WO2015064389A1 - ツインクラッチ式変速機 - Google Patents

ツインクラッチ式変速機 Download PDF

Info

Publication number
WO2015064389A1
WO2015064389A1 PCT/JP2014/077695 JP2014077695W WO2015064389A1 WO 2015064389 A1 WO2015064389 A1 WO 2015064389A1 JP 2014077695 W JP2014077695 W JP 2014077695W WO 2015064389 A1 WO2015064389 A1 WO 2015064389A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
output
shaft
input
speed
Prior art date
Application number
PCT/JP2014/077695
Other languages
English (en)
French (fr)
Inventor
浩平 明石
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201480058517.4A priority Critical patent/CN105683620B/zh
Priority to EP14857848.7A priority patent/EP3064803B1/en
Priority to US15/030,172 priority patent/US20160238109A1/en
Publication of WO2015064389A1 publication Critical patent/WO2015064389A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/091Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears including a single countershaft
    • F16H3/0915Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears including a single countershaft with coaxial input and output shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/093Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts
    • F16H3/097Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts the input and output shafts being aligned on the same axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H2003/0826Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts wherein at least one gear on the input shaft, or on a countershaft is used for two different forward gear ratios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/093Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts
    • F16H2003/0933Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts with coaxial countershafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0056Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising seven forward speeds

Definitions

  • the present invention relates to a twin clutch transmission.
  • a first input shaft provided with a first clutch for connecting and disconnecting power from a drive source
  • a second input shaft provided with a second clutch for connecting and disconnecting power from a drive source
  • a plurality of gear pairs for transmission
  • a twin-clutch transmission that shifts by alternately switching between a first clutch and a second clutch.
  • Patent Document 1 discloses a twin-clutch transmission in which the primary gear pair is reused as a six-speed gear pair and the number of gear pairs for transmission is reduced.
  • the 1st speed and 2nd speed transmissions are performed by connecting the 1/2 speed combined transmission gear pair 320 to the input shaft 140, This is realized by selectively switching between the first primary gear pair 200 and the second primary gear pair 210.
  • FIG. 10B in the fifth speed shift, the first input shaft 110 is directly connected to the output shaft 140, and in the sixth speed shift, the first primary gear pair 200 is re-used as the shift gear pair. It is realized by using.
  • the step ratio between the first and second gears is the ratio between the gear ratio of the first primary gear pair 200 and the gear ratio of the second primary gear pair 210, and between the fifth and sixth gears. Is the product of the gear ratio of the second primary gear pair 210 and the reciprocal of the gear ratio of the first primary gear pair 200, and the step ratios between the first to second speeds and the fifth to sixth speeds are equal to each other. .
  • shifting feeling In general, in order to ensure a sense of connection at the time of shifting (hereinafter referred to as shifting feeling), it is preferable to increase the interstage ratio at a lower speed while reducing the interstage ratio at a higher speed.
  • shifting feeling In the above-described twin clutch type transmission, the step ratio between the 1st to 2nd speeds and the 5th to 6th speeds are equal to each other, so these cannot be individually set to optimum values, and the shift feeling There is a problem that makes it worse.
  • the disclosed twin clutch transmission is intended to effectively prevent the deterioration of the shift feeling.
  • the disclosed twin-clutch transmission includes a first input shaft having a first clutch for connecting / disconnecting power from a drive source, a second input shaft having a second clutch for connecting / disconnecting power from the drive source, An output shaft disposed coaxially with the one input shaft, the first input shaft, the second input shaft, a sub-axis disposed in parallel with the output shaft, and a first shaft fixed to the first input shaft.
  • a first input main gear a first input gear pair including a first input sub gear that is provided rotatably relative to the sub shaft and meshes with the first input main gear, and fixed to the second input shaft
  • a second input main gear a second input gear pair including a second input sub gear fixed to the sub shaft and meshing with the second input main gear
  • a second input gear pair provided rotatably on the output shaft.
  • a first connection means capable of selectively connecting the main gear and the second output main gear to the output shaft, and the second output sub gear and the third output sub gear selectively connected to the sub shaft.
  • a second connecting means capable of selectively connecting at least the first output main gear to the output shaft. And a connecting means.
  • FIG. 2 is a diagram showing a 4-speed power transmission path in the twin clutch transmission shown in FIG. 1. It is a figure which shows the 5-speed power transmission path
  • a first clutch 10 is provided at the input side end of the first input shaft 11.
  • a second clutch 12 is provided at the input side end of the second input shaft 13.
  • a hollow shaft penetrating in the axial direction is formed in the second input shaft 13, and the first input shaft is inserted into the hollow shaft so as to be relatively rotatable.
  • the output shaft 14 is arranged coaxially with the first input shaft 11 with a space therebetween.
  • the counter shaft 15 is disposed in parallel with the input shafts 11 and 13 and the output shaft 14.
  • the first clutch 10 includes a first pressure plate 10A fixed to the crankshaft 3 of the engine 2 and a first clutch disk 10B fixed to the input side end of the first input shaft 11.
  • first pressure plate 10A fixed to the crankshaft 3 of the engine 2
  • first clutch disk 10B fixed to the input side end of the first input shaft 11.
  • the second clutch 12 includes a second pressure plate 12A fixed to the crankshaft 3 of the engine 2 and a second clutch disk 12B fixed to the input side end of the second input shaft 13.
  • a second pressure plate 12A fixed to the crankshaft 3 of the engine 2
  • a second clutch disk 12B fixed to the input side end of the second input shaft 13.
  • the first primary gear pair 20 is an example of a first input gear pair according to the present invention, and includes a first input gear 20A and a first counter gear 20B that mesh with each other.
  • the first input gear 20 ⁇ / b> A is fixed to the output side end of the first input shaft 11.
  • the first counter gear 20B is provided on the counter shaft 15 so as to be relatively rotatable, and is formed integrally with a third-speed counter gear 30B described later.
  • the second primary gear pair 21 is an example of a second input gear pair of the present invention, and includes a second input gear 21A and a second counter gear 21B that mesh with each other.
  • the second input gear 21 ⁇ / b> A is fixed to the output side end of the second input shaft 13.
  • the second counter gear 21B is fixed to the input side end of the counter shaft 15. That is, the power of the engine 2 transmitted to the second input shaft 13 via the second clutch 12 is directly transmitted to the countershaft 15 via the second primary gear pair 21.
  • the third-speed transmission gear pair 30 is an example of a second transmission gear pair according to the present invention, and includes a third-speed output gear 30A and a third-speed counter gear 30B that mesh with each other.
  • the third-speed output gear 30A is provided on the output shaft 14 so as to be relatively rotatable.
  • the third speed counter gear 30B is formed so as to be able to rotate integrally with the first counter gear 20B. More specifically, a hollow shaft penetrating in the axial direction is formed in the integrally formed first counter gear 20B and third-speed counter gear 30B, and the counter shaft 15 is rotatably inserted into the hollow shaft. ing.
  • the number of teeth of the 3-speed output gear 30A is set to be larger than the number of teeth of the 3-speed counter gear 30B.
  • the 6-speed transmission gear pair 31 is an example of a third transmission gear pair according to the present invention, and includes a 6-speed output gear 31A and a 6-speed counter gear 31B that mesh with each other.
  • the 6-speed output gear 31A is fixed to the output shaft 14, and the 6-speed counter gear 31B is provided on the counter shaft 15 so as to be relatively rotatable.
  • the number of teeth of the 6-speed output gear 31A is set to be smaller than the number of teeth of the 6-speed counter gear 31B.
  • the 1/2 speed combined transmission gear pair 32 is an example of the first transmission gear pair of the present invention, and includes a 1/2 speed output gear 32A and a 1/2 speed counter gear 32B that mesh with each other. .
  • the 1/2 speed output gear 32 ⁇ / b> A is provided to be rotatable relative to the output shaft 14, and the 1/2 speed counter gear 32 ⁇ / b> B is fixed to the counter shaft 15.
  • the number of teeth of the 1/2 speed output gear 32A is set larger than the number of teeth of the 1/2 speed counter gear 32B.
  • the reverse transmission gear pair 33 includes a reverse output gear 33A, a reverse counter gear 33B, and an idler gear 33C that mesh with each other.
  • the reverse output gear 33A is provided on the output shaft 14 so as to be relatively rotatable, and the reverse counter gear 33B is fixed to the counter shaft 15.
  • the 4-speed transmission gear pair 34 is an example of a fourth transmission gear pair according to the present invention, and includes a 4-speed output gear 34A and a 4-speed counter gear 34B that mesh with each other.
  • the 4-speed output gear 34 ⁇ / b> A is provided to be rotatable relative to the output shaft 14, and the 4-speed counter gear 34 ⁇ / b> B is fixed to the counter shaft 15.
  • the number of teeth of the 4-speed output gear 34A is set larger than the number of teeth of the 4-speed counter gear 34B.
  • the first sync mechanism 40 is an example of the first connecting means of the present invention, and includes a first sleeve 40A that can move in the axial direction according to a shift operation of a shift lever device (not shown), and an input side end of the output shaft 14.
  • the first sync mechanism 40 is configured so that the first input gear 20 ⁇ / b> A and the third-speed output gear 30 ⁇ / b> A can be selectively connected to the output shaft 14.
  • the second sync mechanism 41 is an example of the second connecting means of the present invention, and the counter shaft 15 between the second sleeve 41A that can move in the axial direction, the third speed counter gear 30B, and the sixth speed counter gear 31B.
  • the second sync mechanism 41 is configured so that the third speed counter gear 30B and the sixth speed counter gear 31B can be selectively connected to the counter shaft 15.
  • the third sync mechanism 42 is an example of the third connecting means of the present invention, and is provided between the third sleeve 42A that is movable in the axial direction, the 1/2 speed output gear 32A, and the reverse output gear 33A.
  • a spline 42B fixed to the output shaft 14, a spline 42C fixed to the 1/2 speed output gear 32A, and a spline 42D fixed to the reverse output gear 33A are provided.
  • the third sync mechanism 42 is configured so that the 1/2 speed output gear 32 ⁇ / b> A and the reverse output gear 33 ⁇ / b> A can be selectively connected to the output shaft 14.
  • the fourth sync mechanism 43 is an example of the fourth connecting means of the present invention, and is fixed to the output shaft 14 on the output end side of the fourth sleeve 43A that is movable in the axial direction and the fourth-speed output gear 34A.
  • the spline 43B and the spline 43C fixed to the 4-speed output gear 34A are provided.
  • the fourth sync mechanism 43 is configured so that the fourth-speed output gear 34 ⁇ / b> A can be selectively connected to the output shaft 14.
  • the transmission control unit (TCU) 80 executes shift control for operating the first clutch 10, the second clutch 12, and the sync mechanisms 40 to 43 in accordance with a shift operation of a shift device (not shown).
  • TCU transmission control unit
  • FIG. 2 shows a first-speed power transmission path.
  • the first clutch 10 is selected, the second sync mechanism 41 connects the third speed counter gear 30B and the counter shaft 15, and the third sync mechanism 42 connects the 1/2 speed output gear 32A and the output gear.
  • the shaft 14 is connected.
  • the power of the engine 2 is output from the first clutch 10 through the first input shaft 11, the first primary gear pair 20, the third speed counter gear 30 ⁇ / b> B, the counter shaft 15, and the 1/2 speed combined transmission gear pair 32. 14 is transmitted.
  • FIG. 3 shows a second speed power transmission path.
  • the second speed it is executed by switching the first clutch 10 to the second clutch 12 from the first speed state. That is, the power of the engine 2 is transmitted from the second clutch 12 to the output shaft 14 via the second input shaft 13, the second primary gear pair 21, the counter shaft 15, and the 1/2 speed combined transmission gear pair 32.
  • FIG. 4 shows a third speed power transmission path.
  • the third speed it is executed by connecting the third speed output gear 30A and the output shaft 14 by the first sync mechanism 40 in the second speed state to enter a standby state, and switching the second clutch 12 to the first clutch 10. Is done.
  • the power of the engine 2 is transmitted from the first clutch 10 to the output shaft 14 via the first input shaft 11, the first primary gear pair 20, and the third speed transmission gear pair 30.
  • FIG. 5 shows a 4-speed power transmission path.
  • the 4th sync mechanism 43 is connected to the 4th speed output gear 34A and the output shaft 14 in the 3rd speed state to enter a standby state, and the first clutch 10 is switched to the 2nd clutch 12. Is done.
  • the power of the engine 2 is transmitted from the second clutch 12 to the output shaft 14 via the second input shaft 13, the second primary gear pair 21, the counter shaft 15, and the fourth speed transmission gear pair 34.
  • FIG. 6 shows a 5-speed power transmission path.
  • the first input gear 20A and the output shaft 14 are connected (directly connected) by the first sync mechanism 40 in the fourth speed state to be in a standby state, and the second clutch 12 is switched to the first clutch 10. Is executed.
  • the power of the engine 2 is transmitted from the first clutch 10 to the output shaft 14 via the first input shaft 11 and the first input gear 20A.
  • FIG. 7 shows a 6-speed power transmission path.
  • the 6th speed counter gear 31B and the countershaft 15 are connected by the second sync mechanism 41 in the 5th speed state to be in a standby state, and the first clutch 10 is switched to the 2nd clutch 12.
  • the power of the engine 2 is transmitted from the second clutch 12 to the output shaft 14 via the second input shaft 13, the second primary gear pair 21, the counter shaft 15, and the sixth speed transmission gear pair 31.
  • FIG. 8 shows a 7-speed power transmission path.
  • the second clutch 12 is once disconnected in the sixth speed state.
  • the first sync mechanism 40 connects the first input gear 20A and the output shaft 14
  • the second sync mechanism 41 connects the 3-speed counter gear 30B and the counter shaft 15, and the second clutch 12 is connected again. To be executed.
  • the power of the engine 10 is transmitted from the second clutch 12 to the output shaft 14 via the second input shaft 13, the second primary gear pair 21, the counter shaft 15, the third speed counter gear 30 ⁇ / b> B, and the first primary gear pair 20. Is done. Thereby, reuse of the first primary gear pair 20 as a gear pair for transmission is realized. Since the second clutch 12 is connected / disconnected during the shift change to the sixth to seventh speeds, so-called torque loss occurs, but the influence is small due to the high speed.
  • Table 1 An example of the number of teeth and the gear ratio of each gear pair is shown in Table 1 below, and the gear ratio of each gear stage 1 to 7 is shown in Table 2 below.
  • the upper number of teeth Z1 indicates the number of gear teeth provided on the countershaft 15
  • the middle number of teeth Z2 indicates the number of gear teeth provided on the input shafts 11 and 13 or the output shaft 14. Yes.
  • the inter-step ratio between the 1st to 2nd speeds and the 5th to 7th speeds is obtained from Table 2.
  • the gear ratio between the 1st and 2nd speeds is expanded, and even if the gear ratio between the 5th and 7th speeds is expanded accordingly, the gear ratio for 6 speeds can be set independently. Since 31 is provided, for example, as shown in FIG. 10, the interstage ratio on the high speed stage side can be set narrow.
  • the output gears of the three-speed transmission gear pair 30, the 1 / 2-speed transmission gear pair 32, and the fourth-speed transmission gear pair 34, which are the reduction gear pairs, are all supported by the output shaft 14 for free rotation. Only the output gear 31 ⁇ / b> A of the 6-speed transmission gear pair 31 that is a gear pair is fixed to the output shaft 14. For this reason, there is no counter gear that is always increased with respect to the output shaft 14, and heat generation and wear due to high-speed rotation are effectively suppressed.
  • the step ratio between the 1st and 2nd speeds and the step ratio between the 5th and 6th speeds are equal to each other, so these cannot be set to optimum values individually. There is a problem that causes the deterioration of the shift feeling.
  • the step ratio between the first and second gears and the step ratio between the fifth and seventh gears are equal to each other, but the gear ratio is increased between the fifth and seventh gears.
  • a 6-speed transmission gear pair 31 that can be set independently is provided. In other words, the speed ratio between the 1st and 2nd speeds on the low speed side is expanded to improve the shifting feeling, and even if the speed ratio between the 5th and 7th speeds is expanded accordingly, the speed between 5th and 7th speeds is increased.
  • the supplementary 6-speed transmission gear pair 31 is configured such that the interstage ratio on the high speed side can be set narrow. Therefore, according to the twin clutch type transmission of the present embodiment, it is possible to set a good interstage ratio that becomes narrower as the speed increases, and the shift feeling can be effectively improved.
  • the output gear of a reduction gear pair (for example, a 4-speed transmission gear pair) is fixed to the output shaft. For this reason, when the output shaft rotates at a high speed, the counter gear rotates at a higher speed than the output shaft, causing problems such as heat generation, wear, and loss increase.
  • the twin clutch transmission of the present embodiment only the 6-speed output gear 31A is fixed to the output shaft 14, and the other output gears are supported idle on the output shaft 14. Since the 6-speed transmission gear pair 31 is an increased gear pair, the rotation of the output shaft 14 is always decelerated and transmitted to the 6-speed counter gear 31B. Therefore, according to the twin clutch transmission of the present embodiment, there is no counter gear that is always accelerated with respect to the output shaft 14, so that the heat generation, wear, loss increase, etc. of the counter gear can be effectively suppressed. Can do.
  • the third-speed counter gear 30B and the first counter gear 20B are not necessarily formed integrally, and may be formed separately.
  • the third speed counter gear 30B and the first counter gear 20B may be configured to be selectively connectable to the counter shaft 15 by a synchro mechanism or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)

Abstract

 ツインクラッチ式変速機に関し、変速フィーリングの悪化を防止する。 第1クラッチ10、第1入力軸11、第2クラッチ12、第2入力軸13、出力軸14、副軸15、第1入力主ギヤ20A及び第1入力副ギヤ20Bを含む第1入力ギヤ対20、第2入力主ギヤ21A及び第2入力副ギヤ21Bを含む第2入力ギヤ対21、第1出力主ギヤ32A及び第1出力副ギヤ32Bを含む第1変速ギヤ対32、第2出力主ギヤ30A及び第2出力副ギヤ30Bを含む第2変速ギヤ対30、第3出力主ギヤ31A及び第3出力副ギヤ31Bを含む第3変速ギヤ対31、第1入力主ギヤ20A又は第2出力主ギヤ30Aを出力軸14に連結する第1連結機構40、第2出力副ギヤ30B又は第3出力副ギヤ31Bを副軸15に連結する第2連結機構41、第1出力主ギヤ32Aを出力軸14に連結する第3連結機構42を備えた。

Description

ツインクラッチ式変速機
 本発明は、ツインクラッチ式変速機に関する。
 従来、駆動源からの動力を断接する第1クラッチが設けられた第1インプットシャフトと、駆動源からの動力を断接する第2クラッチが設けられた第2インプットシャフトと、複数の変速用ギヤ対とを備え、第1クラッチ及び第2クラッチを交互に切り替えることで変速を行うツインクラッチ式変速機が知られている。
 例えば、特許文献1には、プライマリギヤ対を6速の変速用ギヤ対として再利用することで変速用ギヤ対を削減したツインクラッチ式変速機が開示されている。
特開2010-531417号公報
 上述のプライマリギヤ対を再利用する従来技術では、図10(A)に示すように、1速及び2速の変速は、1/2速兼用変速ギヤ対320をインプットシャフト140に連結し、第1プライマリギヤ対200と第2プライマリギヤ対210とを選択的に切り替えることで実現される。また、図10(B)に示すように、5速の変速は、第1インプットシャフト110をアウトプットシャフト140と直結し、6速の変速は、第1プライマリギヤ対200を変速用ギヤ対として再利用することで実現される。
 すなわち、従来型のツインクラッチ式変速機では、1~2速間の段間比は第1プライマリギヤ対200のギヤレシオと第2プライマリギヤ対210のギヤレシオとの比になり、5~6速間の段間比は第2プライマリギヤ対210のギヤレシオと第1プライマリギヤ対200のギヤレシオの逆数との積になり、これら1~2速間及び5~6速間の段間比が互いに等しくなる。
 一般的に変速時の繋がり感(以下、変速フィーリングという)を確保するためには、低速段ほど段間比を広くする一方、高速段は段間比を狭くすることが好ましい。しかしながら、上述のツインクラッチ式変速機では、1~2速間及び5~6速間の段間比が互いに等しくなるため、これらを個別に最適な値に設定することができず、変速フィーリングを悪化させる課題がある。
 開示のツインクラッチ式変速機は、変速フィーリングの悪化を効果的に防止することを目的とする。
 開示のツインクラッチ式変速機は、駆動源からの動力を断接する第1クラッチを有する第1入力軸と、前記駆動源からの動力を断接する第2クラッチを有する第2入力軸と、前記第1入力軸と同軸上に配置された出力軸と、前記第1入力軸、前記第2入力軸及び、前記出力軸と平行に配置された副軸と、前記第1入力軸に固定された第1入力主ギヤ及び、前記副軸に相対回転可能に設けられて前記第1入力主ギヤと噛合する第1入力副ギヤを含む第1入力用ギヤ対と、前記第2入力軸に固定された第2入力主ギヤ及び、前記副軸に固定されて前記第2入力主ギヤと噛合する第2入力副ギヤを含む第2入力用ギヤ対と、前記出力軸に相対回転可能に設けられた第1出力主ギヤ及び、前記副軸に固定されて前記第1出力主ギヤと噛合する第1出力副ギヤを含む第1変速用ギヤ対と、前記第1出力主ギヤよりも入力端側の前記出力軸に相対回転可能に設けられた第2出力主ギヤ及び、前記第1入力副ギヤと一体回転可能に形成されて前記第2出力主ギヤと噛合する第2出力副ギヤを含む第2変速用ギヤ対と、前記第2出力主ギヤと前記第1出力主ギヤとの間の前記出力軸に固定された第3出力主ギヤ及び、前記副軸に相対回転可能に設けられて前記第3出力主ギヤと噛合する第3出力副ギヤを含む第3変速用ギヤ対と、前記第1入力主ギヤ及び、前記第2出力主ギヤを前記出力軸に選択的に連結可能な第1連結手段と、前記第2出力副ギヤ及び、前記第3出力副ギヤを前記副軸に選択的に連結可能な第2連結手段と、少なくとも前記第1出力主ギヤを前記出力軸に選択的に連結可能な第3連結手段とを備える。
 開示のツインクラッチ式変速機によれば、変速フィーリングの悪化を効果的に防止することができる。
本発明の一実施形態に係るツインクラッチ式変速機を示すスケルトン図である。 図1に示すツインクラッチ式変速機における1速の動力伝達経路を示す図である。 図1に示すツインクラッチ式変速機における2速の動力伝達経路を示す図である。 図1に示すツインクラッチ式変速機における3速の動力伝達経路を示す図である。 図1に示すツインクラッチ式変速機における4速の動力伝達経路を示す図である。 図1に示すツインクラッチ式変速機における5速の動力伝達経路を示す図である。 図1に示すツインクラッチ式変速機における6速の動力伝達経路を示す図である。 図1に示すツインクラッチ式変速機における7速の動力伝達経路を示す図である。 本実施形態の段間比の一例を説明するグラフである。 従来型のツインクラッチ式変速機による動力伝達経路を説明する図である。
 以下、添付図面に基づいて、本発明の一実施形態に係るツインクラッチ式変速機を説明する。同一の部品には同一の符号を付してあり、それらの名称及び機能も同じである。したがって、それらについての詳細な説明は繰返さない。
 図1に示すように、第1インプットシャフト11の入力側端には、第1クラッチ10が設けられている。第2インプットシャフト13の入力側端には、第2クラッチ12が設けられている。第2インプットシャフト13には、軸方向に貫通する中空軸が形成されると共に、この中空軸には第1インプットシャフトが相対回転可能に挿通されている。
 アウトプットシャフト14は、第1インプットシャフト11と同軸上に間隔を隔てて配置されている。カウンタシャフト15は、インプットシャフト11,13及び、アウトプットシャフト14と平行に配置されている。
 第1クラッチ10は、エンジン2のクランクシャフト3に固定された第1プレッシャプレート10Aと、第1インプットシャフト11の入力側端に固定された第1クラッチディスク10Bとを備えている。第1プレッシャプレート10Aが移動して第1クラッチディスク10Bに圧接すると、エンジン2の動力は第1クラッチ10を介して第1インプットシャフト11に伝達される。
 第2クラッチ12は、エンジン2のクランクシャフト3に固定された第2プレッシャプレート12Aと、第2インプットシャフト13の入力側端に固定された第2クラッチディスク12Bとを備えている。第2プレッシャプレート12Aが移動して第2クラッチディスク12Bに圧接すると、エンジン2の動力は第2クラッチ12を介して第2インプットシャフト13に伝達される。
 第1プライマリギヤ対20は、本発明の第1入力用ギヤ対の一例であって、互いに噛合する第1インプットギヤ20A及び、第1カウンタギヤ20Bを備えている。第1インプットギヤ20Aは、第1インプットシャフト11の出力側端に固定されている。第1カウンタギヤ20Bは、カウンタシャフト15に相対回転可能に設けられており、後述する3速カウンタギヤ30Bと一体的に形成されている。
 第2プライマリギヤ対21は、本発明の第2入力用ギヤ対の一例であって、互いに噛合する第2インプットギヤ21A及び、第2カウンタギヤ21Bを備えている。第2インプットギヤ21Aは、第2インプットシャフト13の出力側端に固定されている。第2カウンタギヤ21Bは、カウンタシャフト15の入力側端に固定されている。すなわち、第2クラッチ12を介して第2インプットシャフト13に伝達されるエンジン2の動力は、第2プライマリギヤ対21を介してカウンタシャフト15に直接的に伝達される。
 3速用変速ギヤ対30は、本発明の第2変速用ギヤ対の一例であって、互いに噛合する3速アウトプットギヤ30A及び、3速カウンタギヤ30Bを備えている。3速アウトプットギヤ30Aは、アウトプットシャフト14に相対回転可能に設けられている。3速カウンタギヤ30Bは、第1カウンタギヤ20Bと一体回転可能に形成されている。より詳しくは、一体形成された第1カウンタギヤ20B及び、3速カウンタギヤ30Bには、軸方向に貫通する中空軸が形成されると共に、この中空軸にはカウンタシャフト15が回転自在に挿通されている。3速アウトプットギヤ30Aの歯数は、3速カウンタギヤ30Bの歯数よりも多く設定されている。
 6速用変速ギヤ対31は、本発明の第3変速用ギヤ対の一例であって、互いに噛合する6速アウトプットギヤ31A及び、6速カウンタギヤ31Bを備えている。6速アウトプットギヤ31Aは、アウトプットシャフト14に固定され、6速カウンタギヤ31Bは、カウンタシャフト15に相対回転可能に設けられている。6速アウトプットギヤ31Aの歯数は、6速カウンタギヤ31Bの歯数よりも少なく設定されている。
 1/2速兼用変速ギヤ対32は、本発明の第1変速用ギヤ対の一例であって、互いに噛合する1/2速アウトプットギヤ32A及び、1/2速カウンタギヤ32Bを備えている。1/2速アウトプットギヤ32Aは、アウトプットシャフト14に相対回転可能に設けられ、1/2速カウンタギヤ32Bは、カウンタシャフト15に固定されている。1/2速アウトプットギヤ32Aの歯数は、1/2速カウンタギヤ32Bの歯数よりも多く設定されている。
 リバース用変速ギヤ対33は、互いに噛合するリバースアウトプットギヤ33A、リバースカウンタギヤ33B及び、アイドラギヤ33Cを備えている。リバースアウトプットギヤ33Aは、アウトプットシャフト14に相対回転可能に設けられ、リバースカウンタギヤ33Bは、カウンタシャフト15に固定されている。
 4速用変速ギヤ対34は、本発明の第4変速用ギヤ対の一例であって、互いに噛合する4速アウトプットギヤ34A及び、4速カウンタギヤ34Bを備えている。4速アウトプットギヤ34Aは、アウトプットシャフト14に相対回転可能に設けられ、4速カウンタギヤ34Bは、カウンタシャフト15に固定されている。4速アウトプットギヤ34Aの歯数は、4速カウンタギヤ34Bの歯数よりも多く設定されている。
 第1シンクロ機構40は、本発明の第1連結手段の一例であって、図示しないシフトレバー装置のシフト操作に応じて軸方向に移動可能な第1スリーブ40Aと、アウトプットシャフト14の入力側端に固定されたスプライン40Bと、第1インプットギヤ20Aに固定されたスプライン40Cと、3速アウトプットギヤ30Aに固定されたスプライン40Dとを備えている。
 第1スリーブ40Aが第1インプットギヤ20A側に移動してスプライン40Cと係合すると、第1インプットギヤ20Aとアウトプットシャフト14とが連結(第1インプットシャフト11とアウトプットシャフト14とが直結)される。一方、第1スリーブ40Aが3速アウトプットギヤ30A側に移動してスプライン40Dと係合すると、3速アウトプットギヤ30Aとアウトプットシャフト14とが連結される。すなわち、第1シンクロ機構40によって、第1インプットギヤ20A及び、3速アウトプットギヤ30Aがアウトプットシャフト14と選択的に連結可能に構成されている。
 第2シンクロ機構41は、本発明の第2連結手段の一例であって、軸方向に移動可能な第2スリーブ41Aと、3速カウンタギヤ30Bと6速カウンタギヤ31Bとの間のカウンタシャフト15に固定されたスプライン41Bと、3速カウンタギヤ30Bに固定されたスプライン41Cと、6速カウンタギヤ31Bに固定されたスプライン41Dとを備えている。
 第2スリーブ41Aが3速カウンタギヤ30B側に移動してスプライン41Cと係合すると、3速カウンタギヤ30Bとカウンタシャフト15とが連結される。一方、第2スリーブ41Aが6速カウンタギヤ31B側に移動してスプライン42Dと係合すると、6速カウンタギヤ31Bとカウンタシャフト15とが連結される。すなわち、第2シンクロ機構41によって、3速カウンタギヤ30B及び、6速カウンタギヤ31Bがカウンタシャフト15と選択的に連結可能に構成されている。
 第3シンクロ機構42は、本発明の第3連結手段の一例であって、軸方向に移動可能な第3スリーブ42Aと、1/2速アウトプットギヤ32Aとリバースアウトプットギヤ33Aとの間のアウトプットシャフト14に固定されたスプライン42Bと、1/2速アウトプットギヤ32Aに固定されたスプライン42Cと、リバースアウトプットギヤ33Aに固定されたスプライン42Dとを備えている。
 第3スリーブ42Aが1/2速アウトプットギヤ32A側に移動してスプライン42Cと係合すると、1/2速アウトプットギヤ32Aとアウトプットシャフト14とが連結される。一方、第3スリーブ42Aがリバースアウトプットギヤ33A側に移動してスプライン42Dと係合すると、リバースアウトプットギヤ33Aとアウトプットシャフト14とが連結される。すなわち、第3シンクロ機構42によって、1/2速アウトプットギヤ32A及び、リバースアウトプットギヤ33Aがアウトプットシャフト14と選択的に連結可能に構成されている。
 第4シンクロ機構43は、本発明の第4連結手段の一例であって、軸方向に移動可能な第4スリーブ43Aと、4速アウトプットギヤ34Aよりも出力端側のアウトプットシャフト14に固定されたスプライン43Bと、4速アウトプットギヤ34Aに固定されたスプライン43Cとを備えている。
 第4スリーブ43Aが4速アウトプットギヤ34A側に移動してスプライン43Cと係合すると、4速アウトプットギヤ34Aとアウトプットシャフト14とが連結される。すなわち、第4シンクロ機構43によって、4速アウトプットギヤ34Aがアウトプットシャフト14と選択的に連結可能に構成されている。
 変速機制御ユニット(TCU)80は、図示しないシフト装置のシフト操作に応じて、第1クラッチ10、第2クラッチ12、各シンクロ機構40~43を作動させる変速制御を実行する。以下、TCU80の変速制御による各前進段の動力伝達経路を図2~8に基づいて説明する。
 図2は、1速の動力伝達経路を示している。1速の場合は、第1クラッチ10が選択され、第2シンクロ機構41によって3速カウンタギヤ30Bとカウンタシャフト15とが連結され、第3シンクロ機構42によって1/2速アウトプットギヤ32Aとアウトプットシャフト14とが連結される。
 すなわち、エンジン2の動力は、第1クラッチ10から第1インプットシャフト11、第1プライマリギヤ対20、3速カウンタギヤ30B、カウンタシャフト15、1/2速兼用変速ギヤ対32を介してアウトプットシャフト14に伝達される。
 図3は、2速の動力伝達経路を示している。2速の場合は、1速の状態から第1クラッチ10を第2クラッチ12に切り替えることで実行される。すなわち、エンジン2の動力は、第2クラッチ12から第2インプットシャフト13、第2プライマリギヤ対21、カウンタシャフト15、1/2速兼用変速ギヤ対32を介してアウトプットシャフト14に伝達される。
 図4は、3速の動力伝達経路を示している。3速の場合は、2速の状態で第1シンクロ機構40によって3速アウトプットギヤ30Aとアウトプットシャフト14とを連結して待機状態とし、第2クラッチ12を第1クラッチ10に切り替えることで実行される。
 すなわち、エンジン2の動力は、第1クラッチ10から第1インプットシャフト11、第1プライマリギヤ対20、3速用変速ギヤ対30を介してアウトプットシャフト14に伝達される。
 図5は、4速の動力伝達経路を示している。4速の場合は、3速の状態で第4シンクロ機構43によって4速アウトプットギヤ34Aとアウトプットシャフト14とを連結して待機状態とし、第1クラッチ10を第2クラッチ12に切り替えることで実行される。
 すなわち、エンジン2の動力は、第2クラッチ12から第2インプットシャフト13、第2プライマリギヤ対21、カウンタシャフト15、4速用変速ギヤ対34を介してアウトプットシャフト14に伝達される。
 図6は、5速の動力伝達経路を示している。5速の場合は、4速の状態で第1シンクロ機構40によって第1インプットギヤ20Aとアウトプットシャフト14とを連結(直結)して待機状態とし、第2クラッチ12を第1クラッチ10に切り替えることで実行される。
 すなわち、エンジン2の動力は、第1クラッチ10から第1インプットシャフト11、第1インプットギヤ20Aを介してアウトプットシャフト14に伝達される。
 図7は、6速の動力伝達経路を示している。6速の場合は、5速の状態で第2シンクロ機構41によって6速カウンタギヤ31Bとカウンタシャフト15とを連結して待機状態とし、第1クラッチ10を第2クラッチ12に切り替えることで実行される。
 すなわち、エンジン2の動力は、第2クラッチ12から第2インプットシャフト13、第2プライマリギヤ対21、カウンタシャフト15、6速用変速ギヤ対31を介してアウトプットシャフト14に伝達される。
 図8は、7速の動力伝達経路を示している。7速の場合は、6速の状態で第2クラッチ12を一旦切断する。そして、第1シンクロ機構40によって第1インプットギヤ20Aとアウトプットシャフト14とを連結し、第2シンクロ機構41によって3速カウンタギヤ30Bとカウンタシャフト15とを連結すると共に、第2クラッチ12を再度接続することで実行される。
 すなわち、エンジン10の動力は、第2クラッチ12から第2インプットシャフト13、第2プライマリギヤ対21、カウンタシャフト15、3速カウンタギヤ30B、第1プライマリギヤ対20を介してアウトプットシャフト14に伝達される。これにより、第1プライマリギヤ対20の変速用ギヤ対としての再利用が実現される。なお、6~7速へのシフトチェンジ時に第2クラッチ12を断接するため、いわゆるトルク抜けが生じるが、高速段のためその影響は少ない。
 次に、本実施形態に係るツインクラッチ式変速機のギヤレシオ及び段間比について説明する。なお、以下の説明に用いる各数値は本実施形態の一例であって、本発明の趣旨を一脱しない範囲で適宜最適な値に設定することが可能である。
 各ギヤ対の歯数及びギヤレシオの一例を以下の表1、各変速段1~7のギヤレシオを以下の表2に示す。なお、表1において、上段の歯数Z1はカウンタシャフト15に設けられたギヤの歯数、中段の歯数Z2はインプットシャフト11,13又はアウトプットシャフト14に設けられたギヤの歯数を示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2から1~2速間及び、5~7速間の各段間比を求めると、1~2速間の段間比は約1.648(=1速/2速)、5~7速の段間比も約1.648(=5速/7速)となり、これらは互いに略等しくなる。変速フィーリングを良好に維持するためには、低速段側の段間比を広く設定し、高速段側の段間比を狭く設定することが好ましい。本実施形態では、1~2速間の段間比を拡張し、これに伴い5~7速間の段間比が拡張されても、独立してギヤレシオを設定可能な6速用変速ギヤ対31が設けられているため、例えば図10に示すように、高速段側の段間比を狭く設定することができる。
 また、減速ギヤ対である3速用変速ギヤ対30、1/2速兼用変速ギヤ対32、4速用変速ギヤ対34のアウトプットギヤは、全てアウトプットシャフト14に遊転支持され、増速ギヤ対である6速用変速ギヤ対31のアウトプットギヤ31Aのみがアウトプットシャフト14に固定されている。そのため、アウトプットシャフト14に対して常に増速されるカウンタギヤが存在しなくなり、高速回転による発熱や摩耗等が効果的に抑止される。
 次に、本実施形態に係るツインクラッチ式変速機による作用効果を説明する。
 従来型のツインクラッチ式変速機では、1~2速間の段間比と5~6速間の段間比とが互いに等しくなるため、これらを個別に最適な値に設定することができず、変速フィーリングの悪化を招く課題がある。
 これに対し、本実施形態のツインクラッチ式変速機では、1~2速間の段間比と5~7速間の段間比とが互いに等しくなるが、5~7速間にはギヤレシオを独立して設定可能な6速用変速ギヤ対31が設けられている。すなわち、変速フィーリングを良好にすべく、低速側の1~2速の段間比を拡張し、これに伴い5~7速間の段間比が拡張されても、5~7速間を補う6速用変速ギヤ対31によって高速段側の段間比を狭く設定できるように構成されている。したがって、本実施形態のツインクラッチ式変速機によれば、高速段側ほど狭くなる良好な段間比を設定することが可能となり、変速フィーリングを効果的に向上することができる。
 また、従来型のツインクラッチ式変速機では、減速ギヤ対(例えば、4速用変速ギヤ対)のアウトプットギヤがアウトプットシャフトに固定されている。そのため、アウトプットシャフトが高速回転すると、カウンタギヤはアウトプットシャフトよりもさらに増速されて回転することになり、発熱や摩耗、損失増加等を招く課題がある。
 これに対し、本実施形態のツインクラッチ式変速機では、アウトプットシャフト14に6速アウトプットギヤ31Aのみが固定され、他のアウトプットギヤはアウトプットシャフト14に遊転支持されている。6速用変速ギヤ対31は増速ギヤ対のため、アウトプットシャフト14の回転は常時減速されて6速カウンタギヤ31Bに伝達される。したがって、本実施形態のツインクラッチ式変速機によれば、アウトプットシャフト14に対して常に増速されるカウンタギヤが存在しないため、カウンタギヤの発熱や摩耗、損失増加等を効果的に抑制することができる。
 なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
 例えば、3速カウンタギヤ30B及び、第1カウンタギヤ20Bは、必ずしも一体に形成される必要はなく、別体に形成されてもよい。この場合は、3速カウンタギヤ30B及び、第1カウンタギヤ20Bをシンクロ機構等によって、カウンタシャフト15と選択的に連結可能に構成すればよい。
 2 エンジン
 10 第1クラッチ
 11 第1インプットシャフト
 12 第2クラッチ
 13 第2インプットシャフト
 14 アウトプットシャフト
 15 カウンタシャフト
 20 第1プライマリギヤ対
 21 第2プライマリギヤ対
 30 3速用変速ギヤ対
 31 6速用変速ギヤ対
 32 1/2速兼用変速ギヤ対
 34 4速用変速ギヤ対
 40 第1シンクロ機構
 41 第2シンクロ機構
 42 第3シンクロ機構
 43 第4シンクロ機構

Claims (4)

  1.  駆動源からの動力を断接する第1クラッチを有する第1入力軸と、
     前記駆動源からの動力を断接する第2クラッチを有する第2入力軸と、
     前記第1入力軸と同軸上に配置された出力軸と、
     前記第1入力軸、前記第2入力軸及び、前記出力軸と平行に配置された副軸と、
     前記第1入力軸に固定された第1入力主ギヤ及び、前記副軸に相対回転可能に設けられて前記第1入力主ギヤと噛合する第1入力副ギヤを含む第1入力用ギヤ対と、
     前記第2入力軸に固定された第2入力主ギヤ及び、前記副軸に固定されて前記第2入力主ギヤと噛合する第2入力副ギヤを含む第2入力用ギヤ対と、
     前記出力軸に相対回転可能に設けられた第1出力主ギヤ及び、前記副軸に固定されて前記第1出力主ギヤと噛合する第1出力副ギヤを含む第1変速用ギヤ対と、
     前記第1出力主ギヤよりも入力端側の前記出力軸に相対回転可能に設けられた第2出力主ギヤ及び、前記第1入力副ギヤと一体回転可能に形成されて前記第2出力主ギヤと噛合する第2出力副ギヤを含む第2変速用ギヤ対と、
     前記第2出力主ギヤと前記第1出力主ギヤとの間の前記出力軸に固定された第3出力主ギヤ及び、前記副軸に相対回転可能に設けられて前記第3出力主ギヤと噛合する第3出力副ギヤを含む第3変速用ギヤ対と、
     前記第1入力主ギヤ及び、前記第2出力主ギヤを前記出力軸に選択的に連結可能な第1連結手段と、
     前記第2出力副ギヤ及び、前記第3出力副ギヤを前記副軸に選択的に連結可能な第2連結手段と、
     少なくとも前記第1出力主ギヤを前記出力軸に選択的に連結可能な第3連結手段と、を備えるツインクラッチ式変速機。
  2.  前記第1出力主ギヤよりも出力端側の前記出力軸に相対回転可能に設けられた第4出力主ギヤ及び、前記副軸に固定されて前記第4出力主ギヤと噛合する第4出力副ギヤを含む第4変速用ギヤ対と、
     少なくとも前記第4出力副ギヤを前記副軸に選択的に連結可能な第4連結手段と、をさらに備える
     請求項1に記載のツインクラッチ式変速機。
  3.  前記第1、第2及び、第4変速用ギヤ対が、出力軸側のギヤ歯数を副軸側のギヤ歯数よりも多く設定された減速用ギヤ対であり、
     前記第3変速用ギヤ対が、出力軸側のギヤ歯数を副軸側のギヤ歯数よりも少なく設定された増速用ギヤ対である
     請求項2に記載のツインクラッチ式変速機。
  4.  前記第1変速用ギヤ対が1速及び、2速兼用の変速ギヤ対であり、
     前記第3変速用ギヤ対が6速用の変速ギヤ対であり、
     7速の場合は、前記第2クラッチを接続し、前記第2連結手段により前記第2出力副ギヤと前記副軸とを連結し、且つ、前記第1連結手段により前記第1入力主ギヤと前記出力軸とを連結して、前記第1入力用ギヤ対を変速用ギヤ対として利用する
     請求項1から3の何れか一項に記載のツインクラッチ式変速機。
PCT/JP2014/077695 2013-10-30 2014-10-17 ツインクラッチ式変速機 WO2015064389A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480058517.4A CN105683620B (zh) 2013-10-30 2014-10-17 双离合器式变速器
EP14857848.7A EP3064803B1 (en) 2013-10-30 2014-10-17 Dual-clutch transmission
US15/030,172 US20160238109A1 (en) 2013-10-30 2014-10-17 Dual-clutch transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-225221 2013-10-30
JP2013225221A JP6295604B2 (ja) 2013-10-30 2013-10-30 ツインクラッチ式変速機

Publications (1)

Publication Number Publication Date
WO2015064389A1 true WO2015064389A1 (ja) 2015-05-07

Family

ID=53003998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077695 WO2015064389A1 (ja) 2013-10-30 2014-10-17 ツインクラッチ式変速機

Country Status (5)

Country Link
US (1) US20160238109A1 (ja)
EP (1) EP3064803B1 (ja)
JP (1) JP6295604B2 (ja)
CN (1) CN105683620B (ja)
WO (1) WO2015064389A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6772742B2 (ja) * 2016-10-07 2020-10-21 いすゞ自動車株式会社 デュアルクラッチ式変速機
JP6729319B2 (ja) * 2016-11-18 2020-07-22 いすゞ自動車株式会社 デュアルクラッチ式変速機
DE102017204336A1 (de) 2017-03-15 2018-09-20 Wirtgen Gmbh Bodenbearbeitungsmaschine mit Schaltgetriebe zwischen Antriebsmotor und rotierbarer Arbeitsvorrichtung
CN107489740B (zh) * 2017-09-04 2019-06-18 北京理工大学 纵置七速双离合器变速箱
CN112193048B (zh) * 2020-10-23 2022-05-24 东风汽车集团有限公司 一种混合动力车辆的多模式驱动系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274147A (ja) * 1985-05-28 1986-12-04 Mazda Motor Corp 歯車式変速装置
JP2006077987A (ja) * 2004-09-08 2006-03-23 Zahnradfab Friedrichshafen Ag 副軸構造の変速機
JP2010531417A (ja) 2007-06-26 2010-09-24 ダイムラー・アクチェンゲゼルシャフト 歯車変速機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004043387B4 (de) * 2004-09-08 2015-05-28 Zf Friedrichshafen Ag Mehrganggetriebe in Vorgelegebauweise
JP4274210B2 (ja) * 2006-08-08 2009-06-03 いすゞ自動車株式会社 出力軸減速式デュアルクラッチ変速機
DE102012202652A1 (de) * 2012-02-21 2013-08-22 Zf Friedrichshafen Ag Getriebe für ein Kraftfahrzeug

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274147A (ja) * 1985-05-28 1986-12-04 Mazda Motor Corp 歯車式変速装置
JP2006077987A (ja) * 2004-09-08 2006-03-23 Zahnradfab Friedrichshafen Ag 副軸構造の変速機
JP2010531417A (ja) 2007-06-26 2010-09-24 ダイムラー・アクチェンゲゼルシャフト 歯車変速機

Also Published As

Publication number Publication date
US20160238109A1 (en) 2016-08-18
EP3064803B1 (en) 2020-08-19
EP3064803A1 (en) 2016-09-07
JP2015086930A (ja) 2015-05-07
EP3064803A4 (en) 2017-12-06
CN105683620B (zh) 2018-08-21
CN105683620A (zh) 2016-06-15
JP6295604B2 (ja) 2018-03-20

Similar Documents

Publication Publication Date Title
WO2015064389A1 (ja) ツインクラッチ式変速機
JP2008069832A (ja) 自動車用駆動装置
JP2010249303A (ja) 常時噛合式の車両用変速機
JP2010203605A (ja) トランスミッション
JP2008309332A (ja) ツインクラッチ式変速機
JP6343925B2 (ja) デュアルクラッチ式変速機
KR20200043571A (ko) 차량용 dct
JP2010117007A (ja) トランスミッション
JP4877196B2 (ja) 変速機
JP6221485B2 (ja) ツインクラッチ式変速機
JP2007085436A (ja) 歯車式多段変速装置
JP5091514B2 (ja) 産業車両用変速機
JP2008291893A (ja) デュアルクラッチ式変速機
JP2016095022A (ja) 変速機
JP2010151303A (ja) トランスミッション
JP2015102226A (ja) 変速機
JP6729104B2 (ja) デュアルクラッチ式変速機
JP6828327B2 (ja) デュアルクラッチ式変速機
JP4922257B2 (ja) トランスミッション
JP6772742B2 (ja) デュアルクラッチ式変速機
WO2018092871A1 (ja) デュアルクラッチ式変速機
JP6897317B2 (ja) 変速機
CN108119617B (zh) 用于车辆的变速器
JP4929222B2 (ja) トランスミッション
JP2007032620A (ja) ツインクラッチ式変速機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857848

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15030172

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014857848

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014857848

Country of ref document: EP