WO2015068796A1 - 光学素子の製造方法及び光学素子の製造装置 - Google Patents

光学素子の製造方法及び光学素子の製造装置 Download PDF

Info

Publication number
WO2015068796A1
WO2015068796A1 PCT/JP2014/079556 JP2014079556W WO2015068796A1 WO 2015068796 A1 WO2015068796 A1 WO 2015068796A1 JP 2014079556 W JP2014079556 W JP 2014079556W WO 2015068796 A1 WO2015068796 A1 WO 2015068796A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
type
mold set
optical element
carrier
Prior art date
Application number
PCT/JP2014/079556
Other languages
English (en)
French (fr)
Inventor
章弘 藤本
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2015068796A1 publication Critical patent/WO2015068796A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/361Moulds for making articles of definite length, i.e. discrete articles with pressing members independently movable of the parts for opening or closing the mould, e.g. movable pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00423Plants for the production of simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/04Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds
    • B29C43/06Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds continuously movable in one direction, e.g. mounted on chains, belts
    • B29C43/08Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds continuously movable in one direction, e.g. mounted on chains, belts with circular movement, e.g. mounted on rolls, turntables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Definitions

  • the present invention relates to an optical element manufacturing method and an optical element manufacturing apparatus suitable for mass production of optical elements.
  • an energy curable resin is used as one measure for mass-producing high-precision optical elements at low cost.
  • the energy curable resin has a relatively low viscosity before energy application, can be easily supplied into the mold, and is cured by applying energy from the outside, so that the molding apparatus can be simplified. is there.
  • an optical element may be formed by stacking materials having different refractive indexes.
  • Patent Documents 1 and 2 disclose a technique for forming a bonded lens by bonding individually molded single lenses with their optical axes aligned.
  • Patent Document 3 the first preform is formed from the first material by the first mold and the second mold facing each other, and then the first preform is removed without removing the first preform.
  • a technique for forming an optical element in which a third mold is opposed to a second mold and a second preform is laminated from a second material on the first preform is disclosed.
  • Patent Document 4 discloses a technique for forming a two-layer lens by setting a molded lens on a jig, applying a photo-curing resin on the lens, and molding the lens with a mold. .
  • a problem of how to set the optical axis and jig of the lens because the lens molding process and the process of applying the photocurable resin are separate), and a highly accurate optical element is formed. It is unsuitable for.
  • Patent Document 5 regarding the method of manufacturing an optical element of energy curable resin, a plurality of molding steps are sequentially performed at predetermined rotation positions of the support table while rotating the support table at a predetermined time interval.
  • a method for manufacturing a featured optical element is disclosed.
  • the object of the present invention has been made in view of the above-described problems, and is a method for manufacturing an optical element and an optical element that can mass-produce optical elements formed by stacking different materials while improving the operating rate of a mold. Is to provide a device.
  • a method for manufacturing an optical element reflecting one aspect of the present invention includes: A first mold set having a pair of 1A-type and 1B-type facing each other; A second mold set having a pair of 2A-type and 2B-type facing each other; A carrier having an opening at a position corresponding to the first mold set and the second mold set and capable of moving relative to the first mold set pair and the second mold set; A manufacturing method for manufacturing an optical element using: Alternately arranging the first mold set and the second mold set; After supplying the first energy curable resin to the first mold set, by applying energy and curing, an intermediate product is formed in the opening of the carrier, Moving the carrier or the first mold set and the second mold set so that the intermediate product is in the position of the second mold set; A second energy curable resin is applied between the 2A type and the 2B type on the intermediate product to be cured.
  • an optical element manufacturing apparatus reflecting one aspect of the present invention.
  • a first mold set having a pair of 1A-type and 1B-type facing each other;
  • a second mold set having a pair of 2A-type and 2B-type facing each other;
  • a carrier having an opening at a position corresponding to the first mold set and the second mold set and capable of moving relative to the first mold set pair and the second mold set;
  • An optical element manufacturing apparatus comprising: Alternately arranging the first mold set and the second mold set; After supplying the first energy curable resin to the first mold set, by applying energy and curing, an intermediate product is formed in the opening of the carrier, Moving the carrier or the first mold set and the second mold set so that the intermediate product is in the position of the second mold set; A second energy curable resin is applied between the 2A type and the 2B type on the intermediate product to be cured.
  • an optical element manufacturing method and an optical element manufacturing apparatus capable of mass-producing optical elements formed by stacking different materials while improving the operating rate of a mold.
  • FIG. 6 is a schematic diagram showing manufacturing steps (a) to (j) of the optical element in the present embodiment.
  • FIG. 10 is a diagram for explaining optical element molding steps (a) to (f) according to another embodiment. It is figure (a) (b) which shows the drive mechanism of the type
  • FIG. 5 is a schematic diagram showing another manufacturing process (a) to (h) of the optical element of the present embodiment.
  • FIG. 10 is a schematic view showing manufacturing steps (a) to (j) subsequent to FIG. 9 (h). Although it is a top view which shows another manufacturing apparatus of the optical element in this embodiment, it shows in a partial cross section and a part of member is abbreviate
  • FIG. 10 is a schematic view showing still another production process (a) to (q) of the optical element of the present embodiment.
  • FIG. 13 is a schematic view showing manufacturing steps (a) to (q) subsequent to FIG. 12 (q).
  • the optical element manufactured in the present embodiment, there are a mirror part for a projector, an optical element for illumination, and the like in addition to a chip part for medical examination and an optical element for imaging.
  • the optical element is not limited to a lens, but when it is a lens, for example, it may be a flange-integrated type or a flange-separated type. Further, an integrated lens having a plurality of optical axes may be used.
  • the lens shape include, for example, a convex lens, a concave lens, a thin lens, a decentered lens, a Fresnel lens, and a diffractive lens.
  • the thickness of the thinnest part of the lens is particularly preferably 0.05 to 0.3 mm, and the thickness of the thinnest part of the lens is 0.05 to 0.15 mm. More preferred.
  • the “carrier” has a plurality of openings, and preferably has a disk shape, and the material can be formed of a material such as plastic, glass, or ceramic. However, when a photocurable resin is used as the energy curable resin, it is desirable that the material be light transmissive. It is preferable that the opening of the carrier has a shape that forms the outer periphery of the optical element. Preferably, a step is formed in the opening.
  • 1A type and 1B type in the first mold set may include not only a transfer surface for molding a single optical element but also a transfer surface for molding a plurality of optical elements.
  • a structure such as fine irregularities, a water-repellent film, or the like may be formed in order to improve the releasability of the optical element.
  • a positioning portion may be provided on a holding body that holds the 1A type and the 1B type, or may be provided on the 1A type and the 1B type itself.
  • 2A type and 2B type in the second mold set may include not only a transfer surface for molding a single optical element but also a transfer surface for molding a plurality of optical elements.
  • a structure such as fine irregularities, a water-repellent film, or the like may be formed in order to improve the releasability of the optical element.
  • a positioning portion may be provided on a holding body that holds the 2A type and the 2B type, or may be provided on the 2A type and the 2B type itself.
  • the 1A type is preferably different in shape from the 2A type, and the 1B type is preferably different from the 2B type. However, it is preferable that the 1A type moves along the same locus as the 2A type, and the 1B type moves along the same locus as the 2B type.
  • Examples of the “energy curable resin” that can be used in the present embodiment include a photocurable resin and a thermosetting resin.
  • the mold material is PET (polyethylene terephthalate) resin, PMMA (polymethyl methacrylate) resin, COC (cycloolefin copolymer) resin, COP (cycloolefin polymer) resin, PC (polycarbonate) resin, fluorine.
  • a thermoplastic resin such as a resin, a photocurable resin such as an epoxy resin, an acrylic resin, or a vinyl resin, or glass can be used. Glass can be produced by glass molding, droplet molding, reheating molding, or the like.
  • the mold material it is preferable to use a material that easily transmits a wavelength for curing a photocurable resin used as a material of the optical element.
  • the energy curable resin When the energy curable resin is supplied with the 1A type and 1B type or the 2A type and 2B type opened, it may be supplied to any type, but when using a dispenser or the like, the type below the gravitational direction. It is desirable to supply to.
  • the mold to which the energy curable resin is supplied may be rotated, and the energy curable resin may be spread on the transfer surface of the mold by centrifugal force.
  • the energy curable resin can be supplied after the 1A type and 1B type or the 2A type and 2B type are clamped like injection molding.
  • energy can be imparted to the energy curable resin while clamping the 1A type and 1B type or the 2A type and 2B type.
  • Such energy can be applied from one or both of the 1A type, 1B type, 2A type and 2B type. Energy can also be supplied through the carrier.
  • a structure for projecting the molded optical element with a core or a pin or a structure for applying ultrasonic vibration to the mold may be provided as a mold release assisting structure.
  • various forms such as an air chuck, a robot chuck, and air blowing can be used.
  • various pre-molding processes for performing pre-processing before molding may be performed.
  • a camera is used to monitor whether there is an abnormality in the mold, and if there is an abnormality, a process for stopping the production of the optical element by issuing an alarm, or a process for cleaning the mold used for molding
  • a process silicon coating
  • the 1A type and the 2A type, and the 1B type and the 2B type are alternately arranged, and the preceding 1A type and 1B type, and the subsequent 2A type and The 2B type is desirably arranged at equal intervals and moved at a constant speed.
  • the interval between the molds may be locally changed for timing adjustment.
  • the “closed trajectory” refers to the first processing unit, the second processing unit, the third processing unit, and the fourth processing unit in order, regardless of the shape. It means that the movement trajectory of the first mold and the second mold until reaching the processing section is a closed loop. However, a branch may be provided in the movement trajectory in order to eliminate abnormal molds, or another route that is coupled to a closed trajectory may be provided in order to insert a non-abnormal mold that has been waiting.
  • FIG. 1 is a top view showing an optical element manufacturing apparatus according to this embodiment.
  • FIG. 2 is a diagram showing a part of the optical element manufacturing apparatus developed in the circumferential direction.
  • the manufacturing apparatus arranges a first disk (first substrate) DC1 and a second disk (second substrate) DC2 having the same diameter coaxially with a gap. Yes.
  • the center of the first disk DC1 and the second disk DC2 is connected to the rotation shaft SFT through a spline or the like so as not to rotate relative to the first disk DC1.
  • the second disk DC2 is driven to rotate synchronously.
  • a plurality of circular openings DC1a are formed in the first disk DC1, and a cylindrical upper mold (1A type) MD1A and an upper mold (2A type) MD2A are formed in the circular opening DC1a.
  • the upper mold MD1A has a transfer surface MD1Aa on its lower surface
  • the upper mold MD2A has a transfer surface MD2Aa on its lower surface
  • the transfer surface MD1Aa and the transfer surface MD2Aa have different shapes.
  • a first type drive unit (not shown) connected so as to rotate integrally is disposed above the first disk DC1.
  • the first mold drive unit can independently drive the drive shaft DS1 connected to the upper surfaces of the upper molds MD1A and MD2A, thereby moving the upper molds MD1A and MD2A up and down independently.
  • a driving method of the drive shaft there are various modes such as an air cylinder, a hydraulic cylinder, and an electromagnetic solenoid actuator.
  • a plurality (eight in this case) of circular openings DC2a are formed so as to be arranged in the same manner as the circular opening DC1a, and a cylindrical lower mold (1B) is formed in the circular opening DC2a.
  • Mold) MD1B and upper mold (2B type) MD2B are alternately arranged along the circumferential direction.
  • the lower mold MD1B has a transfer surface MD1Ba on its upper surface
  • the lower mold MD2B has a transfer surface MD2Ba on its upper surface
  • the transfer surface MD1Ba and the transfer surface MD2Ba have different shapes.
  • a second type drive unit (not shown) connected so as to rotate integrally is disposed above the second disk DC2,
  • the second mold drive unit can independently drive the drive shaft DS2 connected to the lower surfaces of the lower molds MD1B and MD2B, thereby moving the upper molds MD1B and MD2B up and down independently.
  • a driving method of the drive shaft there are various modes such as an air cylinder, a hydraulic cylinder, and an electromagnetic solenoid actuator.
  • the upper mold MD1A and the lower mold MD1B constitute a first mold set
  • the upper mold MD2A and the lower mold MD2B constitute a second mold set.
  • a donut plate-shaped carrier CY is arranged, in which the rotation axis SFT passes through the central opening CYb.
  • the carrier CY has a plurality of openings CYa so as to align the axis with the circular opening DC1a of the first disk DC1 and the circular opening DC2a of the second disk DC2.
  • the carrier CY coincides with the axis of the rotation shaft SFT, and can rotate independently of the first disk DC1 and the second disk DC2 by a plurality of gears GR (or rollers) engaged with the outer periphery. .
  • the gear GR is connected to a motor (not shown).
  • the opening CYa of the carrier piece CY preferably has a stepped portion ST on the inner periphery.
  • the inner diameter of the opening CYa is larger than the upper side ( ⁇ 1) across the stepped portion ST.
  • the lower side ( ⁇ 2) is larger.
  • the carrier CY is made of a light transmissive material.
  • the first processing unit A, the second processing unit B, the third processing unit C, and the fourth processing unit D are arranged along the rotation direction of the first disk DC1 and the second disk DC2. Is provided.
  • dispenser DSP which can discharge a suitable quantity of 1st photocurable resin and 2nd photocurable resin independently is arrange
  • a light source OPS capable of emitting light for curing a photocurable resin that is a material of the optical element is disposed.
  • the fourth processing unit D is provided with a robot RB that can take out the optical element from the mold.
  • FIG. 4 is a diagram schematically showing the relationship between the first disk DC1 and the carrier CY of the second disk DC2.
  • eight mold sets are used as shown in FIG. 1, but the lower mold is hidden. I can't see. Further, the description will be given focusing on the molding of the optical element in one opening CYa of the carrier CY, but the molding is performed in parallel.
  • the first mold sets MD1A and MD1B and the second mold sets MD2A and MD2B are alternately arranged in the circumferential direction, and the interval between the mold sets is one pitch.
  • the triangular mark M1 indicates the rotational position of the first disk DC1 and the second disk DC2, and the triangular mark M2 indicates the rotational position of the carrier CY.
  • the rotation direction of the carrier CY of the first disk DC1 and the second disk DC2 is clockwise.
  • the first photocurable resin PL1 is applied from the dispenser DSP between the opened mold sets MD1A and MD1B as shown by hatching (first processing section A in FIG. 2). : 1st process).
  • the drive shafts DS1 and DS2 are moved closer to each other at the position shown in FIG. , MD1B is clamped (second processing unit B in FIG. 2: second step).
  • the first photocurable resin PL1 is applied to the subsequent mold sets MD1A, MD1B.
  • the subsequent mold sets MD1A and MD1B follow the preceding mold sets MD1A and MD1B with a delay of one step.
  • description of operations of the subsequent mold sets MD1A and MD1B will be omitted.
  • first disk DC1, the second disk DC2, and the carrier CY are synchronously rotated by one pitch, and the light emitted from the light source OPS is set through the carrier CY at the position shown in FIG. 4C.
  • the transfer surface shape is transferred by irradiating and solidifying the first photocurable resin PL1 between the MD1A and MD1B (third processing unit C in FIG. 2: third step). This forms the intermediate product INT.
  • first disk DC1, the second disk DC2, and the carrier CY are rotated by one pitch synchronously, and the first disk DC1 and the second disk DC2 are stopped at the position shown in FIG. 4 (d).
  • the photocurable resin is not supplied between the first mold sets MD1A and MD1B or the second mold sets MD2A and MD2B, and therefore the mold clamping process is not performed. Accordingly, all the drive shafts DS1, DS2 are contracted, and the first mold sets MD1A, MD1B and the second mold sets MD2A, MD2B are in the mold open state (fourth processing unit D in FIG. 2: (4th process). In such a state, the carrier CY can be rotated relative to the first disk DC1 and the second disk DC2.
  • the first disk DC1 and the second disk DC2 are independently rotated by a half pitch while the carrier CY is stationary (fifth step).
  • the intermediate product INT formed by molding the first photocurable resin PL1 held in the opening CYa is positioned between the adjacent mold sets MD2A and MD2B in the opened state.
  • the second photocurable resin PL2 is applied between the opened mold sets MD2A and MD2B as shown by double hatching (corresponding to the first processing unit A in FIG. 6 steps). Then, the second photocurable resin PL2 is covered with the intermediate product INT obtained by solidifying the first photocurable resin PL1. The second photocurable resin PL2 is preferably applied to both surfaces of the intermediate product INT. Next, while the first disk DC1, the second disk DC2, and the carrier CY are rotated by one pitch synchronously, the drive shafts DS1 and DS2 are moved closer to each other at the position shown in FIG. , MD2B is clamped (corresponding to the second processing section B in FIG. 2: seventh step)
  • first disk DC1, the second disk DC2, and the carrier CY are synchronously rotated by one pitch, and the light emitted from the light source OPS is set through the carrier CY at the position shown in FIG. 4 (h).
  • the second photo-curing resin PL2 between MD2A and MD2B is irradiated to solidify the second photo-curing resin PL2 covering the intermediate product INT, thereby transferring the transfer surface shape (first in FIG. 2). 3 corresponds to the processing section C: 8th step).
  • the drive shafts DS1 and DS2 are in the second type.
  • the sets MD2A and MD2B are opened (corresponding to the fourth processing unit D in FIG. 2; the ninth step), and the robot RB that has been waiting as shown in FIG. 4J takes out the optical element. (Tenth step).
  • the step ST is provided in the opening CYa of the carrier CY, the optical element OE can be taken out from the one having the larger inner diameter.
  • two stacked molded articles are produced by the manufacturing apparatus of four first mold sets and four second mold sets.
  • the mold set is moved, but the same process can be performed even if the carrier is moved.
  • FIG. 9 is a diagram for explaining another manufacturing process (a) to (h) of the optical element of the present embodiment.
  • FIG. 10 is a view for explaining manufacturing steps (a) to (j) subsequent to FIG. 9 (h).
  • the carrier CY is not shown.
  • FIGS. 9 and 10 as in FIG. 4, the first mold sets MD1A and MD1B and the second mold sets MD2A and MD2B are alternately arranged in the circumferential direction, rotated by half a pitch, and rotated once every 4 pitches.
  • FIG. 4 is different from FIG. 4 in that each step of mold clamping, light irradiation for resin curing, and mold opening is performed by half-pitch rotation after resin application.
  • each step of mold clamping, light irradiation for resin curing, and mold opening is performed by half-pitch rotation after resin application.
  • FIG. 9A resin is applied between the first mold sets MD1A and MD1B (FIG. 2), and this resin is set to “1” for convenience of explanation as shown in the figure.
  • the resin “1” is rotated by half a pitch, clamped in FIG. 9B, irradiated with light in FIG. 9C, and opened in FIG. 9D, and then FIG. 9E. Rotate by half pitch as shown in (h).
  • the subsequent process starts. That is, the resin “2” is applied in FIG. 9C with a delay of 1 pitch from the resin “1”, and then the mold clamping, light irradiation, and mold opening are performed in the same manner. After the pitch is delayed, the resin “3” is applied in FIG. During this time, resin application is not performed in FIGS. 9D, 9F, 9G, and 9H.
  • each intermediate product INT (FIG. 2) formed from “3” is positioned between each adjacent second mold set MD2A, MD2B in an open state.
  • Resin “1” is applied for the second time, and thereafter, in the same manner, clamping, light irradiation, and mold opening are performed in FIGS. 10B to 10D, and the second product is applied to both sides of the intermediate product INT.
  • the resin PL2 (FIG. 5) is formed.
  • Resin “2” is subjected to resin application, mold clamping, light irradiation, and mold opening for the second time in FIGS. 10C to 10F, and resin “3” is illustrated in FIGS. 10E to 10H.
  • the second resin application, mold clamping, light irradiation, and mold opening are performed, and the second resin PL2 (FIG. 5) is formed on both surfaces of each intermediate product INT, so that an optical element (molded product) is formed.
  • the robot RB takes out the optical element from between the second mold sets MD2A and MD2B opened for the resin “1” in FIG. Subsequently, for the resin “2”, the robot RB similarly takes out the optical element in FIG. During this time, resin application is not performed in FIGS. 10 (g) (h) (i). In this example, the mold opening step and the molded product take-out step are performed separately.
  • two molded products can be manufactured by two rotations.
  • FIG. 11 is a top view showing another apparatus for manufacturing an optical element in the present embodiment, but a part thereof is cut away.
  • the manufacturing apparatus of FIG. 11 has basically the same configuration as that of FIG. 1, but the first disk DC1 has 16 circular openings DC1a and the second disk DC2 has the same arrangement as the circular openings DC1a. 16 circular openings DC2a are formed, and the first mold sets MD1A and MD1B and the second mold sets MD2A and MD2B are alternately arranged in the circumferential direction and rotated by half a pitch and rotated once by 8 pitches. To do.
  • the first processing unit A, the second processing unit B, the third processing unit C, and the fourth processing unit D are arranged along the rotation direction of the first disk DC1 and the second disk DC2. Are provided two by two repeatedly in a line with one pitch apart. Thus, each process is performed twice in the first processing unit A, the second processing unit B, the third processing unit C, and the fourth processing unit D during one rotation.
  • the manufacturing apparatus shown in FIG. 11 can perform each process substantially similar to that shown in FIGS.
  • FIG. 12 is a view for explaining still another manufacturing process (a) to (q) of the optical element of the present embodiment.
  • FIG. 13 is a view for explaining manufacturing steps (a) to (q) subsequent to FIG. 12 (q).
  • the carrier CY is not shown, and for convenience of explanation, the first mold sets MD1A and MD1B are shown as I, and the second mold sets MD2A and MD2B are shown as II.
  • FIG. 12 (a) resin “1” is applied, and in FIG. 12 (b) to (d), the steps of mold clamping, light irradiation, and mold opening are performed by rotating half a pitch. Subsequently, with respect to the resin “2”, the same steps are performed in FIGS. 12C to 12F with a delay of one pitch from the resin “1”. In the same manner, the same processes are performed for the resins “3” to “7” in FIGS. 12 (e) to 12 (p). Next, in FIG. 12 (q), only the carrier CY (FIG. 2) is rotated by a half pitch, and each intermediate product INT (FIG. 2) formed from the resins “1” to “7” of the first mold set I Is placed in each adjacent second mold set II in an open state, and a second resin application is performed on the resin “1”.
  • FIG. 12 (q) only the carrier CY (FIG. 2) is rotated by a half pitch, and each intermediate product INT (FIG. 2) formed from the resin
  • the resin “1” is rotated by a half pitch, and the mold is clamped, irradiated with light, shoulder-opened, and the molded product is taken out as shown in FIGS.
  • the steps of resin application, clamping, light irradiation, mold opening, and removal of the molded product are performed for the second time in FIGS. 13B to 13P.
  • a molded product corresponding to “7” can be obtained.
  • the resins “8” to “14” are given in FIGS. 13A to 13P, and the steps of clamping, light irradiation, and mold opening are performed in the same manner.
  • (q) only the carrier CY (FIG. 2) is rotated by a half pitch, and the intermediate products INT (FIG. 2) formed from the resins “8” to “14” of the first mold set I are opened.
  • the resin “8” is subjected to resin application for the second time, and thereafter, the respective steps of mold clamping, light irradiation, mold opening, and molded product removal are performed in the same manner.
  • molded articles corresponding to the resins “8” to “14” can be obtained.
  • seven molded products can be manufactured by two rotations.
  • FIG. 7 is a diagram showing each process of taking out the optical element OE by the robot RB.
  • a hollow spherical or hemispherical suction portion VP is disposed at the closed end of a hollow tube TB held movably by a drive unit (not shown) so as to open in the direction orthogonal to the axis.
  • a drive unit not shown
  • the other end of the tube TB is connected via a valve (not shown) that selectively switches between a low pressure source and the atmosphere.
  • the robot RB enters the large-diameter side of the opening CYa of the carrier CY between the spaced apart second mold sets MD2A and MD2B, and synchronizes with the opening CYa that has moved,
  • the carrier adsorption part VP is brought close to the optical surface of the optical element OE, and the valve is opened on the low pressure source side. Thereby, the air in the tube TB and the suction part VP is sucked, and the suction part VP is in close contact with the optical surface of the optical element OE.
  • the robot RB is retracted in the radial direction from between the second mold sets MD2A and MD2B, and is inverted around the axis of the tube TB as shown in FIG. 7C above the tray TR.
  • the suction part VP faces downward, so that the valve is opened to the atmosphere side and the inside of the suction part VP is brought close to the atmospheric pressure, whereby the optical element OE adsorbed on the suction part VP moves away and moves onto the tray TR.
  • the tray TR conveys the optical element OE to the subsequent process.
  • the robot RB enters between the separated second mold sets MD2A and MD2B as shown in FIG. Wait for timing to take out OE.
  • the optical element OE may be delivered to another suction unit without rotating the robot RB.
  • FIG. 8 is a diagram showing each process of taking out the optical element OE by the robot RB and the conveyor CV according to the modification.
  • the robot RB is configured by disposing a hollow spherical or hemispherical suction portion VP at the closed end of a hollow tube TB held so as to be vertically movable by a drive unit (not shown) so as to open downward. .
  • the other end of the tube TB is connected via a valve (not shown) that selectively switches between a low pressure source and the atmosphere.
  • the conveyor CV includes a pair of rolls RL (only one of which is shown) and a belt BL stretched over the rolls RL, and is disposed below the opening CYa of the carrier CY.
  • a tray may be used instead of the conveyor CV.
  • the robot RB and the conveyor CV are in a state of being fixed between the second mold sets MD2A and MD2B.
  • the robot RB descends in synchronization with the moved opening CYa between the separated second mold sets MD2A and MD2B, and brings the suction portion VP closer to the optical surface of the optical element OE. Open the valve on the low pressure source side. Thereby, the air in the tube TB and the suction part VP is sucked, and the suction part VP is in close contact with the optical surface of the optical element OE.
  • the valve is opened to the atmosphere side to bring the inside of the adsorption unit VP close to atmospheric pressure, so that the optical element OE adsorbed to the adsorption unit VP is Move on belt BL.
  • the belt BL conveys the optical element OE to the subsequent process.
  • the robot RB that has separated the optical element OE ascends to a position that does not hinder the movement of the carrier CY, and waits for the timing to take out the next optical element OE.
  • the robot RB is a type that adsorbs the optical surface, but may be a type that mechanically holds the optical element OE, or a type that uses a combination of adsorption and mechanical type.
  • the first disk DC1 and the first mold sets MD1A, MD1B and the second mold sets MD2A, MD2B are separated from each other.
  • the carrier CY is independently rotated by a half pitch while the second disk DC2 is stationary, thereby returning to the state shown in FIG. Thereafter, the optical element can be continuously molded by repeating the same process.
  • the carrier CY, the first disk DC1, and the second disk are formed by relatively rotating the disk DC2 and the second product set MD2A, MD2B using the second photocurable resin PL2 on the intermediate product INT.
  • the optical element OE as a bonded lens can be continuously formed. This makes it possible to mass-produce the optical element OE having multiple functions and high accuracy at a low cost. In particular, even with a complicated aspherical shape, different resins can be brought into close contact without interposing a gap, and high optical performance can be ensured.
  • FIG. 5 is a diagram for explaining a molding process of an optical element according to another embodiment.
  • the third mold sets MD3A and MD3B are used in addition to the first mold sets MD1A and MD1B and the second mold sets MD2A and MD2B.
  • the replacement method of the mold set is the same as that in the above-described embodiment.
  • the first photocurable resin PL1 is used to perform transfer molding using the first mold sets MD1A and MD1B. Then, as shown in FIG. 5 (b), after applying the second photocurable resin PL2 on both sides of the first intermediate product INT, the second mold set MD2A , MD2B, and a resin layer is provided on the first intermediate product INT to form a second intermediate product INT ′ (FIG. 5C).
  • FIG. 6 is a diagram showing a driving mechanism of a mold set according to another embodiment, but the first disk and the second disk are omitted.
  • a pair of rails RL1 and RL2 and wheels RG1 and RG2 that roll along the rails RL1 and RL2 are provided instead of the drive shaft.
  • the upper molds MD1A and MD2A are connected to the lower end of the support part SP1.
  • a wheel RG1 rotatably provided at the upper end of the support part SP1 can roll along the upper rail RL1.
  • the upper rail RL1 is connected to a drive mechanism (not shown) via a frame FR1.
  • the lower molds MD1B and MD2B are connected to the upper end of the support part SP2.
  • a wheel RG2 rotatably provided at the lower end of the support part SP2 can roll along the lower rail RL2.
  • the lower rail RL2 is connected to a drive mechanism (not shown) via a frame FR2.
  • Other configurations are the same as those of the above-described embodiment.
  • the first mold sets MD1A and MD1B are moved to the right in FIG. 6A according to the rotation of the first and second disks. Although the rails RL1 and RL2 are gradually approaching each other, the first mold sets MD1A and MD1B are close to each other and the mold is clamped so as to sandwich the carrier CY. It becomes. The same applies to the second mold sets MD2A and MD2B.
  • the manufacturing method of the optical element in the present embodiment is as follows: A first mold set consisting of a pair of 1A-type and 1B-type facing each other, and a second mold set consisting of a pair of 2A-type and 2B-type facing each other, moving along a closed locus, Has an opening at a position corresponding to one mold set or each second mold set, and can move in synchronization with the first mold set and the second mold set along the trajectory; and A manufacturing method for manufacturing an optical element using a carrier capable of moving relative to the first mold set and the second mold set, A first processing unit, a second processing unit, a third processing unit, and a fourth processing unit are provided along the trajectory, and these processing units together with the carrier are provided in the first processing unit.
  • the mold set and the second mold set move, In the first processing section, by applying a first energy curable resin between the 1A type and the 1B type, the first energy curable resin is disposed in the opening of the carrier.
  • 1 process A second step of clamping the 1A type and the 1B type with the carrier interposed in the second processing unit; A third step of forming an intermediate product by applying energy to the first energy curable resin applied in the opening of the carrier to cure in the third processing unit; A fourth step of opening the 1A type and the 1B type in the fourth processing unit; A fifth step of moving the carrier together with the intermediate product relative to the first mold set and the second mold set along the trajectory; A sixth step of applying a second energy curable resin on the intermediate product displaced between the 2A type and the 2B type in the first processing unit; A seventh step of clamping the 2A mold and the 2B mold with the carrier interposed in the second processing section; An eighth step of applying energy to the second energy curable resin applied in the opening of the carrier and curing in the third processing unit; A ninth
  • the optical element manufacturing apparatus A first substrate in which a pair of 1A type and 1B type facing each other in the first type set are arranged to be close to or away from each other; A second substrate in which a pair of 2A type and 2B type facing each other in the second type set are arranged so as to be close to or away from each other; An opening is provided at a position corresponding to each first mold set or each second mold set, and the first mold set or the second board can be rotated in synchronization with the first substrate and the second substrate.
  • a manufacturing apparatus for manufacturing an optical element comprising: a substrate; and a carrier capable of moving relative to the second substrate.
  • a first processing unit, a second processing unit, a third processing unit, and a fourth processing unit are provided.
  • the type set of is to move, In the first processing unit, by applying the first energy curable resin between the 1A type and the 1B type, the first energy curable resin is disposed in the opening of the carrier, In the second processing unit, the 1A type and the 1B type are clamped with the carrier interposed therebetween, In the third processing section, energy is applied to the first energy curable resin applied in the opening of the carrier to be cured to form an intermediate product, In the fourth processing unit, the 1A type and the 1B type are opened, Moving the carrier with the intermediate product relative to the first mold set and the second mold set along the trajectory; In the first processing unit, a second energy curable resin is applied on the intermediate product displaced between the 2A type and the 2B type, In the second processing section, the 2A type and the 2B type are clamped with the carrier interposed therebetween, In the third processing section, energy is applied to the second energy curable resin applied in the opening of the carrier to be cured

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

 金型の稼働率を向上させつつ異なる素材を積層してなる光学素子を大量生産できる光学素子の製造方法及び光学素子の製造装置を提供する。この光学素子の製造方法は、互いに対向する一対の1A型と1B型を有する第1の型セットと、互いに対向する一対の2A型と2B型を有する第2の型セットと、前記第1の型セット及び前記第2の型セットに対応する位置に開口を有し、前記第1の型セット対及び前記第2の型セットに対して相対移動することができるキャリヤと、を用い、前記第1の型セットと前記第2の型セットを交互に配置し、前記第1の型セットに第1のエネルギー硬化性樹脂を供給した後、エネルギーを付与して硬化させることにより、前記キャリヤの開口内に中間生成物を形成し、前記中間生成物が、前記第2の型セットの位置になるように前記キャリヤ、または前記第1の型セット及び前記第2の型セットを移動させ、前記2A型と前記2B型との間に前記中間生成物に重ねて第2のエネルギー硬化性樹脂を付与して硬化させる。

Description

光学素子の製造方法及び光学素子の製造装置
 本発明は、光学素子を大量生産するのに適した光学素子の製造方法及び光学素子の製造装置に関する。
 一般的に医療検査用のチップ部品や光ピックアップ装置や撮像装置等に用いられる光学素子は、高精度を必要とされる一方、近年では海外メーカーとの競合が激化し、製品の競争力を高めるために、よりコストを抑制することが求められている。ここで、高精度な光学素子を安価に大量生産する一つの方策として、エネルギー硬化性樹脂を用いるということがある。エネルギー硬化性樹脂は、エネルギー付与前は比較的粘度が低く、型内へと容易に供給することができ,更に外部よりエネルギーを付与することで硬化するので、成形装置を簡素化できるという利点がある。
 ところで、よりコンパクトで多機能な光学系を実現するために、例えば屈折率の異なる素材を積層して光学素子を形成する場合がある。特許文献1、2には、個別に成形された単レンズを、各々の光軸を一致させた上で接着することで、貼り合わせレンズを形成する技術が開示されている。
特開2007-131508号公報 特開2003-140037号公報 特開2007-304569号公報 特開平10-309726号公報 特開2007-147697号公報
 しかるに、特許文献1、2に開示された技術では、個別に成形したレンズを貼り合わせているため、光軸を合わせる作業など、形成プロセスが複雑且つ困難であり、製造の手間とコストの増大を招いている。又、レンズの素材として熱可塑性樹脂を使用しているので、成形タクトが長いという問題もある。
 これに対し、特許文献3には、対向する第1の型と第2の型とにより第1の素材から第1のプリフォームを成形した後、第1のプリフォームを除去することなく第1の型に代えて第3の型を第2の型に対向させ、第1のプリフォーム上に第2の素材から第2のプリフォームを積層した光学素子を形成する技術が開示されている。
 特許文献3の技術によれば、単レンズ同士の貼り合わせが不要であり、接着の手間は省けるが、第1の型を第3の型に置換する際に、第2の型との光軸合わせが必要になり、偏心精度を高めるためには置換の度に調整が必要になって、生産効率が悪化する。又、第1の素材は第2の素材よりも融点が低くなくてはならず、使用できる素材の選択の自由度が狭まるという問題もあり、更にエネルギー硬化性樹脂を用いることについての言及がない。
 更に特許文献4には、成形されたレンズを治具にセットした上で、光硬化性樹脂を当該レンズ上に塗布し、金型により成形して2層レンズを形成する技術が開示されている。しかしながら、(レンズの成形工程と、光硬化性樹脂を塗布する工程が別々であるため)レンズの光軸と治具をどのようにセットするかという問題があり、高精度な光学素子を形成するのに不向きである。
 更に、特許文献5には、エネルギー硬化性樹脂の光学素子の製造方法に関して、支持台を決まった時間間隔で回転させながら、複数の成形工程を、支持台の所定の回転位置で順次行うことを特徴とする光学素子の製造方法が開示されている。
 本発明の目的は、上述した課題に鑑みてなされたものであり、金型の稼働率を向上させつつ異なる素材を積層してなる光学素子を大量生産できる光学素子の製造方法及び光学素子の製造装置を提供することである。
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した光学素子の製造方法は、
 互いに対向する一対の1A型と1B型を有する第1の型セットと、
 互いに対向する一対の2A型と2B型を有する第2の型セットと、
 前記第1の型セット及び前記第2の型セットに対応する位置に開口を有し、前記第1の型セット対及び前記第2の型セットに対して相対移動することができるキャリヤと、を用いて光学素子を製造する製造方法であって、
 前記第1の型セットと前記第2の型セットを交互に配置し、
 前記第1の型セットに第1のエネルギー硬化性樹脂を供給した後、エネルギーを付与して硬化させることにより、前記キャリヤの開口内に中間生成物を形成し、
 前記中間生成物が、前記第2の型セットの位置になるように前記キャリヤ、または前記第1の型セット及び前記第2の型セットを移動させ、
 前記2A型と前記2B型との間に前記中間生成物に重ねて第2のエネルギー硬化性樹脂を付与して硬化させる。
 又、上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した光学素子の製造装置は、
 互いに対向する一対の1A型と1B型を有する第1の型セットと、
 互いに対向する一対の2A型と2B型を有する第2の型セットと、
 前記第1の型セット及び前記第2の型セットに対応する位置に開口を有し、前記第1の型セット対及び前記第2の型セットに対して相対移動することができるキャリヤと、を有する光学素子の製造装置であって、
 前記第1の型セットと前記第2の型セットを交互に配置し、
 前記第1の型セットに第1のエネルギー硬化性樹脂を供給した後、エネルギーを付与して硬化させることにより、前記キャリヤの開口内に中間生成物を形成し、
 前記中間生成物が、前記第2の型セットの位置になるように前記キャリヤ、または前記第1の型セット及び前記第2の型セットを移動させ、
 前記2A型と前記2B型との間に前記中間生成物に重ねて第2のエネルギー硬化性樹脂を付与して硬化させる。
 本発明によれば、金型の稼働率を向上させつつ異なる素材を積層してなる光学素子を大量生産できる光学素子の製造方法及び光学素子の製造装置を提供することができる。
本実施形態における光学素子の製造装置を示す上面図であるが、一部の部材を省略している。 本実施形態における光学素子の製造装置の一部を示す側面図であり、第1の処理部A,第2の処理部B,第3の処理部C,第4の処理部Dの状態を示している。 キャリヤの断面の一部を示すである。 本実施形態における光学素子の製造工程(a)~(j)を示す概略図である。 別の実施の形態にかかる光学素子の成形工程(a)~(f)を説明するための図である。 別の実施の形態にかかる型セットの駆動機構を示す図(a)(b)である。 ロボットRBにより光学素子OEを取り出す各工程(a)~(c)を示す図である。 変形例にかかるロボットRBにより光学素子OEを取り出す各工程(a)~(c)を示す図である。 本実施形態の光学素子の別の製造工程(a)~(h)を示す概略図である。 図9(h)に続く製造工程(a)~(j)を示す概略図である。 本実施形態における光学素子の別の製造装置を示す上面図であるが、一部断面で示し、また一部の部材を省略している。 本実施形態の光学素子のさらに別の製造工程(a)~(q)を示す概略図である。 図12(q)に続く製造工程(a)~(q)を示す概略図である。
 本実施形態において製造される「光学素子」としては、医療検査用のチップ部品や、撮像用の光学素子以外に、プロジェクタ用のミラー、照明用の光学素子などがある。光学素子はレンズに限られないが、例えばレンズである場合、フランジ一体タイプでも、フランジ別体タイプでも良い。又、複数の光軸を有する一体型レンズであっても良い。レンズ形状としては種々の形態が考えられ、例えば凸レンズ、凹レンズ、薄肉レンズ、偏肉レンズ、フレネルレンズ、回折レンズなどを含む。本実施形態におけるレンズとしては、特にレンズの最薄肉部の厚さが0.05~0.3mmであると好ましく、更にレンズの最薄肉部の厚さが0.05~0.15mmであるとより好ましい。
 「キャリヤ」とは、複数の開口を有するものであり、好ましくは円盤状であって、素材はプラスチック、ガラス、セラミックなどの素材から形成できる。但し、エネルギー硬化性樹脂として光硬化性樹脂を用いる場合、光透過性の素材であることが望ましい。キャリヤの開口は、光学素子の外周を成形する形状であると好ましい。好ましくは、開口には段差が形成されている。
 第1の型セットにおける1A型と1B型は、単一の光学素子を成形する転写面を備えている場合のみならず、複数の光学素子を成形する転写面を備えていても良い。型の転写面などの表面には、光学素子の離型性を高める為に、微細な凹凸などの構造や、撥水性の膜などを形成しても良い。又、1A型と1B型とを位置合わせする位置決め部を設けると、高精度に位置決めを行えるので好ましい。かかる位置決め部は、1A型と1B型とを保持する保持体に設けても良いし、1A型と1B型自体に設けても良い。
 第2の型セットにおける2A型と2B型は、単一の光学素子を成形する転写面を備えている場合のみならず、複数の光学素子を成形する転写面を備えていても良い。型の転写面などの表面には、光学素子の離型性を高める為に、微細な凹凸などの構造や、撥水性の膜などを形成しても良い。又、2A型と2B型とを位置合わせする位置決め部を設けると、高精度に位置決めを行えるので好ましい。かかる位置決め部は、2A型と2B型とを保持する保持体に設けても良いし、2A型と2B型自体に設けても良い。1A型は2A型と形状が異なり、1B型は2B型と形状が異なると好ましい。但し、1A型は2A型と同一軌跡に沿って移動し、1B型は2B型と同一軌跡に沿って移動することが好ましい。
 本実施形態において用いることができる「エネルギー硬化性樹脂」としては、光硬化性樹脂、熱硬化性樹脂などが挙げられる。
 エネルギー硬化性樹脂として光硬化性樹脂を用いる場合、1A型と1B型及び2A型と2B型のうち少なくとも一つが光透過性の素材から形成されていれば好ましい。光硬化性樹脂を用いる場合、型材は例えば、PET(ポリエチレンテレフタレート)樹脂、PMMA(ポリメチルメタクリレート)樹脂、COC(シクロオレフィンコポリマー)樹脂、COP(シクロオレフィンポリマー)樹脂、PC(ポリカーボネイト)樹脂、フッ素樹脂等の熱可塑性樹脂、或いは、エポキシ系樹脂、アクリル系樹脂、ビニル系樹脂等の光硬化性樹脂、或いは、ガラスなどを用いることができる。ガラスは、ガラスモールド成形、液滴成形又は再加熱成形等により製造することができる。型材には、光学素子の材料として使用する光硬化性樹脂を硬化させる波長を透過しやすい素材を用いるのが好ましい。
 1A型と1B型又は2A型と2B型を型開きした状態で、エネルギー硬化性樹脂を供給する場合、いずれの型に供給しても良いが、ディスペンサなどを用いる場合、重力方向下方にある型に供給することが望ましい。エネルギー硬化性樹脂を供給した型を回転させて、遠心力でエネルギー硬化性樹脂を型の転写面上に展開させても良い。
 又、例えば射出成形のように、1A型と1B型又は2A型と2B型を型締めした後に、エネルギー硬化性樹脂を供給することもできる。
 一方、1A型と1B型又は2A型と2B型を型締めしながら、エネルギー硬化性樹脂にエネルギーを付与することもできる。かかるエネルギーの付与は、1A型と1B型、2A型と2B型の片方もしくは両方から行うことができる。キャリヤを介してエネルギーを供給することもできる。
 成形された光学素子を型と容易に離型するため、離型補助構造として、成形された光学素子をコアやピンで突き出す構造や、型に超音波振動を付与する構造を設けても良い。成形された光学素子を型から取り出すには、エアーチャック、ロボットチャック、エアー吹き飛ばしなど種々の形態を用いることができる。
 型締め工程を行う第1の処理部において、成形前の前処理を行う成形前工程を各種行っても良い。成形前工程には、例えば型に異常がないかをカメラ等で監視して、異常がある場合にはアラームを発して光学素子の製造を停止する工程や、成形に用いた型を洗浄する工程や、型に光学素子の離型を促す処理(シリコン塗布)などを行う工程がある。
 第1の軌跡に沿って移動する際に、1A型と2A型及び1B型と2B型は、それぞれ交互に並んでいることが好ましく、更に先行する1A型及び1B型と、後続する2A型及び2B型とは、等間隔で配置され、等速で移動することが望ましい。但し、タイミング調整のため、局所的に型間の間隔を変更することはあり得る。
 本実施形態において「閉じた軌跡」とは、形状にはこだわらず、第1の処理部から第2の処理部、第3の処理部、第4の処理部へと順に向かい、再び第1の処理部に向かうまでの第1の型と第2の型の移動軌跡が閉ループとなっていることをいう。但し、異常のある型を排除するために移動軌跡に分岐を設けたり、待機させていた異常のない型を軌跡に挿入するために閉じた軌跡に結合する別なルートを設けていても良い。
 以下、図面を参照しながら本発明にかかる実施形態について説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲は以下の実施形態及び図示例に限定されるものではない。
 図1は、本実施形態における光学素子の製造装置を示す上面図である。図2は、光学素子の製造装置の一部を周方向に展開して示す図である。図1,図2に示すように、製造装置は、同径の第1円盤(第1の基板)DC1と第2円盤(第2の基板)DC2とを、隙間を空けて同軸に配置している。第1円盤DC1と第2円盤DC2の中央は、スプライン等を介して回転軸SFTに相対回転不能に連結されており、更に回転軸SFTを介して、不図示のアクチュエータにより、第1円盤DC1と第2円盤DC2は同期して回転駆動されるようになっている。
 第1円盤DC1には、円形開口DC1aが複数個(ここでは8個)形成されており、円形開口DC1a内には、円柱状の上型(1A型)MD1Aと上型(2A型)MD2Aとが周方向に沿って交互に配置されている。上型MD1Aは、その下面に転写面MD1Aaを有し、上型MD2Aは、その下面に転写面MD2Aaを有しており、転写面MD1Aaと転写面MD2Aaとは形状が異なっている。第1円盤DC1の上方には、一体的に回転するように連結された第1型駆動部(不図示)が配置されている。第1型駆動部は、各上型MD1A、MD2Aの上面に連結した駆動軸DS1を独立して駆動でき、これにより上型MD1A、MD2Aを独立して上下移動させるようになっている。駆動軸の駆動方法としては、エアシリンダ、油圧シリンダ、電磁ソレノイドアクチュエータなど各種の態様がある。
 第2円盤DC2には、円形開口DC1aと同じ配置になるようにして、円形開口DC2aが複数個(ここでは8個)形成されており、円形開口DC2a内には、円筒状の下型(1B型)MD1Bと上型(2B型)MD2Bが周方向に沿って交互に配置されている。下型MD1Bは、その上面に転写面MD1Baを有し、下型MD2Bは、その上面に転写面MD2Baを有しており、転写面MD1Baと転写面MD2Baとは形状が異なっている。第2円盤DC2の上方には、一体的に回転するように連結された第2型駆動部(不図示)が配置されている。第2型駆動部は、各下型MD1B、MD2Bの下面に連結した駆動軸DS2を独立して駆動でき、これにより上型MD1B、MD2Bを独立して上下移動させるようになっている。駆動軸の駆動方法としては、エアシリンダ、油圧シリンダ、電磁ソレノイドアクチュエータなど各種の態様がある。上型MD1Aと下型MD1Bとで第1の型セットを構成し、上型MD2Aと下型MD2Bとで第2の型セットを構成する。
 第1円盤DC1と第2円盤DC2の間には、中央開口CYbを回転軸SFTが貫通してなるドーナッツ板状のキャリヤCYが配置されている。キャリヤCYは、第1円盤DC1の円形開口DC1a及び第2円盤DC2の円形開口DC2aと軸線を整列するようにして、複数の開口CYaを有している。キャリヤCYは、回転軸SFTの軸線と一致しており、また外周に係合した複数の歯車GR(もしくはローラ)により、第1円盤DC1と第2円盤DC2と独立して回転可能となっている。歯車GRは不図示のモータに接続されている。
 図3に示すように、キャリヤ片CYの開口CYaは、内周に段部STを有していると好ましく、かかる場合、開口CYaの内径は,段部STを挟んで上方側(φ1)より下方側(φ2)が大きくなっている。ここで、キャリヤCYは、光透過性の素材からなる。
 図1に示すように、第1円盤DC1と第2円盤DC2の回転方向に沿って、第1の処理部A、第2の処理部B,第3の処理部C,第4の処理部Dが設けられている。第1の処理部Aにおいては、第1の光硬化性樹脂と第2の光硬化性樹脂を独立して適量吐出できるディスペンサDSPが配置されている。第3の処理部Cには、光学素子の材料である光硬化性樹脂を硬化させるための光を出射できる光源OPSが配置されている。第4の処理部Dには、光学素子を型から取り出すことができるロボットRBが配置されている。
 本実施形態の動作について、図2に加えて図4を参照して説明する。図4は、第1円盤DC1と第2円盤DC2のキャリヤCYとの関係を模式的に示す図であり、ここでは図1のように8個の型セットを用いているが、下型は隠れて見えない。又、キャリヤCYの1つの開口CYa内における光学素子の成形に着目して説明するが、成形は同時並行的に行われるものである。
 又、図1と同様に第1の型セットMD1A,MD1Bと、第2の型セットMD2A,MD2Bは周方向に交互に配置されており、それぞれの型セットの間隔を1ピッチとする。又、三角マークM1は第1円盤DC1と第2円盤DC2の回転位置を示し、三角マークM2はキャリヤCYの回転位置を示す。第1円盤DC1と第2円盤DC2のキャリヤCYの回転方向は時計回りである。
(第1工程~第5工程)
 まず図4(a)において、ディスペンサDSPから、開いた状態の型セットMD1A,MD1B間に第1の光硬化性樹脂PL1を、ハッチングで示すように付与する(図2の第1の処理部A:第1工程)。次いで、第1円盤DC1と第2円盤DC2とキャリヤCYとを同期して1ピッチ分回転させながら、図4(b)に示す位置で、駆動軸DS1,DS2を接近移動させて、型セットMD1A,MD1Bの型締めを行う(図2の第2の処理部B:第2工程)。これに並行して、後続の型セットMD1A,MD1Bに第1の光硬化性樹脂PL1が付与される。かかる後続の型セットMD1A,MD1Bは、先行する型セットMD1A,MD1Bに一工程だけ遅れて追従することとなる。以下、後続の型セットMD1A,MD1Bの動作については説明を省略する。
 更に、第1円盤DC1と第2円盤DC2とキャリヤCYとを同期して1ピッチ分回転させながら、図4(c)に示す位置で、光源OPSからの出射光をキャリヤCYを介して型セットMD1A,MD1Bの間の第1の光硬化性樹脂PL1に照射し、固化させることで転写面形状を転写させる(図2の第3の処理部C:第3工程)。これにより中間生成物INTが形成される。
 更に、第1円盤DC1と第2円盤DC2とキャリヤCYとを同期して1ピッチ分回転させて、図4(d)に示す位置で第1円盤DC1と第2円盤DC2を停止させる。尚、この直前では、第1の型セットMD1A,MD1B、又は第2の型セットMD2A,MD2Bの間に光硬化性樹脂は供給されず、従って型締め工程は行われない。よって全ての駆動軸DS1,DS2を収縮させて、第1の型セットMD1A,MD1Bと、第2の型セットMD2A,MD2Bは型開き状態になっている(図2の第4の処理部D:第4工程)。かかる状態では、キャリヤCYと、第1円盤DC1及び第2円盤DC2との相対回動が可能になる。
 ここで、図4(e)に示すように、キャリヤCYを静止させたまま第1円盤DC1と第2円盤DC2を半ピッチ分だけ独立して回転させる(第5工程)。これにより、開口CYaに保持されてなる第1の光硬化性樹脂PL1を成形した中間生成物INTが、開いた状態の隣接する型セットMD2A,MD2B間に位置するようになる。
(第6工程~第10工程)
 その後、図4(f)に示すように、第1円盤DC1と第2円盤DC2とキャリヤCYとを同期して1ピッチ分回転させると、開いた状態の型セットMD2A,MD2B間に中間生成物INTが位置した状態で、ディスペンサDSPから樹脂を供給できる位置となる。
 ここで、ディスペンサDSPから、開いた状態の型セットMD2A,MD2B間に第2の光硬化性樹脂PL2を、ダブルハッチングで示すように付与する(図2の第1の処理部Aに相当:第6工程)。すると、第1の光硬化性樹脂PL1が固化した中間生成物INT上を、第2の光硬化性樹脂PL2が覆った状態になる。第2の光硬化性樹脂PL2は、中間生成物INTの両面に付与されると好ましい。次いで、第1円盤DC1と第2円盤DC2とキャリヤCYとを同期して1ピッチ分回転させながら、図4(g)に示す位置で、駆動軸DS1,DS2を接近移動させて、型セットMD2A,MD2Bの型締めを行う(図2の第2の処理部Bに相当:第7工程)
 更に、第1円盤DC1と第2円盤DC2とキャリヤCYとを同期して1ピッチ分回転させながら、図4(h)に示す位置で、光源OPSからの出射光をキャリヤCYを介して型セットMD2A,MD2Bの間の第2の光硬化性樹脂PL2に照射し、中間生成物INT上を覆った第2の光硬化性樹脂PL2を固化させることで転写面形状を転写させる(図2の第3の処理部Cに相当:第8工程)。
 更に、第1円盤DC1と第2円盤DC2とキャリヤCYとを同期して1ピッチ分回転させて、図4(i)に示す位置に来たときに、駆動軸DS1,DS2が第2の型セットMD2A,MD2Bを型開きさせ(図2の第4の処理部Dに相当:第9工程)、更に図4(j)のように待機していたロボットRBが、光学素子を取り出すこととなる(第10工程)。キャリヤCYの開口CYaに段差STを設けている場合、内径が大きい方から光学素子OEを取り出すことができる。
 以上の工程の結果、第1の型セット4個と、第2の型セット4個の製造装置で、2個の積層された成形品(光学素子)ができあがる。なお、上記実施形態では型セットが移動しているが、キャリアを移動させても同様の工程が実施可能である。
 次に、図9,図10を参照して図4とは別の製造装置構成例による動作を説明する。図9は本実施形態の光学素子の別の製造工程(a)~(h)を説明するための図である。図10は同じく図9(h)に続く製造工程(a)~(j)を説明するための図である。なお、図ではキャリアCYの図示を省略している。
 図9,図10の例では、図4と同様に第1の型セットMD1A,MD1Bと、第2の型セットMD2A,MD2Bを周方向に交互に配置し半ピッチずつ回転し4ピッチで1回転する。樹脂付与後、それぞれ半ピッチの回転で、型締め、樹脂硬化のための光照射、型開きの各工程を行う点が図4と異なる。以下、主に異なる点について説明する。
 図9(a)のように第1の型セットMD1A,MD1B(図2)間に樹脂付与をするが、この樹脂を図のように説明の便宜上「1」とする。樹脂「1」について、半ピッチずつ回転して図9(b)で型締めし、図9(c)で光照射し、図9(d)で型開きを行い、その後、図9(e)~(h)のように半ピッチずつ回転する。この間、後続の工程が開始する。すなわち、樹脂「1」よりも1ピッチ遅れて図9(c)で樹脂「2」の付与、以下同様にして型締め、光照射、型開きが行われ、同じく、樹脂「2」よりも1ピッチ遅れて図9(e)で樹脂「3」の付与、以下同様にして各工程が行われる。この間、図9(d)(f)(g)(h)では樹脂付与を行わない。
 次に、樹脂「1」「2」「3」について図10(a)でキャリアCY(図2)のみ半ピッチ回転させて、第1の型セットMD1A,MD1B間に樹脂「1」「2」「3」から形成された各中間生成物INT(図2)を、開いた状態の隣接する各第2の型セットMD2A,MD2B間に位置させる。樹脂「1」について二回目の樹脂付与を行い、以下、同様にして、図10(b)~(d)で型締め、光照射、型開きが行われ、中間生成物INTの両面に第2の樹脂PL2(図5)が形成される。樹脂「2」については図10(c)~(f)で二回目の樹脂付与、型締め、光照射、型開きが行われ、樹脂「3」については図10(e)~(h)で二回目の樹脂付与、型締め、光照射、型開きが行われ、各中間生成物INTの両面に第2の樹脂PL2(図5)が形成されて光学素子(成形品)ができる。
 樹脂「1」について図10(g)で型開きされた第2の型セットMD2A,MD2B間からロボットRBが光学素子を取り出す。続いて樹脂「2」について図10(i)で同様にロボットRBが光学素子を取り出す。この間、図10(g)(h)(i)では樹脂付与を行わない。なお、本例では、型開き工程と成形品の取り出し工程が別々に行われる。
 次に、樹脂「4」「5」「6」について図10(j)でキャリアCY(図2)のみ半ピッチ回転させて、第1の型セットMD1A,MD1B間に樹脂「4」「5」「6」から形成された各中間生成物INT(図2)を、開いた状態の隣接する各第2の型セットMD2A,MD2B間に位置させる。以下、樹脂「1」~「3」と同様にして各工程が行われる。
 以上のように、図9,図10の例では、2回転で成形品2個を製造することができる。
 次に、図11を参照して本実施形態における光学素子の別の製造装置について説明する。図11は、本実施形態における光学素子の別の製造装置を示す上面図であるが、一部を切断して示している。図11の製造装置は、図1と基本的に同様の構成であるが、第1円盤DC1には円形開口DC1aが16個形成され、第2円盤DC2には円形開口DC1aと同じ配置になるようにして、円形開口DC2aが16個形成されており、第1の型セットMD1A,MD1Bと、第2の型セットMD2A,MD2Bを周方向に交互に配置し半ピッチずつ回転し8ピッチで1回転する。
 図11に示すように、第1円盤DC1と第2円盤DC2の回転方向に沿って、第1の処理部A、第2の処理部B,第3の処理部C,第4の処理部Dが1ピッチずつ離れて繰り返し並んで2組ずつ設けられている。これにより、1回転の間に第1の処理部A、第2の処理部B,第3の処理部C,第4の処理部Dで各工程が2回ずつ行われる。図11の製造装置により、図4(a)~(j)と実質的に同様の各工程を行うことができる。
 次に、図12,図13を参照して、図11の製造装置において、樹脂付与、型締め、樹脂硬化のための光照射、型開き、成形品取り出しの各工程を半ピッチずつ離して1回転で1回ずつ行うようにした製造工程について説明する。図12は、本実施形態の光学素子のさらに別の製造工程(a)~(q)を説明するための図である。図13は同じく図12(q)に続く製造工程(a)~(q)を説明するための図である。なお、図ではキャリアCYの図示を省略し、説明の便宜上、第1の型セットMD1A,MD1BをI、第2の型セットMD2A,MD2BをIIとして示す。
 図12(a)で樹脂「1」を付与し、図12(b)~(d)で型締め、光照射、型開きの各工程を半ピッチずつ回転させて行う。続いて樹脂「2」について樹脂「1」より1ピッチ遅れて図12(c)~(f)で同様の各工程を行う。以下同様にして樹脂「3」~「7」について図12(e)~(p)で同様の各工程を行う。次に、図12(q)でキャリアCY(図2)のみ半ピッチ回転させて、第1の型セットIの樹脂「1」~「7」から形成された各中間生成物INT(図2)を、開いた状態の隣接する各第2の型セットIIに位置させ、樹脂「1」について二回目の樹脂付与を行う。
 続いて、樹脂「1」についてで半ピッチずつ回転して図13(a)~(d)で型締め、光照射、肩開き、成形品取り出しを行う。同様にして樹脂「2」~「7」について図13(b)~(p)で二回目の樹脂付与、型締め、光照射、型開き、成形品取り出しの各工程を行い、樹脂「1」~「7」に対応する成形品を得ることができる。
 上記工程の間、図13(a)~(p)で樹脂「8」~「14」を付与し、以下同様にして型締め、光照射、型開きの各工程を行い、次に、図13(q)でキャリアCY(図2)のみ半ピッチ回転させて、第1の型セットIの樹脂「8」~「14」から形成された各中間生成物INT(図2)を、開いた状態の隣接する各第2の型セットIIに位置させ、樹脂「8」について二回目の樹脂付与を行い、以下同様にして、型締め、光照射、型開き、成形品取り出しの各工程を行う。同様の工程を繰り返して樹脂、「8」~「14」に対応する成形品を得ることができる。
 以上のように、図12,図13の例では、2回転で成形品7個を製造することができる。
 図7は、ロボットRBにより光学素子OEを取り出す各工程を示す図である。ロボットRBは、不図示の駆動部により移動可能に保持された中空のチューブTBの閉じた先端に、中空の球形又は半球形の吸着部VPを、軸線直交方向に開口するようにして配置してなる。チューブTBの他端は、低圧源と大気とを選択的に切り換えるバルブ(不図示)を介して接続されている。
 図7(a)において、ロボットRBは、離間した第2の型セットMD2A、MD2Bの間であって、キャリヤCYの開口CYaの大径側に進入し、移動してきた開口CYaに同期して、キャリヤ吸着部VPを光学素子OEの光学面に接近させ、低圧源側にバルブを開く。これによりチューブTB及び吸着部VP内の空気が吸引され、吸着部VPは光学素子OEの光学面に密着する。
 かかる状態で、チューブTBを下方(下型MD2B側)に移動させると、図7(b)に示すように、吸着部VPに密着した光学素子OEがキャリヤの開口CYaから引き出されることとなる。開口CYaの内径は,上方側より下方側が大きくなっている(図3参照)ので、光学素子OEの引き抜きは容易に行われる。
 その後、ロボットRBは、第2の型セットMD2A、MD2Bの間から半径方向に退避し、トレイTRの上方にて、図7(c)に示すように、チューブTBの軸線回りに反転する。これにより吸着部VPが下方を向くので、バルブを大気側に開き吸着部VP内を大気圧に近づけることで、吸着部VPに吸着していた光学素子OEが離れてトレイTR上に移動する。トレイTRは、後工程へと光学素子OEを搬送するようになっている。一方、光学素子OEを離脱したロボットRBは、元通り反転した後、図7(a)に示すように、離間した第2の型セットMD2A、MD2Bの間へと進入して、次の光学素子OEを取り出すタイミングを待つ。なお、ロボットRBを回転させずに、別の吸着部へと光学素子OEを引き渡すようにしても良い。
 図8は、変形例にかかるロボットRBとコンベヤCVにより光学素子OEを取り出す各工程を示す図である。ロボットRBは、不図示の駆動部により上下移動可能に保持された中空のチューブTBの閉じた先端に、中空の球形又は半球形の吸着部VPを、下方に開口するようにして配置してなる。チューブTBの他端は、低圧源と大気とを選択的に切り換えるバルブ(不図示)を介して接続されている。コンベヤCVは、一対のロールRL(片方のみ図示)と、ロールRLに掛け渡されたベルトBLとからなり、キャリヤCYの開口CYaの下方に配置されてなる。コンベヤCVの代わりにトレイを用いても良い。本変形例では、ロボットRBとコンベヤCVは、第2の型セットMD2A、MD2Bの間に位置固定された状態である。
 図8(a)において、ロボットRBは、離間した第2の型セットMD2A、MD2Bの間で、移動してきた開口CYaに同期して下降し、吸着部VPを光学素子OEの光学面に接近させ、低圧源側にバルブを開く。これによりチューブTB及び吸着部VP内の空気が吸引され、吸着部VPは光学素子OEの光学面に密着する。
 かかる状態で、チューブTBを更に下方に移動させると、図8(b)に示すように、光学素子OEがキャリヤの開口CYaから下方に押し出されるが、吸着部VPに密着しているので落下することはない。
 その後、ロボットRBは更に下降し、コンベヤCVのベルトBLに近接した時点で、バルブを大気側に開き吸着部VP内を大気圧に近づけることで、吸着部VPに吸着していた光学素子OEがベルトBL上に移動する。その後、ローラRLが回転することで、ベルトBLは後工程へと光学素子OEを搬送する。一方、光学素子OEを切り離したロボットRBは、元通り、図8(a)に示すように,キャリヤCYの移動を妨げない位置まで上昇し、次の光学素子OEを取り出すタイミングを待つ。なお、ロボットRBを、光学面を吸着するタイプとしたが、光学素子OEを機械的に保持するタイプ、又は吸着と機械式を併用したタイプでも良い。
 光学素子OEを取り出した後、図4(j)に示すように、全ての第1の型セットMD1A,MD1Bと、第2の型セットMD2A,MD2Bを離間させた状態で、第1円盤DC1と第2円盤DC2を静止させたままキャリヤCYを半ピッチ分だけ独立して回転させることで、図4(a)に示す状態に戻る。以降、同じ工程を繰り返すことで、連続して光学素子の成形を行える。
 本実施形態によれば、第1の光硬化性樹脂PL1を用いて、第1の型セットMD1A,MD1Bにより中間生成物INTを転写成形した後に、キャリヤCYと、第1の円盤DC1及び第2の円盤DC2とを相対回動させ、この中間生成物INT上に、第2の光硬化性樹脂PL2を用いて第2の型セットMD2A,MD2Bにより転写成形することで、異なる素材からなる2層の貼り合わせレンズとしての光学素子OEを連続的に形成できる。これにより多機能で高精度を有する光学素子OEを低コストで大量生産することが可能になる。特に複雑な非球面形状であっても隙間を介在させることなく,異なる樹脂を密着させることができ、高い光学性能を確保できる。
 図5は、別の実施形態にかかる光学素子の成形工程を説明するための図である。本実施の形態では、第1の型セットMD1A,MD1Bと第2の型セットMD2A,MD2Bに加え、第3の型セットMD3A,MD3Bを用いる。尚、型セットの置換方法は、上述した実施形態と同様である。
 まず、図5(a)に示すように、上述した実施の形態と同様にして、第1の光硬化性樹脂PL1を用いて、第1の型セットMD1A,MD1Bにより転写成形を行って第1の中間生成物INTを形成し、次いで、図5(b)に示すように、第1の中間生成物INTの両面に第2の光硬化性樹脂PL2を付与した後、第2の型セットMD2A,MD2Bにより転写成形を行って、第1の中間生成物INT上に樹脂層を設けて第2の中間生成物INT’を形成する(図5(c))。
 その後、図5(d)に示すように、第2の中間生成物INT’の両面に第3の光硬化性樹脂PL3を付与した後、図5(e)に示すように、第3の型セットMD3A,MD3Bにより転写成形を行って、第2の中間生成物INT’上に別の樹脂層を設けて、3層の貼り合わせレンズとしての光学素子OEを形成する(図5(f))。
 図6は、別の実施形態にかかる型セットの駆動機構を示す図であるが、第1の円盤と第2の円盤は省略している。本実施の形態では、型セットを駆動するために、駆動軸の代わりに、一対のレールRL1,RL2と、レールRL1,RL2に沿って転動する車輪RG1,RG2を設けている。このようにレールRL1,RL2を用いて型締めを行うと、高い保持圧を確保でき、樹脂の漏れなどを効果的に抑制できる。
 より具体的には、上方側の型MD1A,MD2Aは支持部SP1の下端に連結されている。支持部SP1の上端に回転可能に設けられた車輪RG1が、上方のレールRL1に沿って転動可能となっている。上方のレールRL1は、フレームFR1を介して不図示の駆動機構に連結されている。
 一方、下方側の型MD1B,MD2Bは支持部SP2の上端に連結されている。支持部SP2の下端に回転可能に設けられた車輪RG2が、下方のレールRL2に沿って転動可能となっている。下方のレールRL2は、フレームFR2を介して不図示の駆動機構に連結されている。それ以外の構成は、上述した実施の形態と同様である。
 第1の型セットMD1A,MD1Bの型締め動作の際には、第1の円盤と第2の円盤の回転に応じて、第1の型セットMD1A,MD1Bは、図6(a)の右方から左方へと移動するが、レールRL1,RL2は互いに徐々に接近しているので、これに応じて第1の型セットMD1A,MD1Bが互いに接近し、キャリヤCYを挟み込むようにして型締め状態となる。第2の型セットMD2A,MD2Bについても同様である。
 一方、第1の型セットMD1A,MD1B及び第2の型セットMD2A,MD2Bが型締め状態にあると、上述した第5の工程において、第1の円盤と第2の円盤と,キャリヤCYとを相対回動させることが出来ない。そこで、図6(b)に示すように、不図示の駆動部がフレームFR1を介してレールRL1全体を上方へと移動させ、且つフレームFR2を介してレールRL2全体を下方へと移動させる。これにより第1の型セットMD1A,MD1B及び第2の型セットMD2A,MD2Bが互いに離間することで、キャリヤCYが解放されるので、第1の円盤と第2の円盤と,キャリヤCYとを相対回動させることができる。尚、レールRLを固定した上で、支持部SPを伸縮するシリンダ構成とすることで同様な効果を実現できる。
 本実施形態における光学素子の製造方法は、
 閉じた軌跡に沿って移動する、互いに対向する一対の1A型と1B型とからなる第1の型セット及び互いに対向する一対の2A型と2B型とからなる第2の型セットと、各第1の型セット又は各第2の型セットに対応する位置に開口を有し、前記軌跡に沿って前記第1の型セット及び前記第2の型セットに同期して移動することができ、且つ前記第1の型セット及び前記第2の型セットに対して相対移動することができるキャリヤと、を用いて、光学素子を製造する製造方法であって、
 前記軌跡に沿って、第1の処理部と、第2の処理部と、第3の処理部と,第4の処理部とが設けられ、これらの処理部を、前記キャリヤとともに前記第1の型セットと前記第2の型セットとが移動するようになっており、
 前記第1の処理部において、前記1A型と前記1B型との間に第1のエネルギー硬化性樹脂を付与することにより、前記キャリヤの開口内に前記第1のエネルギー硬化性樹脂を配置する第1工程と、
 前記第2の処理部において、前記1A型と前記1B型とを、前記キャリヤを介在させて型締めする第2工程と、
 前記第3の処理部において、前記キャリヤの開口内に付与された前記第1のエネルギー硬化性樹脂にエネルギーを付与して硬化させ中間生成物を形成する第3工程と、
 前記第4の処理部において、前記1A型と前記1B型とを型開きする第4工程と、
 前記軌跡に沿って前記第1の型セット及び前記第2の型セットに対して、前記中間生成物とともに前記キャリヤを相対移動させる第5工程と、
 前記第1の処理部において、前記2A型と前記2B型との間に変位した前記中間生成物に重ねて第2のエネルギー硬化性樹脂を付与する第6工程と、
 前記第2の処理部において、前記2A型と前記2B型とを、前記キャリヤを介在させて型締めする第7工程と、
 前記第3の処理部において、前記キャリヤの開口内に付与された前記第2のエネルギー硬化性樹脂にエネルギーを付与して硬化させる第8工程と、
 前記第4の処理部において、前記2A型と前記2B型とを型開きする第9工程と、
 前記キャリヤの開口より前記第1エネルギー硬化性樹脂と前記第2のエネルギー硬化性樹脂を積層してなる光学素子を取り出す第10工程とを有する。
 また、本実施形態による光学素子の製造装置は、
 第1の型セットにおける互いに対向する一対の1A型と1B型とを接近又は離間可能に配置した第1の基板と、
 第2の型セットにおける互いに対向する一対の2A型と2B型とを接近又は離間可能に配置した第2の基板と、
 各第1の型セット又は各第2の型セットに対応する位置に開口を有し、前記第1の基板及び前記第2の基板に同期して回転移動することができ、且つ前記第1の基板及び前記第2の基板に対して相対移動することができるキャリヤと、を有する、光学素子を製造する製造装置であって、
 第1の処理部と、第2の処理部と、第3の処理部と,第4の処理部とが設けられ、これらの処理部を、前記キャリヤとともに前記第1の型セットと前記第2の型セットとが移動するようになっており、
 前記第1の処理部において、前記1A型と前記1B型との間に第1のエネルギー硬化性樹脂を付与することにより、前記キャリヤの開口内に前記第1のエネルギー硬化性樹脂を配置し、
 前記第2の処理部において、前記1A型と前記1B型とを、前記キャリヤを介在させて型締めし、
 前記第3の処理部において、前記キャリヤの開口内に付与された前記第1のエネルギー硬化性樹脂にエネルギーを付与して硬化させ中間生成物を形成し、
 前記第4の処理部において、前記1A型と前記1B型とを型開きし、
 前記軌跡に沿って前記第1の型セット及び前記第2の型セットに対して、前記中間生成物とともに前記キャリヤを相対移動させ、
 前記第1の処理部において、前記2A型と前記2B型との間に変位した前記中間生成物に重ねて第2のエネルギー硬化性樹脂を付与し、
 前記第2の処理部において、前記2A型と前記2B型とを、前記キャリヤを介在させて型締めし、
 前記第3の処理部において、前記キャリヤの開口内に付与された前記第2のエネルギー硬化性樹脂にエネルギーを付与して硬化し、
 前記第4の処理部において、前記2A型と前記2B型とを型開きし、
 前記キャリヤの開口より前記第1エネルギー硬化性樹脂と前記第2のエネルギー硬化性樹脂を積層してなる光学素子を取り出す。
 本発明は、本明細書に記載の実施形態に限定されるものではなく、他の実施形態・変形例を含むことは、本明細書に記載された実施形態や技術思想から本分野の当業者にとって明らかである。
A      第1の処理部
B      第2の処理部
C      第3の処理部
D      第4の処理部
CY     キャリヤ
CYa    開口
DC1    第1の円盤
DC1a   円形開口
DC2    第2の円盤
DC2a   円形開口
DS1    駆動軸
DS2    駆動軸
DSP    ディスペンサ
MD1A,MD2A   上型
MD1Aa,MD2Aa 転写面
MD1B,MD2B   下型
MD1Ba、MD2Ba 転写面
OE     光学素子
OPS    光源
PL1    第1の熱硬化性樹脂
PL2    第2の熱硬化性樹脂
PL3    第3の熱硬化性樹脂
SFT    回転軸
ST     段部

Claims (7)

  1.  互いに対向する一対の1A型と1B型を有する第1の型セットと、
     互いに対向する一対の2A型と2B型を有する第2の型セットと、
     前記第1の型セット及び前記第2の型セットに対応する位置に開口を有し、前記第1の型セット対及び前記第2の型セットに対して相対移動することができるキャリヤと、を用いて光学素子を製造する製造方法であって、
     前記第1の型セットと前記第2の型セットを交互に配置し、
     前記第1の型セットに第1のエネルギー硬化性樹脂を供給した後、エネルギーを付与して硬化させることにより、前記キャリヤの開口内に中間生成物を形成し、
     前記中間生成物が、前記第2の型セットの位置になるように前記キャリヤ、または前記第1の型セット及び前記第2の型セットを移動させ、
     前記2A型と前記2B型との間に前記中間生成物に重ねて第2のエネルギー硬化性樹脂を付与して硬化させる光学素子の製造方法。
  2.  前記第1の型セット及び前記第2の型セットに対して前記キャリヤを相対移動させる間は、前記1A型と前記1B型、及び前記2A型と前記2B型の全てが型開き状態に維持される請求項1に記載の光学素子の製造方法。
  3.  前記第1の型セットと前記第2の型セットは閉じた軌跡に沿って移動する請求項1又は2に記載の光学素子の製造方法。
  4.  前記閉じた軌跡は円形である請求項3に記載の光学素子の製造方法。
  5.  前記第1のエネルギー硬化性樹脂及び前記第2のエネルギー硬化性樹脂についての供給及び硬化がそれぞれ共通の位置で行われる請求項1~4のいずれかに記載の光学素子の製造方法。
  6.  前記キャリヤの開口には段差が形成されている請求項1~5のいずれかに記載の光学素子の製造方法。
  7.  互いに対向する一対の1A型と1B型を有する第1の型セットと、
     互いに対向する一対の2A型と2B型を有する第2の型セットと、
     前記第1の型セット及び前記第2の型セットに対応する位置に開口を有し、前記第1の型セット対及び前記第2の型セットに対して相対移動することができるキャリヤと、を有する光学素子の製造装置であって、
     前記第1の型セットと前記第2の型セットを交互に配置し、
     前記第1の型セットに第1のエネルギー硬化性樹脂を供給した後、エネルギーを付与して硬化させることにより、前記キャリヤの開口内に中間生成物を形成し、
     前記中間生成物が、前記第2の型セットの位置になるように前記キャリヤ、または前記第1の型セット及び前記第2の型セットを移動させ、
     前記2A型と前記2B型との間に前記中間生成物に重ねて第2のエネルギー硬化性樹脂を付与して硬化させる光学素子の製造装置。
PCT/JP2014/079556 2013-11-08 2014-11-07 光学素子の製造方法及び光学素子の製造装置 WO2015068796A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013231688 2013-11-08
JP2013-231688 2013-11-08

Publications (1)

Publication Number Publication Date
WO2015068796A1 true WO2015068796A1 (ja) 2015-05-14

Family

ID=53041571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079556 WO2015068796A1 (ja) 2013-11-08 2014-11-07 光学素子の製造方法及び光学素子の製造装置

Country Status (1)

Country Link
WO (1) WO2015068796A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280824A (ja) * 1991-03-06 1992-10-06 Canon Inc 光学素子の製造装置
JPH07290587A (ja) * 1994-04-27 1995-11-07 Canon Inc 光学素子の成形方法
US6042754A (en) * 1998-10-30 2000-03-28 Optima, Inc. Continuous extrusion-compression molding process for making optical articles
JP2003534943A (ja) * 2000-05-26 2003-11-25 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド 複合眼鏡レンズの自動製造装置
JP2007147679A (ja) * 2005-11-24 2007-06-14 Nikon Corp 光学素子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280824A (ja) * 1991-03-06 1992-10-06 Canon Inc 光学素子の製造装置
JPH07290587A (ja) * 1994-04-27 1995-11-07 Canon Inc 光学素子の成形方法
US6042754A (en) * 1998-10-30 2000-03-28 Optima, Inc. Continuous extrusion-compression molding process for making optical articles
JP2003534943A (ja) * 2000-05-26 2003-11-25 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド 複合眼鏡レンズの自動製造装置
JP2007147679A (ja) * 2005-11-24 2007-06-14 Nikon Corp 光学素子の製造方法

Similar Documents

Publication Publication Date Title
US9604402B2 (en) Transfer device and molded material
WO2015107066A1 (en) Additive manufacturing system for manufacturing a three dimensional object
JP5546066B2 (ja) 転写システムおよび転写方法
TWI532583B (zh) 轉印設備及導光膜片的製造方法
WO2014010516A1 (ja) インプリント方法、及びインプリント装置
TWI554411B (zh) 轉印裝置、被成形體及轉印方法
JP2009023353A (ja) 造形方法、造形物の製造方法及び造形装置
WO2015068796A1 (ja) 光学素子の製造方法及び光学素子の製造装置
JP2004299382A (ja) プラスチック積層体及びその製造方法並びに背面投影型画像表示装置
WO2014175059A1 (ja) 光学素子の製造方法及び光学素子の製造装置
JP2007212547A (ja) 光学素子の製造方法および光学素子
JP5503115B2 (ja) 造形物の製造方法及び造形物製造システム
JP6465021B2 (ja) 光学素子の製造方法
JP4612801B2 (ja) 金型および複合光学素子の製造方法ならびに複合光学素子
KR20190024702A (ko) 형틀을 사용하여 기판 상의 조성물을 성형하는 성형 장치 및 물품의 제조 방법
JP2011062962A (ja) 積層光学部品の製造装置
JP5931650B2 (ja) 転写装置および転写方法
WO2015068795A1 (ja) 樹脂成形品の製造方法及び樹脂成形品
JP5608402B2 (ja) 複合光学素子の製造方法及びその製造装置
WO2015072508A1 (ja) 光学素子の製造方法及び光学素子
JP6447817B2 (ja) 成形方法及び成形品
JP2014226845A (ja) 光学素子の製造方法及び光学素子の製造装置
JPH03208615A (ja) 複合型光学素子の製造方法および装置
JP4481531B2 (ja) 光学素子
JP5768300B2 (ja) スタンプ作製方法及びスタンプ作製装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14860217

Country of ref document: EP

Kind code of ref document: A1