WO2015063989A1 - 空気調和装置の室外ユニット - Google Patents

空気調和装置の室外ユニット Download PDF

Info

Publication number
WO2015063989A1
WO2015063989A1 PCT/JP2014/004384 JP2014004384W WO2015063989A1 WO 2015063989 A1 WO2015063989 A1 WO 2015063989A1 JP 2014004384 W JP2014004384 W JP 2014004384W WO 2015063989 A1 WO2015063989 A1 WO 2015063989A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
path
heat exchanger
heat transfer
outdoor
Prior art date
Application number
PCT/JP2014/004384
Other languages
English (en)
French (fr)
Inventor
匡史 齋藤
瀬戸口 隆之
達也 牧野
山田 剛
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2015063989A1 publication Critical patent/WO2015063989A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants

Definitions

  • the present invention relates to a preventive measure for refrigerant drift in an outdoor unit of an air conditioner, in particular, a lowermost refrigerant path in an outdoor heat exchanger.
  • the outdoor unit of the air conditioner includes a compressor, an outdoor heat exchanger, a blower mechanism, and the like.
  • the compressor and the outdoor heat exchanger constitute a refrigerant circuit, and the blower mechanism supplies air to the outdoor heat exchanger.
  • Patent Document 1 some outdoor heat exchangers are formed with a plurality of refrigerant paths.
  • a plurality of refrigerant paths are arranged in the vertical direction and are connected in parallel to each other.
  • the path length of each refrigerant path varies depending on the wind speed distribution of the air. It is
  • R32 refrigerant having a relatively low global warming potential is being used as a refrigerant circulating in the refrigerant circuit.
  • the R32 refrigerant has a larger latent heat of vaporization than the R410A refrigerant, and can achieve the same performance as the R410A refrigerant with a small amount of circulation. Therefore, with R32 refrigerant, the pressure loss in the outdoor heat exchanger is small.
  • the R32 refrigerant is affected by gravity in the same way as the R410A refrigerant.
  • the R32 refrigerant has an influence of gravity compared to the R410A refrigerant. Easy to receive. Therefore, even if the wind speed is uniform in the up-down direction of the outdoor heat exchanger, for example, when the outdoor heat exchanger functions as an evaporator, liquid is not supplied to the lowermost refrigerant path in the heat exchanger. A so-called refrigerant drift occurs in which the refrigerant flows and accumulates easily.
  • the present invention has been made in view of such a point, and an object thereof is to prevent the occurrence of refrigerant drift in the lowermost refrigerant path in the outdoor heat exchanger.
  • the first aspect of the present disclosure includes a plate-shaped heat transfer fin (51) extending in the vertical direction and a plurality of heat transfer tubes (52 that penetrate the heat transfer fin (51) in the plate thickness direction of the fin.
  • An outdoor unit of an air conditioner including The outdoor heat exchanger (23) is formed with at least three stages of refrigerant paths (P1, P2, P3, P4) including a plurality of adjacent heat transfer tubes (52) connected to each other, and the refrigerant
  • the paths (P1, P2, P3, P4) are arranged side by side in the vertical direction and connected in parallel to each other, and the wind speed of the air supplied to the outdoor heat exchanger (23) is the heat transfer fin ( 51) is substantially uniform in the vertical direction, and the path length of the lowermost refrigerant path (P4) is the remainder excluding the lowermost refrig
  • the wind speed of the air supplied to the outdoor heat exchanger (23) is substantially uniform in the vertical direction of the heat transfer fin (51).
  • the path length of the lowermost refrigerant path (P4) is longer than the remaining refrigerant paths (P2, P3) excluding the refrigerant path (P4) and the uppermost refrigerant path (P1). ing.
  • the lower refrigerant path (P4) has a larger pressure loss than the remaining refrigerant paths (P2, P3), so the lower refrigerant path (P4) has the remaining refrigerant paths (P2, P3).
  • liquid refrigerant is less likely to flow.
  • the flow rate of the liquid refrigerant flowing into the refrigerant path (P4) is suppressed by increasing the pressure loss of the lowermost refrigerant path (P4), which has conventionally been easy for liquid refrigerant to flow into. Therefore, it is possible to prevent the occurrence of refrigerant drift in which liquid refrigerant flows into and accumulates in the lowermost refrigerant path (P4) in the outdoor heat exchanger (23).
  • the number of stages of the horizontal portion (58) in the plurality of heat transfer tubes (52) forming the lowermost refrigerant path (P4) is the remaining refrigerant path. Since the number of stages of the horizontal portion (58) in the plurality of heat transfer tubes (52) forming the (P2, P3) is larger, the path length of the refrigerant path (P4) at the lowermost stage is the remaining refrigerant path. It is characterized by being longer than the path length of (P2, P3).
  • the path length of the lowermost refrigerant path (P4) can be made longer than the remaining refrigerant paths (P2, P3) by a simple method.
  • the outdoor unit of the air conditioner further includes a flow divider (54) capable of diverting the R32 refrigerant to each of the refrigerant paths in the first aspect or the second aspect. set to target.
  • the flow divider (54) is located within a height range of the lowermost refrigerant path (P4).
  • the shunt (54) is positioned above the lowermost refrigerant path (P4), the head difference becomes large. Then, even though the pressure loss of the refrigerant path (P4) is increased by adjusting the path length of the lowermost refrigerant path (P4), the outdoor heat exchanger (23) functions as an evaporator, for example. R32 refrigerant easily flows into the lowermost refrigerant path (P4) due to the influence of the position of the flow divider (54). In this case, the effect of making the path length of the lowermost refrigerant path (P4) longer than the remaining refrigerant paths (P2, P3) is diminished.
  • the position of the flow divider (54) is arranged within the height range of the lowermost refrigerant path (P4). For this reason, the head difference does not increase depending on the position of the flow divider (54), and therefore, the R32 refrigerant is prevented from flowing into the lowermost refrigerant path (P4) due to the position of the flow divider (54). it can.
  • the path length of the lowermost refrigerant path (P4) can be made longer than the remaining refrigerant paths (P2, P3) by a simple method.
  • FIG. 1 is a piping diagram showing a refrigerant circuit of the air conditioner according to the present embodiment.
  • FIG. 2 is an external perspective view of the outdoor unit.
  • FIG. 3 is a view of the inside of the outdoor unit from which the top plate is removed as viewed from above.
  • FIG. 4 is a diagram schematically showing the outdoor heat exchanger and the structure in the vicinity thereof.
  • FIG. 5 is a diagram illustrating a connection state of each of a plurality of refrigerant paths formed in the outdoor heat exchanger.
  • FIG. 6 is a view for explaining the wind speed of the air supplied to the outdoor heat exchanger.
  • FIG. 7 is a top view of the outdoor heat exchanger before being bent into a substantially L shape and after being bent.
  • FIG. 1 is a piping diagram showing a refrigerant circuit (20) of the air conditioner (10).
  • the air conditioner (10) includes an outdoor unit (11) and an indoor unit (12), and can perform a cooling operation and a heating operation.
  • the outdoor unit (11) and the indoor unit (12) are connected via a liquid side connecting pipe (13) and a gas side connecting pipe (14).
  • the outdoor unit (11), the indoor unit (12), the liquid side connecting pipe (13), and the gas side connecting pipe (14) form a refrigerant circuit (20).
  • the refrigerant circuit (20) mainly includes a compressor (21), a four-way selector valve (22), an outdoor heat exchanger (23), an expansion valve (24), an indoor heat exchanger (25), and an accumulator (26).
  • the compressor (21), the four-way switching valve (22), the outdoor heat exchanger (23), the expansion valve (24), and the accumulator (26) are provided in the outdoor unit (11).
  • the outdoor unit (11) is provided with an outdoor fan (15) (corresponding to a blower mechanism) that supplies outdoor air to the outdoor heat exchanger (23).
  • the indoor heat exchanger (25) is provided in the indoor unit (12).
  • the indoor unit (12) is provided with an indoor fan (16) for supplying room air to the indoor heat exchanger (25).
  • the discharge side of the compressor (21) is connected to the first port of the four-way switching valve (22) via the discharge pipe (27).
  • the suction side of the compressor (21) is connected to the second port of the four-way switching valve (22) via the suction pipe (28).
  • the outdoor heat exchanger (23), the expansion valve (24), and the indoor heat exchanger (25) are sequentially arranged from the third port to the fourth port of the four-way switching valve (22). ) are connected by piping.
  • the compressor (21) is a scroll type or rotary type hermetic compressor.
  • the four-way switching valve (22) has a first state in which the first port communicates with the third port and the second port communicates with the fourth port (state shown by the solid line in FIG. 1), and the first port is the fourth port. And the second port is switched to a second state (a state indicated by a broken line in FIG. 1) in which the second port communicates with the third port.
  • the expansion valve (24) is a so-called electronic expansion valve and is a means for decompressing the refrigerant.
  • the outdoor heat exchanger (23) employs a so-called cross fin type fin-and-tube heat exchanger.
  • the outdoor heat exchanger (23) functions as a refrigerant radiator during cooling operation, and functions as a refrigerant evaporator during heating operation.
  • the configuration of the outdoor heat exchanger (23) will be described in detail in “ ⁇ Configuration of outdoor heat exchanger>”.
  • the indoor heat exchanger (25) functions as a refrigerant evaporator during cooling operation and functions as a refrigerant radiator during heating operation.
  • the accumulator (26) is connected to the suction side of the compressor (21) via the suction pipe (28).
  • the accumulator (26) gas-liquid separates the refrigerant and causes the compressor (21) to suck only the gas refrigerant.
  • R32 refrigerant (HFC-32) is filled and circulated.
  • FIG. 2 is an external perspective view of the outdoor unit (11).
  • FIG. 3 is a view of the interior of the outdoor unit (11) with the top plate (43) removed, as viewed from above.
  • the outdoor unit (11) includes the compressor (21), the four-way switching valve (22), the outdoor heat exchanger (23), the expansion valve (24), the accumulator (26), and the outdoor fan (15 shown in FIG. ) And a casing (40).
  • the casing (40) is a steel plate box that is vertically long and formed in a substantially rectangular parallelepiped shape.
  • the casing (40) includes a bottom plate (41), a side plate (42) erected on the bottom plate (41), and a top plate (43) attached to the upper end of the side plate (42).
  • the side plate (42) is a front plate (42a) that forms the front of the outdoor unit (11), a left plate (42b) that is positioned on the left side of the front plate (42a) in FIG. 3, and a back that faces the front plate (42a).
  • the face plate (42c) is constituted by a right side plate (42d) located on the right side of the front plate (42a) in FIG.
  • the front plate (42a) has a blowing port (46), and the left side plate (42b) and the back plate (42c) have suction ports (45b, 45c), respectively.
  • a fan grill (47) is fitted into the outlet (46).
  • a partition plate (44) extending in a curved manner from the front plate (42a) to the back plate (42c) is erected. As shown in FIG. 3, the partition plate (44) partitions the internal space of the casing (40) into a left blower chamber (S1) and a right machine chamber (S2).
  • the blower room (S1) accommodates an outdoor heat exchanger (23) and an outdoor fan (15).
  • the outdoor heat exchanger (23) is substantially L-shaped in plan view, and more specifically corresponds to the left side plate (42b) and the back plate (42c) in which the suction ports (45b, 45c) are formed. Arranged to do so.
  • the portion of the outdoor heat exchanger (23) corresponding to the back plate (42c) is thicker than the portion of the outdoor heat exchanger (23) corresponding to the left side plate (42b). is there.
  • the outdoor fan (15) is provided between the front plate (42a) in which the blowout port (46) is formed and the outdoor heat exchanger (23).
  • a compressor (21) and an accumulator (26), as well as a four-way switching valve (22) and an expansion valve (24), which are not shown, are accommodated.
  • the compressor (21) and the accumulator (26) are installed on the bottom plate (41) of the casing (40).
  • the four-way selector valve (22) is disposed above the compressor (21), and the expansion valve (24) is disposed near the compressor (21) and the front plate (42a).
  • FIG. 4 is a view schematically showing the outdoor heat exchanger (23) and the structure in the vicinity thereof.
  • FIG. 5 is a diagram illustrating a connection state of each of a plurality of refrigerant paths (P1, P2, P3, P4) formed in the outdoor heat exchanger (23).
  • FIG. 6 is a view for explaining the wind speed of the air supplied to the outdoor heat exchanger (23).
  • FIG. 7 is a top view of the outdoor heat exchanger (23) before being bent into a substantially L shape and after being bent.
  • the outdoor heat exchanger (23) includes a large number of heat transfer fins (51) and a large number of heat transfer tubes (52).
  • Each heat transfer fin (51) has an elongated rectangular plate shape, and is arranged such that its long side is in the vertical direction. That is, as shown in FIG. 4, the large number of heat transfer fins (51) are extended in the vertical direction (ie, the vertical direction). And many heat-transfer fins (51) are located in a line thickness direction mutually at predetermined intervals.
  • each heat transfer tube (52) has a hairpin shape formed by folding one tube extending in the horizontal direction in the middle, and two horizontal portions extending in parallel to each other in the horizontal direction. (58) and a U-shaped folded portion (59a). That is, each heat transfer tube (52) has two horizontal portions (58) and one folded portion (59a) connecting them, and these are integrally formed.
  • a large number of heat transfer tubes (52) are attached to the heat transfer fins (51) with their horizontal portions (58) penetrating through the heat transfer fins (51) in the thickness direction. 52) There is a space between them. Specifically, as shown in FIG. 5, a large number of heat transfer tubes (52) are arranged in three rows in the left-right direction and a large number in the vertical direction. The diameter of each heat transfer tube (52) is substantially the same.
  • Such an outdoor heat exchanger (23) is bent into a substantially L shape as shown in FIG. 7, and is arranged in the casing (40) as shown in FIG.
  • the multiple heat transfer tubes (52) are divided into four systems in the vertical direction, and a plurality of heat transfer tubes (52) belonging to the same system are arranged.
  • a connecting pipe (59b) except for one end of a part of the heat transfer pipe (52), so that at least three stages of refrigerant paths (P1, P2, P3, P4) independent for each system (here) (4 steps).
  • the refrigerant paths (P1, P2, P3, P4) are mainly formed by connecting adjacent heat transfer tubes (52).
  • each refrigerant path (P1, P2, P3, P4) corresponding to one end of the heat transfer tube (52) of the part are connected to the flow divider (54 through the capillary tube (53a, 53b, 53c, 53d). ) To the header (56) via the header communication pipes (55a, 55b, 55c, 55d).
  • the flow divider (54) is a pipe member that distributes the refrigerant on the average to each refrigerant path (P1, P2, P3, P4), and joins each capillary tube (53a, 53b, 53c, 53d). These are connected to the expansion valve (24) via the freeze prevention path (P5).
  • the header (56) is a pipe member that joins the header communication pipes (55a, 55b, 55c, 55d), and these are connected to the third port of the four-way switching valve (22). That is, the refrigerant paths (P1, P2, P3, P4) are arranged side by side in the vertical direction and are connected in parallel to each other.
  • connection pipe (59b) on the front side of the paper in FIG. 5, and is indicated by a thick broken line.
  • a folded portion (59a) that is, a part of the heat transfer tube (52)
  • first refrigerant path (P1) the refrigerant path located at the uppermost stage among the plural (here, four stages) refrigerant paths (P1, P2, P3, P4) arranged in the vertical direction is referred to as “first refrigerant path (P1)”.
  • the refrigerant path located at the second stage from the top is the “second refrigerant path (P2)”
  • the refrigerant path located at the third stage from the top is the “third refrigerant path (P3)”
  • fourth refrigerant path located at the bottom stage Is referred to as “fourth refrigerant path (P4)”.
  • the wind speed is substantially uniform means that the wind speed at any position in the outdoor heat exchanger (23) is from the upper end to the lower end within a predetermined range of the outdoor heat exchanger (23) including the position ( In other words, the average value of the wind speed at each position of the long side effective length (H) of the outdoor heat exchanger (23) is within the range of about ⁇ 5% to + 5%. Say state.
  • the outdoor heat exchanger (23) in front view is divided into a plurality of regions in the horizontal direction, and the vertical direction (that is, the vertical direction) in any one region (23a).
  • the wind speeds (V11, V12, V13, V14) at each position separated by a fixed interval d are measured.
  • FIG. 6 shows a case where wind speeds (V11, V12, V13, V14) are measured at four positions aligned in the vertical direction.
  • the average value (Vm1) of the wind speed (V11, V12, V13, V14) at each position is obtained by “(V11 + V12 + V13 + V14) / 4”, and the wind speed (V11, V11, V14 at each position) V12, V13, V14) are all within a wind speed range of “0.95 Vm1 or more and 1.05 Vm1 or less”.
  • wind speeds (V21, V22, V23, V24) at four positions are measured for the other region (23b).
  • the average value (Vm2) of the wind speed (V21, V22, V23, V24) at each position is obtained by “(V21 + V22 + V23 + V24) / 4”, and the wind speed (V21, V22, V23, V24) at each position is obtained.
  • V22, V23, V24) are all within the wind speed range of “0.95 Vm2 or more and 1.05 Vm2 or less”.
  • each wind speed (V11, V12, V13, V14) in the region (23a) does not necessarily satisfy the wind speed range “0.95 Vm2 or more and 1.05 Vm2 or less” in the region (23b).
  • the wind speeds (V21, V22, V23, V24) in the region (23b) do not necessarily satisfy the wind speed range “0.95 Vm1 or more and 1.05 Vm1 or less” in the region (23a).
  • the wind speed of the air indicated by the arrows (W1, W2, W3, W4, W5) in FIG. 5 is about ⁇ 5% or more and within + 5% based on the average value of the wind speed. It is within. Therefore, in this embodiment, it can be said that the wind speed of the air supplied to the outdoor heat exchanger (23) is substantially uniform regardless of the height in the vertical direction within an arbitrary region.
  • the path length of the fourth refrigerant path (P4) located at the lowermost stage is positioned higher than the fourth refrigerant path (P4) except for the first refrigerant path (P1).
  • the second refrigerant path (P2) and the third refrigerant path (P3) are longer than the respective path lengths.
  • the path length of each refrigerant path (P1, P2, P3, P4) is the horizontal portion (58) of each of the plurality of heat transfer tubes (52) forming each refrigerant path (P1, P2, P3, P4).
  • the length of the folded portion (59a) of the heat transfer tube (52) and the length of the connection tube (59b) connecting the heat transfer tubes (52) are not included.
  • the horizontal portion (58) of the heat transfer tube (52) has 12 stages
  • the horizontal portion of the heat transfer tube (52) is composed of 10 stages
  • the horizontal portion (58) of the heat transfer tube (52) is composed of 12 stages.
  • the first refrigerant path (P1) is formed by connecting horizontal portions (58) of three rows of heat transfer tubes (52) located from the first stage to the twelfth stage
  • the two refrigerant paths (P2) are formed by connecting the horizontal portions (58) of the three rows of heat transfer tubes (52) located from the 13th stage to the 22nd stage.
  • the third refrigerant path (P3) is formed by connecting the horizontal portions (58) of the three rows of heat transfer tubes (52) located from the 23rd stage to the 32nd stage, and the fourth refrigerant path (P4). Then, the horizontal portion (58) of the three rows of heat transfer tubes (52) located from the 33rd stage to the 44th stage is connected.
  • the heat transfer tubes (52) forming each refrigerant path (P1, P2, P3, P4) have heat transfer tubes (52a, 52d, 52g, 52j) that serve as inlets during heating operation and as outlets during cooling operation.
  • Two heat transfer tubes (52b, 52c, 52e, 52f, 52h, 52i, 52k, 52l) are included, one by one and the outlet during heating operation and the inlet during cooling operation.
  • the fourth refrigerant path (P4) is configured by more heat transfer tubes (52) than the second and third refrigerant paths (P2, P3) (more specifically, the heat transfer tubes (52 ) Has a larger number of stages (58), the path length of the fourth refrigerant path (P4) is longer than that of the second and third refrigerant paths (P2, P3). That is, in the present embodiment, the path length of the fourth refrigerant path (P4) is substantially the same as that of the first refrigerant path (P1), but is about the path length of the second and third refrigerant paths (P2, P3). 1.2 times.
  • R32 refrigerant is used as the refrigerant in the refrigerant circuit (20).
  • R32 refrigerant has a larger latent heat of vaporization than R410A refrigerant, and achieves the same performance as R410A refrigerant even with a small amount of circulation compared to R410A refrigerant. it can. Therefore, in the refrigerant circuit (20) using the R32 refrigerant, the number of rotations of the compressor (21) can be suppressed as compared with the case where the R410A refrigerant is used, and the heat transfer tube ( The resistance of 52) is small, and the pressure loss in the outdoor heat exchanger (23) is also small.
  • R32 refrigerant is more susceptible to gravity due to head differences than R410A refrigerant.
  • the R32 refrigerant flows into the heat transfer tube (52) of the outdoor heat exchanger (23) functioning as an evaporator, the R32 refrigerant is in a gas-liquid two-phase state in which a gas refrigerant and a liquid refrigerant are mixed. It has become.
  • Liquid refrigerant is more susceptible to the influence of the direction of gravity than gas refrigerant. Therefore, the liquid refrigerant easily flows and accumulates in the fourth refrigerant path (P4) located at the lowermost stage.
  • Such so-called refrigerant drift can also be a factor of reducing the heat exchange capability of the outdoor heat exchanger (23).
  • the length of each capillary tube (53a, 53b, 53c, 53d) is set to the refrigerant path (P1, There is a means for changing according to the height relationship of P2, P3, P4).
  • the R32 refrigerant has a property that the pressure loss is smaller than that of the R410A refrigerant and is easily affected by gravity due to the head difference.
  • the length of the capillary tube (53a, 53b, 53c, 53d) is compared with the case of R410A. Need to be long overall. Then, inevitably, the length of the capillary tube (53d) connected to the fourth refrigerant path (P4) located at the lowermost stage is longer than that in the case of R410A.
  • the path length of the fourth refrigerant path (P4) positioned at the lowest level is set to the second level positioned higher than that. And longer than the respective path lengths of the third refrigerant path (P2, P3), thereby making the pressure loss in the fourth refrigerant path (P4) larger than that of the second and third refrigerant paths (P2, P3). ing.
  • the path length of the fourth refrigerant path (P4) by adjusting the path length of the fourth refrigerant path (P4), the inflow and storage of the liquid refrigerant into the lowermost fourth refrigerant path (P4), which has conventionally been easy for liquid refrigerant to flow in, is suppressed. Yes.
  • the outdoor unit (11) can be manufactured more easily than the means for preventing the occurrence of refrigerant drift by varying the length of the capillary tubes (53a, 53b, 53c, 53d), and The outdoor unit (11) can be downsized.
  • each refrigerant path (P1, P2, P3, P4) is that the path length of the fourth refrigerant path (P4) is longer than the path lengths of the second and third refrigerant paths (P2, P3).
  • the ratio of gas refrigerant and liquid refrigerant in the refrigerant passing through each refrigerant path (P1, P2, P3, P4) is almost uniform after satisfying the conditions Is set.
  • the outdoor heat exchanger (23) is further formed with a freezing prevention path (P5).
  • the freezing prevention path (P5) is located near the fourth refrigerant path (P4) in the outdoor heat exchanger (23), and near the heat transfer tube (52j) included in the fourth refrigerant path (P4).
  • the horizontal portion (58) positioned is composed of two stages of heat transfer tubes (52m, 52n).
  • the refrigerant before (or after joining) the refrigerant paths (P1, P2, P3, P4) flows through the flow divider (54).
  • the lower part of the outdoor heat exchanger (23) is easily frozen, but the lower part is warmed by the R32 refrigerant flowing through the antifreezing path (P5), so that it is difficult to freeze.
  • each refrigerant path (P1, P2, P3, P4) according to the present embodiment will be described more specifically as follows. It can.
  • the top view of the outdoor heat exchanger (23) after being bent into a substantially L shape is represented by a solid line, and the outdoor heat exchanger (23) before being bent into a substantially L shape.
  • the top view of is represented by a two-dot chain line.
  • the heat exchange part that becomes the outermost side when bent into an L shape is the first heat exchange part (61), and the heat exchange part that is the innermost side.
  • a third heat exchange section (63) the heat exchange section located between the first heat exchange section (61) and the third heat exchange section (63) is referred to as a second heat exchange section (62).
  • the effective length (L1) of the first heat exchange section (61) in the outdoor heat exchanger (23) before being bent is approximately equal to the effective length (L2) of the second heat exchange section (62) (L1 ⁇ L2) and the effective length (L3) of the third heat exchange section (63) are shorter than the effective lengths (L1, L2) of the first and second heat exchange sections (61, 62).
  • the effective length (L1, L2, L3) of each heat exchange part (61, 62, 63) is the length of the heat transfer tube (52) of the part where the heat transfer fin (51) is provided, that is, the heat transfer tube ( 52) is the length of one horizontal part (58).
  • the path length of the first refrigerant path (P1) is “(12 ⁇ L1) + (12 ⁇ L2) + (12 ⁇ L3)”, the second refrigerant path (P2) and the third refrigerant path (P3).
  • Each path length can be expressed as “(10 ⁇ L1) + (10 ⁇ L2) + (10 ⁇ L3)”.
  • the path length of the fourth refrigerant path (P4) is “(10 ⁇ L1) + (12 ⁇ L2) + (12 ⁇ L3), excluding the heat transfer tube (52m, 52n) of the freeze prevention path (P5)” "It can be expressed as. Also from this, it is clear that the path length of the fourth refrigerant path (P4) is longer than the path lengths of the second and third refrigerant paths (P2, P3).
  • the flow divider (54) is in the vicinity of the fourth refrigerant path (P4) located at the lowermost stage, and the fourth refrigerant path (P4). It is located within the height range. Specifically, the flow divider (54) is located between the 33rd stage and the 44th stage where the horizontal portion (58) of the heat transfer tube (52) forming the fourth refrigerant path (P4) is located. It is located near the connecting pipe (59b) connecting the heat transfer pipe (52). Therefore, it can be said that the flow divider (54) is located below the first, second and third refrigerant paths (P1, P2, P3).
  • the shunt (54) is located above the fourth refrigerant path (P4) (for example, within the height range of the first, second and third refrigerant paths (P1, P2, P3)). Think. In this case, the head difference is rather increased. Then, as described above, the outdoor heat exchanger (23) is used as an evaporator even though the pressure loss of the fourth refrigerant path (P4) is increased by adjusting the path length of the fourth refrigerant path (P4). In the case of functioning, the R32 refrigerant easily flows into the fourth refrigerant path (P4) due to the influence of the position of the flow divider (54).
  • the position of the flow divider (54) is arranged within the height range of the fourth refrigerant path (P4). For this reason, the head difference does not increase depending on the position of the flow divider (54). Therefore, when the outdoor heat exchanger (23) functions as an evaporator, the R32 refrigerant flows to the fourth refrigerant path (P4) located at the lowest stage due to the position of the flow divider (54). Can be suppressed. Further, when the outdoor heat exchanger (23) functions as a condenser, the R32 refrigerant that has become the liquid refrigerant easily flows out from the fourth refrigerant path (P4) to the flow divider (54). Accumulation in the refrigerant path (P4) is also suppressed.
  • the flow divider (54) includes the plurality of heat transfer tubes (52) forming the fourth refrigerant path (54) even within the height range of the fourth refrigerant path (P4) located at the lowermost stage. Among these, it can be said that it is preferable to be located near the heat transfer tube (52) located at the lower stage.
  • the four-way switching valve (22) is shown by a solid line in FIG. 1 so that the outdoor heat exchanger (23) functions as a radiator and the indoor heat exchanger (25) functions as an evaporator. Switch to the state shown. Then, as shown by solid arrows in FIGS. 1, 4, and 5, the high-pressure gas refrigerant discharged from the compressor (21) passes through the four-way switching valve (22) and the header (56). It is sent to the heat transfer tubes (52b, 52c, 52e, 52f, 52h, 52i, 52k, 52l) which are the inlets of the refrigerant paths (P1, P2, P3, P4) of the heat exchanger (23).
  • the gas refrigerant radiates heat by exchanging heat with outdoor air supplied by the outdoor fan (15) in each refrigerant path (P1, P2, P3, P4).
  • the radiated refrigerant flows out of the heat transfer tubes (52a, 52d, 52g, 52j), which are the outlets of the refrigerant paths (P1, P2, P3, P4), they join together at the flow divider (54), and the freezing prevention path ( It is sent to the expansion valve (24) via P5).
  • the refrigerant sent to the expansion valve (24) is depressurized by the expansion valve (24) and then sent to the indoor heat exchanger (25).
  • the decompressed refrigerant evaporates by exchanging heat with the indoor air supplied by the indoor fan (16).
  • the evaporated low-pressure refrigerant is sucked into the compressor (21) through the four-way switching valve (22) and the accumulator (26).
  • the four-way switching valve (22) is indicated by a dotted line in FIG. 1 so that the outdoor heat exchanger (23) functions as an evaporator and the indoor heat exchanger (25) functions as a radiator. Switched to the state shown. Then, as indicated by the dotted arrows in FIGS. 1, 4, and 5, the high-pressure gas refrigerant discharged from the compressor (21) passes through the four-way switching valve (22) to the indoor heat exchanger (25 ). The high-pressure refrigerant sent to the indoor heat exchanger (25) exchanges heat with the indoor air supplied by the indoor fan (16) to radiate heat. The radiated refrigerant is sent to the expansion valve (24) to be depressurized.
  • the depressurized refrigerant passes through the freezing prevention path (P5) of the outdoor heat exchanger (23) and then flows into the flow divider (54) and passes through the flow divider (54) to each refrigerant path (P1, P2). , P3, P4) are introduced into the heat transfer tubes (52a, 52d, 52g, 52j). At this time, the refrigerant is in a gas-liquid two-phase state, but the fourth refrigerant path (P4) has a larger pressure loss than the other refrigerant paths (P1, P2, P3). Is difficult to flow into the fourth refrigerant path (P4).
  • each refrigerant path P1, P2, P3, P4
  • a refrigerant having a substantially uniform ratio of gas refrigerant and liquid refrigerant flows.
  • the mass flow rate of the refrigerant in each refrigerant path P1, P2, P3, P4 is made uniform.
  • the refrigerant sent to each refrigerant path (P1, P2, P3, P4) evaporates by exchanging heat with the outdoor air supplied by the outdoor fan (15).
  • the evaporated refrigerant flows out of the heat transfer tubes (52b, 52c, 52e, 52f, 52h, 52i, 52k, 52l), which are the outlets of each refrigerant path (P1, P2, P3, P4), they merge at the header (56) Then, it is sucked into the compressor (21) through the four-way switching valve (22) and the accumulator (26).
  • the wind speed of the air supplied to the outdoor heat exchanger (23) is substantially uniform in the vertical direction of the heat transfer fin (51).
  • the path length of the fourth refrigerant path (P4) located at the lowermost stage is the second and third remaining except the refrigerant path (P4) and the first refrigerant path (P1) located at the uppermost stage. It is longer than the refrigerant path (P2, P3).
  • the fourth refrigerant path (P4) has a larger pressure loss than the second and third refrigerant paths (P2, P3), and therefore the second and third refrigerant paths are in the fourth refrigerant path (P4).
  • Liquid refrigerant is less likely to flow than (P2, P3).
  • the flow rate of the liquid refrigerant flowing into the fourth refrigerant path (P4) is suppressed by increasing the pressure loss in the lowermost fourth refrigerant path (P4), which has conventionally been easy for liquid refrigerant to flow into. Accordingly, it is possible to prevent the occurrence of refrigerant drift in which liquid refrigerant flows into the fourth refrigerant path (P4) and accumulates.
  • the number of stages of the horizontal portions (58) in the plurality of heat transfer tubes (52) forming the fourth refrigerant path (P4) is the same as that of the plurality of heat transfer tubes (52) in the second refrigerant path (P2). Since the number of stages of the horizontal portion (58) and the number of stages of the horizontal portions (58) of the plurality of heat transfer tubes (52) in the third refrigerant path (P2) are larger than each, the path length of the fourth refrigerant path (P4) is the first. It is longer than the path lengths of the second and third refrigerant paths (P2, P3).
  • the path length of the fourth refrigerant path (P4) located at the lowermost stage is set by the simple method from the second and third refrigerant paths (P2, P3) located above the fourth refrigerant path (P4). Can be long.
  • the flow divider (54) is located within the height range of the fourth refrigerant path (P4) located at the lowermost stage.
  • the head difference does not increase due to the position of the flow divider (54). Therefore, even if the R32 refrigerant has the property of being easily affected by the gravity due to the head difference, the R32 refrigerant flows into the fourth refrigerant path (P4) due to the position of the flow divider (54). Can be suppressed.
  • the refrigerant path (P1, P2, P3, P4) may be formed in three or more stages in the vertical direction of the heat transfer fin (51). Therefore, the number of refrigerant paths (P1, P2, P3, P4) is not limited to four stages, and may be three stages or six stages. In any case, the path length of the lowermost refrigerant path is longer than the remaining refrigerant paths excluding the lowermost refrigerant path and the uppermost refrigerant path.
  • the path length of the first refrigerant path (P1) may be equal to or shorter than the fourth refrigerant path (P4), or may be equal to or longer than that. Therefore, when the fourth refrigerant path (P4) is composed of a plurality of heat transfer tubes (52) including 12 horizontal stages (58), the first refrigerant path (P1) has 10 horizontal stages ( 58) including a plurality of heat transfer tubes (52) including 13 horizontal stages (58).
  • each refrigerant path (P1, P2, P3 , P4) are not limited to the above-described embodiment.
  • the outdoor heat exchanger (23) does not have to be formed with the anti-freezing path (P5).
  • the position of the flow divider (54) does not necessarily have to be within the height range of the fourth refrigerant path (P4) located at the lowermost stage. For example, even if the flow divider (54) is outside the height range of the fourth refrigerant path (P4), the path length of the fourth refrigerant path (P4) is longer than that of the second and third refrigerant paths (P2, P3). However, when the liquid refrigerant is difficult to flow into the fourth refrigerant path (P4) due to the long length, the position of the flow divider (54) is not limited to FIGS.
  • the present invention uses an air conditioner in which R32 refrigerant is used and three or more refrigerant paths are formed in the vertical direction in the cross fin type fin-and-tube heat exchanger. Useful for outdoor units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

 室外側熱交換器内の最下段の冷媒パスにおける冷媒偏流の発生を防止する。R32冷媒が循環する冷媒回路(20)内の室外側熱交換器(23)には、互いに並列接続され上下方向に並んで配置された冷媒パス(P1,P2,P3,P4)が、少なくとも3段形成されている。室外側熱交換器(23)に供給される空気の風速は、伝熱フィン(51)の上下方向にて実質的に均一である。最下段の第4冷媒パス(P4)のパス長は、第1及び第4冷媒パス(P1,P4)以外の第2及び第3冷媒パス(P2,P3)のパス長よりも長い。

Description

空気調和装置の室外ユニット
 本発明は、空気調和装置の室外ユニット、特に、室外側熱交換器内の最下段の冷媒パスにおける冷媒偏流の発生防止策に関するものである。
 空気調和装置の室外ユニットは、圧縮機、室外側熱交換器及び送風機構等を備えている。圧縮機及び室外側熱交換器は冷媒回路を構成しており、送風機構は室外側熱交換器に空気を供給する。
 特許文献1に示すように、室外側熱交換器には、複数の冷媒パスが形成されているものがある。特許文献1では、複数の冷媒パスが上下方向に並んでおり、且つ互いに並列に接続されている。特に、特許文献1では、室外側熱交換器に供給される空気の風速が当該熱交換器の上下方向において不均一であることから、空気の風速分布に応じて各冷媒パスのパス長を異ならせている。
特開平8-219493公報
 近年、冷媒回路を循環する冷媒として、地球温暖化係数が比較的小さいR32冷媒が利用されつつある。同じ飽和温度で比較すると、R32冷媒は、R410A冷媒に比して蒸発潜熱が大きく、少ない循環量にてR410A冷媒と同一の性能を実現できる。従って、R32冷媒では、室外側熱交換器における圧力損失が小さい。
 R32冷媒は、R410A冷媒と同様に重力の影響を受けるが、一方で室外側熱交換器の圧力損失と冷媒の重力の割合とを比較すると、R32冷媒はR410A冷媒に比して重力の影響を受け易い。そのため、たとえ室外側熱交換器の上下方向において風速が均一であっても、例えば室外側熱交換器が蒸発器として機能している際、当該熱交換器内の最下段の冷媒パスには液冷媒が流入し溜まりやすくなる所謂冷媒偏流が生じる。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、室外側熱交換器内の最下段の冷媒パスにおける冷媒偏流の発生を防止することである。
 本開示の第1の態様は、上下方向に延設された板状の伝熱フィン(51)と、上記伝熱フィン(51)を該フィンの板厚方向に貫通する多数の伝熱管(52)とを有し、R32冷媒が循環する冷媒回路(20)に含まれる室外側熱交換器(23)と、上記室外側熱交換器(23)に空気を供給する送風機構(15)と、を備える空気調和装置の室外ユニットを対象とする。上記室外側熱交換器(23)には、互いに接続された隣り合う複数の上記伝熱管(52)からなる冷媒パス(P1,P2,P3,P4)が少なくとも3段形成されると共に、上記冷媒パス(P1,P2,P3,P4)が上下方向に並んで配置され且つ互いに並列に接続されており、上記室外側熱交換器(23)に供給される空気の風速は、上記伝熱フィン(51)の上下方向において実質的に均一であって、最下段の上記冷媒パス(P4)のパス長は、最下段の上記冷媒パス(P4)及び最上段の上記冷媒パス(P1)を除く残りの上記冷媒パス(P2,P3)のパス長よりも長いことを特徴とする。
 第1の態様では、室外側熱交換器(23)に供給された空気の風速は、伝熱フィン(51)の上下方向において実質的に均一である。その状態下において、最下段の冷媒パス(P4)のパス長が、該冷媒パス(P4)及び最上段の冷媒パス(P1)を除く残りの冷媒パス(P2,P3)に比して長くなっている。これにより、最下段の冷媒パス(P4)は残りの冷媒パス(P2,P3)に比して圧力損失が大きく、故に最下段の冷媒パス(P4)には残りの冷媒パス(P2,P3)に比して液冷媒が流れにくい。つまり、従来は液冷媒が流れ込みやすかった最下段の冷媒パス(P4)の圧力損失を大きくすることで、冷媒パス(P4)に流れ込む液冷媒の流量が抑えられている。従って、室外側熱交換器(23)内の最下段の冷媒パス(P4)に液冷媒が流入して溜まる冷媒偏流の発生を、防止することができる。
 本開示の第2の態様は、第1の態様において、最下段の上記冷媒パス(P4)を形成する複数の上記伝熱管(52)における水平部分(58)の段数が、上記残りの冷媒パス(P2,P3)を形成する複数の上記伝熱管(52)における水平部分(58)の段数よりも多いことにより、上記最下段の上記冷媒パス(P4)のパス長が、上記残りの冷媒パス(P2,P3)のパス長よりも長くなっていることを特徴とする。
 このように、簡単な方法にて、最下段の冷媒パス(P4)のパス長を、残りの冷媒パス(P2,P3)よりも長くすることができる。
 本開示の第3の態様は、第1の態様または第2の態様において、各上記冷媒パスにR32冷媒を分流させることが可能な分流器(54)、を更に備える空気調和装置の室外ユニットを対象とする。上記分流器(54)は、最下段の上記冷媒パス(P4)の高さ範囲内に位置していることを特徴とする。
 分流器(54)が最下段の冷媒パス(P4)よりも上方に位置すると、かえってヘッド差が大きくなってしまう。すると、最下段の冷媒パス(P4)のパス長の調整によって当該冷媒パス(P4)の圧力損失を大きくしたにも関わらず、室外側熱交換器(23)が例えば蒸発器として機能する場合、分流器(54)の位置の影響によりR32冷媒が最下段の冷媒パス(P4)に流れ易くなってしまう。この場合、最下段の冷媒パス(P4)のパス長を残りの冷媒パス(P2,P3)よりも長くした効果が薄れてしまう。一方、第3の態様では、分流器(54)の位置を、最下段の冷媒パス(P4)の高さ範囲内に配置している。このため、分流器(54)の位置によってヘッド差が増すことはなく、従って分流器(54)の位置に起因してR32冷媒が最下段の冷媒パス(P4)へと流れてしまうことを抑制できる。
 本開示の第1の態様によれば、室外側熱交換器(23)内の最下段の冷媒パス(P4)に液冷媒が流入して溜まる冷媒偏流の発生を、防止することができる。
 また、本開示の第2の態様によれば、簡単な方法にて、最下段の冷媒パス(P4)のパス長を、残りの冷媒パス(P2,P3)よりも長くすることができる。
 また、本開示の第3の態様によれば、分流器(54)の位置に起因してR32冷媒が最下段の冷媒パス(P4)へと流れてしまうことを抑制できる。
図1は、本実施形態に係る空気調和装置の冷媒回路を示す配管系統図である。 図2は、室外ユニットの外観斜視図である。 図3は、天板が外された室外ユニットの内部を、上方から見た場合の図である。 図4は、室外側熱交換器及びその近傍の構造を模式的に示す図である。 図5は、室外側熱交換器に形成された複数の冷媒パスそれぞれの接続状態を表す図である。 図6は、室外側熱交換器に供給される空気の風速を説明するための図である。 図7は、略L字形状に折り曲げられる前及び折り曲げられた後の室外側熱交換器の上面視である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 ≪実施形態≫
 <空気調和装置の構成>
 図1は、空気調和装置(10)の冷媒回路(20)を示す配管系統図である。図1に示すように、空気調和装置(10)は、室外ユニット(11)と室内ユニット(12)とを備えており、冷房運転及び暖房運転を行うことができる。室外ユニット(11)と室内ユニット(12)とは、液側連絡配管(13)及びガス側連絡配管(14)を介して接続されている。室外ユニット(11)と室内ユニット(12)と液側連絡配管(13)とガス側連絡配管(14)とによって、冷媒回路(20)が形成されている。
 冷媒回路(20)は、主として、圧縮機(21)、四方切換弁(22)、室外側熱交換器(23)、膨張弁(24)、室内側熱交換器(25)及びアキュムレータ(26)を含む。圧縮機(21)、四方切換弁(22)、室外側熱交換器(23)、膨張弁(24)及びアキュムレータ(26)は、室外ユニット(11)内に設けられている。室外ユニット(11)には、室外側熱交換器(23)に室外空気を供給する室外ファン(15)(送風機構に相当)が設けられている。一方、室内側熱交換器(25)は、室内ユニット(12)内に設けられている。更に、室内ユニット(12)には、室内側熱交換器(25)へ室内空気を供給する室内ファン(16)が設けられている。
 圧縮機(21)の吐出側は、吐出配管(27)を介して四方切換弁(22)の第1ポートに接続されている。圧縮機(21)の吸入側は、吸入配管(28)を介して四方切換弁(22)の第2ポートに接続されている。また、冷媒回路(20)において、四方切換弁(22)の第3ポートから第4ポートへ向かって順に、室外側熱交換器(23)、膨張弁(24)及び室内側熱交換器(25)が、配管によって接続されている。
 圧縮機(21)は、スクロール型又はロータリ型の全密閉型圧縮機である。四方切換弁(22)は、第1ポートが第3ポートと連通し且つ第2ポートが第4ポートと連通する第1状態(図1の実線で示す状態)と、第1ポートが第4ポートと連通し且つ第2ポートが第3ポートと連通する第2状態(図1の破線で示す状態)とに切り換わる。膨張弁(24)は、いわゆる電子膨張弁であって、冷媒を減圧する手段である。
 室外側熱交換器(23)には、所謂クロスフィン式のフィンアンドチューブ型熱交換器が採用されている。室外側熱交換器(23)は、冷房運転時には冷媒の放熱器として機能し、暖房運転時には冷媒の蒸発器として機能する。室外側熱交換器(23)の構成については、“<室外側熱交換器の構成>”にて詳述する。
 室内側熱交換器(25)には、上記室外側熱交換器(23)と同様、クロスフィン式のフィンアンドチューブ型熱交換器が採用されている。室内側熱交換器(25)は、冷房運転時には冷媒の蒸発器として機能し、暖房運転時には冷媒の放熱器として機能する。
 アキュムレータ(26)は、吸入配管(28)を介して圧縮機(21)の吸入側に接続されている。アキュムレータ(26)は、冷媒を気液分離し、ガス冷媒のみを圧縮機(21)に吸入させる。
 本実施形態に係る冷媒回路(20)内には、R32冷媒(HFC-32)が充填され循環している。
 <室外ユニットの構成>
 次に、室外ユニット(11)内部の構成を、図1~図3を参照しながら説明する。図2は、室外ユニット(11)の外観斜視図である。図3は、天板(43)が外された室外ユニット(11)の内部を、上方から見た場合の図である。
 なお、以下の説明では、「正面」「背面」「上」「下」「左」「右」「水平」「鉛直」の表現を適宜用いているが、これらは特にことわらない限り図2に示す方向を意味する。
 室外ユニット(11)は、上述した図1に示す圧縮機(21)、四方切換弁(22)、室外側熱交換器(23)、膨張弁(24)、アキュムレータ(26)及び室外ファン(15)の他、ケーシング(40)を備えている。
 ケーシング(40)は、縦長で略直方体状に形成された鋼板製の箱体である。ケーシング(40)は、底板(41)と、底板(41)上に立設された側板(42)と、側板(42)の上端に取り付けられた天板(43)とを有する。側板(42)は、室外ユニット(11)の正面を形成する正面板(42a)、図3において正面板(42a)の左側に位置する左側板(42b)、正面板(42a)と対向する背面板(42c)、図3において正面板(42a)の右側に位置する右側板(42d)により構成されている。正面板(42a)には、吹き出し口(46)が形成されており、左側板(42b)及び背面板(42c)には、吸い込み口(45b,45c)がそれぞれ形成されている。なお、吹き出し口(46)には、ファングリル(47)が嵌め込まれている。
 ケーシング(40)の内部には、正面板(42a)から背面板(42c)へと湾曲して延びる仕切板(44)が立設されている。仕切板(44)は、図3に示すように、ケーシング(40)の内部空間を、左側の送風機室(S1)と右側の機械室(S2)とに仕切っている。
 送風機室(S1)には、室外側熱交換器(23)及び室外ファン(15)が収容されている。室外側熱交換器(23)は、平面視において略L字形状であって、より具体的には吸い込み口(45b,45c)が形成された左側板(42b)及び背面板(42c)に対応するようにして配置されている。特に、背面板(42c)に対応する室外側熱交換器(23)の部分には、左側板(42b)に対応する室外側熱交換器(23)の部分よりも厚みが増している箇所がある。室外ファン(15)は、吹き出し口(46)が形成された正面板(42a)と室外側熱交換器(23)との間に設けられている。
 機械室(S2)には、圧縮機(21)及びアキュムレータ(26)の他、図示してはいないが四方切換弁(22)及び膨張弁(24)が収容されている。圧縮機(21)及びアキュムレータ(26)は、ケーシング(40)の底板(41)上に設置されている。四方切換弁(22)は、圧縮機(21)の上方に配置され、膨張弁(24)は、圧縮機(21)及び正面板(42a)付近に配置されている。
 <室外側熱交換器の構成>
 本実施形態に係る室外側熱交換器(23)の構成について、図3~7を用いて説明する。図4は、室外側熱交換器(23)及びその近傍の構造を模式的に示す図である。図5は、室外側熱交換器(23)に形成された複数の冷媒パス(P1,P2,P3,P4)それぞれの接続状態を表す図である。図6は、室外側熱交換器(23)に供給される空気の風速を説明するための図である。図7は、略L字形状に折り曲げられる前及び折り曲げられた後の室外側熱交換器(23)の上面視である。
 図3及び図4に示すように、室外側熱交換器(23)は、多数の伝熱フィン(51)と、多数の伝熱管(52)とを有する。
 各伝熱フィン(51)は、細長い長方形の板状の形状を有しており、その長辺が上下方向となるように配置されている。つまり、図4に示すように、多数の伝熱フィン(51)は、それぞれ上下方向(即ち、鉛直方向)に延設されている。そして、多数の伝熱フィン(51)は、互いに板厚方向に所定間隔を空けて並んでいる。
 図4に示すように、各伝熱管(52)は、水平方向に延びる1本の管を途中で折り返して成るヘアピン状の形状をなしており、互いに平行且つ水平方向に延びる2本の水平部分(58)と、U字状の折り返し部分(59a)とを有している。即ち、各伝熱管(52)は、2本の水平部分(58)とこれらを繋ぐ1つの折り返し部分(59a)とを有し、これらは一体形成されている。多数の伝熱管(52)は、その水平部分(58)が多数の伝熱フィン(51)を板厚方向に貫通した状態で伝熱フィン(51)に取り付けられており、多数の伝熱管(52)同士の間隔は空けられている。具体的に、図5に示すように、多数の伝熱管(52)は、左右方向に3列、上下方向に多数配置されている。各伝熱管(52)の径は、概ね同一である。
 このような室外側熱交換器(23)は、図7に示すように略L字形状に折り曲げられ、図3に示すようにケーシング(40)内に配置されている。
 そして、室外側熱交換器(23)では、図4及び図5に示すように、多数の伝熱管(52)を上下方向に4つの系統に分け、同じ系統に属する複数の伝熱管(52)の端部同士を一部分の伝熱管(52)の一端を除き接続管(59b)によって互いに接続することで、系統毎に独立した冷媒パス(P1,P2,P3,P4)が少なくとも3段(ここでは4段)形成されている。冷媒パス(P1,P2,P3,P4)は、主として互いに隣り合う伝熱管(52)が接続されることで形成されている。上記一部分の伝熱管(52)の一端に相当する各冷媒パス(P1,P2,P3,P4)の一端及び他端は、キャピラリチューブ(53a,53b,53c,53d)を介して分流器(54)に、ヘッダ連絡管(55a,55b,55c,55d)を介してヘッダ(56)に、それぞれ接続されている。分流器(54)は、各冷媒パス(P1,P2,P3,P4)に対し冷媒を平均的に分配する管部材であって、各キャピラリチューブ(53a,53b,53c,53d)を合流させつつこれらを凍結防止用パス(P5)を介して膨張弁(24)に接続している。ヘッダ(56)は、各ヘッダ連絡管(55a,55b,55c,55d)を合流させる管部材であって、これらを四方切換弁(22)の第3ポートに接続している。つまり、冷媒パス(P1,P2,P3,P4)は、互いに上下方向に並んで配置されており、且つ互いに並列に接続されている。
 なお、図5の室外側熱交換器(23)内において、太線の実線で表されているものは、図5の紙面の手前側における接続管(59b)であり、太線の破線で表されているものは、図5の紙面の奥側における折り返し部分(59a)(即ち、伝熱管(52)の一部分)である。
 以下では、説明の便宜上、上下方向に並ぶ複数(ここでは4段)の冷媒パス(P1,P2,P3,P4)のうち、最上段に位置する冷媒パスを「第1冷媒パス(P1)」、上から2段目に位置する冷媒パスを「第2冷媒パス(P2)」、上から3段目に位置する冷媒パスを「第3冷媒パス(P3)」、最下段に位置する冷媒パスを「第4冷媒パス(P4)」と呼称する。
 このような室外側熱交換器(23)には、水平方向に並んだ伝熱フィン(51)の間を、各フィン(51)の短辺方向に沿って空気が流れるようになっている。そして、図5の矢印(W1,W2,W3,W4,W5)で示されるように、本実施形態に係る室外側熱交換器(23)の上下方向において、室外側熱交換器(23)に供給される空気の風速は、実質的に均一な状態にある。なお、図5の矢印(W1,W2,W3,W4,W5)の向きは、空気の流れる方向を表し、矢印(W1,W2,W3,W4,W5)の大きさは、風速を表している。“風速が実質的に均一”とは、室外側熱交換器(23)における任意の位置での風速が、その位置を含む室外側熱交換器(23)の所定範囲内の上端から下端まで(即ち、室外側熱交換器(23)の長辺の実効長(H))の各位置での風速の平均値を基準として、約-5%以上且つ+5%以下の風速範囲内に収まっている状態を言う。
 具体的には、図6に示すように、正面視における室外側熱交換器(23)を水平方向に複数の領域に分け、任意の1つの領域(23a)において鉛直方向(即ち、上下方向)に一定間隔dずつ離れた各位置での風速(V11,V12,V13,V14)を測定したとする。図6では、鉛直方向に並ぶ4つの位置にて、風速(V11,V12,V13,V14)を測定した場合を表している。この場合、各位置での風速(V11,V12,V13,V14)の平均値(Vm1)は、“(V11+V12+V13+V14)/4”によって求められ、各位置での風速(V11,V12,V13,V14)は、いずれも“0.95Vm1以上且つ1.05Vm1以下”の風速範囲内となっている。同様に、他の領域(23b)についても4つの位置での風速(V21,V22,V23,V24)を測定する。この場合、各位置での風速(V21,V22,V23,V24)の平均値(Vm2)は、“(V21+V22+V23+V24)/4”によって求められ、各位置での風速(V21,V22,V23,V24)は、いずれも“0.95Vm2以上且つ1.05Vm2以下”の風速範囲内となっている。
 但し、領域(23a)における各風速(V11,V12,V13,V14)が、必ずしも領域(23b)での風速範囲“0.95Vm2以上且つ1.05Vm2以下”を満たすとは限らないし、逆に、領域(23b)における各風速(V21,V22,V23,V24)が、必ずしも領域(23a)での風速範囲“0.95Vm1以上且つ1.05Vm1以下”を満たすとも限らない。
 まとめると、図5の矢印(W1,W2,W3,W4,W5)で示される空気の風速のいずれもが、当該風速の平均値を基準とした約-5%以上且つ+5%以内の風速範囲内に収まっている。従って、本実施形態では、室外側熱交換器(23)に供給される空気の風速は、任意の領域内の上下方向に対しては、高さに関係なく概ね均一と言える。
 このような状態下において、本実施形態では、最下段に位置する第4冷媒パス(P4)のパス長が、第1冷媒パス(P1)を除き第4冷媒パス(P4)よりも上段に位置する第2冷媒パス(P2)及び第3冷媒パス(P3)の各パス長よりも長くなっている。ここで、各冷媒パス(P1,P2,P3,P4)のパス長とは、各冷媒パス(P1,P2,P3,P4)を形成する複数の伝熱管(52)それぞれの水平部分(58)の長さの合計値を意味しており、伝熱管(52)の折り返し部分(59a)及び伝熱管(52)同士を接続する接続管(59b)の長さは含まれない。
 図5において、第1冷媒パス(P1)では、伝熱管(52)の水平部分(58)を12段、第2及び第3冷媒パス(P2,P3)それぞれでは伝熱管(52)の水平部分(58)を10段、第4冷媒パス(P4)では伝熱管(52)の水平部分(58)を12段、で構成されている。より具体的には、第1冷媒パス(P1)は、1段目から12段目までに位置する3列の伝熱管(52)の水平部分(58)が接続されることで形成され、第2冷媒パス(P2)は、13段目から22段目までに位置する3列の伝熱管(52)の水平部分(58)が接続されることで形成されている。第3冷媒パス(P3)は、23段目から32段目までに位置する3列の伝熱管(52)の水平部分(58)が接続されることで形成され、第4冷媒パス(P4)では、33段目から44段目までに位置する3列の伝熱管(52)の水平部分(58)が接続されることで形成されている。なお、各冷媒パス(P1,P2,P3,P4)を形成する伝熱管(52)には、暖房運転時には流入口となり冷房運転時には流出口となる伝熱管(52a,52d,52g,52j)が1つずつ、及び、暖房運転時には流出口となり冷房運転時には流入口となる伝熱管(52b,52c,52e,52f,52h,52i,52k,52l)が2つずつ含まれている。
 このように、第4冷媒パス(P4)は、第2及び第3冷媒パス(P2,P3)よりも多くの伝熱管(52)によって構成されている(より具体的には、伝熱管(52)の水平部分(58)の段数が多い)ことから、第4冷媒パス(P4)のパス長は第2及び第3冷媒パス(P2,P3)よりも長くなっている。即ち、本実施形態では、第4冷媒パス(P4)のパス長は、第1冷媒パス(P1)と概ね同一ではあるが、第2及び第3冷媒パス(P2,P3)のパス長の約1.2倍となっている。
 以下、本実施形態において、上述した各冷媒パス(P1,P2,P3,P4)のパス長の大小関係を成立させている理由について説明する。
 本実施形態では、既に述べたように、冷媒回路(20)内の冷媒としてR32冷媒が用いられている。R32冷媒は、その性質上、R410A冷媒と同じ飽和温度の場合で比較すると、R410A冷媒に比して蒸発潜熱が大きく、R410A冷媒に比して少ない循環量でもR410A冷媒と同程度の性能を実現できる。そのため、R32冷媒を用いた冷媒回路(20)では、R410A冷媒を用いた場合に比して圧縮機(21)の回転数を抑えることができ、室外側熱交換器(23)の伝熱管(52)の抵抗も小さく、室外側熱交換器(23)における圧力損失も小さくなる。
 一方で、R32冷媒は、R410A冷媒に比して、ヘッド差による重力の影響を受けやすい。特に、蒸発器として機能する室外側熱交換器(23)の伝熱管(52)にR32冷媒が流入する際、このR32冷媒は、ガス冷媒と液冷媒とが混合された気液二相状態となっている。液冷媒は、ガス冷媒に比して重力方向の影響を受け易い。そのため、液冷媒は、最下段に位置する第4冷媒パス(P4)に流入して溜り易い。このような所謂冷媒偏流は、室外側熱交換器(23)の熱交換能力を低下させる要因ともなり得る。
 また、各冷媒パス(P1,P2,P3,P4)間の冷媒偏流を抑制する手段としては、キャピラリチューブ(53a,53b,53c,53d)それぞれの長さを、接続先の冷媒パス(P1,P2,P3,P4)の高さ関係に応じて変化させる手段が挙げられる。しかしながら、R32冷媒は、上述のように、R410A冷媒に比して圧力損失が小さく且つヘッド差による重力の影響を受けやすい性質を有する。そのため、キャピラリチューブ(53a,53b,53c,53d)の長さを調整する手段をR32冷媒にて採用した場合、R410Aの場合と比べて、キャピラリチューブ(53a,53b,53c,53d)の長さを全体的に長くする必要がある。すると、必然的に、最下段に位置する第4冷媒パス(P4)に接続されるキャピラリチューブ(53d)の長さは、R410Aの場合を比べて長くなる。この場合、室外側熱交換器(23)が凝縮器として機能した際、第4冷媒パス(P4)内の液冷媒の分流器(54)側への流出が抑制されるため、第4冷媒パス(P4)においては液溜まりが発生する虞がある。従って、R32冷媒を採用した場合に、キャピラリチューブ(53a,53b,53c,53d)の長さのチューニングによって冷媒偏流を抑制することは、R410A冷媒の場合と比較してセンシティブであると考えられる。
 そこで、本実施形態では、風速とは関係なく液冷媒の重力方向への影響を考慮して、最下段に位置する第4冷媒パス(P4)のパス長を、それより上段に位置する第2及び第3冷媒パス(P2,P3)の各パス長よりも長くしており、これにより第4冷媒パス(P4)における圧力損失を第2及び第3冷媒パス(P2,P3)よりも大きくしている。つまり、第4冷媒パス(P4)のパス長の調整により、従来は液冷媒が流入しやすくなっていた最下段の第4冷媒パス(P4)への液冷媒の流入及び貯留を、抑制している。これにより、室外側熱交換器(23)の熱交換能力の低下を防止することができる。更に、キャピラリチューブ(53a,53b,53c,53d)それぞれの長さを、R410A冷媒を用いた場合と同様の長さに保ったままとすることができる。そのため、キャピラリチューブ(53a,53b,53c,53d)の長さを可変させることで冷媒偏流の発生を防止する手段と比べても、本実施形態では、室外ユニット(11)を製造し易く、且つ室外ユニット(11)の小型化も図れる。
 なお、各冷媒パス(P1,P2,P3,P4)のパス長は、第4冷媒パス(P4)のパス長が第2及び第3冷媒パス(P2,P3)の各パス長よりも長いという条件を満たした上で、各冷媒パス(P1,P2,P3,P4)内を通過する冷媒におけるガス冷媒及び液冷媒の比率が概ね均一となるように、ヘッド差や液冷媒の流量等に応じて設定される。
 また、図4及び図5に示すように、室外側熱交換器(23)には、更に凍結防止用パス(P5)が形成されている。凍結防止用パス(P5)は、室外側熱交換器(23)において、第4冷媒パス(P4)付近に位置しており、第4冷媒パス(P4)に含まれる伝熱管(52j)付近に位置する水平部分(58)2段分の伝熱管(52m,52n)によって構成されている。凍結防止用パス(P5)には、分流器(54)によって各冷媒パス(P1,P2,P3,P4)に分流される前(あるいは合流後)の冷媒が流れる。例えば暖房運転時、室外側熱交換器(23)の下方は凍結し易くなっているが、凍結防止用パス(P5)を流れるR32冷媒によって当該下方は温められるため、凍結しにくくなっている。
 上述した凍結防止用パス(P5)も考慮した上で、本実施形態に係る各冷媒パス(P1,P2,P3,P4)のパス長について更に具体的に言及すると、以下のように言うことができる。ここで、図7では、略L字形状に折り曲げられた後の室外側熱交換器(23)の上面視を実線で表し、略L字形状に折り曲げられる前の室外側熱交換器(23)の上面視を二点鎖線で表している。図7において、室外側熱交換器(23)のうち、L字形状に折り曲げられた際に一番外側となる熱交換部を第1熱交換部(61)、一番内側となる熱交換部を第3熱交換部(63)、第1熱交換部(61)と第3熱交換部(63)との間に位置する熱交換部を第2熱交換部(62)と呼称する。
 折り曲げられる前の室外側熱交換器(23)における第1熱交換部(61)の有効長(L1)は、第2熱交換部(62)の有効長(L2)と概ね等しいが(L1≒L2)、第3熱交換部(63)の有効長(L3)は、第1及び第2熱交換部(61,62)の有効長(L1,L2)よりも短い。各熱交換部(61,62,63)の有効長(L1,L2,L3)とは、伝熱フィン(51)が設けられている部分の伝熱管(52)の長さ、即ち伝熱管(52)の水平部分(58)1本分の長さである。
 この場合、第1冷媒パス(P1)のパス長は“(12×L1)+(12×L2)+(12×L3)”、第2冷媒パス(P2)及び第3冷媒パス(P3)のパス長はそれぞれ“(10×L1)+(10×L2)+(10×L3)”と表すことができる。第4冷媒パス(P4)のパス長は、凍結防止用パス(P5)の伝熱管(52m,52n)の分を除き、“(10×L1)+(12×L2)+(12×L3)”と表すことができる。このことからも、第4冷媒パス(P4)のパス長が第2及び第3冷媒パス(P2,P3)のパス長よりも長いことは、明らかである。
 更に、本実施形態に係る分流器(54)は、図4及び図5に示すように、最下段に位置する第4冷媒パス(P4)付近であって、且つ、第4冷媒パス(P4)の高さ範囲内に位置している。具体的に、分流器(54)は、第4冷媒パス(P4)を形成する伝熱管(52)の水平部分(58)が位置する33段目から44段目までの間であって、これらの伝熱管(52)を繋いでいる接続管(59b)付近に位置している。従って、分流器(54)は、第1、第2及び第3冷媒パス(P1,P2,P3)よりも下方に位置しているとも言える。
 仮に、分流器(54)が、第4冷媒パス(P4)よりも上方(例えば、第1、第2及び第3冷媒パス(P1,P2,P3)の高さ範囲内)に位置する場合を考える。この場合、かえってヘッド差が大きくなってしまう。すると、上述してきたように第4冷媒パス(P4)のパス長の調整によって第4冷媒パス(P4)の圧力損失を大きくしたにもかかわらず、室外側熱交換器(23)が蒸発器として機能する場合には、分流器(54)の位置の影響によりR32冷媒が第4冷媒パス(P4)に流入し易くなってしまう。すると、最下段の冷媒パス(P4)のパス長を残りの冷媒パス(P2,P3)よりも長くした効果が薄れることとなる。また、室外側熱交換器(23)が逆に凝縮器として機能する場合には、分流器(54)の位置の影響によりR32冷媒は第4冷媒パス(P4)内に溜まってしまう。
 そこで、本実施形態では、分流器(54)の位置を、第4冷媒パス(P4)の高さ範囲内に配置している。このため、分流器(54)の位置によってヘッド差が増すことはない。従って、室外側熱交換器(23)が蒸発器として機能する場合、分流器(54)の位置に起因してR32冷媒が最下段に位置する第4冷媒パス(P4)へと流れてしまうことを抑制できる。また、室外側熱交換器(23)が凝縮器として機能する場合、液冷媒となったR32冷媒は、第4冷媒パス(P4)から分流器(54)へと流出し易くなるため、第4冷媒パス(P4)内に溜まることも抑制される。
 以上の理由から、分流器(54)は、最下段に位置する第4冷媒パス(P4)の高さ範囲内においても、第4冷媒パス(54)を形成する複数の伝熱管(52)のうち、より下段に位置する伝熱管(52)付近に位置することが好ましいと言える。
 <空気調和装置の動作>
  -冷房運転-
 この場合、室外側熱交換器(23)が放熱器として機能し且つ室内側熱交換器(25)が蒸発器として機能する状態となるように、四方切換弁(22)が図1の実線で示される状態に切り換えられる。すると、図1及び図4、図5の実線の矢印に示すように、圧縮機(21)から吐出された高圧のガス冷媒は、四方切換弁(22)及びヘッダ(56)を介して室外側熱交換器(23)の各冷媒パス(P1,P2,P3,P4)の流入口である伝熱管(52b,52c,52e,52f,52h,52i,52k,52l)に送られる。当該ガス冷媒は、各冷媒パス(P1,P2,P3,P4)にて、室外ファン(15)により供給された室外空気との間で熱交換を行い放熱する。放熱した冷媒は、各冷媒パス(P1,P2,P3,P4)の流出口である伝熱管(52a,52d,52g,52j)から流出すると分流器(54)で合流し、凍結防止用パス(P5)を経て膨張弁(24)に送られる。
 膨張弁(24)に送られた冷媒は、膨張弁(24)にて減圧された後、室内側熱交換器(25)に送られる。減圧された冷媒は、室内ファン(16)により供給された室内空気との間で熱交換を行い蒸発する。蒸発した低圧の冷媒は、四方切換弁(22)及びアキュムレータ(26)を介して圧縮機(21)に吸入される。
  -暖房運転-
 この場合、室外側熱交換器(23)が蒸発器として機能し且つ室内側熱交換器(25)が放熱器として機能する状態となるように、四方切換弁(22)が図1の点線で示される状態に切換えられる。すると、図1及び図4、図5の点線の矢印に示すように、圧縮機(21)から吐出された高圧のガス冷媒は、四方切換弁(22)を介して室内側熱交換器(25)に送られる。室内側熱交換器(25)に送られた高圧の冷媒は、室内ファン(16)により供給された室内空気との間で熱交換を行い放熱する。放熱した冷媒は、膨張弁(24)に送られて減圧される。
 減圧された冷媒は、室外側熱交換器(23)の凍結防止用パス(P5)を通過した後分流器(54)に流入され、分流器(54)を介して各冷媒パス(P1,P2,P3,P4)の流入口である伝熱管(52a,52d,52g,52j)に流入される。この際、当該冷媒は気液二相状態であるが、第4冷媒パス(P4)は他の冷媒パス(P1,P2,P3)に比べて圧力損失が大きいため、当該冷媒に含まれる液冷媒は第4冷媒パス(P4)へは流入しにくくなっている。そして、各冷媒パス(P1,P2,P3,P4)には、ガス冷媒及び液冷媒の比率が概ね均一な冷媒が流れる。その結果、各冷媒パス(P1,P2,P3,P4)における冷媒の質量流量が均一化される。
 各冷媒パス(P1,P2,P3,P4)に送られた冷媒は、室外ファン(15)により供給された室外空気との間で熱交換を行い蒸発する。蒸発した冷媒は、各冷媒パス(P1,P2,P3,P4)の流出口である伝熱管(52b,52c,52e,52f,52h,52i,52k,52l)から流出するとヘッダ(56)で合流し、四方切換弁(22)及びアキュムレータ(26)を介して圧縮機(21)に吸入される。
 <実施形態の効果>
 本実施形態に係る室外ユニット(11)によれば、室外側熱交換器(23)に供給された空気の風速は、伝熱フィン(51)の上下方向において実質的に均一である。その状態下において、最下段に位置する第4冷媒パス(P4)のパス長が、該冷媒パス(P4)及び最上段に位置する第1冷媒パス(P1)を除く残りの第2及び第3冷媒パス(P2,P3)に比して長くなっている。これにより、第4冷媒パス(P4)は、第2及び第3冷媒パス(P2,P3)に比して圧力損失が大きく、故に第4冷媒パス(P4)には第2及び第3冷媒パス(P2,P3)に比して液冷媒が流れにくい。つまり、従来は液冷媒が流れ込みやすかった最下段の第4冷媒パス(P4)の圧力損失を大きくすることで、第4冷媒パス(P4)に流れ込む液冷媒の流量が抑えられている。従って、第4冷媒パス(P4)に液冷媒が流入して溜まる冷媒偏流の発生を、防止することができる。
 また、本実施形態では、第4冷媒パス(P4)を形成する複数の伝熱管(52)における水平部分(58)の段数が、第2冷媒パス(P2)における複数の伝熱管(52)の水平部分(58)の段数及び第3冷媒パス(P2)における複数の伝熱管(52)の水平部分(58)の段数それぞれよりも多いことによって、第4冷媒パス(P4)のパス長が第2及び第3冷媒パス(P2,P3)のパス長よりも長くなっている。即ち、本実施形態では、簡単な方法にて、最下段に位置する第4冷媒パス(P4)のパス長を、それよりも上に位置する第2及び第3冷媒パス(P2,P3)より長くすることができている。
 また、本実施形態では、分流器(54)が、最下段に位置する第4冷媒パス(P4)の高さ範囲内に位置している。これにより、分流器(54)の位置が要因となってヘッド差が増すことはない。従って、たとえR32冷媒がヘッド差による重力の影響を受けやすい性質を有していても、分流器(54)の位置に起因してR32冷媒が第4冷媒パス(P4)へと流れてしまうことを抑制できる。
 ≪その他の実施形態≫
 上記実施形態については、以下のような構成としてもよい。
 冷媒パス(P1,P2,P3,P4)は、伝熱フィン(51)の上下方向において3段以上形成されていれば良い。従って、冷媒パス(P1,P2,P3,P4)の数は4段に限定されず、3段や6段であっても良い。いずれの場合でも、最下段の冷媒パスのパス長は、最下段の冷媒パス及び最上段の冷媒パスを除く残りの冷媒パスよりも長くなっている。
 第1冷媒パス(P1)のパス長は、第4冷媒パス(P4)以下であってもよいし、以上であってもよい。従って、第4冷媒パス(P4)が12段分の水平部分(58)を含む複数の伝熱管(52)で構成される場合、第1冷媒パス(P1)は、10段分の水平部分(58)を含む複数の伝熱管(52)で構成されていてもよいし、13段分の水平部分(58)を含む複数の伝熱管(52)で構成されていても良い。
 また、最下段の冷媒パスのパス長が、最下段の冷媒パス及び最上段の冷媒パスを除く残りの冷媒パスよりも長い条件を満たしていれば良いため、各冷媒パス(P1,P2,P3,P4)の伝熱管(52)の列及び段数は、上記実施形態に限定されない。
 また、室外側熱交換器(23)には、凍結防止用パス(P5)は形成されていなくてもよい。
 また、分流器(54)の位置は、必ずしも最下段に位置する第4冷媒パス(P4)の高さ範囲内でなくても良い。例えば、分流器(54)が第4冷媒パス(P4)の高さ範囲外にあったとしても、第4冷媒パス(P4)のパス長が第2及び第3冷媒パス(P2,P3)よりも長いことによって液冷媒が第4冷媒パス(P4)に流入しにくい場合には、分流器(54)の位置は、図4及び図5に限定されない。
 以上説明したように、本発明は、R32冷媒が利用されており、且つクロスフィン式のフィンアンドチューブ型熱交換器内には上下方向に3段以上の冷媒パスが形成されている空気調和装置の室外ユニットについて有用である。
10 空気調和装置
11 室外ユニット
15 室外ファン(送風機構)
20 冷媒回路
23 室外側熱交換器
51 伝熱フィン
52 伝熱管
54 分流器
P1 第1冷媒パス(最上段の冷媒パス)
P2 第2冷媒パス
P3 第3冷媒パス
P4 第4冷媒パス(最下段の冷媒パス)

Claims (3)

  1.  上下方向に延設された板状の伝熱フィン(51)と、上記伝熱フィン(51)を該フィンの板厚方向に貫通する多数の伝熱管(52)とを有し、R32冷媒が循環する冷媒回路(20)に含まれる室外側熱交換器(23)と、
     上記室外側熱交換器(23)に空気を供給する送風機構(15)と、
    を備え、
     上記室外側熱交換器(23)には、互いに接続された隣り合う複数の上記伝熱管(52)からなる冷媒パス(P1,P2,P3,P4)が少なくともの3段形成されると共に、上記冷媒パス(P1,P2,P3,P4)が上下方向に並んで配置され且つ互いに並列に接続されており、
     上記室外側熱交換器(23)に供給される空気の風速は、上記伝熱フィン(51)の上下方向において実質的に均一であって、
     最下段の上記冷媒パス(P4)のパス長は、最下段の上記冷媒パス(P4)及び最上段の上記冷媒パス(P1)を除く残りの上記冷媒パス(P2,P3)のパス長よりも長い
    ことを特徴とする空気調和装置の室外ユニット。
  2.  請求項1において、
     最下段の上記冷媒パス(P4)を形成する複数の上記伝熱管(52)における水平部分(58)の段数が、上記残りの冷媒パス(P2,P3)を形成する複数の上記伝熱管(52)における水平部分(58)の段数よりも多いことにより、上記最下段の上記冷媒パス(P4)のパス長が、上記残りの冷媒パス(P2,P3)のパス長よりも長くなっている
    ことを特徴とする空気調和装置の室外ユニット。
  3.  請求項1または請求項2において、
     各上記冷媒パス(P1,P2,P3,P4)にR32冷媒を分流させることが可能な分流器(54)、
    を更に備え、
     上記分流器(54)は、最下段の上記冷媒パス(P4)の高さ範囲内に位置している
    ことを特徴とする空気調和装置の室外ユニット。
PCT/JP2014/004384 2013-10-31 2014-08-26 空気調和装置の室外ユニット WO2015063989A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013227462A JP2015087074A (ja) 2013-10-31 2013-10-31 空気調和装置の室外ユニット
JP2013-227462 2013-10-31

Publications (1)

Publication Number Publication Date
WO2015063989A1 true WO2015063989A1 (ja) 2015-05-07

Family

ID=53003627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004384 WO2015063989A1 (ja) 2013-10-31 2014-08-26 空気調和装置の室外ユニット

Country Status (2)

Country Link
JP (1) JP2015087074A (ja)
WO (1) WO2015063989A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3179180A1 (en) * 2015-12-10 2017-06-14 LG Electronics Inc. Outdoor heat exchanger and air conditioner comprising the same
EP3322940A4 (en) * 2015-10-23 2018-10-17 Samsung Electronics Co., Ltd. Air conditioner
EP3315876A4 (en) * 2016-08-09 2018-11-21 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device provided with heat exchanger
RU2739661C1 (ru) * 2020-08-31 2020-12-28 Владимир Александрович Шишков Теплообменник
EP4166858A4 (en) * 2020-06-15 2024-03-13 Hitachi-Johnson Controls Air Conditioning, Inc. OUTDOOR UNIT FOR AIR CONDITIONING DEVICE

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6366837B2 (ja) * 2015-06-17 2018-08-01 三菱電機株式会社 冷媒回路及び空気調和機
JP6455452B2 (ja) * 2016-01-29 2019-01-23 ダイキン工業株式会社 熱交換器
JP6387073B2 (ja) * 2016-12-06 2018-09-05 新菱冷熱工業株式会社 空調設備用熱交換器及びその熱交換器の製造方法
JP6631608B2 (ja) * 2017-09-25 2020-01-15 ダイキン工業株式会社 空気調和装置
JP6863431B2 (ja) * 2019-10-09 2021-04-21 ダイキン工業株式会社 熱交換器及びそれを備えた空気調和装置
WO2022172359A1 (ja) * 2021-02-10 2022-08-18 三菱電機株式会社 室外熱交換器および空気調和機

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191564U (ja) * 1983-06-07 1984-12-19 三菱重工業株式会社 空気調和機
JPS6214281U (ja) * 1985-07-12 1987-01-28
JPH0234920U (ja) * 1988-08-29 1990-03-06
JP2001304621A (ja) * 2000-04-14 2001-10-31 Daikin Ind Ltd 室外熱交換器、室内熱交換器、及び空気調和装置
JP2007120899A (ja) * 2005-10-31 2007-05-17 Daikin Ind Ltd 室外ユニット用熱交換器
JP2012202636A (ja) * 2011-03-25 2012-10-22 Toshiba Corp 空気調和機の室外機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544653Y2 (ja) * 1987-07-24 1993-11-12
JPH0268494A (ja) * 1988-09-05 1990-03-07 Toshiba Corp 熱交換器
JPH09145187A (ja) * 1995-11-24 1997-06-06 Hitachi Ltd 空気調和装置
JP2010071530A (ja) * 2008-09-17 2010-04-02 Daikin Ind Ltd 空気調和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191564U (ja) * 1983-06-07 1984-12-19 三菱重工業株式会社 空気調和機
JPS6214281U (ja) * 1985-07-12 1987-01-28
JPH0234920U (ja) * 1988-08-29 1990-03-06
JP2001304621A (ja) * 2000-04-14 2001-10-31 Daikin Ind Ltd 室外熱交換器、室内熱交換器、及び空気調和装置
JP2007120899A (ja) * 2005-10-31 2007-05-17 Daikin Ind Ltd 室外ユニット用熱交換器
JP2012202636A (ja) * 2011-03-25 2012-10-22 Toshiba Corp 空気調和機の室外機

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3322940A4 (en) * 2015-10-23 2018-10-17 Samsung Electronics Co., Ltd. Air conditioner
RU2689857C1 (ru) * 2015-10-23 2019-05-29 Самсунг Электроникс Ко., Лтд. Кондиционер
US10718534B2 (en) 2015-10-23 2020-07-21 Samsung Electronics Co., Ltd. Air conditioner having an improved outdoor unit
EP3179180A1 (en) * 2015-12-10 2017-06-14 LG Electronics Inc. Outdoor heat exchanger and air conditioner comprising the same
US10648715B2 (en) 2015-12-10 2020-05-12 Lg Electronics Inc. Outdoor heat exchanger and air conditioner comprising the same
EP3315876A4 (en) * 2016-08-09 2018-11-21 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device provided with heat exchanger
EP4166858A4 (en) * 2020-06-15 2024-03-13 Hitachi-Johnson Controls Air Conditioning, Inc. OUTDOOR UNIT FOR AIR CONDITIONING DEVICE
RU2739661C1 (ru) * 2020-08-31 2020-12-28 Владимир Александрович Шишков Теплообменник

Also Published As

Publication number Publication date
JP2015087074A (ja) 2015-05-07

Similar Documents

Publication Publication Date Title
WO2015063989A1 (ja) 空気調和装置の室外ユニット
JP5754490B2 (ja) 熱交換器および空気調和装置
EP3088833B1 (en) Heat exchanger and air conditioning device
US10309701B2 (en) Heat exchanger and air conditioner
EP3088832B1 (en) Heat exchanger and air conditioning device
US11747059B2 (en) Heat exchanger
JP6061994B2 (ja) 熱交換器、この熱交換器を備えた冷凍サイクル装置及び空気調和機
US10041710B2 (en) Heat exchanger and air conditioner
JP6098451B2 (ja) 熱交換器および空気調和機
JP2018162900A (ja) 熱交換器、および、それを備えた空気調和機
JP6388067B2 (ja) 熱交換器および空気調和装置
WO2020039513A1 (ja) 熱交換器及び空気調和装置
JP2021017991A (ja) 熱交換器、空気調和装置、室内機および室外機
JP5716496B2 (ja) 熱交換器および空気調和機
EP3569938A1 (en) Air conditioner
JP4952347B2 (ja) 空気調和装置
CN110462324B (zh) 热交换器和冷冻装置
US20230341189A1 (en) Heat exchanger and air conditioner having the same
JP6537868B2 (ja) 熱交換器
JP7137092B2 (ja) 熱交換器
JP6020610B2 (ja) 空気調和装置
JP6974720B2 (ja) 熱交換器及び冷凍装置
KR102148722B1 (ko) 열교환기 및 이를 갖는 공기조화기
JP2016148483A (ja) 冷凍装置
JP5840291B2 (ja) 熱交換器、この熱交換器を備えた冷凍サイクル装置及び空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14858922

Country of ref document: EP

Kind code of ref document: A1