WO2015068980A1 - 질화물 반도체 자외선 발광소자 - Google Patents

질화물 반도체 자외선 발광소자 Download PDF

Info

Publication number
WO2015068980A1
WO2015068980A1 PCT/KR2014/010224 KR2014010224W WO2015068980A1 WO 2015068980 A1 WO2015068980 A1 WO 2015068980A1 KR 2014010224 W KR2014010224 W KR 2014010224W WO 2015068980 A1 WO2015068980 A1 WO 2015068980A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type semiconductor
electrode forming
emitting device
forming layer
Prior art date
Application number
PCT/KR2014/010224
Other languages
English (en)
French (fr)
Inventor
김동영
김종규
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to JP2016525309A priority Critical patent/JP2016526801A/ja
Priority to CN201480057220.6A priority patent/CN105684167A/zh
Publication of WO2015068980A1 publication Critical patent/WO2015068980A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor

Definitions

  • the present invention relates to a nitride semiconductor ultraviolet light emitting device, and more particularly, to improve the electrical characteristics and light conversion efficiency by forming an n-electrode forming layer on the exposed surface of the n-type semiconductor layer to improve the contact characteristics with the n electrode.
  • the present invention relates to a nitride semiconductor ultraviolet light emitting device that can be made.
  • Nitride semiconductors such as AlGaNInN have a direct transition energy structure, and can adjust the energy bandgap from 0.66eV (InN) to 6.2eV (AlN) through a combination of Al, In, and Ga, thereby providing ultraviolet light from the infrared region. It is used for a light emitting element having a wide wavelength region up to the region.
  • Typical applications of nitride-based semiconductors include light sources of full color displays, traffic lights, general lighting and optical communication devices, and are applied in the form of ultraviolet rays, white light emitting diodes, or laser diodes.
  • the nitride-based light emitting device includes an active layer having a multi-quantum well structure positioned between n-type and p-type nitride semiconductor layers, and generates light based on the recombination of electrons and holes in the quantum well layer in the active layer.
  • the conventional semiconductor light emitting device includes a substrate 10, an n-type semiconductor layer 100, an active layer 200, and a spacer layer 310. ), Hole injection layer 320, electron blocking layer 330, p-type semiconductor layer 400, p-electrode formation layer 410a, n-type metal layer 115, p-type metal layer 410b, n-electrode 120 And a p-electrode 420.
  • the conventional light emitting device includes an active layer 200 having a multi-quantum well structure between the n-type semiconductor layer 100 and the p-type semiconductor layer 400 and improves internal quantum efficiency, and InGaN wells in the multi-quantum well structure
  • the In content of the layer or the Al content of the AlGaN well layer may be adjusted to emit light of a desired wavelength.
  • the electron blocking layer 330 is located between the p-type semiconductor layer 400 and the active layer 200 to block the overflow of electrons to improve the recombination rate of light emission.
  • the spacer layer 310 is formed on the active layer 200 and used as a buffer layer for forming the electron blocking layer 330.
  • the p-electrode 420 is formed on the p-type metal layer 410b provided on the upper surface of the p-electrode forming layer 410a so that the current is uniformly distributed in the p-type semiconductor layer 400.
  • the p-electrode is formed thick to reflect the light, and a flip chip structure may be applied to emit light toward the substrate.
  • a p-type GaN layer is mainly used as a p-electrode forming layer, but a flip chip structure is applied because it absorbs a large portion of ultraviolet rays generated in the active layer.
  • the p-electrode formation layer is inserted to compensate for the difficulty in forming ohmic contacts due to the low hole concentration of the p-type semiconductor layer.
  • the ohmic characteristics can be obtained differently from the p-electrode, but the aluminum oxide layer is easily formed due to the high Al composition.
  • n-electrodes formed on top of n-AlGaN generally have a contact resistance of 10 -3 ⁇ / cm 2 level, whereas n-electrodes on n-GaN top 10 -5 ⁇ / It will have a contact resistance of cm 2 or less.
  • An object of the present invention for solving the problems according to the prior art, to improve the electrical characteristics and the light conversion efficiency by forming an n-electrode forming layer that can improve the contact characteristics with the n-electrode on the exposed surface of the n-type semiconductor layer.
  • the present invention provides a nitride semiconductor ultraviolet light emitting device.
  • the nitride semiconductor ultraviolet light emitting device of the present invention for solving the above technical problem includes an n-type semiconductor layer, an active layer, and a p-type semiconductor layer sequentially stacked on a substrate, provided with an n electrode, p electrode for applying current
  • an n-electrode forming layer is provided on a part or all of the exposed surface of the n-type semiconductor layer exposed as part of the p-type semiconductor layer, the active layer and the n-type semiconductor layer is etched
  • An n-type metal layer is formed on the n-type semiconductor layer exposed surface to cover the n-electrode forming layer, and the n-electrode forming layer has a smaller bandgap energy than the n-type semiconductor layer.
  • the n-type semiconductor layer is formed of Al z Ga 1-z N (0 ⁇ z ⁇ 1), and the n-electrode forming layer is Al u Ga 1-u N (0 ⁇ u ⁇ 1 , u ⁇
  • the n-electrode forming layer may have a band gap energy smaller than that of the n-type semiconductor layer as formed in the composition of z).
  • the n-electrode forming layer may be formed to have a plurality of layer structures.
  • the plurality of layers forming the n-electrode forming layer may have a layer structure in which a band gap energy decreases toward the upper side.
  • the n-electrode forming layer may be formed in a gradation form in which the band gap energy gradually decreases toward the upper side.
  • the n-electrode forming layer may be regrown through a selective region growth method.
  • the n-electrode forming layer may be grown by a method of forming a dielectric layer on an exposed surface of the n-type semiconductor layer, opening a portion of the dielectric layer, and then growing the semiconductor layer.
  • the dielectric layer may be made of at least one of SiO 2 , SiOx, SiN, SiNx, Al 2 O 3 , GaO.
  • the semiconductor device may further include an electron blocking layer provided between the active layer and the p-type semiconductor layer.
  • the n-electrode forming layer may be formed in the form of stripes separated from each other.
  • the n-electrode forming layer may be formed in an annular shape spaced apart from each other.
  • the n-electrode forming layer may include a main forming layer and a plurality of sub-forming layers extending from the main forming layer.
  • the n-electrode forming layer may include at least one of a form including a stripe form spaced apart from each other, an annular form spaced apart from each other, a main forming layer and a form including a plurality of sub-forming layers extending from the main forming layer. .
  • the present invention has the advantage of obtaining a nitride semiconductor ultraviolet light emitting device having improved electrical characteristics. Specifically, the operating voltage of the device is improved by reducing the voltage increase generated at the electrode by improving the contact resistance of the n electrode. There is an advantage to be reduced.
  • the n-electrode forming layer does not absorb light (ultraviolet rays) generated in the active layer, it is possible to maintain the light efficiency of the conventional nitride semiconductor ultraviolet light emitting device, and the light conversion of the device due to the electrical energy reduction effect injected according to the decrease in contact resistance There is an advantage that the efficiency is improved.
  • FIG. 1 is a cross-sectional view illustrating a conventional semiconductor light emitting device.
  • FIG. 2 is a cross-sectional view illustrating a semiconductor light emitting device according to an embodiment of the present invention.
  • 3A is a plan view illustrating a semiconductor light emitting device according to an embodiment of the present invention.
  • FIG. 3B is a partial cross-sectional view illustrating a cross section of portion 'A' of FIG. 3A.
  • FIG. 4 is an enlarged cross-sectional view illustrating a semiconductor light emitting device according to an embodiment of the present invention.
  • the terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • the n-type semiconductor layer 100, the active layer 200, and the p-type semiconductor layer sequentially stacked on the substrate 10. It is a nitride semiconductor ultraviolet light emitting device including a 400, the spacer layer 310, the hole injection layer 320, the electron blocking layer 330 is further provided between the active layer 200 and the p-type semiconductor layer (400). Can be.
  • AlGaN may be used as the material of the n-type semiconductor layer 100 and the p-type semiconductor layer 400.
  • the nitride semiconductor ultraviolet light emitting device has a structure in which a p-electrode forming layer 410a and a p-type metal layer 410b are sequentially stacked on the upper surface of the p-type semiconductor layer 400, and the p-electrode forming layer The p-electrode 420 is formed on the 410a.
  • the n-type semiconductor UV light emitting device is exposed to the p-type semiconductor layer 400, the active layer 200, and a portion of the n-type semiconductor layer 100 by being etched.
  • the n-electrode forming layer 110 is provided on all of the exposed surfaces of the semiconductor layer 100 (in the case of FIG. 3A) or the n-electrode forming layer 110 is provided on a portion of the exposed surface of the n-type semiconductor layer 100.
  • an n-type metal layer 115 is formed on the exposed surface of the n-type semiconductor layer 100 so as to cover the n-electrode forming layer 110.
  • the n-electrode forming layer 110 has a band gap energy smaller than that of the n-type semiconductor layer 100.
  • AlGaN or GaN having a lower Al composition than AlGaN used in the n-type semiconductor layer 100 may be used, and the n-electrode forming layer 110 may be doped with n-type.
  • the n-electrode forming layer 110 is formed to have a lower Al composition than the n-type semiconductor layer 100, for example, the n-type semiconductor layer 100 is Al z Ga 1-z N (0 ⁇ z ⁇ 1), and the n electrode forming layer 110 is formed of Al u Ga 1-u N (0 ⁇ u ⁇ 1 , u ⁇ z).
  • the bandgap energy may be smaller than that of the n-type semiconductor layer.
  • the n-electrode forming layer 110 may be formed by inserting an n-type doped AlGaN or GaN having a relatively low Al composition on top of an n-type semiconductor layer having a relatively high Al composition (100, n-type AlGaN layer).
  • a nitride semiconductor ultraviolet light emitting device having improved electrical characteristics may be provided.
  • the n-electrode forming layer 110 may be formed to have a plurality of layer structures.
  • the first electrode forming layer 110-1, the second electrode forming layer 110-2, and the third electrode forming layer 110-3 may be sequentially stacked.
  • the n electrode The band gap energy of the first electrode formation layer 110-1, the second electrode formation layer 110-2, and the third electrode formation layer 110-3 forming the formation layer 110 decreases toward the upper side. desirable.
  • the Al composition may be formed to satisfy the condition of 'first electrode forming layer 110-1> second electrode forming layer 110-2> third electrode forming layer 110-3'.
  • the Al composition of the first electrode forming layer 110-1, the second electrode forming layer 110-2, and the third electrode forming layer 110-3 decreases toward the upper side so that the band gap energy is directed upward. This is because the n-type metal layer 115 is formed in a portion having a low Al composition, thereby improving contact characteristics.
  • the n-electrode forming layer 110 may be formed in a gradation (gradation) form whose composition gradually decreases toward the top.
  • the n-electrode forming layer 110 may be regrown through selective area growth. Specifically, the n-electrode forming layer 110 may apply AlGaN or GaN layer by applying a selective area growth method. It can form by regrowth.
  • the n-electrode forming layer 110 may be formed by forming a dielectric layer on an exposed surface of the n-type semiconductor layer 100 and then opening a portion of the dielectric layer to grow a semiconductor layer.
  • the dielectric layer may be formed of at least one of SiO 2 , SiO x, SiN, SiN x, Al 2 O 3 , and GaO.
  • the n-electrode forming layer 110 is formed on a part or all of the exposed surface of the n-type semiconductor layer 100, and the n-type semiconductor layer 100 is covered to cover the n-electrode forming layer 110.
  • the n-type metal layer 115 is formed on the exposed surface, but the n-electrode forming layer 110 is formed to have a bandgap energy smaller than that of the n-type semiconductor layer 100, thereby improving the electrical properties of the nitride semiconductor ultraviolet light emitting device.
  • the contact resistance of the n electrode 120 is improved to reduce the voltage increase generated at the electrode, thereby reducing the operating voltage of the device and improving the light conversion efficiency of the nitride semiconductor ultraviolet light emitting device. do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

본 발명은 n형 반도체층의 노출면에 n전극과 접촉 특성을 향상시킬 수 있는 n전극형성층을 형성함에 따라 전기적 특성 및 광변환 효율을 개선할 수 있는 질화물 반도체 자외선 발광소자에 관한 것이다. 이를 위한 본 발명의 질화물 반도체 자외선 발광소자는, 기판상에 순차적으로 적층되는 n형 반도체층, 활성층, p형 반도체층을 포함하며, 전류 인가를 위한 n전극, p전극이 구비된 질화물 반도체 자외선 발광소자에 있어서, 상기 p형 반도체층, 활성층 및 상기 n형 반도체층의 일부가 식각됨에 따라 노출된 상기 n형 반도체층의 노출면의 일부 또는 전부에 n전극형성층이 구비되고, 상기 n전극형성층을 커버하도록 상기 n형 반도체층 노출면의 상측에 n형 금속층이 형성되되, 상기 n전극형성층은 상기 n형 반도체층보다 밴드갭 에너지가 작도록 구성된다.

Description

질화물 반도체 자외선 발광소자
본 발명은 질화물 반도체 자외선 발광소자에 관한 것으로서, 더욱 상세하게는, n형 반도체층의 노출면에 n전극과 접촉 특성을 향상시킬 수 있는 n전극형성층을 형성함에 따라 전기적 특성 및 광변환 효율을 개선할 수 있는 질화물 반도체 자외선 발광소자에 관한 것이다.
AlGaNInN 등과 같은 질화물 반도체는 직접 천이형의 에너지 구조를 가지며, Al, In, 및 Ga의 조합을 통하여 0.66eV(InN)에서 6.2eV(AlN)까지의 에너지 밴드갭을 조절할 수 있어서, 적외선 영역에서부터 자외선 영역까지 넓은 파장 영역을 갖는 발광 소자에 사용된다.
질화물계 반도체의 대표적인 응용분야로 풀컬러 디스플레이, 교통 신호등, 일반조명 및 광통신 기기의 광원이 있으며, 자외선, 백색 발광 소자(light emitting diodes) 또는 레이저 다이오드(laser diode)의 형태로 적용된다.
이러한 질화물계 발광 소자는 n형 및 p형 질화물 반도체층 사이에 위치한 다중양자우물 구조의 활성층을 포함하며, 상기 활성층 내의 양자우물층에서 전자와 정공이 재결합하는 원리로 빛을 생성한다.
도 1은 종래의 반도체 발광 소자를 설명하기 위한 단면도로서, 도 1을 참조하면, 상기 종래의 반도체 발광 소자는 기판(10), n형 반도체층(100), 활성층(200), 스페이서층(310), 정공주입층(320), 전자차단층(330), p형 반도체층(400), p전극형성층(410a), n형금속층(115), p형금속층(410b), n전극(120) 및 p전극(420)을 포함하여 구성된다.
이러한 종래의 발광 소자는 n형 반도체층(100)과 p형 반도체층(400) 사이에 다중양자우물 구조의 활성층(200)을 포함하며 내부 양자 효율을 개선하고 있으며, 다중양자우물 구조 내의 InGaN 우물층의 In 함량 또는 AlGaN 우물층의 Al 함량을 조절하여 원하는 파장의 빛을 방출할 수 있다.
또한, 전자 차단층(330)이 p형 반도체층(400)과 활성층(200) 사이에 위치하여 전자의 오버플로우를 차단함으로써 발광 재결합율을 향상시킨다.
한편, 스페이서층(310)이 활성층(200) 상에 형성되어 전자차단층(330) 형성을 위한 버퍼층으로 사용된다.
또한, p전극형성층(410a)의 상면에 구비된 p형금속층(410b) 상에 p전극(420)이 형성되어 전류가 p형 반도체층(400) 내에 균일하게 분산되도록 하고 있다.
상술한 바와 같은 구조의 반도체 발광 소자에 전류가 인가되면, n형 반도체층(100)과 p형 반도체층(400)으로부터 각각 전자와 정공이 제공되고, 전자와 정공이 활성층(200)에서 재결합되어 빛이 발생하게 된다.
이때, 생성된 빛의 추출효율을 높이기 위하여 p전극이 빛을 반사시키도록 두껍게 형성하여, 빛이 기판 측으로 발광되도록 플립칩 구조를 적용하기도 한다.
특히, 질화물계자외선 발광 소자의 경우, p타입 GaN층이 p전극 형성층으로 주로 사용되나, 활성층에서 발생한 자외선의 많은 부분을 흡수하기 때문에 플립칩 구조가 적용되고 있다.
여기서, p전극 형성층은 p타입 반도체층의 낮은 정공 농도로 인해, 오믹 컨택 형성이 어려운 단점을 보완하기 위해 삽입된다.
한편, n타입 AlGaN층 상단에 형성된 n전극의 경우 p전극과 다르게 오믹 특성을 얻을 수 있으나, 높은 Al 조성으로 인해 표면 쉽게 산화알루미늄층이 형성되는 문제가 있었다.
예를 들어, n-AlGaN 상단에 형성된 n전극의 경우 일반적으로 10-3Ω/cm2 수준의 접촉 저항을 갖는데 반해, n-GaN 상단의 n전극의 경우 산화알루미늄층으로 인하여 10-5Ω/cm2이하의 접촉 저항을 가지게 되는 것이다.
따라서, 질화물 반도체계 자외선 발광 소자의 전기적 특성 및 광변환 효율 향상을 위해 종래의 n전극 특성보다 개선된 특성을 갖는 n전극 형성 기술이 요구된다.
한국공개특허공보 제10-2009-0067306호(2009.06.25.)
상기 종래 기술에 따른 문제점을 해결하기 위한 본 발명의 목적은, n형 반도체층의 노출면에 n전극과 접촉 특성을 향상시킬 수 있는 n전극형성층을 형성함에 따라 전기적 특성 및 광변환 효율을 개선할 수 있는 질화물 반도체 자외선 발광소자를 제공함에 있다.
상기 기술적 과제를 해결하기 위한 본 발명의 질화물 반도체 자외선 발광소자는, 기판상에 순차적으로 적층되는 n형 반도체층, 활성층, p형 반도체층을 포함하며, 전류 인가를 위한 n전극, p전극이 구비된 질화물 반도체 자외선 발광소자에 있어서, 상기 p형 반도체층, 활성층 및 상기 n형 반도체층의 일부가 식각됨에 따라 노출된 상기 n형 반도체층의 노출면의 일부 또는 전부에 n전극형성층이 구비되고, 상기 n전극형성층을 커버하도록 상기 n형 반도체층 노출면의 상측에 n형 금속층이 형성되되, 상기 n전극형성층은 상기 n형 반도체층보다 밴드갭 에너지가 작게 구성된다.
바람직하게, 상기 n형 반도체층은 AlzGa1-zN(0≤z≤1)인 조성으로 형성되고, 상기 n전극형성층은 AluGa1-uN(0≤u≤1, u<z)인 조성으로 형성됨에 따라 상기 n전극형성층이 상기 n형 반도체층보다 밴드갭 에너지가 작게 구성될 수 있다.
바람직하게, 상기 n전극형성층은 복수의 층 구조를 갖도록 형성될 수 있다.
바람직하게, 상기 n전극형성층을 형성하는 복수의 층은 상부를 향할수록 밴드갭 에너지가 감소하는 층 구조로 구성될 수 있다.
바람직하게, 상기 n전극형성층은 상부를 향할수록 밴드갭 에너지가 점차 감소하는 그라데이션(gradation) 형태로 형성될 수 있다.
바람직하게, 상기 n전극형성층은 선택영역성장법을 통해 재성장될 수 있다.
바람직하게, 상기 n전극형성층은, 상기 n형 반도체층의 노출면에 유전체층을 형성하고, 상기 유전체층의 일부를 개구시킨 후 반도체층을 성장시키는 방법에 의해 성장될 수 있다.
바람직하게, 상기 유전체층은 SiO2, SiOx, SiN, SiNx, Al2O3, GaO 중 적어도 어느 하나로 이뤄질 수 있다.
바람직하게, 상기 활성층과 상기 p형 반도체층 사이에 구비된 전자차단층;을 더 포함할 수 있다.
바람직하게, 상기 n전극형성층은 상호 이격된 줄무늬 형태로 형성될 수 있다.
바람직하게, 상기 n전극형성층은 상호 이격된 환형 형태로 형성될 수 있다.
바람직하게, 상기 n전극형성층은 메인형성층 및 상기 메인형성층에서 연장된 복수의 서브형성층을 포함하여 구성될 수 있다.
바람직하게, 상기 n전극형성층은 상호 이격된 줄무늬 형태, 상호 이격된 환형 형태, 메인형성층 및 상기 메인형성층에서 연장된 복수의 서브형성층을 포함하는 형태 중 적어도 어느 하나의 형태를 포함하여 구성될 수 있다.
상술한 바와 같은 본 발명은, 전기적 특성이 향상된 질화물 반도체 자외선 발광소자를 얻을 수 있다는 이점이 있으며, 구체적으로, n전극의 접촉 저항이 개선되어 전극에서 발생하는 전압강화를 줄임으로써 소자의 동작전압이 감소되는 이점이 있다.
또한, 동작전압의 감소로 인하여 질화물 반도체 자외선 발광소자의 광변환 효율의 개선된다는 이점이 있다.
또한, n전극형성층은 활성층에서 발생한 빛(자외선)을 흡수하지 않기 때문에 종래의 질화물 반도체 자외선 발광소자의 광효율을 유지할 수 있고, 접촉 저항의 감소에 따라 주입되는 전기적 에너지 감소 효과로 인해 소자의 광변환 효율이 향상된다는 이점이 있다.
또한, 전자의 주입 효율을 개선됨에 따라 n형 반도체층으로 더욱 균일한 전류의 주입이 가능하다는 이점이 있다.
도 1은 종래의 반도체 발광 소자를 설명하기 위한 단면도이다.
도 2는 본 발명의 일실시예에 따른 반도체 발광 소자를 도시한 단면도이다.
도 3a는 본 발명의 일실시예에 따른 반도체 발광 소자를 도시한 평면도이다.
도 3b는 도 3a의 'A'부분의 단면을 도시한 부분단면도이다.
도 4는 본 발명의 일실시예에 따른 반도체 발광 소자를 도시한 단면확대도이다.
본 발명은 그 기술적 사상 또는 주요한 특징으로부터 벗어남이 없이 다른 여러가지 형태로 실시될 수 있다. 따라서, 본 발명의 실시예들은 모든 점에서 단순한 예시에 지나지 않으며 한정적으로 해석되어서는 안된다.
제1, 제2등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다.
상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1구성요소는 제2구성요소로 명명될 수 있고, 유사하게 제2구성요소도 제1구성요소로 명명될 수 있다.
및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.
반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함하다" 또는 "구비하다", "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 발명의 일실시예에 따른 질화물 반도체 자외선 발광소자는, 도 2에 도시된 바와 같이, 기판(10)상에 순차적으로 적층되는 n형 반도체층(100), 활성층(200), p형 반도체층(400)을 포함하는 질화물 반도체 자외선 발광소자이며, 활성층(200)과 p형 반도체층(400)의 사이에는 스페이서층(310), 정공주입층(320), 전자차단층(330)이 더욱 구비될 수 있다.
상기 n형 반도체층(100) 및 상기 p형 반도체층(400)의 재료로는 AlGaN이 사용될 수 있다.
한편, 본 실시예의 질화물 반도체 자외선 발광소자는, 상기 p형 반도체층(400)의 상면에는 p전극형성층(410a) 및 p형금속층(410b)이 순차적으로 적층된 구조로 구성되며, 상기 p전극형성층(410a) 상에 p전극(420)이 형성된다.
또한, 도 3b에 도시된 바와 같이, 상기 질화물 반도체 자외선 발광소자는 상기 p형 반도체층(400), 활성층(200) 및 상기 n형 반도체층(100)의 일부가 식각됨에 따라 노출된 상기 n형 반도체층(100)의 노출면의 전부에 n전극형성층(110)이 구비(도 3a의 경우에 해당)되거나 상기 n형 반도체층(100)의 노출면의 일부에 n전극형성층(110)이 구비(도 3b의 경우에 해당)구비되며, 상기 n전극형성층(110)을 커버하도록 상기 n형 반도체층(100)의 노출면 상측에 n형 금속층(115)이 형성된다.
이때, 상기 n전극형성층(110)은 상기 n형 반도체층(100)보다 밴드갭 에너지가 작게 형성된다. 예를 들어, 상기 n전극형성층(110)은 상기 n형 반도체층(100)에 사용된 AlGaN보다 낮은 Al 조성의 AlGaN 또는 GaN이 사용될 수 있으며, n형으로 도핑되어 있다.
구체적으로 예를 들면, 상기 n전극형성층(110)은 상기 n형 반도체층(100)보다 Al 조성이 낮도록 형성되며, 예를 들어, 상기 n형 반도체층(100)이 AlzGa1-zN(0≤z≤1)인 조성으로 형성되고, 상기 n전극형성층(110)이 AluGa1-uN(0≤u≤1, u<z)인 조성으로 형성됨에 따라 상기 n전극형성층이 상기 n형 반도체층보다 밴드갭 에너지가 작게 구성될 수 있다.
일예로, Al 조성이 상대적으로 높은 n형 반도체층(100, n형 AlGaN 층)의 상단에 Al 조성이 상대적으로 낮은 n형으로 도핑된 AlGaN 또는 GaN를 삽입하여 n전극형성층(110)을 형성할 수 있으며, 이와 같이, 상기 n전극형성층(110) 상에 n전극(120)을 형성함으로써 향상된 전기적 특성을 갖는 질화물 반도체 자외선 발광소자를 제공할 수 있다.
한편, 도 4에 도시된 바와 같이, 상기 n전극형성층(110)은 복수의 층 구조를 갖도록 형성될 수 있다.
예를 들어, 제1전극형성층(110-1), 제2전극형성층(110-2), 제3전극형성층(110-3)이 순차적으로 적층된 구조로 구성될 수 있으며, 이때, 상기 n전극형성층(110)을 형성하는 제1전극형성층(110-1), 제2전극형성층(110-2), 제3전극형성층(110-3)의 밴드갭 에너지가 상부를 향할수록 감소하도록 구성되는 것이 바람직하다.
즉, 예를 들어, Al 조성이 '제1전극형성층(110-1)>제2전극형성층(110-2)>제3전극형성층(110-3)'의 조건을 만족하도록 형성될 수 있다.
이는, 제1전극형성층(110-1), 제2전극형성층(110-2), 제3전극형성층(110-3)의 Al 조성은 상부를 향할수록 감소하도록 구성하여 밴드갭 에너지가 상부를 향할수록 감소하도록 구성함에 따라 n형 금속층(115)이 Al 조성이 낮은 부분에 형성되어 접촉 특성이 향상되는 효과가 있기 때문이다.
한편, 상기 n전극형성층(110)은 상부를 향할수록 조성이 점차 감소하는 그라데이션(gradation) 형태로 형성될 수도 있음은 물론이다.
상술한 바와 같은 n전극형성층(110)은 선택영역성장법(selective area growth)을 통해 재성장될 수 있으며, 구체적으로, 상기 n전극형성층(110)은 선택영역성장법을 적용하여 AlGaN 또는 GaN층을 재성장함으로써 형성시킬 수 있다.
더욱 상세하게, 상기 n전극형성층(110)은 상기 n형 반도체층(100)의 노출면에 유전체층을 형성한 후, 상기 유전체층의 일부분을 개구시켜 반도체층을 성장시키는 과정을 통해 형성할 수 있으며, 상기 유전체층은 SiO2, SiOx, SiN, SiNx, Al2O3, GaO 중 적어도 어느 하나로 이뤄질 수 있다.
한편, 상기 n전극형성층(110)은, 도 3a에 도시된 바와 같이, 상호 이격되어 줄무늬 형태로 형성된 핑거형, 상호 이격되어 복수의 n형 전극층이 아일랜드 형태로 형성된 도트형 등 상기 n형 반도체층(100)의 노출면의 일부 또는 전부에 구비되는 형태라면 다양한 형태로 적용이 가능하다.
상술한 바와 같이, 상기 n형 반도체층(100)의 노출면의 일부 또는 전부에 n전극형성층(110)을 형성하고, 상기 n전극형성층(110)을 커버하도록 상기 n형 반도체층(100)의 노출면의 상측에 n형 금속층(115)을 형성하되, 상기 n전극형성층(110)이 상기 n형 반도체층(100)보다 밴드갭 에너지가 작도록 형성하여 전기적 특성이 향상된 질화물 반도체 자외선 발광소자를 얻을 수 있으며, 구체적으로, n전극(120)의 접촉 저항이 개선되어 전극에서 발생하는 전압강화를 줄임으로써 소자의 동작전압이 감소될 뿐만 아니라 질화물 반도체 자외선 발광소자의 광변환 효율의 개선될 수 있게 된다.
본 발명은 첨부된 도면을 참조하여 바람직한 실시예를 중심으로 기술되었지만 당업자라면 이러한 기재로부터 본 발명의 범주를 벗어남이 없이 많은 다양하고 자명한 변형이 가능하다는 것은 명백하다. 따라서 본 발명의 범주는 이러한 많은 변형예들을 포함하도록 기술된 특허청구범위에 의해서 해석돼야 한다.

Claims (13)

  1. 기판상에 순차적으로 적층되는 n형 반도체층, 활성층, p형 반도체층을 포함하며, 전류 인가를 위한 n전극, p전극이 구비된 질화물 반도체 자외선 발광소자에 있어서,
    상기 p형 반도체층, 활성층 및 상기 n형 반도체층의 일부가 식각됨에 따라 노출된 상기 n형 반도체층의 노출면의 일부 또는 전부에 n전극형성층이 구비되고, 상기 n전극형성층을 커버하도록 상기 n형 반도체층 노출면의 상측에 n형 금속층이 형성되되, 상기 n전극형성층은 상기 n형 반도체층보다 밴드갭 에너지가 작은 것을 특징으로 하는 질화물 반도체 자외선 발광소자.
  2. 제1항에 있어서,
    상기 n형 반도체층은 AlzGa1-zN(0≤z≤1)인 조성으로 형성되고, 상기 n전극형성층은 AluGa1-uN(0≤u≤1, u<z)인 조성으로 형성됨에 따라 상기 n전극형성층이 상기 n형 반도체층보다 밴드갭 에너지가 작게 구성된 것을 특징으로 하는 질화물 반도체 자외선 발광소자.
  3. 제1항에 있어서,
    상기 n전극형성층은 복수의 층 구조를 갖도록 형성된 것을 특징으로 하는 질화물 반도체 자외선 발광소자.
  4. 제3항에 있어서,
    상기 n전극형성층을 형성하는 복수의 층은 상부를 향할수록 밴드갭 에너지가 감소하는 층 구조로 구성된 것을 특징으로 하는 질화물 반도체 자외선 발광소자.
  5. 제1항에 있어서,
    상기 n전극형성층은 상부를 향할수록 밴드갭 에너지가 점차 감소하는 그라데이션(gradation) 형태로 형성된 것을 특징으로 하는 질화물 반도체 자외선 발광소자.
  6. 제1항에 있어서,
    상기 n전극형성층은 선택영역성장법을 통해 재성장된 것을 특징으로 하는 질화물 반도체 자외선 발광소자.
  7. 제6항에 있어서,
    상기 n전극형성층은,
    상기 n형 반도체층의 노출면에 유전체층을 형성하고, 상기 유전체층의 일부를 개구시킨 후 반도체층을 성장시키는 방법에 의해 성장된 것을 특징으로 하는 질화물 반도체 자외선 발광소자.
  8. 제7항에 있어서,
    상기 유전체층은 SiO2, SiOx, SiN, SiNx, Al2O3, GaO 중 적어도 어느 하나로 이뤄진 것을 특징으로 하는 질화물 반도체 자외선 발광소자.
  9. 제1항에 있어서,
    상기 활성층과 상기 p형 반도체층 사이에 구비된 전자차단층;을 더 포함하는 것을 특징으로 하는 질화물 반도체 자외선 발광소자.
  10. 제1항에 있어서,
    상기 n전극형성층은 상호 이격된 줄무늬 형태로 형성된 것을 특징으로 하는 질화물 반도체 자외선 발광소자.
  11. 제1항에 있어서,
    상기 n전극형성층은 상호 이격된 환형 형태로 형성된 것을 특징으로 하는 질화물 반도체 자외선 발광소자.
  12. 제1항에 있어서,
    상기 n전극형성층은 메인형성층 및 상기 메인형성층에서 연장된 복수의 서브형성층을 포함하여 구성된 것을 특징으로 하는 질화물 반도체 자외선 발광소자.
  13. 제1항에 있어서,
    상기 n전극형성층은 상호 이격된 줄무늬 형태, 상호 이격된 환형 형태, 메인형성층 및 상기 메인형성층에서 연장된 복수의 서브형성층을 포함하는 형태 중 적어도 어느 하나의 형태를 포함하여 구성된 것을 특징으로 하는 질화물 반도체 자외선 발광소자.
PCT/KR2014/010224 2013-11-08 2014-10-29 질화물 반도체 자외선 발광소자 WO2015068980A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016525309A JP2016526801A (ja) 2013-11-08 2014-10-29 窒化物半導体紫外線発光素子
CN201480057220.6A CN105684167A (zh) 2013-11-08 2014-10-29 氮化物半导体紫外线发光元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130135335 2013-11-08
KR10-2013-0135335 2013-11-08

Publications (1)

Publication Number Publication Date
WO2015068980A1 true WO2015068980A1 (ko) 2015-05-14

Family

ID=53041697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010224 WO2015068980A1 (ko) 2013-11-08 2014-10-29 질화물 반도체 자외선 발광소자

Country Status (3)

Country Link
JP (1) JP2016526801A (ko)
CN (1) CN105684167A (ko)
WO (1) WO2015068980A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220077348A1 (en) * 2020-09-04 2022-03-10 Photon Wave Co., Ltd. Ultraviolet light emitting element and light emitting element package including the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018120490A1 (de) * 2018-08-22 2020-02-27 Osram Opto Semiconductors Gmbh Optoelektronisches halbleiterbauelement mit einer halbleiterkontaktschicht und verfahren zur herstellung des optoelektronischen halbleiterbauelements
KR102385672B1 (ko) * 2020-09-04 2022-04-13 주식회사 포톤웨이브 자외선 발광소자 및 이를 포함하는 발광소자 패키지
CN112652691A (zh) * 2020-12-30 2021-04-13 深圳第三代半导体研究院 一种发光二极管及其制造方法
JP7544004B2 (ja) 2021-08-30 2024-09-03 豊田合成株式会社 発光素子

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070028095A (ko) * 2005-09-07 2007-03-12 엘지전자 주식회사 저저항 발광 다이오드
KR101026059B1 (ko) * 2007-12-21 2011-04-04 삼성엘이디 주식회사 질화물 반도체 발광소자 및 그 제조방법
JP2011142231A (ja) * 2010-01-07 2011-07-21 Hitachi Cable Ltd 半導体発光素子及びledランプ、並びに半導体発光素子の製造方法
JP2012089754A (ja) * 2010-10-21 2012-05-10 Uv Craftory Co Ltd 窒化物半導体紫外線発光素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068554A (ja) * 1998-08-21 2000-03-03 Sharp Corp 半導体発光素子
JP2005244201A (ja) * 2004-01-28 2005-09-08 Matsushita Electric Ind Co Ltd 半導体発光素子及びその製造方法
JP5186800B2 (ja) * 2007-04-28 2013-04-24 日亜化学工業株式会社 窒化物半導体発光素子、これを備える発光装置及び窒化物半導体発光素子の製造方法
US8822976B2 (en) * 2011-03-23 2014-09-02 Soko Kagaku Co., Ltd. Nitride semiconductor ultraviolet light-emitting element
US8748919B2 (en) * 2011-04-28 2014-06-10 Palo Alto Research Center Incorporated Ultraviolet light emitting device incorporating optically absorbing layers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070028095A (ko) * 2005-09-07 2007-03-12 엘지전자 주식회사 저저항 발광 다이오드
KR101026059B1 (ko) * 2007-12-21 2011-04-04 삼성엘이디 주식회사 질화물 반도체 발광소자 및 그 제조방법
JP2011142231A (ja) * 2010-01-07 2011-07-21 Hitachi Cable Ltd 半導体発光素子及びledランプ、並びに半導体発光素子の製造方法
JP2012089754A (ja) * 2010-10-21 2012-05-10 Uv Craftory Co Ltd 窒化物半導体紫外線発光素子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220077348A1 (en) * 2020-09-04 2022-03-10 Photon Wave Co., Ltd. Ultraviolet light emitting element and light emitting element package including the same
US11682747B2 (en) * 2020-09-04 2023-06-20 Photon Wave Co.. Ltd. Ultraviolet light emitting element and light emitting element package including the same
US20230282769A1 (en) * 2020-09-04 2023-09-07 Photon Wave Co., Ltd. Ultraviolet light emitting element and light emitting element package including the same

Also Published As

Publication number Publication date
JP2016526801A (ja) 2016-09-05
CN105684167A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
KR100862497B1 (ko) 질화물 반도체 소자
WO2015068980A1 (ko) 질화물 반도체 자외선 발광소자
KR20090002214A (ko) 반도체 발광소자 및 그 제조방법
EP2908352B1 (en) Light-emitting device
WO2019059561A1 (ko) 다중 터널 정션 구조를 가지는 발광 다이오드
KR20090022161A (ko) 반도체 발광소자 및 그 제조방법
WO2016018010A1 (ko) 발광소자 및 조명시스템
US9166100B2 (en) Light emitting device
KR100758542B1 (ko) Ⅰto층을 갖는 교류용 발광다이오드 및 그 제조방법
EP2802011B1 (en) Semiconductor device, light emitting device using the same, and light emitting device package including the same
WO2019212254A1 (ko) 발광 소자 패키지
WO2016080671A1 (ko) 발광소자 및 조명시스템
WO2023277608A1 (ko) 복수 대역 발광 다이오드
WO2016072661A1 (ko) 자외선 발광소자 및 조명시스템
WO2016195342A1 (ko) 자외선 발광소자
US9236531B2 (en) Light emitting device and lighting system
KR20120100057A (ko) 발광 소자 및 발광 소자 제조방법
WO2017188656A1 (ko) 고효율 Ga-polar 수직 발광 다이오드 소자 및 그 제조방법
KR101628233B1 (ko) 발광 다이오드 및 이를 포함하는 발광 소자 패키지
WO2016108422A1 (en) Vertical light emitting diode with v-pit current spreading member and manufacturing method of the same
WO2016144135A1 (ko) 발광소자, 발광소자 패키지, 및 이를 포함하는 조명시스템
US20230215846A1 (en) Light emitting device and light emitting module including the same
WO2015102343A1 (ko) 질화물 반도체 발광소자
KR101904034B1 (ko) 발광소자 및 이를 포함하는 조명시스템
WO2023177209A1 (ko) 발광 다이오드 및 그것을 갖는 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860942

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016525309

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14860942

Country of ref document: EP

Kind code of ref document: A1