CN102951797B - 钢化、半钢化低空玻璃及其制造方法 - Google Patents

钢化、半钢化低空玻璃及其制造方法 Download PDF

Info

Publication number
CN102951797B
CN102951797B CN201210075629.3A CN201210075629A CN102951797B CN 102951797 B CN102951797 B CN 102951797B CN 201210075629 A CN201210075629 A CN 201210075629A CN 102951797 B CN102951797 B CN 102951797B
Authority
CN
China
Prior art keywords
glass
solder
band frame
edge band
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210075629.3A
Other languages
English (en)
Other versions
CN102951797A (zh
Inventor
戴长虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haining Yuanhua Town Industrial Investment Co Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201210075629.3A priority Critical patent/CN102951797B/zh
Publication of CN102951797A publication Critical patent/CN102951797A/zh
Application granted granted Critical
Publication of CN102951797B publication Critical patent/CN102951797B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Joining Of Glass To Other Materials (AREA)

Abstract

本发明提供了一种钢化、半钢化低空玻璃,其包括上玻璃、下玻璃,所述上玻璃和所述下玻璃是平板钢化、半钢化玻璃,所述上玻璃和所述下玻璃的焊接面的周边均有封边条框,所述上玻璃和所述下玻璃的周边通过低温焊料焊接在一起,所述上玻璃和所述下玻璃之间形成一个封闭的低空层,所述低空层内有呈点阵排列的支撑物。本发明的这种低空玻璃的制作方法工艺简单,所制备的钢化低空玻璃能克服现有技术中的不足,而且能够实现批量化生产。

Description

钢化、半钢化低空玻璃及其制造方法
技术领域
本发明属于低空玻璃制造领域,尤其是一种钢化、半钢化低空玻璃及其制造方法。
背景技术
随着环保节能意识的加强,中空玻璃得到了广泛的推广应用,有效提高了门窗的保温、隔声性能。中空玻璃的两片平板玻璃之间的距离,即空气层的厚度决定了保温、隔声的效果,空气层越厚,则保温和隔声效果越好,但增加空气层的厚度会增加门窗框的厚度,因而会增加门窗的制作成本;其它方法如采用镀膜玻璃、贴膜以及在中空玻璃中间填充惰性气体等措施,虽有一定的效果,但成本很高,不适合普遍应用。
现有的中空玻璃大都是在两片或两片以上的玻璃中间用带有干燥剂的间隔框隔开周边用有机密封胶密封的玻璃制品。由于有机密封胶自身含有水分、抗老化性能较差、气密性不好等原因,致使中空玻璃经常发生失效现象,严重影响了中空玻璃的使用寿命。
中空玻璃空气层中的空气被密封在两块玻璃之间,由于外界温度的变化,会导致空气层的压力发生变化,外界温度高时压力大于大气压、玻璃外凸,外界温度低时压力小于大气压、玻璃内凹,产生所谓的“呼吸”现象,从而影响中空玻璃的正常使用年限。
发明内容
本发明所要解决的技术问题是在于针对现有中空玻璃存在的缺陷,提供一种新型的低气压中空玻璃---钢化低空玻璃及其制作方法,这种钢化、半钢化低空玻璃的制作方法工艺简单,能够在生产钢化、半钢化低空玻璃的加热封边过程中最大限度地保持钢化玻璃的钢化强度,从而制造出钢化、半钢化低空玻璃,而且能够实现批量化生产,大幅度提高生产效率和降低生产成本。所制备的钢化低空玻璃能克服现有中空玻璃的不足,可有效保证低空玻璃的气密性、延长使用寿命,并能增加强度以及隔热、隔音性能。
本发明如用于普通低空玻璃生产,也可大大提高生产效率并节约能源。
为了解决上述技术问题,本发明提供了一种钢化、半钢化低空玻璃,其包括上玻璃、下玻璃,所述上玻璃和所述下玻璃是平板钢化、半钢化玻璃,所述上玻璃和所述下玻璃的焊接面的周边均有封边条框,所述上玻璃和所述下玻璃的周边通过低温焊料焊接在一起,所述上玻璃和所述下玻璃之间形成一个封闭的低空层,所述低空层内有呈点阵排列的支撑物。
为了解决上述技术问题,本发明提供了上述的钢化、半钢化低空玻璃的制备方法,当支撑物的材料为低温玻璃粉时,其包括:
第一步,根据所需要制作的低空玻璃的形状和大小切割所需尺寸的两块平板玻璃,并进行磨边、倒角,清洗、干燥处理;
第二步,在处理后的玻璃的焊接面上利用模板印刷技术和低温玻璃粉制备封边条框和支撑物,并保证上、下玻璃对齐后,上玻璃的封边条框能够嵌合于下玻璃的封边条框之间,然后经干燥后,在钢化炉中对其进行钢化处理;
第三步,将第二步获得的玻璃上的支撑物进行机械加工,使其顶端位于所设定的平面内,玻璃的封边条框之间装入低温焊料,并将所述两块玻璃上下对齐叠放在一起,两玻璃之间留有排气通道,然后送入高温封边炉中;
第四步,对所述高温封边炉加热升温至低温焊料的熔融温度以上,达到封边温度;低温焊料融化成液体,在玻璃自身重力的作用下,上、下封边条框互相嵌合在一起;停止加热、随炉降温,低温焊料将两块玻璃气密性地焊接在一起,打开高温封边炉的炉门得到所需的低空玻璃。
当所述低温焊料的熔融温度大于320℃时,为解决钢化玻璃因焊接温度过高而退火的问题,高温封边炉可以具有基础加热系统和局部加热系统,基础加热系统可采用电阻加热的方式如电热丝、电热管、电热板等,将高温封边炉内部及玻璃加热至一基础温度;再利用电阻加热、红外线加热、激光加热、电磁加热、微波加热等方式对玻璃的周边即封边位置进行局部加热,达到在短时间内将低温焊料加热至熔融的目的。
为了解决上述技术问题,本发明提供了上述的钢化、半钢化低空玻璃的制备方法,当支撑物的材料为低温玻璃焊料时,其包括:
第一步,根据所需要制作的低空玻璃的形状和大小切割所需尺寸的两块平板玻璃,并进行磨边、倒角,清洗、干燥处理;
第二步,在处理后的玻璃的焊接面上利用模板印刷技术和低温玻璃粉制备封边条框,并保证上、下玻璃对齐后,上玻璃的封边条框能够嵌合于下玻璃的封边条框之间,然后经干燥后,在钢化炉中对其进行钢化处理;
第三步,将第二步获得的玻璃的焊接面上利用模板印刷技术和低温玻璃焊料制备支撑物,玻璃上的封边条框之间装入低温焊料,并将所述两块玻璃上下对齐叠放在一起,两玻璃之间留有排气通道,然后送入高温封边炉中;
第四步,对所述高温封边炉加热升温至低温焊料的熔融温度以上,达到封边温度;低温焊料融化成液体,在玻璃自身重力的作用下,上、下封边条框互相嵌合在一起;停止加热、随炉降温,低温焊料将两块玻璃气密性地焊接在一起,打开高温封边炉的炉门得到所需的低空玻璃。
当所述低温焊料的熔融温度大于320℃时,为解决钢化玻璃因焊接温度过高而退火的问题,高温封边炉可以具有基础加热系统和局部加热系统,基础加热系统可采用电阻加热的方式如电热丝、电热管、电热板等,将高温封边炉内部及玻璃加热至一基础温度;再利用电阻加热、红外线加热、激光加热、电磁加热、微波加热等方式对玻璃的周边即封边位置进行局部加热,达到在短时间内将低温焊料加热至熔融的目的。
其中,所述低空层是低空玻璃在高温下封边、降至室温后自然形成的,所述低空层内的气压由低温焊料的熔点决定,一般为0.01~0.09MPa,优选为0.02~0.07MPa。
其中,所述钢化平板低空玻璃还可以包括一块平板玻璃,所述平板玻璃夹在所述上玻璃和所述下玻璃之间,所述上玻璃和所述下玻璃分别和所述平板玻璃形成两个封闭的低空层。
其中,所述上玻璃焊接面的周边至少有一个封边条框,所述下玻璃焊接面的周边至少有两个封边条框。
所述封边条框通过印刷或喷涂的方式制成,优选采用模板印刷低温玻璃粉或低熔点玻璃焊料制成,所述低温玻璃粉优选市售的熔融温度为550~750℃的玻璃釉料,所述低温玻璃焊料优选市售的熔融温度为约450℃的无铅玻璃焊料。
所述印刷方式是采用丝网印刷或模板印刷或打印机的方法,将低温玻璃粉印在玻璃上形成凸起于玻璃表面的凸棱。
所述封边条框的制备,可以是一次印刷,也可以是多次印刷。
所述封边条框的高度优选为0.1~10mm,进一步优选为0.5~2mm,宽度优选为0.2~5mm,进一步优选为1~2mm。
其中,所述低温焊料包括市售的低温玻璃焊料和低熔点金属或合金焊料,所述低温玻璃焊料优选融化温度为约450℃的无铅玻璃焊料,所述低熔点金属或合金焊料优选锡或锡合金、锌或锌合金、镁或镁合金,其形状或形态为膏状、粉末状、丝状或箔状。
其中,所述支撑物由金属、陶瓷或玻璃制成,优选采用模板印刷低温玻璃粉或低温玻璃焊料制备。
所述支撑物印制在一块玻璃上,或印制在两块玻璃上。
所述支撑物为圆柱状,或为长条状;当支撑物只印制在一块玻璃上时,优选为圆柱状;当支撑物同时印制在两块玻璃上时,优选为长条状,并垂直叠放。
所述支撑物最小单元可以是等边三角形的点阵排列,三角形的边长约为30~300mm,优选为50~150mm;支撑物为长条状,其长度为0.3~5.0 mm、优选为0.5~2.0 mm,宽度为0.1~2.0mm、优选为0.2~1.0mm,高度为0.1~10.0mm、优选为0.5~3.0mm,支撑物的高度高于封边条框的高度0.1~2.0mm、优选为0.1~0.5mm;支撑物也可以为圆柱状,其直径为0.1~3.0mm、优选为0.3~2.0mm,高度为0.1~5.0 mm、优选为0.5~3.0mm,支撑物的高度高于上下两块玻璃合片后支撑物所在位置空间高度0~0.3 mm、优选为0.1~0.2mm。
所述支撑物在玻璃钢化前印制时,其材料优选为低温玻璃粉;所述支撑物在玻璃钢化后印制时,其材料优选为低温玻璃焊料。
所述支撑物在玻璃钢化前印制时,其钢化后的高度均不低于所设定的高度;然后经机械加工,如车削、研磨等,将所述支撑物加工至所设定的高度,以消除因玻璃钢化变形所造成的支撑物的高度差。
所述支撑物在玻璃钢化后印制时,其干燥后的高度均不低于所设定的高度;当所述支撑物只印在一块玻璃上时,若其干燥后的顶端不在所设定的平面内,则可经机械加工,如车削、研磨等,将所述支撑物的顶端加工至所设定的平面内;当所述支撑物同时印在两块玻璃上时,若其干燥后的顶端不在所设定的平面内,则可不需加工,两块玻璃上的支撑物能够互相嵌合在一起。
本发明的有益效果:
本发明的低空玻璃是介于中空玻璃和真空玻璃之间的一种新型玻璃,利用高温封边密封,降至室温后上、下玻璃之间自动形成低气压空气层。与中空玻璃相比,用无机焊料和高温封边代替有机粘接剂和常温封边,极大地提高了密封性能和延长了使用寿命;低空层的空气稀薄,水分子和氧气等含量更低,不仅不会起雾、结霜,而且减轻了低辐射膜的氧化,稀薄的空气也使隔热和隔音性能更好;低空层的气压始终小于大气压,所以没有“呼吸”现象。与现有的真空玻璃相比,不需要抽真空,少用或不用支撑物,生产工艺更加简单、成本更低,玻璃使用过程中承受的压力更小,使用寿命更长。
本发明的低空玻璃上、下玻璃的周边含有封边条框,使得低空玻璃的封边更简便,通过对玻璃钢化后支撑物的机械加工或使上下支撑物的互相嵌合,消除了因玻璃钢化变形而造成的支撑物的高度差;上下封边条框的相互嵌合保证了玻璃在变形情况下的密封效果,封边条框与上下玻璃之间具有比低温焊料更高的结合强度,增大了上下玻璃之间密封面积和气密层厚度,大大加强了封接的附着力和附着强度,增加了上、下玻璃之间低空层的密封度,提高了低空玻璃的寿命,并实现了一步法批量化制备低空玻璃,促进了低空玻璃的工业化生产,极大地提高了低空玻璃的生产率和合格率、降低了低空玻璃的生产成本。
附图说明
图1为本发明的具有单支撑物的低空玻璃结构示意图;
图2为本发明的具有双支撑物的低空玻璃结构示意图。
图中:1.上玻璃,2.下玻璃,3.低温焊料,4.下玻璃上的封边条框,5.上玻璃的封边条框,6. 下玻璃上的支撑物,7.上玻璃上的支撑物。
具体实施方式
本发明提供了一种钢化、半钢化低空玻璃,其包括:上玻璃、下玻璃,所述上玻璃和所述下玻璃是平板钢化、半钢化玻璃,所述上玻璃和所述下玻璃的焊接面的周边均有封边条框,所述上玻璃和所述下玻璃的周边通过低温焊料焊接在一起,所述上玻璃和所述下玻璃之间形成一个封闭的低空层,所述低空层内有呈点阵排列的支撑物。
所述低空层是在高温下封边、降至室温后自然形成的,所述低空层内的气压由低温焊料的熔点决定,一般为0.01~0.09MPa,优选为0.02~0.07MPa。
所述封边条框的高度优选为0.1~10mm,进一步优选为0.1~1mm,宽度优选为0.2~5mm,进一步优选为1.0~2.0mm 。
所述封边条框上可以留有数个排气孔,在所述低温焊料熔化后能够封闭所述排气孔。
当含有两个或多个封边条框时,所述低温焊料在所述封边条框的中间,所述封边条框在具有两个低空层的平板玻璃的中间平板玻璃的上表面时,与所述下玻璃的相同,在所述平板玻璃的下表面时,与所述上玻璃的相同。
所述下玻璃的封边条框比所述上玻璃的封边条框多一个,即所述上玻璃至少含有一个封边条框,所述下玻璃至少含有两个封边条框,所述上玻璃的封边条框插在所述下玻璃的封边条框中间,所述上、下玻璃的封边条框相互嵌合在一起,对低空层实行迷宫式密封,所述封边条框在具有两个低空层的平板玻璃的中间平板玻璃的上表面时,与所述下玻璃的相同,在所述平板玻璃的下表面时,与所述上玻璃的相同。
所述封边条框通过压榨、蚀刻或印刷的方式制成,所述封边条框包括凸棱和凹槽,优选采用模板印刷低温玻璃粉制成。
所述压榨方式是将平板玻璃装入内表面带有凹陷或凸起纹路的模具型腔内,经高温处理使玻璃软化后,对平板玻璃施加压力,在平板玻璃的周边形成凸棱和凹槽。
所述蚀刻方式是公知的现有技术,利用丝网印刷方法将耐酸油墨印制在平板玻璃不需蚀刻的地方,用氢氟酸等腐蚀酸将平板玻璃上没有耐酸油墨处腐蚀出凹槽。
所述印刷方式是采用丝网印刷或模板印刷或打印机的方法,将低温玻璃粉印在平板玻璃上形成凸起于平板玻璃表面的凸棱。
所述封边条框制备时,可以是一次印刷,也可以是多次印刷。
所述钢化平板低空玻璃还可以包括一块平板玻璃,所述平板玻璃夹在所述上玻璃和所述下玻璃之间,所述上玻璃和所述下玻璃分别和所述平板玻璃形成两个封闭的低空层。
所述钢化平板低空玻璃可以进一步包括多块平板玻璃,从而包含多个封闭的低空层。
所述封边温度优选为150~550℃,当采用低熔点金属或合金焊料时更进一步优选为290~350℃;当采用低温玻璃焊料时更进一步优选为380~470℃。
所述支撑物的材料为低温玻璃、金属、陶瓷、玻璃或塑料,优选为低温玻璃。
所述支撑物最小单元可以是等边三角形的点阵排列,三角形的边长约为20~100mm,优选为30~50mm;支撑物为长条状,其长度为0.3~5.0 mm、优选为0.5~2.0 mm,宽度为0.1~2.0mm、优选为0.2~1.0mm,高度为0.1~10.0mm、优选为0.2~3.0mm,支撑物的高度高于封边条框的高度0.1~2.0mm、优选为0.1~0.5mm;支撑物也可以为圆柱状,其直径为0.1~3.0mm、优选为0.3~2.0mm,高度为0.1~5.0 mm、优选为0.5~3.0mm。
当支撑物印制在一块玻璃上时,优选为圆柱状;当支撑物同时印制在上下两块玻璃上时,优选为长条状。
当支撑物在封边条框烧结前印制时,优选低温玻璃粉制成;当支撑物在封边条框烧结后印制时,优选低温玻璃焊料制成。
上下玻璃均有条状支撑物时,支撑物垂直叠放支撑,上下玻璃通过支撑物仍为点接触,而支撑物与玻璃之间为线接触,增大了接触面积,减小了玻璃在支撑处的张应力,所以可以减少支撑物的数量,从而进一步提高玻璃的隔热和隔音性能。
所述上玻璃、所述下玻璃的原片可以是普通玻璃、或是低辐射玻璃、或是夹丝玻璃、或是压延玻璃、或是热熔玻璃;经钢化处理后,所述上玻璃、所述下玻璃是钢化玻璃,或是半钢化玻璃,或是低辐射钢化玻璃,或是低辐射半钢化玻璃。
所述低温焊料包括低温玻璃焊料和低熔点金属或合金焊料,所述低温焊料放置在玻璃的封边条框中间。
本发明提供了上述的钢化、半钢化低空玻璃的制备方法,当支撑物的材料为低温玻璃粉时,其包括:
第一步,根据所需要制作的低空玻璃的形状和大小切割所需尺寸的两块平板玻璃,并进行磨边、倒角,清洗、干燥处理;
第二步,在处理后的玻璃的焊接面上利用模板印刷技术和低温玻璃粉制备封边条框和支撑物,并保证上、下玻璃对齐后,上玻璃的封边条框能够嵌合于下玻璃的封边条框之间,然后经干燥后,在钢化炉中对其进行钢化处理;
第三步,将第二步获得的玻璃上的支撑物进行机械加工,使其顶端位于所设定的平面内,玻璃的封边条框之间装入低温焊料,并将所述两块玻璃上下对齐叠放在一起,两玻璃之间留有排气通道,然后送入高温封边炉中;
第四步,对所述高温封边炉加热升温至低温焊料的熔融温度以上,达到封边温度;低温焊料融化成液体,在玻璃自身重力的作用下,上、下封边条框互相嵌合在一起;停止加热、随炉降温,低温焊料将两块玻璃气密性地焊接在一起,打开高温封边炉的炉门得到所需的低空玻璃。
当所述低温焊料的熔融温度大于320℃时,为解决钢化玻璃因焊接温度过高而退火的问题,高温封边炉可以具有基础加热系统和局部加热系统,基础加热系统可采用电阻加热的方式如电热丝、电热管、电热板等,将高温封边炉内部及玻璃加热至一基础温度;再利用电阻加热、红外线加热、激光加热、电磁加热、微波加热等方式对玻璃的周边即封边位置进行局部加热,达到在短时间内将低温焊料加热至熔融的目的。
所述高温封边炉或是间歇式生产的单体炉,或是连续式生产的隧道窑炉,优选隧道窑炉。
所述高温封边炉内的气氛或是空气,或是氮气、氩气等中性气氛,优选氩气。
当高温封边炉内的气氛是中性气氛时,通过高温下气体的传输和交换,可以降低低空玻璃低空层中水分和氧气含量,从而进一步提高低空玻璃的性能。
本发明提供了上述的钢化、半钢化低空玻璃的制备方法,当支撑物的材料为低温玻璃焊料时,其包括:
第一步,根据所需要制作的低空玻璃的形状和大小切割所需尺寸的两块平板玻璃,并进行磨边、倒角,清洗、干燥处理;
第二步,在处理后的玻璃的焊接面上利用模板印刷技术和低温玻璃粉制备封边条框,并保证上、下玻璃对齐后,上玻璃的封边条框能够嵌合于下玻璃的封边条框之间,然后经干燥后,在钢化炉中对其进行钢化处理;
第三步,将第二步获得的玻璃的焊接面上利用模板印刷技术和低温玻璃焊料制备支撑物,玻璃上的封边条框之间装入低温焊料,并将所述两块玻璃上下对齐叠放在一起,两玻璃之间留有排气通道,然后送入高温封边炉中;
第四步,对所述高温封边炉加热升温至低温焊料的熔融温度以上,达到封边温度;低温焊料融化成液体,在玻璃自身重力的作用下,上、下封边条框互相嵌合在一起;停止加热、随炉降温,低温焊料将两块玻璃气密性地焊接在一起,打开高温封边炉的炉门得到所需的低空玻璃。
当所述低温焊料的熔融温度大于320℃时,为解决钢化玻璃因焊接温度过高而退火的问题,高温封边炉可以具有基础加热系统和局部加热系统,基础加热系统可采用电阻加热的方式如电热丝、电热管、电热板等,将高温封边炉内部及玻璃加热至一基础温度;再利用电阻加热、红外线加热、激光加热、电磁加热、微波加热等方式对玻璃的周边即封边位置进行局部加热,达到在短时间内将低温焊料加热至熔融的目的。
以下采用实施例和附图来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。
实施例1:参见图1,低空玻璃的两块玻璃为钢化玻璃或半钢化玻璃,其中一块还是低辐射玻璃,在两块玻璃上均具有封边条框,其制作方法如下:首先根据所制作低空玻璃的形状和大小切割所需尺寸的一块平板玻璃和一块低辐射玻璃,进行磨边、倒角,清洗、干燥后,在两块玻璃上利用印刷技术将低温玻璃粉膏印制成封边条框,其中上玻璃有一个封边条框、下玻璃有两个封边条框,上玻璃封边条框的大小介于下玻璃两个封边条框之间,上下玻璃合片后,上玻璃的封边条框能够嵌合于下玻璃的两个封边条框之间,每个封边条框的宽度为1.5mm、高度为0.6mm;其次将两块玻璃分别送入钢化炉,在钢化炉的高温作用下封边条框软化熔融与玻璃粘结在一起,随即进行风冷钢化,得到具有封边条框的钢化或半钢化玻璃;并在上或下玻璃上利用低温玻璃焊料印制支撑物,支撑物为最小单元是等边三角形的点阵排列,三角形的边长为70mm,支撑物为圆柱状,其直径为0.6mm、高度为0.8mm,为消除因玻璃钢化所造成的高度差,支撑物的高度高于封边条框的高度0.2mm;再次将下玻璃的两个封边条框之间装满金属焊料锡粉或铺上锡箔或锡丝,并将两块玻璃上下对齐叠放在一起且留有一定的排气空隙,送入高温封边炉中;最后加热升温至金属锡的熔点温度以上如240℃,金属锡就会融化,上玻璃的封边条框在重力的作用下嵌入下玻璃的封边条框之间,熔融的金属锡将两块玻璃粘接在一起;继续升温至300℃以上,支撑物先软化自动适应两块玻璃之间的高度差、将两块玻璃粘接在一起,再烧结固化;停止加热、随炉降温,金属焊料锡将两块玻璃气密性地焊接在一起,打开炉门得到所需的低空玻璃。
采用封边条框,可以很容易利用低熔点金属或合金实现低空玻璃的金属钎焊,由于钎焊温度可选择的范围很大,所以不但可以整体加热玻璃、降低加热炉的造价和简化生产工艺,而且可以大幅度降低封边温度、缩短加热时间,从而降低生产成本、提高生产效率,更重要的是保证钢化或半钢化玻璃在加热过程中不会发生退火现象。由于封边条框的上下嵌合,可以使低空玻璃的厚度有一自动调节的范围,加之支撑物的高度也是可变的,所以支撑物能够可靠地将两块玻璃连接在一起。
支撑物采用低温玻璃焊料制成,有较低的烧结温度,使其在较低的加热温度下能够软化、烧结,并借助于其略高的高度,使其能够将上下玻璃可靠地粘接在一起,从而起到有效的支撑作用。
实施例2:参见图2,低空玻璃的两块玻璃为钢化玻璃或半钢化玻璃,其中一块还是低辐射玻璃,在两块玻璃上均具有封边条框,其制作方法如下:首先根据所制作低空玻璃的形状和大小切割所需尺寸的一块平板玻璃和一块低辐射玻璃,进行磨边、倒角,清洗、干燥后,在两块玻璃上利用印刷技术将低温玻璃粉膏印制成封边条框,其中上玻璃有两个封边条框、下玻璃有三个封边条框,上玻璃封边条框的大小介于下玻璃封边条框之间,上下玻璃合片后,上玻璃的封边条框能够嵌合于下玻璃的封边条框之间,每个封边条框的宽度为1.5mm、高度为0.7mm;而且在上、下玻璃上同时印制支撑物,支撑物为最小单元是等边三角形的点阵排列,三角形的边长为80mm,支撑物为长条状,其长度为2 mm、宽度为0.60mm、高度为0.5mm,上、下玻璃的支撑物互相垂直,上、下玻璃合片后支撑物重叠为十字状形;其次将两块玻璃分别送入钢化炉,在钢化炉的高温作用下封边条框和支撑物软化熔融与玻璃粘结在一起,随即进行风冷钢化,得到具有封边条框和支撑物的钢化或半钢化玻璃;为消除因玻璃钢化变形而造成的支撑物的高度差,对支撑物进行机械加工,通过切削或研磨使其顶端处于同一平面内;再次将下玻璃的三个封边条框之间装满低温玻璃焊料,将两块玻璃上下对齐叠放在一起、预留一定的排气通道,送入高温封边炉中;高温封边炉具有基础加热系统和局部加热系统;最后先利用基础加热系统加热,基础温度升至300℃后,再利用局部加热系统如远红外线加热器将封边条框内的低温玻璃焊料加热至熔融温度450℃以上,上玻璃的封边条框在重力的作用下嵌入下玻璃的封边条框之间,熔融的低温玻璃焊料将两块玻璃粘接在一起,上下玻璃的支撑物相互接触、重叠为十字状形;停止加热、随炉降温,低温玻璃焊料将两块玻璃气密性地焊接在一起,打开炉门得到所需的低空玻璃。
上下玻璃均有条状支撑物,支撑物垂直叠放支撑,上、下玻璃通过支撑物仍为点接触,而支撑物与玻璃之间为线接触,增大了接触面积,减小了玻璃在支撑处的张应力,所以可以减少支撑物的数量,从而进一步提高玻璃的隔热和隔音性能;通过对支撑物进行机械加工,使其顶端处于同一平面内,保证了支撑的可靠性。
实施例3:参见图2,低空玻璃的两块玻璃为钢化玻璃或半钢化玻璃,其中一块还是低辐射玻璃,在两块玻璃上均具有封边条框,其制作方法如下:首先根据所制作低空玻璃的形状和大小切割所需尺寸的一块平板玻璃和一块低辐射玻璃,进行磨边、倒角,清洗、干燥后,在两块玻璃上利用印刷技术将低温玻璃粉膏印制成封边条框,其中上玻璃有两个封边条框、下玻璃有三个封边条框,上玻璃封边条框的大小介于下玻璃封边条框之间,上下玻璃合片后,上玻璃的封边条框能够嵌合于下玻璃的封边条框之间,每个封边条框的宽度为1.5mm、高度为0.7mm;其次将两块玻璃送入钢化炉,在钢化炉的高温作用下封边条框软化熔融与玻璃粘结在一起,随即进行风冷钢化,得到具有封边条框的钢化或半钢化玻璃;再次在钢化后的上、下玻璃上利用低温玻璃焊料同时印制支撑物,支撑物为最小单元是等边三角形的点阵排列,三角形的边长为80mm,支撑物为长条状,其长度为2 mm、宽度为0.60mm、高度为0.5mm,上下玻璃的支撑物互相垂直,上下玻璃合片后支撑物重叠为十字状形;将下玻璃的三个封边条框之间装满金属焊料锡粉或铺上锡箔或锡丝,将两块玻璃上下对齐叠放在一起、预留一定的排气通道,送入高温封边炉中;最后加热升温至金属锡的熔点温度以上如240℃,金属锡融化,上玻璃的两个封边条框在重力的作用下嵌入下玻璃的三个封边条框之间,熔融的金属锡将两块玻璃粘接在一起,上、下玻璃的支撑物相互接触、重叠为十字状形;继续升温至300℃以上,使支撑物烧结固化;停止加热、随炉降温,金属焊料锡将两块玻璃气密性地焊接在一起,打开炉门得到所需的低空玻璃。
上、下玻璃均有条状支撑物,支撑物垂直叠放支撑,上下玻璃通过支撑物仍为点接触,而支撑物与玻璃之间为线接触,增大了接触面积,减小了玻璃在支撑处的张应力,所以可以减少支撑物的数量,从而进一步提高玻璃的隔热和隔音性能。
所有上述的首要实施这一知识产权,并没有设定限制其他形式的实施这种新产品和/或新方法。本领域技术人员将利用这一重要信息,上述内容修改,以实现类似的执行情况。但是,所有修改或改造基于本发明新产品属于保留的权利。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (10)

1.一种钢化、半钢化低空玻璃,包括上玻璃和下玻璃,其特征在于所述上玻璃和所述下玻璃是平板钢化或半钢化玻璃,所述上玻璃和下玻璃的焊接面的周边均有封边条框,所述封边条框通过印刷或喷涂的方式制作在所述上玻璃的下表面上和所述下玻璃的上表面上;所述上玻璃的封边条框能够嵌合于下玻璃的封边条框之间,对所述低空玻璃的低气压空气层实行迷宫式密封;所述封边条框之间有低温焊料,所述上玻璃和下玻璃的周边通过嵌合在一起的封边条框和低温焊料在封边炉内焊接在一起;所述上玻璃和下玻璃之间形成一个封闭的低气压空气层,所述低气压空气层是在高温下封边、降至室温后自然形成的,所述低气压空气层内的气压为0.02~0.07MPa,所述低气压空气层内有呈点阵排列的支撑物。
2.根据权利要求1所述的低空玻璃,其特征在于所述低空玻璃还包括一块平板玻璃,所述平板玻璃夹在所述上玻璃和所述下玻璃之间,所述上玻璃和所述下玻璃分别与所述平板玻璃形成两个封闭的低气压空气层。
3.根据权利要求1所述的低空玻璃,其特征在于所述上玻璃焊接面的周边至少有一个封边条框,所述下玻璃焊接面的周边至少有两个封边条框。
4. 根据权利要求1所述的低空玻璃,其特征在于所述支撑物通过机械加工消除因玻璃钢化变形所造成的高度差。
5. 根据权利要求1所述的低空玻璃,其特征在于所述支撑物采用模板印刷低温玻璃粉制备。
6.根据权利要求1所述的低空玻璃,其特征在于所述支撑物采用模板印刷低温玻璃焊料制备。
7.根据权利要求1所述的低空玻璃,其特征在于所述支撑物只印制在一块玻璃上时为圆柱状;所述支撑物同时印制在两块玻璃上时为长条状,并垂直叠放。
8.根据权利要求1所述的低空玻璃,其特征在于所述支撑物在封边条框烧结前印制时其材料为低温玻璃粉;所述支撑物在封边条框烧结后印制时其材料为低温玻璃焊料。
9. 权利要求1所述的低空玻璃的制备方法,其特征在于,当支撑物的材料为低温玻璃粉时,其包括:
第一步,根据所需要制作的低空玻璃的形状和大小切割所需尺寸的两块平板玻璃,并进行磨边、倒角,清洗、干燥处理;
第二步,在处理后的玻璃的焊接面上利用模板印刷技术和低温玻璃粉制备封边条框和支撑物,并保证上、下玻璃对齐后,上玻璃的封边条框能够嵌合于下玻璃的封边条框之间,然后经干燥后,在钢化炉中对其进行钢化处理,得到钢化或半钢化玻璃;
第三步,将第二步获得的玻璃上的支撑物进行机械加工,使其顶端位于所设定的平面内,玻璃的封边条框之间装入低温焊料,并将所述两块玻璃上下对齐叠放在一起,两玻璃之间留有排气通道,然后送入高温封边炉中;
第四步,对所述高温封边炉加热升温至低温焊料的熔融温度以上,达到封边温度;低温焊料融化成液体,在玻璃自身重力的作用下,上、下封边条框互相嵌合在一起;停止加热、随炉降温,低温焊料将两块玻璃气密性地焊接在一起,打开高温封边炉的炉门得到所需的低空玻璃;
当所述低温焊料的熔融温度大于320℃时,高温封边炉具有基础加热系统和局部加热系统,基础加热系统采用电阻加热的方式,将高温封边炉内部及玻璃加热至一基础温度;再利用电阻加热、红外线加热、激光加热、电磁加热或微波加热的方式对玻璃的周边即封边位置进行局部加热,达到在短时间内将低温焊料加热至熔融的目的。
10.权利要求1所述的低空玻璃的制备方法,其特征在于
当支撑物的材料为低温玻璃焊料时,其包括:
第一步,根据所需要制作的低空玻璃的形状和大小切割所需尺寸的两块平板玻璃,并进行磨边、倒角,清洗、干燥处理;
第二步,在处理后的玻璃的焊接面上利用模板印刷技术和低温玻璃粉制备封边条框,并保证上、下玻璃对齐后,上玻璃的封边条框能够嵌合于下玻璃的封边条框之间,然后经干燥后,在钢化炉中对其进行钢化处理,得到钢化或半钢化玻璃;
第三步,将第二步获得的玻璃的焊接面上利用模板印刷技术和低温玻璃焊料制备支撑物,玻璃上的封边条框之间装入低温焊料,并将所述两块玻璃上下对齐叠放在一起,两玻璃之间留有排气通道,然后送入高温封边炉中;
第四步,对所述高温封边炉加热升温至低温焊料的熔融温度以上,达到封边温度;低温焊料融化成液体,在玻璃自身重力的作用下,上、下封边条框互相嵌合在一起;停止加热、随炉降温,低温焊料将两块玻璃气密性地焊接在一起,打开高温封边炉的炉门得到所需的低空玻璃;
当所述低温焊料的熔融温度大于320℃时,高温封边炉具有基础加热系统和局部加热系统,基础加热系统采用电阻加热的方式,将高温封边炉内部及玻璃加热至一基础温度;再利用电阻加热、红外线加热、激光加热、电磁加热或微波加热的方式对玻璃的周边即封边位置进行局部加热,达到在短时间内将低温焊料加热至熔融的目的。
CN201210075629.3A 2012-03-21 2012-03-21 钢化、半钢化低空玻璃及其制造方法 Active CN102951797B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210075629.3A CN102951797B (zh) 2012-03-21 2012-03-21 钢化、半钢化低空玻璃及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210075629.3A CN102951797B (zh) 2012-03-21 2012-03-21 钢化、半钢化低空玻璃及其制造方法

Publications (2)

Publication Number Publication Date
CN102951797A CN102951797A (zh) 2013-03-06
CN102951797B true CN102951797B (zh) 2016-08-24

Family

ID=47761261

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210075629.3A Active CN102951797B (zh) 2012-03-21 2012-03-21 钢化、半钢化低空玻璃及其制造方法

Country Status (1)

Country Link
CN (1) CN102951797B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104291571A (zh) * 2013-07-17 2015-01-21 戴长虹 有密封条和安装孔的平面低空玻璃及其制备方法
CN110776254B (zh) * 2019-11-16 2021-02-05 中建材蚌埠玻璃工业设计研究院有限公司 一种液晶显示用玻璃组合物及玻璃的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1126504A (zh) * 1993-06-30 1996-07-10 悉尼大学 制造真空玻璃窗的方法
CN1738777A (zh) * 2002-12-05 2006-02-22 日本板硝子株式会社 真空玻璃面板的制造方法及由该方法制造的真空玻璃面板
EP1657396A2 (de) * 2004-11-11 2006-05-17 Saint-Gobain Glass France Isolier-Scheibenelement
CN201521210U (zh) * 2009-07-03 2010-07-07 贾天民 一种可监测和调节修复空腔内压力值的负压式中空玻璃
CN102079631A (zh) * 2009-11-27 2011-06-01 洛阳兰迪玻璃机器有限公司 钢化真空玻璃封接方法及其产品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1126504A (zh) * 1993-06-30 1996-07-10 悉尼大学 制造真空玻璃窗的方法
CN1738777A (zh) * 2002-12-05 2006-02-22 日本板硝子株式会社 真空玻璃面板的制造方法及由该方法制造的真空玻璃面板
EP1657396A2 (de) * 2004-11-11 2006-05-17 Saint-Gobain Glass France Isolier-Scheibenelement
CN201521210U (zh) * 2009-07-03 2010-07-07 贾天民 一种可监测和调节修复空腔内压力值的负压式中空玻璃
CN102079631A (zh) * 2009-11-27 2011-06-01 洛阳兰迪玻璃机器有限公司 钢化真空玻璃封接方法及其产品

Also Published As

Publication number Publication date
CN102951797A (zh) 2013-03-06

Similar Documents

Publication Publication Date Title
CN102701575B (zh) 凸面真空玻璃、平板真空玻璃及其制备方法
CN103420594B (zh) 密封条槽封边、封口的凸面真空玻璃及其制备方法
CN103420578A (zh) 密封条封边和封口的真空玻璃及其制备方法
CN103420574A (zh) 密封槽封边、封口的平面真空玻璃及其制备方法
CN102951813A (zh) 玻璃焊料焊接、条框和沟槽封边的凸面低空玻璃及其制作方法
CN102951787A (zh) 真空玻璃的金属焊料封边方法及其产品
CN102951795A (zh) 无抽气口、无支撑物的真空玻璃及其制备方法
CN102951823A (zh) 玻璃焊料焊接、沟槽封边的凸面低空玻璃及其制作方法
CN102951786B (zh) 玻璃焊接的凸面低空玻璃及其制备方法
CN102951797B (zh) 钢化、半钢化低空玻璃及其制造方法
CN102951857B (zh) 金属焊接的凸面钢化真空玻璃及其制造方法
CN102951791B (zh) 凸面低空玻璃、平板低空玻璃及其制备方法
CN102951796B (zh) 低空玻璃的金属焊料封边方法及其产品
CN102976591A (zh) 金属焊接的平板钢化低空玻璃及其制造方法
CN102951800B (zh) 金属焊接的凸面钢化低空玻璃及其制造方法
CN102951798B (zh) 玻璃焊接的平板钢化低空玻璃及其制造方法
CN102951788B (zh) 单片钢化平板低空玻璃及其制备方法
CN102992597A (zh) 单片钢化平板真空玻璃及其制备方法
CN102951799B (zh) 平板低空玻璃及其制备方法
CN102951785B (zh) 低空玻璃的低温玻璃焊料封边方法及其产品
CN102951794A (zh) 真空玻璃的低温玻璃焊料封边方法及其产品
CN102951792A (zh) 微凸面低空玻璃及其制备方法
CN102951807A (zh) 金属焊料焊接、沟槽封边的凸面低空玻璃及其制作方法
CN104291560A (zh) 微波加热密封条封边封口的凸面真空玻璃及其制备方法
CN104291617A (zh) 密封条封边、封口的平面真空玻璃及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191213

Address after: 314416 No.318, Nanjie Road, Yuanhua Town, Haining City, Jiaxing City, Zhejiang Province

Patentee after: Haining Yuanhua Town Industrial Investment Co., Ltd

Address before: 266033 No. 11, Fushun Road, Sifang District, Shandong, Qingdao

Patentee before: Dai Changhong