艺中可对多晶硅晶粒的生长方向进行控 制。
步糠 6、 对产生有籽晶的非晶硅层 40进行激光退火处理, 以使非晶硅 层 40中的非晶硅结晶形成多晶硅层 70。
所述激光退火处理为采用激光 60照射产生有籽晶的非晶硅层 40, 实 现对多晶硅晶粒的生长方向的控制。 所述激光 60的波长优选为 308nm。
综上所述, 本发明提供一种可控制多晶硅生长方向的多晶硅制作方 法, 通过曝光工序与千法蚀刻工序在第一緩冲层的表面形成类透镜结构, 通过该类透镜结构的聚光作用, 以在强光照射下使非晶硅层底部温度不均 匀, 进 可以根据需要在非晶硅层底部相应部位产生籽晶, 从 在最终的 激光退火工艺中控制多晶硅的生长方向。
以上所述, 对于本领域的普通技术人员来说, 可以根据本发明的技术 方案和技术构思作出其他各种相应的改变和变形, 而所有这些改变和变形 都应属于本发明权利要求的保护范围。

Claims

权 利 要 求
】、 一种可控制多晶硅生长方向的多晶硅制作方法, 包括以下步骤: 步骤 1、 在基板上沉积形成第一緩冲层;
步骤 2、 通过光罩制程在该第一缓冲层的表面上形成类透镜结构; 步骤 3、 在表面形成有类透镜结构的第一缓冲层上沉积形成非晶硅 层;
步骤 4、 对非晶硅层进行清洗;
步骤 5、 采用强光从基板倒照射非晶硅层, 以使非晶硅层底部产生籽 晶;
步骤 6、 对产生有籽晶的非晶硅层进行激光退火处理, 以使非晶硅层 中的非晶硅结晶形成多晶硅层。
2、 如权利要求 1 所述的可控制多晶硅生长方向的多晶硅制作方法, 其中, 所述步骤 2 中根据需要通过曝光工序及千法蚀刻工艺在第一缓冲层 表面蚀刻出有规律分布的类透镜结构。
3、 如权利要求 所述的可控制多晶硅生长方向的多晶硅制作方法, 其中, 所述步骤 3还包括在所述第一緩沖层上沉积形成第二缓冲层, 所述 非晶硅层形成于该第二缓冲层上; 所述步骤 4 中对非晶硅层喷洒氟化氢进 行清洗。
4、 如权利要求 3 所述的可控制多晶硅生长方向的多晶硅制作方法, 其中, 所述第一緩沖层的折射率大于所述第二緩冲层的折射率, 所述第一 緩冲层的折射率为 1„7- 2.1 , 所述第二緩冲层的折射率为 L2- 1 .7。
5、 如权利要求 4 所述的可控制多晶硅生长方向的多晶硅制作方法, 其中, 所述第一緩冲层的折射率为 1.9, 所述第二緩冲层的折射率为 1.5。
6、 如权利要求 4 所述的可控制多晶硅生长方向的多晶硅制作方法, 其中, 所述第一緩冲层由氮硅化合物沉积而形成, 所述第二緩冲层由氧化 硅沉积而形成。
7、 如权利要求 3 所述的可控制多晶硅生长方向的多晶硅制作方法, 其中, 所述强光波长的选取由第一、 第二缓冲层的吸收频谱、 非晶硅层的 吸收系数、 及类透镜结构的焦距共同决定。
8、 如权利要求 1 所述的可控制多晶硅生长方向的多晶硅制作方法, 其中, 所述类透镜结构为一凸起, 所述凸起形状呈弧面型。
9、 如权利要求 1 所述的可控制多晶硅生长方向的多晶硅制作方法, 其中, 所述激光退火处理为采用激光照射产生有籽晶的非晶硅层, 所述激 光的波长为 308nm。
10、 如权利要求 1 所述的可控制多晶硅生长方向的多晶硅制作方法, 其中, 所述基板为玻璃基板或塑料基板。
11、 一种可控制多晶硅生长方向的多晶硅制作方法, 包括以下步骤: 步骤 1、 在基板上沉积形成第一缓冲层;
步骤 2、 通过光罩制程在该第一缓冲层的表面上形成类透镜结构; 步骤 3、 在表面形成有类透镜结构的第一缓冲层上沉积形成非晶硅 步骤 4、 对非晶硅层进行清洗;
步骤 5、 采用强光从基板側照射非晶硅层, 以使非晶硅层底部产生籽
ΕΪ¾;
步骤 6、 对产生有籽晶的非晶硅层进行激光退火处理, 以使非晶硅层 中的 ^ 晶^ 'k结晶形 ^多晶 ;
其中, 所述步骤 2 中根据需要通过曝光工序及千法蚀刻工艺在第一緩 冲层表面蚀刻出有规律分布的类透镜结构;
其中, 所述步骤 3还包括在所述第一緩冲层上沉积形成第二緩沖层, 所述非晶硅层形成于该第二缓冲层上; 所述步骤 4 中对非晶硅层喷洒氟化 氢进行清洗;
其中, 所述第一缓冲层的折射率大于所述第二缓冲层的折射率, 所述 第一缓冲层的折射率为〗.7-2.】, 所述第二緩冲层的折射率为 .2 1.7;
其中, 所述第一缓沖层的折射率为 1.9 , 所述第二緩沖层的折射率为
1.5;
其中, 所述类透镜结构为一凸起, 所述凸起形状呈弧面型。
12 . 如权利要求 1 1 所述的可控制多晶硅生长方向的多晶硅制作方 法, 其中, 所述第一缓冲层由氮硅化合物沉积而形成, 所述第二緩冲层由 氧化硅沉积而形成。
13、 如权利要求 11 所述的可控制多晶硅生长方向的多晶硅制作方 法, 其中, 所述强光波长的选取由第一、 第二緩冲层的吸收频谱、 非晶硅 层的吸收系数、 及类透镜结构的焦距共同决定。
14 如权利要求 11 所述的可控制多晶硅生长方向的多晶硅制作方 法, 其中, 所述激光退火处理为采用激光照射产生有籽晶的非晶硅层, 所 述激光的波长为 308nm。
15 , 如权利要求 1 1 所述的可控制多晶硅生长方向的多晶硅制作方
PCT/CN2013/087362 2013-11-13 2013-11-18 可控制多晶硅生长方向的多晶硅制作方法 WO2015070465A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/235,764 US9082615B2 (en) 2013-11-13 2013-11-18 Polysilicon manufacturing method that controls growth direction of polysilicon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310572056.XA CN103594355B (zh) 2013-11-13 2013-11-13 可控制多晶硅生长方向的多晶硅制作方法
CN201310572056.X 2013-11-13

Publications (1)

Publication Number Publication Date
WO2015070465A1 true WO2015070465A1 (zh) 2015-05-21

Family

ID=50084444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087362 WO2015070465A1 (zh) 2013-11-13 2013-11-18 可控制多晶硅生长方向的多晶硅制作方法

Country Status (2)

Country Link
CN (1) CN103594355B (zh)
WO (1) WO2015070465A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106033707A (zh) * 2015-03-10 2016-10-19 上海和辉光电有限公司 一种多晶硅膜制备方法
CN105355544A (zh) * 2015-11-24 2016-02-24 信利(惠州)智能显示有限公司 低温多晶硅薄膜及薄膜晶体管的制备方法、以及薄膜晶体管
CN106328497B (zh) * 2016-10-28 2020-05-19 昆山国显光电有限公司 低温多晶硅薄膜及其制备方法及显示装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020060919A (ko) * 2001-01-13 2002-07-19 삼성에스디아이 주식회사 다결정 실리콘 박막 및 그의 형성 방법
US20030003242A1 (en) * 2001-06-28 2003-01-02 Apostolos Voutsas Pulse width method for controlling lateral growth in crystallized silicon films
JP2006093212A (ja) * 2004-09-21 2006-04-06 Sumitomo Heavy Ind Ltd 多結晶層の形成方法、半導体装置の製造方法、及び半導体装置
CN101005016A (zh) * 2006-01-16 2007-07-25 中华映管股份有限公司 多晶硅层以及薄膜晶体管的制造方法
CN101236898A (zh) * 2007-02-02 2008-08-06 群康科技(深圳)有限公司 低温多晶硅薄膜制作方法
CN102655089A (zh) * 2011-11-18 2012-09-05 京东方科技集团股份有限公司 一种低温多晶硅薄膜的制作方法
CN102709160A (zh) * 2012-03-01 2012-10-03 京东方科技集团股份有限公司 一种低温多晶硅薄膜的制作方法和低温多晶硅薄膜
CN102891107A (zh) * 2012-10-19 2013-01-23 京东方科技集团股份有限公司 低温多晶硅基板及其制作方法
CN103219230A (zh) * 2013-04-19 2013-07-24 京东方科技集团股份有限公司 低温多晶硅的制作方法、低温多晶硅薄膜和薄膜晶体管
CN103325688A (zh) * 2013-06-17 2013-09-25 深圳市华星光电技术有限公司 薄膜晶体管的沟道形成方法及补偿电路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821135A (en) * 1996-10-16 1998-10-13 Xerox Corporation Methods for and applications of making buried structures in semiconductor thin films

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020060919A (ko) * 2001-01-13 2002-07-19 삼성에스디아이 주식회사 다결정 실리콘 박막 및 그의 형성 방법
US20030003242A1 (en) * 2001-06-28 2003-01-02 Apostolos Voutsas Pulse width method for controlling lateral growth in crystallized silicon films
JP2006093212A (ja) * 2004-09-21 2006-04-06 Sumitomo Heavy Ind Ltd 多結晶層の形成方法、半導体装置の製造方法、及び半導体装置
CN101005016A (zh) * 2006-01-16 2007-07-25 中华映管股份有限公司 多晶硅层以及薄膜晶体管的制造方法
CN101236898A (zh) * 2007-02-02 2008-08-06 群康科技(深圳)有限公司 低温多晶硅薄膜制作方法
CN102655089A (zh) * 2011-11-18 2012-09-05 京东方科技集团股份有限公司 一种低温多晶硅薄膜的制作方法
CN102709160A (zh) * 2012-03-01 2012-10-03 京东方科技集团股份有限公司 一种低温多晶硅薄膜的制作方法和低温多晶硅薄膜
CN102891107A (zh) * 2012-10-19 2013-01-23 京东方科技集团股份有限公司 低温多晶硅基板及其制作方法
CN103219230A (zh) * 2013-04-19 2013-07-24 京东方科技集团股份有限公司 低温多晶硅的制作方法、低温多晶硅薄膜和薄膜晶体管
CN103325688A (zh) * 2013-06-17 2013-09-25 深圳市华星光电技术有限公司 薄膜晶体管的沟道形成方法及补偿电路

Also Published As

Publication number Publication date
CN103594355B (zh) 2016-03-16
CN103594355A (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
CN103219230B (zh) 低温多晶硅的制作方法、低温多晶硅薄膜和薄膜晶体管
US8559094B2 (en) Thermochromic smart window and method of manufacturing the same
US9437417B2 (en) Low temperature polycrystalline silicon thin film and method of producing the same, array substrate and display apparatus
TW200908334A (en) Thin-film transistor and process for its fabrication
WO2015043081A1 (zh) 低温多晶硅薄膜的制备方法、薄膜晶体管和显示装置
WO2013127223A1 (zh) 低温多晶硅薄膜的制作方法和低温多晶硅薄膜
WO2017107274A1 (zh) 一种低温多晶硅薄膜晶体管及其制备方法
WO2014139291A1 (zh) 多晶硅层的制作方法和多晶硅薄膜晶体管及其制造方法
WO2015070465A1 (zh) 可控制多晶硅生长方向的多晶硅制作方法
TW201445640A (zh) 低溫多晶矽薄膜的製備方法
JP2001085722A (ja) 透明電極膜の製造方法及び太陽電池
CN105140114A (zh) 基板制备方法
CN108346562A (zh) 低温多晶硅、薄膜晶体管及阵列基板的制作方法
CN107342260A (zh) 一种低温多晶硅tft阵列基板制备方法及阵列基板
TWI280292B (en) Method of fabricating a poly-silicon thin film
CN106328497A (zh) 低温多晶硅薄膜及其制备方法及显示装置
TWI312545B (en) Method of enhancing laser crystallization for poly-silicon fabrication
CN105513950A (zh) 低温多晶硅薄膜及薄膜晶体管的制备方法
CN110400748B (zh) 利用特定波长的光源使物体表面平坦化的方法以及装置
CN103745916A (zh) 定义多晶硅生长方向的方法
CN106847675A (zh) 低温多晶硅薄膜及其制备方法、薄膜晶体管和显示面板
JP2006140477A (ja) シリコン薄膜の製造方法
US20100093126A1 (en) Method for manufacturing a poly-crystal silicon photovoltaic device using horizontal metal induced crystallization
CN1822334A (zh) 多晶硅薄膜晶体管的制作方法
US9349870B2 (en) Method for forming low-temperature polysilicon thin film, thin film transistor and display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14235764

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13897497

Country of ref document: EP

Kind code of ref document: A1