WO2015066957A1 - 钢化真空玻璃的生产方法 - Google Patents

钢化真空玻璃的生产方法 Download PDF

Info

Publication number
WO2015066957A1
WO2015066957A1 PCT/CN2013/090313 CN2013090313W WO2015066957A1 WO 2015066957 A1 WO2015066957 A1 WO 2015066957A1 CN 2013090313 W CN2013090313 W CN 2013090313W WO 2015066957 A1 WO2015066957 A1 WO 2015066957A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
tempered
wave infrared
short
lead
Prior art date
Application number
PCT/CN2013/090313
Other languages
English (en)
French (fr)
Inventor
王辉
徐志武
化山
刘成伟
Original Assignee
青岛亨达玻璃科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛亨达玻璃科技有限公司 filed Critical 青岛亨达玻璃科技有限公司
Priority to AU2013404793A priority Critical patent/AU2013404793B2/en
Priority to KR1020167015330A priority patent/KR20160105397A/ko
Priority to JP2016530968A priority patent/JP2016536255A/ja
Priority to EP13897220.3A priority patent/EP3070060A4/en
Publication of WO2015066957A1 publication Critical patent/WO2015066957A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/20Uniting glass pieces by fusing without substantial reshaping
    • C03B23/24Making hollow glass sheets or bricks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/6612Evacuated glazing units
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66304Discrete spacing elements, e.g. for evacuated glazing units
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/677Evacuating or filling the gap between the panes ; Equilibration of inside and outside pressure; Preventing condensation in the gap between the panes; Cleaning the gap between the panes
    • E06B3/6775Evacuating or filling the gap during assembly
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/673Assembling the units
    • E06B3/67326Assembling spacer elements with the panes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/249Glazing, e.g. vacuum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Definitions

  • the present invention relates to the field of vacuum glass manufacturing technology, and more particularly to a method for producing tempered vacuum glass. Background technique
  • the vacuum glass is to seal the two sheets of flat glass, evacuate the gap and seal the suction holes. Since the two sheets of flat glass constituting the vacuum glass are very thin, in order to achieve the balance of the pressure inside and outside the flat glass, a support point is often added between the two flat glass sheets to support the pressure of the glass under external atmospheric pressure, and the working principle thereof is The insulation principle of the thermos is similar.
  • tempered glass is used as two flat glass materials constituting vacuum glass.
  • long-wave infrared heating is usually used to heat lead-free low-melting glass powder, so that lead-free low-melting glass powder is melted to seal two.
  • the gap between the tempered glass but because of the high absorption rate of the long-wave infrared rays by the glass, the heating method will cause the surface temperature of the tempered glass to reach the annealing temperature of the tempered glass, and the tempered glass will be annealed into ordinary glass, in order to control the tempered glass.
  • the surface temperature is lower than the annealing temperature of the tempered glass, and the time for heating the glass powder containing the lead-free low-melting point is about 12 hours. The excessive heating time causes the production efficiency of the vacuum glass to be low.
  • an object of the present invention is to provide a method for producing a tempered vacuum glass which can shorten the time for tempering glass edge sealing without ensuring that the tempered glass is not annealed.
  • the method for producing tempered vacuum glass comprises the following steps:
  • Vacuuming The gap between the two sealed tempered glass is baked and pumped by a vacuuming device to form a tempered vacuum glass, and the venting holes on the tempered vacuum glass are sealed.
  • the application of the evacuable getter can effectively improve the life of the product and the transparency of the glass.
  • FIG. 1 is a schematic view showing a processing flow of a tempered vacuum glass according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a tempered vacuum glass according to an embodiment of the present invention.
  • Figure 3 is a cross-sectional view taken along line A-A of Figure 2;
  • Figure 4 is a partial enlarged view of Figure 3;
  • Figure 5 is a cross-sectional view taken along line BB of Figure 4 .
  • the reference numerals include: edge seal 1, support point 2, cavity 3, flat glass 4, air vent 5, evapotranspiration getter 6, flat glass 7, and sealing hole 8.
  • flat glass After the flat glass is tempered or over-tempered, it becomes tempered glass or over-tempered glass.
  • flat glass, tempered glass and over-tempered are the names of the same glass in different treatment processes. Therefore, for the convenience of expression.
  • the reference numerals of the flat glass, the tempered glass, and the over-tempered glass are the same.
  • Fig. 1 shows a processing flow of a tempered vacuum glass according to the present invention
  • Figs. 2 to 5 respectively show the structure of a tempered vacuum glass according to an embodiment of the present invention.
  • the method for producing tempered vacuum glass comprises the following method steps:
  • the support points are printed or dispensed on the surface of the flat glass 7 and the surface of the support points is cured.
  • the lead-free and cadmium-free high temperature resistant glass glaze can be uniformly dispersed and printed on the surface of the over-tempered glass by a screen printing method to form a support point having a design height and an area.
  • the support point 2 is formed on at least one surface of the flat glass, and the lead-free and cadmium-free high temperature resistant glass glaze is uniformly dispersed and printed on the upper surface of the flat glass 7 by screen printing to form a support.
  • Point 2 is formed on at least one surface of the flat glass, and the lead-free and cadmium-free high temperature resistant glass glaze is uniformly dispersed and printed on the upper surface of the flat glass 7 by screen printing to form a support. Point 2.
  • the high temperature resistant glass glaze can withstand temperatures above 580 ° C, close to the color of the glass body, and has a good light transmission effect.
  • the existing support points usually adopt metal supports, have high thermal conductivity, and have obvious visual effects and are easy to move.
  • the invention adopts ceramics, glass, ink or other inorganic non-metal materials, and has low thermal conductivity. Other coating methods such as glue dispensing, dispensing or printing are directly bonded to the glass and do not move.
  • the inorganic non-metallic materials are transparent or translucent, and the visual effect is good.
  • the flat glass 7 forming the support point 2 is naturally dried or sent to a drying oven for drying to form a support point 2 having a design height and an area. Usually, it is naturally dried for more than 1 hour, and dried in a drying oven at 120 ° C for about 15 minutes, and the support point 2 can be fixed on the flat glass 7.
  • S120 The flat glass is over-tempered.
  • the flat glass 7 on which the tempered vacuum glass is produced is sent to a continuous tempering furnace for tempering treatment to form tempered glass.
  • the specific tempering process is as follows:
  • the flat glass 7 is heated into the tempering furnace from room temperature. Since the glass is a poor conductor of heat, the inner layer temperature is low, the outer layer temperature is high, the outer layer begins to swell, and the inner layer is not expanded, so the expansion of the outer layer is received at this time. The suppression surface of the layer produces temporary compressive stress, and the center layer is tensile stress. Due to the high compression resistance of the glass, the glass does not break even though it is heated rapidly.
  • the flat glass 7 is fed into the furnace. Because of the temperature difference between the inner and outer layers of the flat glass 7, the inner and outer layers of the glass are stressed. Therefore, the thick glass should be heated slowly and the temperature is lower. Otherwise, the temperature difference between the inside and the outside is too large. The flat glass 7 is caused to rupture in the tempering furnace.
  • the flat glass 7 continues to be heated, and the temperature difference between the inner and outer layers of the flat glass 7 continues to shrink, and when the inner and outer layers reach the tempering temperature, the heating is stopped.
  • the flat glass 7 is blown into the wind grid by the tempering furnace.
  • the surface layer temperature drops below the center temperature, the surface begins to shrink, and the center layer does not shrink. Therefore, the shrinkage of the surface layer is suppressed by the center layer, and the surface layer is temporarily tensilely stressed.
  • the layer forms a compressive stress.
  • the inner and outer layers of the flat glass 7 are further quenched, the surface layer of the flat glass 7 is hardened, and the shrinkage is stopped. At this time, the inner layer starts to cool and shrink, and the hardened surface layer suppresses the shrinkage of the inner layer, and as a result, compressive stress is generated in the surface layer. , and the tensile stress is formed in the inner layer.
  • the temperature of the inner and outer layers of the flat glass 7 is further lowered.
  • the compressive stress of the outer layer and the tensile stress of the inner layer are basically formed, but the central layer is still relatively soft and has not completely escaped from the viscous flow state, so it is not the final stress state. f, over tempered finish
  • the inner and outer layers of the flat glass 7 are completely tempered, the temperature difference between the inner and outer layers is reduced, and the final stress of the flat glass 7 is formed, that is, the outer surface is compressive stress, the inner layer is tensile stress, and the flat glass is changed into tempered glass.
  • the over-tempered glass 7 having the support point 2 is sent to a homogenizing furnace for hot dip treatment, and the homogenizing furnace is heated by convection, so that the hot air flow is parallel to the surface of the tempered glass 7, and should not be due to the tempered glass.
  • the crushing is hindered, and the hot dip process includes three stages of heating, holding and cooling.
  • the warming phase begins at the ambient temperature at which the tempered glass 7 is located, and ends at the time when the surface temperature of the tempered glass 7 reaches 280 °C.
  • the temperature in the furnace may exceed 300 °C, and keep the temperature of the glass surface below 320 °C.
  • the glass surface temperature should be shortened as much as 300 °C.
  • the holding phase begins at a temperature of 280 °C when the surface temperature of the tempered glass 7 is at least 2 hours. During the entire incubation period, ensure that the temperature of the glass surface is maintained within 290 °C ⁇ 10 °C.
  • the insulation phase After the insulation phase is completed, it begins to enter the cooling phase. During this cooling phase, the temperature of the tempered glass 7 drops to ambient temperature. When the furnace temperature drops to 70 ° C, the cooling phase is considered to be terminated. During the cooling process, the cooling rate should be controlled to minimize the damage caused by the thermal stress of the glass.
  • the tempering treatment is to prepare the two pieces of tempered glass to be finally sealed to form vacuum glass.
  • the surface stress of the tempered glass without hot dip is greater than 90 MPa, and the surface stress of the tempered glass is significantly lower after the existing hot dip treatment.
  • the surface stress of the formed tempered glass is 110 MPa to 130 MPa, and therefore, the tempered glass is subjected to the hot dip treatment of the present invention. Even if the surface stress is slightly reduced, the relevant tempering parameters are slightly higher than ordinary tempered glass, which can meet the need of reheating in the subsequent sealing method.
  • the tempered glass 4 drilled with the vent holes is also prepared by the above method. If the properties of the two tempered glass are different, the venting holes 5 are usually set on a piece of tempered glass having a lower price, and A glass tube for suction (not shown) is inserted into the air vent 5 of the tempered glass 4.
  • a piece of untempered glass of unprinted support point 2 is bonded to one side of the printed support point of the over-tempered glass printed with the support point 2; wherein the unsupported point is overprinted on the tempered glass
  • a suction hole is provided to evacuate the sealed space after sealing.
  • a piece of over-tempered glass 4 drilled with the suction holes 5 is placed on the side of the prepared tempered glass 7 with support points to form the support point 2.
  • the suction holes on the over-tempered glass printed with the support points (including the case where two pieces of over-tempered glass are used to make the support point 2), but the production cost of the over-tempered glass printed with the support point 2 is higher than that of the non-tempered glass.
  • the over-tempered glass with the support point 2 is printed.
  • At least one sheet of the vaporized getter 6 is also built in the corners of the two sheets of tempered glass.
  • the evapotranspiration getter is a bismuth aluminum getter that not only has good suction performance, but also improves the transparency of the glass.
  • a lead-free low-melting glass powder containing a short-wave infrared absorbing material is applied around the gap between the two bonded tempered glass, and then sent to the edge-sealing furnace to use short-wave infrared heating to make the lead-free low-infrared absorbing material low.
  • the melting point glass frit is melted to seal the gap between the two sheets of bonded tempered glass.
  • a lead-free low-melting glass powder containing a short-wave infrared absorbing material is applied around the gap between the two tempered glass and the periphery of the venting hole 5, and then sent to an edge-sealing furnace for heating, when heated.
  • the lead-free low-melting glass powder containing the short-wave infrared absorbing material begins to melt.
  • the lead-free low-melting glass powder containing the short-wave infrared absorbing material is completely melted, it is kept for 2 minutes to complete the sealing 1 and the sealing 8 .
  • the main components of lead-free low-melting glass powder containing short-wave infrared absorbing materials are: Component ACGIH
  • Magnesium oxide 10mg/m TWA represent the two US Environmental Sanitation Departments, which contain international standards for lead-free low-melting glass powder absorbing short-wave infrared materials, and do not pollute the environment.
  • the lead-free low-melting glass powder absorbing the short-wave infrared material has a coefficient of expansion of 70 to 99, and the minimum melting temperature of the lead-free low-melting glass powder containing the short-wave infrared absorbing material is 430 °C.
  • the lead-free low-melting glass powder is incorporated into a material that absorbs short-wave infrared rays, and can reach the melting point of the lead-free low-melting glass powder more quickly during heating, so that the lead-free low-melting glass powder is rapidly melted. Shorten the time to heat the lead-free low-melting glass frit.
  • the time for using long-wave infrared heating of lead low-melting glass frit is about 12 hours, and the short-wave infrared heating of lead low-melting glass powder containing short-wave infrared material is about fifteen minutes. It has been proved that the edge sealing material used in the invention can greatly shorten the sealing time of the tempered glass, thereby effectively improving the production efficiency of the vacuum glass.
  • the surface stress of the over-tempered glass is lowered due to reheating, and the tempered glass is changed into tempered glass.
  • the gap between the two sealed tempered glass is baked and evacuated by a vacuuming device to form a tempered vacuum glass, and the vent hole on the tempered vacuum glass is sealed.
  • the cavity 3 of the tempered glass which is sintered together in the edge sealing furnace is baked and evacuated by means of a vacuuming device, and then the suction holes 5 on the tempered glass 4 are sealed by a planar sealing process.
  • the suction hole 5 sealing surface is lower than the outer plane of the flat glass 4.
  • the existing glass tube seal is similar to the small tail exposed by the enamel bottle.
  • basically the glass tube is about 1 cm higher than the surface of the flat glass, and the metal is prevented from colliding after completion.
  • Protective cap In order to facilitate the melting of the glass tube and the sintering of the flat glass, basically the glass tube is about 1 cm higher than the surface of the flat glass, and the metal is prevented from colliding after completion. Protective cap.
  • the invention adopts the following flat sealing method:
  • an air vent 5 is drilled inwardly, and the air vent 5 is composed of a small hole and a large hole, and the small hole is drilled first, and the diameter thereof is the same as the diameter of the glass tube.
  • the end is in the large hole, and the upper end surface (sealing hole 8) (see FIG. 3) after the air vent 5 is sealed is lower than the upper surface of the tempered glass 4.
  • the existing glass tube sealing method adopts infrared light focusing glass tube sealing, which is characterized by sealing
  • the glass tube protrudes from the glass surface and needs to be protected by a protective cap.
  • This method is easy to damage when the glass is installed or transported, and the protective cap has obvious visual effects.
  • the flat sealing method adopted in this patent adopts a circular square or other shape glass piece or a metal piece.
  • the glass surface has no protrusions after sealing in a special manner, and the visual effect is good; the side sealing method can also be adopted, and the side sealing method is to take the air suction pipe.
  • the edge of the glass it is hidden in the window frame when the glass is installed, which is good for protecting the suction pipe, and the visual effect is good.
  • the two sheets of flat glass 4 and 7 constituting the vacuum in the present invention are first subjected to a single sheet over-tempering treatment.
  • the glass powder used for sealing has a higher melting point of 450 ° C or higher.
  • the tempering temperature should be above 600 ° C, which is equivalent to melting the glass powder after sealing;
  • the glass 4 and 7 are first tempered, and the tempering annealing temperature is about 400 ° C.
  • the tempered glass is annealed.
  • a new lead-free glass powder containing a short-wave infrared absorbing material with a low melting point of about 350 ° C solves this dilemma.
  • the two tempered glass 4 and 7 are made of lead-free low-melting glass containing a short-wave infrared absorbing material. The degree of tempering is maintained after the powder is sealed.
  • the production method of the tempered vacuum glass according to the present invention is described by way of example with reference to the accompanying drawings. However, it will be understood by those skilled in the art that various improvements can be made to the production method of the tempered glass of the present invention as set forth above without departing from the scope of the present invention. Therefore, the scope of protection of the present invention should be determined by the content of the appended claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

一种钢化真空玻璃的生产方法,包括:制作支撑点(2)、平板玻璃(4、7)的过钢化处理、复合、密封、抽真空五个步骤,其中的密封步骤中,在两片相互结合的过钢化玻璃(4、7)之间的间隙(3)四周涂布含有吸收短波红外线材料的无铅低熔点玻璃粉,然后送入封边炉采用短波红外线加热方式使含有吸收短波红外线材料的无铅低熔点玻璃粉熔化,以密封两片相互结合的过钢化玻璃(4、7)之间的间隙(3)。采用上述方法能缩短钢化真空玻璃在封边过程中的加热时间,同时保证其钢化强度。

Description

钢化真空玻璃的生产方法
技术领域
本发明涉及真空玻璃制造技术领域, 更为具体地, 涉及一种钢化真空玻 璃的生产方法。 背景技术
真空玻璃是将两片平板玻璃四周密闭起来, 将其间隙抽成真空并密封抽 气孔。 由于构成真空玻璃的两片平板玻璃很薄, 因此, 为了达到平板玻璃内 外压力的平衡, 往往会在两片平板玻璃之间添加支撑点, 用来支撑玻璃受到 外界大气压的压力, 其工作原理与保温瓶的保温隔热原理类似。
通常采用钢化玻璃作为组成真空玻璃的两片平板玻璃, 在对两片钢化玻 璃进行封边的过程中, 通常采用长波红外线加热无铅低熔点玻璃粉, 使无铅 低熔点玻璃粉熔化以密封两片钢化玻璃的间隙, 但是由于玻璃对长波红外线 的吸收率高, 所以采用这种加热方式会导致钢化玻璃的表面温度达到钢化玻 璃的退火温度, 使钢化玻璃退火变成普通玻璃, 为了控制钢化玻璃的表面温 度低于钢化玻璃的退火温度, 加热含有无铅低熔点玻璃粉的时间为十二小时 左右, 过长的加热时间导致真空玻璃的生产效率偏低。 发明内容
鉴于上述问题, 本发明的目的是提供一种钢化真空玻璃的生产方法, 在 保证钢化玻璃不退火的情况下缩短钢化玻璃封边的时间。
本发明提供的钢化真空玻璃的生产方法, 包括以下步骤:
1 ) 制作支撑点: 在平板玻璃表面印刷支撑点并使支撑点表面固化;
2) 平板玻璃过钢化处理: 将制作钢化真空玻璃的平板玻璃送入连续式钢 化炉进行过钢化处理, 形成过钢化玻璃;
3 ) 复合: 将一片未印刷支撑点且设置有抽气孔的过钢化玻璃结合在一片 印刷有支撑点的过钢化玻璃的印刷有支撑点的一面; 4) 密封: 在两片相互结合的过钢化玻璃之间的间隙四周涂布含有吸收短 波红外线材料的无铅低熔点玻璃粉, 然后送入封边炉采用短波红外线加热方 式使含有吸收短波红外线材料的无铅低熔点玻璃粉熔化, 以密封两片相互结 合的过钢化玻璃之间的间隙; 同时, 在采用短波红外线加热的过程中, 所述 过钢化玻璃变为钢化玻璃;
5 ) 抽真空: 采用抽真空装置对密封的两片钢化玻璃之间的间隙进行烘烤 和抽气, 形成钢化真空玻璃后, 封接钢化真空玻璃上的抽气孔。 本发明的有益效果是:
1、 保证钢化玻璃的钢化度。
2、 缩短钢化玻璃的封边时间, 提高真空玻璃的生产效率。
3、 无铅玻璃粉的应用, 实现产品的环保无毒, 其低熔点保证生产的低能 耗和高效率。
4、 可蒸散型吸气剂的应用, 有效提高产品的寿命和玻璃的透明度。
5、 采用丝网印刷方式加工玻璃支撑点, 提高生产效率及自动化水平, 可 用于大规模生产, 真空层的厚度也便于调节。
为了实现上述以及相关目的, 本发明的一个或多个方面包括后面将详细 说明并在权利要求中特别指出的特征。 下面的说明以及附图详细说明了本发 明的某些示例性方面。 然而, 这些方面指示的仅仅是可使用本发明的原理的 各种方式中的一些方式。 此外, 本发明旨在包括所有这些方面以及它们的等 同物。 附图说明
通过参考以下结合附图的说明及权利要求书的内容, 并且随着对本发明 的更全面理解, 本发明的其它目的及结果将更加明白及易于理解。 在附图中: 图 1为根据本发明实施例的钢化真空玻璃的加工流程示意图;
图 2为根据本发明实施例的钢化真空玻璃的结构示意图;
图 3是沿图 2中 A-A线的剖视图;
图 4是图 3的局部放大图;
图 5是沿图 4中 B-B线的剖视图。 其中的附图标记包括: 封边 1、支撑点 2、空腔 3、平板玻璃 4、抽气孔 5、 蒸散型吸气剂 6、 平板玻璃 7、 封孔 8。
在所有附图中相同的标号指示相似或相应的特征或功能。 具体实施方式
在下面的描述中, 出于说明的目的, 为了提供对一个或多个实施例的全 面理解, 阐述了许多具体细节。 然而, 很明显, 也可以在没有这些具体细节 的情况下实现这些实施例。
需要说明的是, 平板玻璃经过钢化或者过钢化后变成钢化玻璃或者过钢 化玻璃, 实质上, 平板玻璃、 钢化玻璃和过钢化为同一玻璃在不同处理过程 中的名称, 因此, 为了表述的方便, 在本发明的以下描述中, 平板玻璃、 钢 化玻璃和过钢化玻璃的附图标记相同。
图 1示出了根据本发明的钢化真空玻璃的加工流程,图 2〜图 5分别示出 了根据本发明实施例的钢化真空玻璃的结构。
如图 1〜图 5所示, 本发明提供的钢化真空玻璃的生产方法, 包括以下方 法步骤:
S110: 制作支撑点。
在平板玻璃 7表面印刷或点胶支撑点并使支撑点表面固化。 具体地, 可 以将无铅无镉的耐高温玻璃釉料采用丝网印刷方法均匀分散地印刷在过钢化 玻璃表面, 形成具有设计高度和面积的支撑点。
在制作支撑点的过程中, 至少在一片平板玻璃的表面制作支撑点 2, 将无 铅无镉的耐高温玻璃釉料采用丝网印刷方式均匀分散地印刷在平板玻璃 7 的 上表面, 形成支撑点 2。
其中, 耐高温玻璃釉料能够耐温 580°C以上, 与玻璃本体的颜色接近, 透 光效果好。
现有的支撑点通常采用金属支撑物, 具有较高的热导率, 视觉效果明显, 易移动, 本发明采用陶瓷、 玻璃、 油墨或者其他无机非金属材料, 具有较低 的热导率, 采用喷胶、 点胶式或印刷等其它涂布方式, 直接与玻璃粘结在一 起, 不会移动, 无机非金属材料为透明或者半透明, 视觉效果较好。
支撑点 2 印刷完毕后, 还需要对印刷的支撑点进行固化处理。 具体地, 将形成支撑点 2的平板玻璃 7 自然晾干或送入烘干炉烘干, 形成具有设计高 度和面积的支撑点 2。 通常, 自然晾干在 1小时以上, 在 120°C烘干炉内烘干 约 15分钟, 支撑点 2就能固定在平板玻璃 7上。
S120: 平板玻璃过钢化处理。
将制作钢化真空玻璃的平板玻璃 7送入连续式钢化炉进行过钢化处理, 形成过钢化玻璃。
具体的过钢化过程如下:
a、 开始加热阶段
平板玻璃 7 由室温进入钢化炉加热, 由于玻璃是热的不良导体, 所以此 时内层温度低, 外层温度高, 外层开始膨胀, 内层未膨胀, 所以此时外层的 膨胀受到内层的抑制表面产生了暂时的压应力, 中心层为张应力, 由于玻璃 的抗压缩度高, 所以虽然快速加热 , 玻璃也不会破碎。
但需要注意的是, 平板玻璃 7—进炉, 由于平板玻璃 7内外层有温差造 成了玻璃内外层的应力, 因此, 厚玻璃要加热慢一点, 温度低一点, 否则, 因内外温差太大而造成平板玻璃 7在钢化炉内破裂。
b、 继续加热阶段
平板玻璃 7继续加热, 平板玻璃 7内外层温差继续缩小, 等内外层都达 到钢化温度时, 停止加热。
c、 开始骤冷阶段
平板玻璃 7 由钢化炉进入风栅吹风, 表面层温度下降低于中心温度, 表 面开始收缩, 而中心层没有收缩, 所以表面层的收缩受到中心层的抑制, 使 表面层受到暂时张应力, 中心层形成压应力。
d、 继续骤冷阶段
平板玻璃 7内外层进一步骤冷, 平板玻璃 7表面层已硬化, 停止收缩, 这时内层开始冷却、 收缩, 而硬化了的表面层抑制了内层的收缩, 结果是表 面层产生了压应力, 而在内层形成了张应力。
e、 继续骤冷
平板玻璃 7 内外层温度都进一步降低, 在这个阶段外层的压应力、 内层 的张应力已基本形成, 但是中心层还比较软, 尚未完全脱离粘性流动状态, 所以还不是最终的应力状态。 f、 过钢化完成
这个阶段平板玻璃 7的内外层都完全钢化, 内外层温差缩小, 平板玻璃 7 的最终应力形成, 即外表面为压应力, 内层为张应力, 平板玻璃变为过钢化 玻璃。
为了降低过钢化玻璃的自爆率和提高过钢化玻璃的表面应力, 需要将过 钢化玻璃送入均质炉进行热浸, 由于过钢化玻璃最终要变为钢化玻璃, 而钢 化玻璃自爆机率较高, 所以对过钢化玻璃进行热浸处理尤为重要。
具体地, 将具有支撑点 2的过钢化玻璃 7送入均质炉进行热浸处理, 通 过均质炉采用对流方式加热, 令热空气流平行于过钢化玻璃 7表面, 且不应 由于钢化玻璃的破碎而受到阻碍, 其中的热浸处理过程包括升温、 保温和冷 却三个阶段。
升温阶段开始于过钢化玻璃 7所处的环境温度, 终止于钢化玻璃 7表面 温度达到 280°C的时刻。 炉内温度有可能超过 300 °C, 保持玻璃表面的温度在 320°C以下, 应尽量缩短玻璃表面温度超过 300°C的时间。
保温阶段开始于过钢化玻璃 7表面温度达到 280 °C的时刻,保温时间至少 为 2小时。 在整个保温阶段中, 应确保玻璃表面的温度保持在 290°C±10°C的 范围内。
保温阶段完成后, 开始进入冷却阶段。 在此冷却阶段, 钢化玻璃 7温度 降至环境温度。 当炉内温度降至 70°C时, 可认为冷却阶段终止。 在冷却的过 程中, 应对降温速率进行控制, 以最大限度地减少玻璃由于热应力而引起的 破坏。
过钢化处理是为了将两片钢化玻璃最后密封形成真空玻璃做准备, 通常 而言, 未经热浸处理的钢化玻璃的表面应力大于 90MPa, 钢化玻璃经过现有 的热浸处理后表面应力明显低于 90MPa, 而在本发明中, 由于在钢化过程中 采用了过钢化处理, 所形成的过钢化玻璃的表面应力在 110 MPa〜130MPa, 因此, 该过钢化玻璃经过本发明的热浸处理后, 即使表面应力略有降低, 其 相关钢化参数还是略高于普通的钢化玻璃, 能够满足后续密封方法过程中再 次加热的需要。
钻有抽气孔的过钢化玻璃 4同样采用上述方法制得, 如果这两片过钢化 玻璃的性能有差别, 通常抽气孔 5设在价格较低的一片过钢化玻璃上, 并且, 在过钢化玻璃 4的抽气孔 5内插入抽气用的玻璃管 (图未示出)。
S130: 复合。
在支撑点 2制作完毕后, 将一片未印刷支撑点 2的过钢化玻璃结合在一 片印刷有支撑点 2 的过钢化玻璃的印刷有支撑点的一面; 其中, 未印刷支撑 点的过钢化玻璃上设置有抽气孔, 以便在密封后对密封空间进行抽真空处理。
具体地, 作为示例, 将一片钻有抽气孔 5的过钢化玻璃 4覆置在所制备 的带支撑点的钢化玻璃 7形成支撑点 2的一侧。
当然, 也可以将抽气孔设置在印刷有支撑点的过钢化玻璃上 (包括两片 过钢化玻璃都制作支撑点 2的情况), 但是印刷有支撑点 2的过钢化玻璃的生 产成本高于未印刷有支撑点 2 的过钢化玻璃, 考虑到生产过程中的损耗, 最 好还是将抽气孔设置在未印刷支撑点 2的过钢化玻璃上。
为了提高钢化真空玻璃的透明度和真空性能, 在本发明的一个具体实施 方式中, 还在两片钢化玻璃的角部内置至少一片蒸散型吸气剂 6。蒸散型吸气 剂是一种钡铝吸气剂, 不但吸气性能好, 还能够提高玻璃的透明度。
S140: 密封。
在两片相互结合的过钢化玻璃之间的间隙四周涂布含有吸收短波红外线 材料的无铅低熔点玻璃粉, 然后送入封边炉采用短波红外线加热方式使含有 吸收短波红外线材料的无铅低熔点玻璃粉熔化, 以密封两片相互结合的过钢 化玻璃之间的间隙。
具体地, 作为示例, 将复合的两片钢化玻璃之间的间隙四周及抽气孔 5 周边均涂布含有吸收短波红外线材料的无铅低熔点玻璃粉, 然后送入封边炉 进行加热, 当加热到 430°C时, 含有吸收短波红外线材料的无铅低熔点玻璃粉 开始融化, 当含有吸收短波红外线材料的无铅低熔点玻璃粉完全融化时, 保 温 2分钟, 完成封边 1和封孔 8。
其中, 含有吸收短波红外线材料的无铅低熔点玻璃粉的主要成分为: 组分 ACGIH
氧化锌 2mg/m3 TWA
氧化铋 10mg/m TWA
氧化铝 10mg/m TWA
氧化镁 10mg/m TWA 其中, ACGIH和 TWA代表美国两个环境卫生署, 含有吸收短波红外线 材料的无铅低熔点玻璃粉复合国际规定的标准, 不污染环境。
所述吸收短波红外线材料的无铅低熔点玻璃粉的膨胀系数为 70~99,所述 含有吸收短波红外线材料的无铅低熔点玻璃粉的最低熔化温度为 430°C。
由于玻璃对短波红外线吸收率低, 无铅低熔点玻璃粉掺入吸收短波红外 线的材料能够在加热过程中更加快速地达到无铅低熔点玻璃粉的熔点, 使无 铅低熔点玻璃粉快速融化, 缩短加热无铅低熔点玻璃粉的时间。
根据实际操作经验, 现有采用长波红外线加热铅低熔点玻璃粉的时间为 十二小时左右, 而本实施例采用短波红外线加热含有吸收短波红外线材料的 铅低熔点玻璃粉的时间为十五分钟左右, 事实证明, 本发明采用的这种封边 材料能够大大缩短钢化玻璃的封边时间, 从而有效提高真空玻璃的生产效率。
同时, 在采用短波红外线加热方式加热的过程中, 由于再次加热使得过 钢化玻璃的表面应力下降, 过钢化玻璃变为钢化玻璃。
S150: 抽真空。
采用抽真空装置对上述密封的两片钢化玻璃之间的间隙进行烘烤和抽 气, 形成钢化真空玻璃后, 封接该钢化真空玻璃上的抽气孔。
具体地, 用抽真空装置对封边炉内的烧结在一起的钢化玻璃的空腔 3进 行烘烤和抽气, 然后采用平面熔封工艺封接钢化玻璃 4上的抽气孔 5。抽气孔 5封接面低于平板玻璃 4外侧平面。
现有的玻璃管封口, 类似暧瓶胆外露的小尾巴, 为方便玻璃管熔化及与 平板玻璃的烧结, 基本上玻璃管都高出平板玻璃表面 1 厘米左右, 完工后为 防磕碰再加金属保护帽。
本发明采用如下平封口方式:
在钢化玻璃 4的表平面靠近角部的位置, 向内套钻一个抽气孔 5, 抽气孔 5由一个小孔和一个大孔组成, 先钻透小孔, 其直径与玻璃管直径相同, 再在 小孔基础上套钻一个大孔, 大孔直径应略大于小孔直径, 不钻钢化玻璃 4, 约 占在钢化玻璃 4的 2/3厚度处, 再将玻璃管埋入小孔内, 其末端在大孔内, 抽 气孔 5封接后的上端面 (封孔 8) (参见图 3 ) 低于钢化玻璃 4的上表平面。
玻璃管末端的熔化是常规技术, 在这里不再作详细说明。
现有的玻璃管封口方式采用红外灯聚焦熔融玻璃管封合, 特点是封合后 的玻璃管突出玻璃表面, 需采用保护帽进行保护, 这种方式在玻璃安装或运 输时易损坏, 保护帽视觉效果明显。 本专利采用的平封口方式采用圆形方形 或其他形状玻璃片或者金属片采用特殊方式封合后玻璃表面无突出物, 视觉 效果较好; 也可以采用侧封口方式, 侧封口方式是将抽气管至于玻璃边部, 在玻璃安装时隐藏于窗框中, 利于保护抽气管, 视觉效果较好。
通过以上实施例的表述, 可以看出, 本发明中组成真空的两片平板玻璃 4 和 7要先进行单片过钢化处理。 以前由于封接用的玻璃粉熔点较高, 达 450°C 以上, 如将真空玻璃直接钢化, 钢化温度要到 600°C以上, 等于将封接后玻璃 粉又熔化开了; 如将单片玻璃 4和 7先钢化, 钢化退火温度在 400°C左右, 在 用玻璃粉进行热熔封边时, 等于将钢化过的玻璃又退火了。新的低熔点 350°C 左右的含有吸收短波红外线材料的无铅玻璃粉将这一两难问题解决了, 使两 片钢化后的玻璃 4和 7在用含有吸收短波红外线材料的无铅低熔点玻璃粉封 接后继续保持钢化度。 如上参照附图以示例的方式描述了根据本发明提出的钢化真空玻璃的生 产方法。 但是, 本领域技术人员应当理解, 对于上述本发明所提出的钢化真 空玻璃的生产方法, 还可以在不脱离本发明内容的基础上做出各种改进。 因 此, 本发明的保护范围应当由所附的权利要求书的内容确定

Claims

权 利 要 求 书
1、 一种钢化真空玻璃的生产方法, 包括以下步骤:
1 ) 制作支撑点: 在平板玻璃表面印刷或点胶支撑点并使所述支撑点表面 固化;
2) 平板玻璃过钢化处理: 将完成制作支撑点的平板玻璃送入连续式钢化 炉进行过钢化处理, 形成过钢化玻璃;
3 ) 复合: 将一片未印刷支撑点且设置有抽气孔的过钢化玻璃结合在一片 印刷有支撑点的过钢化玻璃的印刷有支撑点的一面;
4) 密封: 在所述两片相互结合的过钢化玻璃之间的间隙四周涂布含有吸 收短波红外线材料的无铅低熔点玻璃粉, 然后送入封边炉采用短波红外线加 热方式使所述含有吸收短波红外线材料的无铅低熔点玻璃粉熔化, 以密封所 述两片相互结合的过钢化玻璃之间的间隙; 同时, 在采用所述短波红外线加 热的过程中, 所述过钢化玻璃变为钢化玻璃;
5 ) 抽真空: 采用抽真空装置对所述密封的两片钢化玻璃之间的间隙进行 烘烤和抽气, 形成钢化真空玻璃后, 封接所述钢化真空玻璃上的抽气孔。
2、 根据权利要求 1所述的钢化真空玻璃的生产方法, 其中, 在所述密封 的过程中,
所述含有吸收短波红外线材料的无铅低熔点玻璃粉的组分和重量份数 为:氧化锌 22mg/m3、氧化铋 10mg/m3、氧化铝 10mg/m3、氧化镁 10mg/m3 ; 所述含有吸收短波红外线材料的无铅低熔点玻璃粉的膨胀系数为 70~99, 所述含有吸收短波红外线材料的无铅低熔点玻璃粉的最低熔化温度为 430°C。
3、 根据权利要求 1所述的钢化真空玻璃的生产方法, 其中, 在所述密封 的过程中,
采用所述短波红外线加热方式加热所述含有吸收短波红外线材料的无铅 低熔点玻璃粉至 430°C,使所述含有吸收短波红外线材料的无铅低熔点玻璃粉 熔化, 再保温 2分钟。
4、 根据权利要求 1所述的钢化真空玻璃的生产方法, 其中, 在对所述抽 真空的过程中,
采用平面熔封工艺封接所述钢化真空玻璃上的抽气孔; 并且,
所述抽气孔的封接面低于所述钢化真空玻璃的外侧平面。
5、 根据权利要求 1所述的钢化真空玻璃的生产方法, 其中, 在所述复合 的过程中,
在所述两片相互结合的过钢化玻璃的角部内置至少一片蒸散型吸气剂。
6、 根据权利要求 5所述的钢化真空玻璃的生产方法, 其中, 所述蒸散型 吸气剂为铝吸气剂。
PCT/CN2013/090313 2013-11-11 2013-12-24 钢化真空玻璃的生产方法 WO2015066957A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2013404793A AU2013404793B2 (en) 2013-11-11 2013-12-24 Method for manufacturing tempered vacuumed glass
KR1020167015330A KR20160105397A (ko) 2013-11-11 2013-12-24 강화진공유리의 제조방법
JP2016530968A JP2016536255A (ja) 2013-11-11 2013-12-24 強化真空ガラスの製造方法
EP13897220.3A EP3070060A4 (en) 2013-11-11 2013-12-24 Method for manufacturing tempered vacuumed glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310556629.XA CN103588386B (zh) 2013-11-11 2013-11-11 钢化真空玻璃的生产方法
CN201310556629.X 2013-11-11

Publications (1)

Publication Number Publication Date
WO2015066957A1 true WO2015066957A1 (zh) 2015-05-14

Family

ID=50078752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090313 WO2015066957A1 (zh) 2013-11-11 2013-12-24 钢化真空玻璃的生产方法

Country Status (6)

Country Link
EP (1) EP3070060A4 (zh)
JP (1) JP2016536255A (zh)
KR (1) KR20160105397A (zh)
CN (1) CN103588386B (zh)
AU (1) AU2013404793B2 (zh)
WO (1) WO2015066957A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106630568A (zh) * 2016-12-08 2017-05-10 佛山市索奥斯玻璃技术有限公司 一种改进型钢化玻璃风冷风栅条及玻璃冷却方法
CN112028463A (zh) * 2020-08-07 2020-12-04 衡山兄弟金属制品有限公司 一种钢化玻璃的制作方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105384361B (zh) * 2015-12-10 2019-01-18 北京航玻新材料技术有限公司 真空玻璃及其支撑物的制备及布放方法
TWI625316B (zh) * 2016-12-21 2018-06-01 強化真空玻璃的製作方法
CN107793047A (zh) * 2017-11-03 2018-03-13 太仓经济开发区坚毅工艺美术品工作室 真空玻璃的生产方法
WO2020118678A1 (zh) * 2018-12-11 2020-06-18 淄博环能海臣环保技术服务有限公司 双胶粘接密封玻璃间隔腔体真空调控保温玻璃板
US20200217125A1 (en) * 2019-01-04 2020-07-09 Guardian Glass, LLC Internal tube for vacuum insulated glass (vig) unit evacuation and hermetic sealing, vig unit including internal tube, and associated methods
CN111499223A (zh) * 2020-04-24 2020-08-07 李长征 一种钢化真空玻璃及其制作方法
CN113968681A (zh) * 2020-07-23 2022-01-25 青岛达城真空玻璃科技发展有限公司 钢化光伏真空玻璃结构
CN112360303A (zh) * 2020-10-26 2021-02-12 上海耀江建设工程有限公司 一种带有透明支承架的真空玻璃及其制备方法
CN112901031A (zh) * 2021-02-07 2021-06-04 东莞帕萨电子装备有限公司 真空玻璃生产线及加工工艺
CN113202384B (zh) * 2021-04-25 2022-12-16 安徽晶晶玻璃制品有限公司 一种全钢化真空玻璃生产用排气装置及其实施方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101896680A (zh) * 2007-12-14 2010-11-24 格尔德殿工业公司 局部加热真空绝缘玻璃装置的边缘密封物,和/或用于实现该功能的组合炉
CN102020415A (zh) * 2010-03-02 2011-04-20 青岛亨达玻璃科技有限公司 弧形真空玻璃
CN102040329A (zh) * 2010-03-02 2011-05-04 青岛亨达玻璃科技有限公司 一种钢化真空玻璃的生产新工艺
CN102421712A (zh) * 2009-05-01 2012-04-18 格尔德殿工业公司 含红外可熔玻璃粉的真空绝缘玻璃部件和/或其制备方法
US20120210750A1 (en) * 2011-02-22 2012-08-23 Guardian Industries Corp. Localized heating techniques incorporating tunable infrared element(s) for vacuum insulating glass units, and/or apparatuses for same
WO2012115795A2 (en) * 2011-02-22 2012-08-30 Guardian Industries Corp. Improved frit materials and/or method of making vacuum insulating glass units including the same
CN102745888A (zh) * 2012-06-25 2012-10-24 北京北玻安全玻璃有限公司 超大板钢化玻璃热浸工艺

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1212993C (zh) * 1998-03-17 2005-08-03 日本板硝子株式会社 双层玻璃
JP2003137613A (ja) * 2001-10-26 2003-05-14 Nippon Sheet Glass Co Ltd 真空複層ガラス
CN100587224C (zh) * 2005-09-27 2010-02-03 中国建筑材料科学研究院 一种设有间隙隔离片的真空玻璃的制备方法
CN102730950A (zh) * 2012-07-11 2012-10-17 天津森宇玻璃制造有限公司 一种安全钢化真空玻璃的制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101896680A (zh) * 2007-12-14 2010-11-24 格尔德殿工业公司 局部加热真空绝缘玻璃装置的边缘密封物,和/或用于实现该功能的组合炉
CN102421712A (zh) * 2009-05-01 2012-04-18 格尔德殿工业公司 含红外可熔玻璃粉的真空绝缘玻璃部件和/或其制备方法
CN102020415A (zh) * 2010-03-02 2011-04-20 青岛亨达玻璃科技有限公司 弧形真空玻璃
CN102040329A (zh) * 2010-03-02 2011-05-04 青岛亨达玻璃科技有限公司 一种钢化真空玻璃的生产新工艺
US20120210750A1 (en) * 2011-02-22 2012-08-23 Guardian Industries Corp. Localized heating techniques incorporating tunable infrared element(s) for vacuum insulating glass units, and/or apparatuses for same
WO2012115795A2 (en) * 2011-02-22 2012-08-30 Guardian Industries Corp. Improved frit materials and/or method of making vacuum insulating glass units including the same
CN102745888A (zh) * 2012-06-25 2012-10-24 北京北玻安全玻璃有限公司 超大板钢化玻璃热浸工艺

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106630568A (zh) * 2016-12-08 2017-05-10 佛山市索奥斯玻璃技术有限公司 一种改进型钢化玻璃风冷风栅条及玻璃冷却方法
CN106630568B (zh) * 2016-12-08 2023-03-03 索奥斯(广东)玻璃技术股份有限公司 一种改进型钢化玻璃风冷风栅条及玻璃冷却方法
CN112028463A (zh) * 2020-08-07 2020-12-04 衡山兄弟金属制品有限公司 一种钢化玻璃的制作方法

Also Published As

Publication number Publication date
KR20160105397A (ko) 2016-09-06
AU2013404793B2 (en) 2017-04-06
AU2013404793A1 (en) 2016-06-30
CN103588386B (zh) 2016-05-18
CN103588386A (zh) 2014-02-19
EP3070060A4 (en) 2017-07-26
EP3070060A1 (en) 2016-09-21
JP2016536255A (ja) 2016-11-24

Similar Documents

Publication Publication Date Title
WO2015066957A1 (zh) 钢化真空玻璃的生产方法
TW201307220A (zh) 熱增強真空玻璃
JP6495928B2 (ja) 真空断熱ガラス(vig)ユニットに使用されるフリット、及び/又は関連方法
JP2017509573A (ja) 無鉛二重フリット端部シールを有する真空断熱ガラス(vig)ユニット及び/又はその製造方法
CA2871239C (en) Method for manufacturing tempered vacuum glass
JP2013540684A (ja) 真空ガラスパネル及びその製造方法
CN103420593A (zh) 有密封条槽的凸面双真空层玻璃的安装孔及其制备方法
CN102951786B (zh) 玻璃焊接的凸面低空玻璃及其制备方法
CN102951795A (zh) 无抽气口、无支撑物的真空玻璃及其制备方法
CN107584845A (zh) 一种弯钢化夹胶玻璃的制备方法
CN102951857A (zh) 金属焊接的凸面钢化真空玻璃及其制造方法
CN102951800B (zh) 金属焊接的凸面钢化低空玻璃及其制造方法
CN102951797B (zh) 钢化、半钢化低空玻璃及其制造方法
CN108409119A (zh) 一种钢化真空玻璃的制备方法
CN109399967A (zh) 纳米涂膜钢化隔热真空玻璃及其制备方法
CN103420589A (zh) 有密封条的平面双真空层玻璃的安装孔及其制备方法
CN104230155B (zh) 钢化、半钢化真空玻璃的封边方法
JP2002053349A (ja) 低圧複層ガラスおよびその製造方法
CN104291623A (zh) 微波焊接密封条槽封边有吸气剂的凸面钢化真空玻璃
CN104291647A (zh) 微波焊接密封槽封边有吸气剂的平面钢化真空玻璃
CN104291694A (zh) 金属焊料微波焊接沟槽封边的凸面钢化真空玻璃
CN203159444U (zh) 玻璃焊料微波焊接条框封边的凸面真空玻璃
CN104291576A (zh) 微波加热密封槽封边封口的凸面真空玻璃及其制备方法
CN104291565A (zh) 微波加热密封条槽封边封口的凸面真空玻璃及其制备方法
CN104291577A (zh) 微波加热密封槽封边封口的平面真空玻璃及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897220

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016530968

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167015330

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013897220

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013897220

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013404793

Country of ref document: AU

Date of ref document: 20131224

Kind code of ref document: A