WO2015060407A1 - 冷媒循環装置、冷媒循環方法および酸抑制方法 - Google Patents

冷媒循環装置、冷媒循環方法および酸抑制方法 Download PDF

Info

Publication number
WO2015060407A1
WO2015060407A1 PCT/JP2014/078260 JP2014078260W WO2015060407A1 WO 2015060407 A1 WO2015060407 A1 WO 2015060407A1 JP 2014078260 W JP2014078260 W JP 2014078260W WO 2015060407 A1 WO2015060407 A1 WO 2015060407A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
acid
acid suppression
condenser
refrigerant circulation
Prior art date
Application number
PCT/JP2014/078260
Other languages
English (en)
French (fr)
Inventor
上田 憲治
小林 直樹
赤松 佳則
冬彦 佐久
祥雄 西口
Original Assignee
三菱重工業株式会社
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, セントラル硝子株式会社 filed Critical 三菱重工業株式会社
Priority to EP14855304.3A priority Critical patent/EP3026368A4/en
Priority to US14/914,589 priority patent/US10443912B2/en
Priority to JP2015543915A priority patent/JP6138957B2/ja
Priority to CN201480046122.2A priority patent/CN105473955B/zh
Publication of WO2015060407A1 publication Critical patent/WO2015060407A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons

Definitions

  • the present invention relates to a refrigerant circulation device, a refrigerant circulation method, and an acid suppression method using a refrigerant, and more particularly, to a heat pump device and an organic Rankine cycle device, and a refrigerant circulation method and an acid suppression method in the device.
  • HFC hydrofluorocarbon
  • HFO Hydrofluoroolefin
  • HCFO hydrochlorofluoroolefin
  • HFO and HCFO have a double bond in the molecular structure. Therefore, the HFO refrigerant and the HCFO refrigerant have lower chemical stability than the HFC refrigerant.
  • HFO or HCFO is used as a refrigerant, there is a problem that a substance mainly composed of an acid is generated by cleavage and decomposition under the influence of water or oxygen.
  • a substance containing an acid as a main component deteriorates the material used for the cooling cycle apparatus and the refrigerating machine oil, and lowers the performance of the cooling cycle apparatus.
  • the cooling cycle apparatus described in Patent Document 1 includes an adsorber in the cooling cycle in order to solve the above problem.
  • the adsorber includes an adsorbent that can adsorb a substance mainly composed of hydrogen fluoride (HF).
  • the adsorbent is mainly composed of zeolite, silica, ion exchange resin or the like.
  • Some heat pump devices and organic Rankine cycle devices have a refrigerant operating temperature exceeding 170 ° C.
  • the HFO refrigerant and the HCFO refrigerant are thermally decomposed in a high temperature environment, and as a result, an acid is generated. Therefore, there is a problem that the HFO refrigerant and the HCFO refrigerant cannot be used in an environment where the operating temperature is high.
  • Patent Document 1 The cooling cycle apparatus described in Patent Document 1 is assumed to be used in a temperature environment of about 60 ° C. Therefore, the adsorber described in Patent Document 1 cannot be used in a high temperature environment exceeding 170 ° C. Therefore, the technique described in Patent Literature 1 cannot be diverted to a refrigerant circulation device in which the refrigerant operating temperature exceeds 170 ° C.
  • the present invention has been made in view of such circumstances, and a heat pump device and an organic Rankine capable of maintaining a stable thermal cycle even when HFO or HCFO is used as a refrigerant in an environment where the operating temperature is high.
  • An object of the present invention is to provide a cycle device, and a refrigerant circulation method and an acid suppression method in the device.
  • the refrigerant circulation device, refrigerant circulation method and acid suppression method of the present invention employ the following means.
  • a refrigerant containing a hydrofluoroolefin or hydrochlorofluoroolefin having a carbon-carbon double bond in its molecular structure is filled, and a region in which the operating temperature of the refrigerant is 175 ° C. or higher is provided in the refrigerant circulation circuit.
  • an acid suppression unit that suppresses an increase in acid concentration generated in the refrigerant is provided in a region where the temperature of the refrigerant can be 175 ° C.
  • Refrigerant circulation characterized by including an acid suppression material mainly composed of at least two materials selected from the group consisting of iron, aluminum, nickel, titanium, metallic silicon, silicon steel, tin, magnesium, zinc and SUS Providing equipment.
  • a refrigerant containing a hydrofluoroolefin or hydrochlorofluoroolefin having a carbon-carbon double bond in its molecular structure is filled, and a region in which the operating temperature of the refrigerant is 175 ° C. or higher is provided in the refrigerant circulation circuit.
  • an acid suppression unit that suppresses an increase in the acid concentration generated in the refrigerant is provided in a region where the temperature of the refrigerant can be 175 ° C. or higher, and the acid suppression unit includes copper, iron, and aluminum.
  • an acid-suppressing material composed mainly of at least two materials selected from the group consisting of nickel, titanium, metallic silicon, silicon steel, tin, magnesium, zinc and SUS.
  • a refrigerant containing a hydrofluoroolefin or hydrochlorofluoroolefin having a carbon-carbon double bond in its molecular structure is filled, and a region in which the operating temperature of the refrigerant is 175 ° C. or higher is provided in the refrigerant circulation circuit.
  • the acid suppression unit And comprising an acid inhibitor mainly composed of at least two materials selected from the group consisting of copper, iron, aluminum, nickel, titanium, metallic silicon, silicon steel, tin, magnesium, zinc and SUS,
  • an acid inhibitor mainly composed of at least two materials selected from the group consisting of copper, iron, aluminum, nickel, titanium, metallic silicon, silicon steel, tin, magnesium, zinc and SUS,
  • a refrigerant circulation method for bringing the refrigerant into contact with the acid-suppressing material is provided.
  • the inventors of the present application are likely to decompose hydrofluoroolefin (or hydrochloroolefin) and easily generate an acid (hydrogen fluoride or hydrogen chloride). It has been found that the decomposition of hydroolefin (or hydrochloroolefin) is accelerated.
  • an increase in the acid concentration in the refrigerant can be suppressed by providing the acid suppression unit.
  • the refrigerant may be heated / cooled or pressurized / depressurized.
  • the material of the acid suppressing material is selected from the above, it is possible to suppress an increase in the acid concentration in the refrigerant even in a high temperature environment of 175 ° C. or higher.
  • the acid-suppressing material is preferably a composition in which copper, iron, and aluminum are mixed.
  • the acid-suppressing material is preferably a porous structure, a mesh structure, or a pleated structure.
  • the contact area between the refrigerant and the acid suppression material is increased by using the acid suppression material as the structure. Thereby, an increase in the acid concentration in the refrigerant can be further suppressed.
  • the refrigerant circulation device includes a compressor that compresses the refrigerant, a condenser that condenses the compressed refrigerant, an expansion valve that expands the condensed refrigerant, and evaporation that evaporates the expanded refrigerant.
  • the acid suppression unit may be provided between the compressor and the condenser.
  • the acid suppression unit may be provided between the condenser and the expansion valve.
  • the refrigerant is condensed by a condenser to become a liquid.
  • the liquefied refrigerant has a smaller volume than when it is a gas body. According to one aspect of the invention, by providing the acid suppression unit between the condenser and the expansion valve, more refrigerant can contact the acid suppression material.
  • the acid suppression unit may be incorporated in the condenser.
  • Refrigerant pressure is applied to the components of the refrigerant circulation device. Therefore, the components of the refrigerant circulation device need to have rigidity that can withstand the pressure from the refrigerant. According to one aspect of the invention, it is not necessary to provide a new pressure vessel by incorporating the acid suppression unit into the condenser. Thereby, the refrigerant circulation device can be lightened.
  • the refrigerant circulation device expands the pump that pumps the refrigerant, the evaporator that heats and evaporates the pumped refrigerant by a heat source, and the expander that expands the evaporated refrigerant.
  • a condenser for condensing the refrigerant, and the acid suppression unit may be provided between the evaporator and the expander.
  • the space between the evaporator and the expander is a high-temperature and high-pressure environment where the refrigerant exists as a gas body, and the refrigerant is not decomposed.
  • This is an easy-to-go area.
  • coolant can be suppressed by providing an acid suppression part between an evaporator and an expander.
  • the acid suppression unit may be provided between the evaporator and the pump for pumping.
  • mode the raise of the acid concentration in a refrigerant
  • the refrigerant circulation device the acid suppression method, and the refrigerant circulation method of the present invention, it is possible to suppress an increase in the acid concentration in the refrigerant by providing the acid suppression unit in a high temperature environment.
  • the acid suppression unit in a high temperature environment.
  • FIG. 1 is a schematic configuration diagram illustrating an example of a heat pump device (refrigerant circulation device) according to the present embodiment.
  • FIG. 2 is a side view of the acid suppression unit of FIG.
  • FIG. 3 is a perspective view of the acid suppression unit of FIG. 1.
  • the heat pump device 1 includes a compressor 2, a condenser 3, an expansion valve 4, an evaporator 5, and an acid suppression unit 6.
  • the compressor 2, the condenser 3, the expansion valve 4 and the evaporator 5 are sequentially connected by piping to form a refrigerant circulation circuit (heat pump cycle).
  • Each component of the heat pump device is designed to withstand the pressure from the refrigerant.
  • the heat pump cycle is filled with a refrigerant.
  • the compressor 2 sucks the refrigerant flowing from the evaporator 5 and compresses it, and then discharges the compressed refrigerant to the condenser 3.
  • the compressor 2 can raise the temperature of a refrigerant
  • a known one such as a turbo compressor can be used.
  • the compressor 2 may be a multistage compressor. A plurality of compressors may be provided.
  • the compressor 2 includes a suction port for sucking refrigerant and a discharge port for discharging compressed refrigerant.
  • a discharge pipe for discharging the compressed refrigerant gas toward the condenser 3 is connected to the discharge port of the compressor 2.
  • the condenser 3 can cool and condense the refrigerant compressed by the compressor 2 to obtain a refrigerant liquid.
  • the condenser 3 may be a plate heat exchanger or a shell and tube heat exchanger.
  • One or more condensers 3 may be provided.
  • the condenser 3 includes an inflow pipe into which the compressed refrigerant flows and an outflow pipe from which the refrigerant condensed by the condenser 3 flows out.
  • the expansion valve 4 is a valve that adiabatically expands the refrigerant liquid condensed in the condenser 3 to reduce the pressure.
  • a known valve can be used as the expansion valve 4.
  • the evaporator 5 evaporates the refrigerant liquid adiabatically expanded by the expansion valve 4.
  • the evaporator 5 may be a plate heat exchanger or a shell and tube heat exchanger.
  • the refrigerant charged in the heat pump cycle contains hydrofluoroolefin (HFO) or hydrochlorofluoroolefin (HCFO) having a carbon-carbon double bond in the molecular structure.
  • the refrigerant is preferably mainly composed of hydrofluoroolefin (HFO) or hydrochlorofluoroolefin (HCFO).
  • Hydrofluoroolefin (HFO) or hydrochlorofluoroolefin (HCFO) is contained in the refrigerant in an amount of more than 50 GC%, preferably more than 75 GC%, more preferably more than 90 GC%.
  • hydrofluoroolefin is 2,3,3,3-tetrafluoro-1-propene (HFO1234yf), (Z) -1,3,3,3-tetrafluoro-1-propene (HFO1234ze).
  • hydrochlorofluoroolefin includes (E) -1-chloro-3,3,3-trifluoropropene (HCFO1233zd (E)), (Z) -1-chloro-3,3,3 -Trifluoropropene (HCFO1233zd (Z)) and the like.
  • the purity of hydrofluoroolefin (HFO) or hydrochlorofluoroolefin (HCFO) is preferably 97 GC% or more, more preferably 99 GC% or more, and even more preferably 99.9 GC% or more.
  • the refrigerant may contain an additive.
  • the additive include halocarbons, other hydrofluorocarbons (HFC), alcohols, and saturated hydrocarbons.
  • Halocarbons and other hydrofluorocarbons include methylene chloride containing halogen atoms, trichloroethylene, tetrachloroethylene, and the like.
  • Hydrofluorocarbons include difluoromethane (HFC-32), 1,1,1,2,2-pentafluoroethane (HFC-125), fluoroethane (HFC-161), 1,1,2,2-tetra Fluoroethane (HFC-134), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1-trifluoroethane (HFC-143a), difluoroethane (HFC-152a), 1,1 1,1,2,3,3,3-heptafluoropropane (HFC-227ea), 1,1,1,2,3,3-hexafluoropropane (HFC-236ea), 1,1,1,3,3 , 3-Hexafluoropropane (HFC-236fa),
  • Alcohol examples include methanol having 1 to 4 carbon atoms, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, 2,2,2-trifluoroethanol, pentafluoropropanol, tetrafluoropropanol, 1, Examples include 1,1,3,3,3-hexafluoro-2-propanol.
  • Saturated hydrocarbons are selected from the group comprising propane, n-butane, i-butane, neopentane, n-pentane, i-pentane, cyclopentane, methylcyclopentane, n-hexane, and cyclohexane having 3 to 8 carbon atoms. At least one or more selected compounds can be mixed. Among these, particularly preferable substances include neopentane, n-pentane, i-pentane, cyclopentane, methylcyclopentane, n-hexane and cyclohexane.
  • the acid suppression unit 6 suppresses an increase in acid concentration in the refrigerant.
  • the acid is specifically hydrogen fluoride or hydrogen chloride.
  • the acid suppression part 6 is provided in the area
  • coolant can be 175 degreeC or more. In the present embodiment, the region where the temperature of the refrigerant can be 175 ° C. or higher is between the compressor 2 and the condenser 3.
  • the acid suppression unit 6 also serves as at least a part of a pipe connecting the compressor 2 and the condenser 3. It is preferable that the acid suppression unit 6 also serves as all of the piping connecting the compressor 2 and the condenser 3. In FIG. 2, the acid suppression unit 6 is directly connected to the discharge port of the compressor 2.
  • the acid suppression unit 6 includes a first acid suppression material.
  • the first acid-suppressing material is configured to include different types of metals.
  • the first acid-suppressing material is mainly composed of at least two materials selected from the group consisting of copper, iron, aluminum, nickel, titanium, metal silicon, silicon steel, tin, magnesium, zinc, and SUS. “Mainly” means that it is the most abundant component. Copper, iron, aluminum, nickel, titanium, metal silicon, silicon steel, tin, magnesium, and zinc are each preferably a single metal. More preferably, the first acid-suppressing material is a composition in which three kinds of copper, iron, and aluminum are mixed.
  • the 1st acid suppression material which selected material from the above can be used in a high temperature environment of 175 degreeC or more.
  • the first acid-suppressing material may be used in a state where the metal that is the main component of the acid-suppressing material is exposed on the surface.
  • the first acid-suppressing material is preferably a porous structure, a mesh structure, or a pleated structure.
  • the first acid-suppressing material may have a thin plate-like structure that is installed in parallel along the flow of the refrigerant (gas).
  • the first acid suppression material is disposed in the acid suppression unit 6.
  • a mesh structure formed in a cylindrical shape as the first acid suppression member 7 is disposed inside the acid suppression unit 6.
  • the outer diameter of the mesh structure is substantially the same as the inner diameter of the acid suppression portion (pipe) 6.
  • the first acid suppression member 7 is arranged so as to be always in contact with the refrigerant until the refrigerant is discharged from the compressor 2 and sucked into the condenser 3. That is, the mesh structure may be disposed over the entire length of piping (including discharge piping and inflow piping) connecting the compressor 2 to the condenser 3.
  • the inner surface of the acid suppressing portion 6 is covered with a second acid suppressing material.
  • the second acid inhibitor is mainly composed of at least one material selected from the group consisting of copper, iron, aluminum, SUS, nickel, titanium, metal silicon, silicon steel, tin, magnesium, and zinc.
  • the second acid suppression material can cover the inner surface of the acid suppression portion 6 by plating, coating, or vapor deposition. Thereby, even if it is a field where the 1st acid control material is arranged only in a part in acid control part 6, it becomes the environment where a refrigerant can contact acid control material.
  • the refrigerant filled in the heat pump device 1 is compressed by the compressor 2 to be a high temperature / high pressure gas body.
  • the compressed refrigerant is discharged from the discharge port of the compressor 2.
  • the temperature of the refrigerant is highest at the discharge port of the compressor 2.
  • the discharged refrigerant flows to the condenser 3 via the acid suppression unit 6.
  • the refrigerant can come into contact with the acid suppression material (first acid suppression material, second acid suppression material) when passing through the acid suppression unit 6. Thereby, it is possible to suppress an increase in the acid concentration in the refrigerant.
  • the refrigerant that has passed through the acid suppression unit 6 is sucked into the condenser 3.
  • the refrigerant sucked into the condenser 3 is condensed and becomes a low-temperature and high-pressure refrigerant liquid.
  • the condensed refrigerant is adiabatically expanded by the expansion valve 4 and becomes a low-temperature and low-pressure refrigerant liquid.
  • the refrigerant adiabatically expanded is supplied to the evaporator 5 and evaporated to form a high-temperature / low-pressure gas body.
  • the evaporated refrigerant is sucked into the compressor 2 and thereafter the same cycle is repeated.
  • the heat pump device 1 can suppress an increase in the acid concentration in the refrigerant and maintain a stable thermal cycle by providing the acid suppression unit 6 between the compressor 2 and the condenser 3.
  • FIG. 4 is a schematic configuration diagram illustrating an example of a heat pump device (refrigerant circulation device) according to the present embodiment.
  • FIG. 5 is a cross-sectional view of the acid suppression unit. 6 and 7 are perspective views showing an example of the acid-suppressing material.
  • the acid suppression unit 16 is connected in series to a pipe connecting the compressor 2 to the condenser 3.
  • the acid suppression unit 16 includes a storage chamber 11, a refrigerant inlet 12, and a refrigerant outlet 13.
  • the storage chamber 11 has a pressure vessel structure, and the first acid suppression member 17 is stored therein so as to be in contact with the refrigerant.
  • the storage chamber 11 is fixed to the condenser 3 of the heat pump device 10 or a frame installed in the vicinity thereof.
  • the refrigerant inlet 12 is connected to a discharge pipe 15 via a valve 14.
  • the refrigerant inlet 12 guides the entire amount of refrigerant discharged from the compressor 2 to the storage chamber 11.
  • the refrigerant inlet 12 has a structure in which the refrigerant (gas) flows from the inlet part while smoothly turning inside.
  • the flow path cross section of the refrigerant inlet 12 has a structure having a sufficient flow path area so that the loss of the refrigerant (gas) does not occur.
  • the refrigerant outlet 13 is provided at a position where the refrigerant guided to the storage chamber 11 flows out to the condenser 3 via the first acid suppressing material 17.
  • the refrigerant outlet 13 is connected to an inflow pipe 19 through a valve 18.
  • the acid suppression unit 16 may include a maintenance unit.
  • the acid suppression unit 16 is provided with a maintenance unit 20.
  • the maintenance unit 20 is a lid member that closes an opening provided in the acid suppression unit 16.
  • the lid member is fixed to the acid suppressing portion 16 with a bolt or the like.
  • a discharge valve may be provided as the maintenance unit 20 '(not shown in FIG. 5 for simplification).
  • the material of the first acid suppression material 17 is the same as that of the first embodiment.
  • the 1st acid suppression material 17 is good to be fixed in the acid suppression part with a fixture etc.
  • a fixture 22 is provided between the first acid suppression member 17 and the maintenance unit 20.
  • the fixture 22 is a spring or the like.
  • Another fixture 23 is provided between the first acid suppression member 17 and the acid suppression portion 16 on the refrigerant outlet 13 side.
  • Another fixture 23 is a packing or a sealing material.
  • the 1st acid suppression material 17 shown in FIG. 6 is made into the shape which laminated
  • the space ratio in the acid suppression unit is such that it does not inhibit the flow of the refrigerant, for example, exceeds 95%.
  • the first acid suppressing material 17 shown in FIG. 7 is a cylindrical block having a porous structure.
  • the first acid-suppressing material 17 in FIG. 7 has a sponge shape and is a solid having an appropriate rigidity.
  • the “appropriate rigidity” means a hardness that maintains the original shape and does not block the refrigerant flow path even when the refrigerant flows.
  • the inner surface of the acid suppression unit 16 may be covered with a second acid suppression material (not shown).
  • the material of the second acid suppression material is the same as in the first embodiment. Thereby, the area which a refrigerant
  • the inner surfaces of the discharge pipe 15 and the inflow pipe 19 are also preferably covered with the second acid suppressing material. Thereby, the inner surfaces of the discharge pipe 15 and the inflow pipe 19 act as a part of the acid suppressing portion.
  • the entire amount of the refrigerant discharged from the compressor 2 is guided to the acid suppression unit 16.
  • the refrigerant can come into contact with the acid suppression material when passing through the acid suppression unit 16. Thereby, the raise of the acid concentration in a refrigerant
  • coolant can be suppressed.
  • the refrigerant that has passed through the acid suppression unit 16 is sucked into the compressor 2 through the condenser 3, the expansion valve 4, and the evaporator 5, and thereafter the same cycle is repeated.
  • FIG. 8 is a schematic configuration diagram illustrating another example of the heat pump device (refrigerant circulation device) according to the present embodiment.
  • the configuration of this modification is the same as that of the second embodiment, except that the connection position of the acid suppression unit is different.
  • the acid suppression unit 26 is connected in parallel to a pipe connecting the compressor 2 to the condenser 3.
  • the refrigerant inlet is connected to the upstream side A of the pipe via the valve 24.
  • the refrigerant inlet can guide part or all of the refrigerant discharged from the compressor 2 to the storage chamber.
  • the amount of refrigerant guided to the storage chamber can be adjusted by opening and closing the valve 24.
  • the refrigerant outlet is provided at a position where the refrigerant guided to the storage chamber flows out to the condenser 3 via the acid suppressing material.
  • the refrigerant outlet is connected to the downstream side B of the pipe via the valve 28.
  • the refrigerant outlet may be designed so that the refrigerant is directly sucked into the condenser 3.
  • a part of the refrigerant discharged from the compressor 2 is divided and guided to the acid suppression unit 26.
  • 2% by volume of the refrigerant circulating in the heat pump cycle is diverted from the point A of the pipe connecting the compressor 2 and the condenser 3 and led to the storage chamber.
  • the refrigerant guided to the storage chamber can come into contact with the acid suppression material (first acid suppression unit, second acid suppression unit). Thereby, the raise of the acid concentration in a refrigerant
  • coolant can be suppressed.
  • the refrigerant that has passed through the acid suppression unit 26 is sucked into the compressor 2 through the condenser 3, the expansion valve 4, and the evaporator 5, and thereafter the same cycle is repeated.
  • FIG. 9 is a schematic configuration diagram illustrating an example of a heat pump device (refrigerant circulation device) according to the present embodiment.
  • the acid suppression unit 36 is connected in series between the condenser 3 and the expansion valve 4.
  • the acid suppression unit 36 includes a storage chamber, a refrigerant inlet, and a refrigerant outlet.
  • the refrigerant inlet is connected to the outflow pipe 31 via the valve 34.
  • the refrigerant inlet guides the entire amount of refrigerant flowing out of the condenser 3 to the storage chamber.
  • the accommodation chamber is a pressure vessel, and the first acid suppression material is accommodated therein so as to be in contact with the refrigerant.
  • the material of the first acid suppression material is the same as in the first embodiment.
  • the first acid suppressing material is preferably a porous structure, a mesh structure, or a pleated structure.
  • the refrigerant outlet is designed so that the refrigerant guided to the storage chamber flows out toward the expansion valve 4 via the first acid suppressing material.
  • the refrigerant is condensed and liquefied by the condenser 3.
  • the liquefied refrigerant has a smaller volume than when it is a gas body.
  • the inner surface of the acid suppression part 36 is good to be coat
  • the inner surface of the pipe connecting the condenser 3 to the expansion valve 4 is also preferably covered with the second acid suppressing material.
  • the refrigerant discharged from the compressor 2 flows to the condenser 3 via the acid suppression unit 6.
  • the refrigerant can come into contact with the acid suppression material (first acid suppression material, second acid suppression material) when passing through the acid suppression unit 6. Thereby, it is possible to suppress an increase in the acid concentration in the refrigerant.
  • the refrigerant that has passed through the acid suppression unit 6 is sucked into the condenser 3 and condensed.
  • the condensed refrigerant flows out of the condenser 3 and is guided to the acid suppression unit 36.
  • the refrigerant can come into contact with the acid suppression material when passing through the acid suppression unit 36. Thereby, the raise of the acid concentration in a refrigerant
  • coolant can be suppressed.
  • the refrigerant that has passed through the acid suppression unit 36 is sucked into the compressor 2 via the expansion valve 4 and the evaporator 5, and thereafter the same cycle is repeated.
  • the acid suppression unit is separately incorporated in the condenser.
  • Other configurations that are not described are the same as those in the first embodiment.
  • FIG. 10 shows a longitudinal sectional view of the condenser of the refrigerant circulation device (heat pump device) according to the present embodiment.
  • the condenser 43 is a shell and tube heat exchanger.
  • the condenser 43 includes a plurality of heat transfer tubes 41, a refrigerant inlet tube 42, and a refrigerant outlet tube 44.
  • the plurality of heat transfer tubes 41 are disposed horizontally, and a cooling fluid flows inside.
  • the refrigerant enters from the refrigerant inlet pipe 42, exchanges heat with the cooling fluid flowing through the heat transfer pipe 41, and flows out from the refrigerant outlet pipe 44.
  • the acid suppression unit 46 is provided in the refrigerant outlet pipe 44.
  • the acid suppression unit Since the refrigerant (liquid) exists in a state of liquid-sealing the refrigerant outlet pipe 44 at the outlet portion of the condenser 43, the acid suppression unit is installed in a form that is submerged in the refrigerant (liquid).
  • the acid suppression unit 46 obstructs the flow of the refrigerant, the refrigerant (liquid) stays in the condenser 43 during the operation in the maximum load range, thereby causing problems such as a reduction in the performance of the heat pump. Therefore, it is preferable that the acid suppression part 46 is installed with sufficient space.
  • the acid suppression part 46 is the acid suppression material itself.
  • the acid suppression material can be the same as the first acid suppression material of the second embodiment.
  • the acid suppression unit of the third embodiment and the fourth embodiment can be provided between the condenser on the most upstream side (compressor side) and the expansion valve.
  • an acid suppression unit may be provided between the first condenser and the second condenser.
  • FIG. 11 is a schematic configuration diagram illustrating an example of an organic Rankine cycle device (refrigerant circulation device) according to the present embodiment.
  • the organic Rankine cycle apparatus 50 includes a pump 52, an evaporator 55, an expander 54, a condenser 53, and an acid suppression unit 56.
  • the pump 52, the evaporator 55, the expander 54, and the condenser 53 are sequentially connected by piping to form a refrigerant circulation circuit (organic Rankine cycle).
  • Each component of the organic Rankine cycle device is designed to withstand the pressure from the refrigerant.
  • the organic Rankine cycle is filled with the same HFO as in the first embodiment as a refrigerant.
  • the pump 52 pumps the refrigerant sucked in from the condenser 53 toward the evaporator 55.
  • the evaporator 55 can heat and evaporate the low-pressure and high-pressure refrigerant sent by using an external heat source.
  • the heat source is waste heat such as turbine or engine exhaust, and the temperature of the refrigerant can be increased to 175 ° C. or higher.
  • the evaporator 55 may be a boiler or an evaporator.
  • the expander 54 expands the evaporated high-temperature and high-pressure refrigerant, rotates the turbine and the like, and drives the generator to generate electric power.
  • the condenser 53 can cool and condense the high-temperature / low-pressure refrigerant expanded by the expander 54 to obtain a refrigerant liquid.
  • the condenser 53 is a condenser or the like.
  • the acid suppression unit 56 suppresses an increase in acid concentration in the refrigerant.
  • the acid suppression part 56 is provided in the area
  • coolant can be 175 degreeC or more. In the present embodiment, the region where the temperature of the refrigerant can be 175 ° C. or higher is between the evaporator 55 and the expander 54.
  • the acid suppression unit 56 also serves as at least a part of a pipe connecting the evaporator 55 and the expander 54. It is preferable that the acid suppression unit 56 also serves as all of the piping connecting the evaporator 55 and the expander 54.
  • the acid suppression part 56 contains the 1st acid suppression material similar to 1st Embodiment. It is preferable that the first acid-suppressing material is arranged so that the refrigerant can always come into contact with the refrigerant until the refrigerant leaves the evaporator 55 and is sucked into the expander 54. That is, the first acid suppression material may be disposed over the entire length of the pipe connecting the evaporator 55 to the expander 54.
  • the inner surface of the acid suppression unit 56 is covered with the second acid suppression material, as in the first embodiment.
  • the refrigerant filled in the organic Rankine cycle device 50 is heated by an external heat source in the evaporator 55 to become high-temperature and high-pressure steam.
  • the temperature of the refrigerant is highest at the outlet of the evaporator 55.
  • the refrigerant is adiabatically expanded by the expander 54 and drives the turbine by work generated thereby.
  • the expanded refrigerant flows to the condenser 53 and is cooled to become a liquid.
  • the condensed refrigerant is sucked into the pump 52, and thereafter the same cycle is repeated.
  • HFO1234ze (Z) manufactured by Central Glass Co., Ltd., purity 99.8% was used.
  • the acid-suppressing material was iron (Fe), copper (Cu), aluminum (Al), SUS304, SUS316, or a mixture of iron, copper, and aluminum in the same volume.
  • Iron was a material specified in JIS C 2504, and a test piece having a diameter of 1.60 mm and a length of 50 mm was used.
  • Copper was a material specified in JIS C 3102, and a test piece having a diameter of 1.60 mm and a length of 50 mm was used.
  • Aluminum was a material specified in JIS H 4040, and a test piece having a diameter of 1.60 mm and a length of 50 mm was used.
  • SUS304 and SUS316 used test pieces of JIS austenitic stainless steel. The acid suppression material used was degreased and polished before the test, and had a new bare surface.
  • a Pyrex (registered trademark) glass tube (diameter 10 mm ⁇ inner diameter 8 mm ⁇ length 200 mm), 0.5 g of a refrigerant and a test piece of each acid-suppressing material were placed and sealed.
  • the sealed glass tube was heated at a test temperature of 175 ° C. to 250 ° C. for 14 days.
  • the acid suppression material was one kind of metal, three pieces of test pieces were placed for each metal type when three kinds and three kinds of metals were mixed.
  • the refrigerant after 14 days was analyzed by a gas chromatograph (manufactured by Shimadzu Corporation, GC-2010plus) equipped with a flame ionization detector (FID) and ion chromatography (IC, manufactured by Nippon Dionex Co., Ltd., ICS-2100). Further, the appearance of the refrigerant was visually confirmed before and after the test.
  • a gas chromatograph manufactured by Shimadzu Corporation, GC-2010plus
  • FID flame ionization detector
  • IC ion chromatography
  • Table 1 shows the results of FID analysis and IC analysis.
  • FIG. 12 shows the fluorine ion concentration in the refrigerant.
  • the horizontal axis represents the test temperature (° C.)
  • the vertical axis represents the fluorine ion (F ⁇ ) concentration (ppm) in the refrigerant.
  • F ⁇ fluorine ion
  • FIG. 1 corresponds to 1, 3, 5, and 7.
  • indicates sample no.
  • 2 corresponds to 2, 4, 6, and 8.
  • corresponds to the sample without refrigerant HFC245fa / acid inhibitor.
  • corresponds to a sample in which refrigerant HFC245fa / acid inhibitor Fe, Cu, Al is mixed.
  • the fluorine ion concentration in HFC245fa was 5 ppm or less at any test temperature.
  • the fluorine ion concentration in the refrigerant containing the acid inhibitor was 3 ppm at a test temperature of 175 ° C. (sample No. 2) and 5 ppm at a test temperature of 250 ° C. (sample No. 8). Even when the test temperature exceeded 225 ° C., the gradient of change in the fluorine ion concentration in the refrigerant containing the acid inhibitor did not change significantly.
  • HFC245fa was higher than 99.9 GC% regardless of the test temperature.
  • the purity of HFO1234ze (Z) is determined according to Sample No. 7 (test temperature 250 ° C.), it decreased to 75.2 GC%. At 8 (test temperature 250 ° C.), 96.3 GC% was maintained. Sample No. 14 (test temperature 250 ° C.), 94.1 GC% was maintained.
  • HFO1234ze (Z) becomes tolfluoropropyne and hydrogen fluoride when pyrolyzed. From the above results, it is possible to suppress an increase in the fluorine ion concentration (that is, hydrogen fluoride concentration) in the HFO and stabilize the HFO by adding an acid suppressing material in which two or three kinds of metals are mixed in the HFO. It was confirmed that

Abstract

作動温度が高温となる環境下でHFOを冷媒として用いても、安定的な熱サイクルを維持できるヒートポンプ装置および有機ランキンサイクル装置を提供することを目的とする。冷媒循環装置(1)は、分子構造中に炭素-炭素二重結合を有するハイドロフルオロオレフィンまたはハイドロクロロフルオロオレフィンを含む冷媒が充填され、冷媒循環回路中に、冷媒の作動温度が175℃以上となる領域を有する冷媒循環装置であって、冷媒の温度が175℃以上になりえる領域に、冷媒中における酸濃度の上昇を抑制する酸抑制部(6)が設けられ、酸抑制部(6)が、銅、鉄、アルミニウム、SUS、ニッケル、チタニウム、金属シリコン、炭化ケイ素、スズ、マグネシウム、および亜鉛からなる群から選択される少なくとも2種の材料を主体とする酸抑制材を含む。

Description

冷媒循環装置、冷媒循環方法および酸抑制方法
 本発明は、冷媒を利用する冷媒循環装置、冷媒循環方法および酸抑制方法に関し、特に、ヒートポンプ装置および有機ランキンサイクル装置、ならびに該装置における冷媒循環方法および酸抑制方法に関するものである。
 従来、ヒートポンプ装置または有機ランキンサイクル装置の冷媒として、ハイドロフルオロカーボン(HFC)系の冷媒が用いられている。HFC系冷媒は、オゾン層破壊係数がゼロであり、熱安定性が高い。一方で、HFC系冷媒は、地球温暖化係数(Global Warming Potential、GWP)が非常に高い。そのため、HFC系冷媒の使用は、地球環境保護の観点から望ましくない。
 GWPが低い冷媒として、ハイドロフルオロオレフィン(HFO)系またはハイドロクロロフルオロオレフィン(HCFO)系冷媒が知られている。特許文献1に、HFOを基本成分とした冷媒を利用する冷却サイクル装置が開示されている。特許文献1では、HFO系冷媒としてテトラフルオロプロペン(HFO1234yf)が用いられている。
 HFOやHCFOは分子構造中に2重結合を有する。そのため、HFO系冷媒およびHCFO系冷媒は、HFC冷媒よりも化学的安定性が低い。HFOやHCFOを冷媒として使用すると、水や酸素の影響で開裂、分解して酸を主成分とする物質が生じるという問題がある。酸を主成分とする物質は、冷却サイクル装置の使用材料や冷凍機油を劣化させ、冷却サイクル装置の性能を低下させる。
 特許文献1に記載の冷却サイクル装置は、上記問題を解決するため、冷却サイクル中に吸着器を備えている。吸着器は、フッ化水素(HF)を主成分とする物質を吸着できる吸着剤を備えている。吸着剤は、ゼオライト、シリカ、イオン交換樹脂等を主成分とする。
特開2010-121927号公報([0009])
 ヒートポンプ装置および有機ランキンサイクル装置には、冷媒の作動温度が170℃を超える高温となるものがある。HFO系冷媒およびHCFO系冷媒は高温環境で熱分解され、その結果、酸が生じる。そのため、HFO系冷媒およびHCFO系冷媒は、作動温度が高温となる環境下で使用できないという課題がある。
 特許文献1に記載の冷却サイクル装置は、60℃程度の温度環境での使用が想定されている。よって、特許文献1に記載の吸着器は、170℃を超える高温環境下で使用できない。そのため、冷媒の作動温度が170℃を超える冷媒循環装置には、特許文献1に記載の技術を転用できない。
 本発明は、このような事情に鑑みてなされたものであって、作動温度が高温となる環境下でHFOまたはHCFOを冷媒として用いても、安定的な熱サイクルを維持できるヒートポンプ装置および有機ランキンサイクル装置、ならびに該装置における冷媒循環方法および酸抑制方法を提供することを目的とする。
 上記課題を解決するために、本発明の冷媒循環装置、冷媒循環方法および酸抑制方法は以下の手段を採用する。
 本発明は、分子構造中に炭素-炭素二重結合を有するハイドロフルオロオレフィンまたはハイドロクロロフルオロオレフィンを含む冷媒が充填され、冷媒循環回路中に、前記冷媒の作動温度が175℃以上となる領域を有する冷媒循環装置であって、前記冷媒の温度が175℃以上になりえる領域に、前記冷媒中で発生する酸濃度の上昇を抑制する酸抑制部が設けられ、前記酸抑制部が、銅、鉄、アルミニウム、ニッケル、チタニウム、金属シリコン、ケイ素鋼、スズ、マグネシウム、亜鉛およびSUS、からなる群から選択される少なくとも2種の材料を主体とする酸抑制材を含むことを特徴とする冷媒循環装置を提供する。
 本発明は、分子構造中に炭素-炭素二重結合を有するハイドロフルオロオレフィンまたはハイドロクロロフルオロオレフィンを含む冷媒が充填され、冷媒循環回路中に、前記冷媒の作動温度が175℃以上となる領域を有する冷媒循環装置において、前記冷媒の温度が175℃以上になりえる領域に、前記冷媒中で発生する酸濃度の上昇を抑制する酸抑制部を設け、前記酸抑制部が、銅、鉄、アルミニウム、ニッケル、チタニウム、金属シリコン、ケイ素鋼、スズ、マグネシウム、亜鉛およびSUS、からなる群から選択される少なくとも2種の材料を主体とする酸抑制材を含むよう構成し、前記冷媒を前記酸抑制材と接触させる酸抑制方法を提供する。
 本発明は、分子構造中に炭素-炭素二重結合を有するハイドロフルオロオレフィンまたはハイドロクロロフルオロオレフィンを含む冷媒が充填され、冷媒循環回路中に、前記冷媒の作動温度が175℃以上となる領域を有する冷媒循環装置における冷媒循環方法であって、前記冷媒の温度が175℃以上になりえる領域に、前記冷媒中で発生する酸濃度の上昇を抑制する酸抑制部を設け、前記酸抑制部が、銅、鉄、アルミニウム、ニッケル、チタニウム、金属シリコン、ケイ素鋼、スズ、マグネシウム、亜鉛およびSUS、からなる群から選択される少なくとも2種の材料を主体とする酸抑制材を含むよう構成し、前記冷媒を前記酸抑制材と接触させる冷媒循環方法を提供する。
 本願発明者らは、175℃以上の高温環境では、ハイドロフルオロオレフィン(またはハイドロクロロオレフィン)が分解され、酸(フッ化水素または塩化水素)が生成されやすくなること、および、生成された酸がハイドロオレフィン(またはハイドロクロロオレフィン)の分解を加速させることを見出した。本発明によれば、酸抑制部を設けることで、冷媒中の酸濃度の上昇を抑制できる。それにより、冷媒が熱分解しやすい高温領域において、酸に起因した冷媒の加速度的な分解を抑制し、ライフサイクル上実用的な熱物性を確保できる。冷媒循環において、冷媒は、加熱・冷却されてもよいし、加圧・減圧されてもよい。
 本発明によれば、酸抑制材の材料を上記から選択することで、175℃以上の高温環境下であっても、冷媒中の酸濃度の上昇を抑制できる。特に、前記酸抑制材は、銅、鉄、およびアルミニウムを混在させた構成物であることが好ましい。
 上記発明の一態様において、前記酸抑制材が、ポーラス構造体、メッシュ構造体、または、ひだ状構造体であることが好ましい。
 酸抑制材を上記構造体とすることで、冷媒と酸抑制材との接触面積が大きくなる。それによって、冷媒中の酸濃度の上昇をより抑制できるようになる。
 上記発明の一態様において、冷媒循環装置は、冷媒を圧縮する圧縮機と、圧縮された冷媒を凝縮させる凝縮器と、凝縮された冷媒を膨張させる膨張弁と、膨張させた冷媒を蒸発させる蒸発器と、を備え、前記酸抑制部が、前記圧縮機と前記凝縮器との間に設けられ得る。
 圧縮機、凝縮器、膨張弁、および蒸発器を順次接続してなる冷媒循環回路において、圧縮機から凝縮器までの間は、高温・高圧環境であり、冷媒がガス体として存在する。ハイドロオレフィンは、高温環境で分解反応が進みやすい傾向がある。上記一態様によれば、圧縮機と凝縮器との間に酸抑制部を設けることで、冷媒中の酸濃度が上昇することを効率的に抑制できる。
 上記発明の一態様において、前記酸抑制部は、前記凝縮器と前記膨張弁との間に設けられ得る。
 冷媒循環装置において、冷媒は、凝縮器により凝縮され、液体となる。液化された冷媒は、ガス体であるときよりも体積が小さくなる。上記発明の一態様によれば、凝縮器と膨張弁との間に酸抑制部を設けることで、より多くの冷媒が酸抑制材に接触できる。
 上記発明の一態様において、前記酸抑制部は、前記凝縮器に組み込まれてもよい。
 冷媒循環装置の構成要素には冷媒による圧力がかかる。そのため、冷媒循環装置の構成要素は、冷媒からの圧力に耐えうる剛性を備えている必要がある。上記発明の一態様によれば、酸抑制部を凝縮器に組み込むことで、新たな耐圧容器を設ける必要がなくなる。それにより、冷媒循環装置を軽くできる。
 上記発明の一態様において、冷媒循環装置は、前記冷媒を圧送するポンプと、圧送された冷媒を、熱源により加熱して蒸発させる蒸発器と、蒸発させた冷媒を膨張させる膨張機と、膨張させた冷媒を凝縮させる凝縮器と、を備え、前記酸抑制部が、前記蒸発器と前記膨張機との間に設けられ得る。
 ポンプ、蒸発器、膨張機、および凝縮器を順次接続してなる冷媒循環回路において、蒸発器から膨張機までの間は、冷媒がガス体として存在する高温・高圧環境であり、冷媒の分解が進みやすい領域である。上記一態様によれば、蒸発器と膨張機との間に酸抑制部を設けることで、冷媒中の酸濃度の上昇を抑制できる。
 前記酸抑制部は、前記蒸発器と前記圧送するポンプとの間に設けられ得る。
 上記一態様によれば、蒸発器と圧送するポンプとの間に酸抑制部を設けることで、冷媒中の酸濃度の上昇を抑制できる。
 本発明の冷媒循環装置、酸抑制方法及び冷媒循環方法によれば、高温環境下に酸抑制部を備えることで、冷媒中の酸濃度の上昇を抑制できる。それにより、作動温度が高温となる環境下でHFOを冷媒として用いても、冷媒の熱物性変化を抑え、安定的な冷媒循環回路を維持できる。
第1実施形態に係るヒートポンプ装置の一例を示す概略構成図である。 図1の酸抑制部の側面図である。 図1の酸抑制部の斜視図である。 第2実施形態に係るヒートポンプ装置の一例を示す概略構成図である。 図4の酸抑制部の断面図である。 酸抑制材の一実施例を示す斜視図である。 酸抑制材の他の実施例を示す斜視図である。 第2実施形態の変形例に係るヒートポンプ装置の一例を示す概略構成図である。 第3実施形態に係るヒートポンプ装置の一例を示す概略構成図である。 第4実施形態に係るヒートポンプ装置の凝縮器の縦断面図である。 第5実施形態に係る有機ランキンサイクル装置の一例を示す概略構成図である。 冷媒中のフッ素イオン濃度を示すグラフである。
〔第1実施形態〕
 図1は、本実施形態に係るヒートポンプ装置(冷媒循環装置)の一例を示す概略構成図である。図2は、図1の酸抑制部の側面図である。図3は、図1の酸抑制部の斜視図である。
 ヒートポンプ装置1は、圧縮機2、凝縮器3、膨張弁4、蒸発器5、および酸抑制部6を備えている。圧縮機2、凝縮器3、膨張弁4および蒸発器5は、順次、配管で接続され冷媒循環回路(ヒートポンプサイクル)を形成する。ヒートポンプ装置の各構成部材は、冷媒からの圧力に耐えうるよう設計されている。ヒートポンプサイクル内には、冷媒が充填されている。
 圧縮機2は、蒸発器5から流れてくる冷媒を吸入し、圧縮した後、該圧縮した冷媒を凝縮器3に吐出するものである。圧縮機2は、冷媒の温度を175℃以上に高めることができる。圧縮機2は、ターボ圧縮機などの公知のものを用いることができる。圧縮機2は、多段式圧縮機であってもよい。圧縮機は、複数設けられてもよい。
 圧縮機2は、冷媒を吸入する吸入口、および、圧縮した冷媒を吐出する吐出口を備えている。圧縮機2の吐出口には、圧縮された冷媒ガスを凝縮器3へ向けて吐出するための吐出配管が接続されている。
 凝縮器3は、圧縮機2で圧縮された冷媒を冷却して凝縮し、冷媒液とすることができる。凝縮器3は、プレート式熱交換器またはシェルアンドチューブ型熱交換器などとされ得る。凝縮器3は、1つまたは複数設けられてよい。凝縮器3は、圧縮された冷媒が流入する流入配管と、凝縮器3で凝縮した冷媒を流出する流出配管とを備えている。
 膨張弁4は、凝縮器3で凝縮された冷媒液を断熱膨張させて減圧する弁である。膨張弁4としては、公知のものを用いることができる。
 蒸発器5は、膨張弁4により断熱膨張させた冷媒液を蒸発させるものである。蒸発器5は、プレート式熱交換器またはシェルアンドチューブ型熱交換器などとされ得る。
 ヒートポンプサイクル内に充填する冷媒は、分子構造中に炭素-炭素二重結合を有するハイドロフルオロオレフィン(HFO)またはハイドロクロロフルオロオレフィン(HCFO)を含む。冷媒は、ハイドロフルオロオレフィン(HFO)またはハイドロクロロフルオロオレフィン(HCFO)を主成分とすることが好ましい。ハイドロフルオロオレフィン(HFO)またはハイドロクロロフルオロオレフィン(HCFO)は、冷媒中に50GC%より多く、好ましくは75GC%より多く、更に好ましくは90GC%より多く含まれている。
 具体的に、ハイドロフルオロオレフィン(HFO)は、2,3,3,3-テトラフルオロ-1-プロペン(HFO1234yf)、(Z)-1,3,3,3-テトラフルオロ-1-プロペン(HFO1234ze(Z))、(E)-1,3,3,3-テトラフルオロ-1-プロペン(HFO1234ze(E))、(Z)-1,2,3,3-テトラフルオロ-1-プロペン(HFO1234ye(Z))、(E)-1,2,3,3-テトラフルオロ-1-プロペン(HFO1234ye(E))、(Z)-1,2,3,3,3-ペンタフルオロ-1-プロペン(HFO1225ye(Z))、(E)-1,2,3,3,3-ペンタフルオロ-1-プロペン(HFO1225ye(E))、(Z)-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO1336mzz(Z))、または(E)-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO1336mzz(E))などとされる。
 具体的に、ハイドロクロロフルオロオレフィン(HCFO)は、(E)-1-クロロ-3,3,3-トリフルオロプロペン(HCFO1233zd(E))、(Z)-1-クロロ-3,3,3-トリフルオロプロペン(HCFO1233zd(Z))などとされる。
 ハイドロフルオロオレフィン(HFO)またはハイドロクロロフルオロオレフィン(HCFO)の純度は、好ましくは97GC%以上、より好ましくは99GC%以上、さらに好ましくは99.9GC%以上とされる。
 冷媒は、添加物を含んでいてもよい。添加物は、ハロカーボン類、その他のハイドロフルオロカーボン類(HFC)、アルコール類、飽和炭化水素類などが挙げられる。
<ハロカーボン類、および、その他のハイドロフルオロカーボン類>
 ハロカーボン類としては、ハロゲン原子を含む塩化メチレン、トリクロロエチレン、テトラクロロエチレン等を挙げることができる。
 ハイドロフルオロカーボン類としては、ジフルオロメタン(HFC-32)、1,1,1,2,2-ペンタフルオロエタン(HFC-125)、フルオロエタン(HFC-161)、1,1,2,2-テトラフルオロエタン(HFC-134)、1,1,1,2-テトラフルオロエタン(HFC-134a)、1,1,1-トリフルオロエタン(HFC-143a)、ジフルオロエタン(HFC-152a)、1,1,1,2,3,3,3-ヘプタフルオロプロパン(HFC-227ea)、1,1,1,2,3,3-ヘキサフルオロプロパン(HFC-236ea)、1,1,1,3,3,3-ヘキサフルオロプロパン(HFC-236fa)、1,1,1,3,3-ペンタフルオロプロパン(HFC-245fa)、1,1,1,2,3-ペンタフルオロプロパン(HFC-245eb)、1,1,2,2,3-ペンタフルオロプロパン(HFC-245ca)、1,1,1,3,3-ペンタフルオロブタン(HFC-365mfc)、1,1,1,3,3,3-ヘキサフルオロイソブタン(HFC-356mmz)、1,1,1,2,2,3,4,5,5,5-デカフルオロペンタン(HFC-43-10-mee)等を挙げることができる。
<アルコール>
 アルコールとしては、炭素数1~4のメタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、2,2,2-トリフルオロエタノール、ペンタフルオロプロパノール、テトラフルオロプロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール等を挙げることができる。
<飽和炭化水素>
 飽和炭化水素としては、炭素数3以上8以下のプロパン、n-ブタン、i-ブタン、ネオペンタン、n-ペンタン、i-ペンタン、シクロペンタン、メチルシクロペンタン、n-ヘキサン、およびシクロヘキサンを含む群から選ばれる少なくとも1以上の化合物を混合することができる。これらのうち、特に好ましい物質としてはネオペンタン、n-ペンタン、i-ペンタン、シクロペンタン、メチルシクロペンタン、n-ヘキサン、シクロヘキサンが挙げられる。
 酸抑制部6は、冷媒中の酸濃度の上昇を抑制するものである。酸は、具体的にフッ化水素または塩化水素である。酸抑制部6は、冷媒の温度が175℃以上となりえる領域に設けられる。本実施形態において、冷媒の温度が175℃以上となりえる領域は、圧縮機2から凝縮器3までの間とされる。酸抑制部6は、圧縮機2と凝縮器3とを接続する配管の少なくとも一部を兼ねている。酸抑制部6は、圧縮機2と凝縮器3とを接続する配管の全部を兼ねることが好ましい。図2において、酸抑制部6は、圧縮機2の吐出口に直接接続されている。
 酸抑制部6は、第1酸抑制材を含む。
 第1酸抑制材は、種類の異なる金属が混在する構成とされる。第1酸抑制材は、銅、鉄、アルミニウム、ニッケル、チタニウム、金属シリコン、ケイ素鋼、スズ、マグネシウム、亜鉛およびSUS、からなる群から選択される少なくとも2種の材料を主体とする。主体とするとは、最も多く含まれる成分であることを意味する。銅、鉄、アルミニウム、ニッケル、チタニウム、金属シリコン、ケイ素鋼、スズ、マグネシウム、および亜鉛は、それぞれ金属の単体であることが好ましい。第1酸抑制材は、銅、鉄、およびアルミニウムの3種を混在させた構成物であることが更に好ましい。第1酸抑制材の材料を上記から選択することで、冷媒中の酸濃度の上昇を抑制できる。材料を上記から選択した第1酸抑制材は、175℃以上の高温環境で使用できる。
 第1酸抑制材は、酸抑制材の主体となる金属が表面にあらわになった状態で使用されるとよい。
 第1酸抑制材は、ポーラス構造体、メッシュ構造体、または、ひだ状構造体であることが好ましい。第1酸抑制材は、冷媒(ガス)の流れに沿って並行に複数枚設置される薄板状の構造であってもよい。第1反応抑制材が冷媒と接触できる面積を大きしてかつ流れを阻害しなくすることで、冷媒中の酸濃度の上昇を効率的に抑制し、且つ圧力損失も抑制できる。
 本実施形態において、第1酸抑制材は、酸抑制部6内に配置されている。例えば、図3に示すように、第1酸抑制材7として円筒状に成形されたメッシュ構造体が、酸抑制部6の内部に配置される。図3において、メッシュ構造体の外径は、酸抑制部(配管)6の内径と略同等とされる。
 第1酸抑制材7は、冷媒が圧縮機2から吐出されて凝縮器3に吸入されるまでの間、常に冷媒と接触可能であるよう配置されることが好ましい。すなわち、圧縮機2から凝縮器3までを接続する配管(吐出配管および流入配管を含む)の全長にわたり、メッシュ構造体が配置されるとよい。
 酸抑制部6の内面は、第2酸抑制材で被覆されていることが好ましい。第2酸抑制材は、銅、鉄、アルミニウム、SUS、ニッケル、チタニウム、金属シリコン、ケイ素鋼、スズ、マグネシウム、および亜鉛からなる群から選択される少なくとも1種の材料を主成分とする。第2酸抑制材は、メッキ、塗布または蒸着などにより、酸抑制部6の内面を覆うことができる。それにより、第1酸抑制材が、酸抑制部6内の一部にしか配置されていない領域であっても、冷媒が酸抑制材に接触できる環境となる。
 次に、ヒートポンプ装置1の動作を説明する。
 ヒートポンプ装置1に充填されている冷媒は、圧縮機2で圧縮されて高温・高圧のガス体とされる。圧縮された冷媒は、圧縮機2の吐出口から吐出される。ヒートポンプ装置1において、圧縮機2の吐出口で最も冷媒の温度が高くなる。
 吐出された冷媒は、酸抑制部6を経由して凝縮器3へと流れる。冷媒は、酸抑制部6を通過する際に、酸抑制材(第1酸抑制材、第2酸抑制材)と接触することができる。それにより、冷媒中の酸濃度が上昇するのを抑えられる。
 酸抑制部6を経由した冷媒は、凝縮器3に吸入される。凝縮器3に吸い込まれた冷媒は、凝縮され、低温・高圧の冷媒液となる。
 凝縮された冷媒は、膨張弁4により断熱膨張させられ、低温・低圧の冷媒液となる。断熱膨張させた冷媒は、蒸発器5に供給され、蒸発し高温・低圧のガス体となる。蒸発した冷媒は、圧縮機2に吸い込まれ、以降同じサイクルが繰り返される。
 本実施形態に係るヒートポンプ装置1は、圧縮機2と凝縮器3との間に酸抑制部6を設けることで、冷媒中の酸濃度の上昇を抑制し、安定的な熱サイクルを維持できる。
 図2のように、酸抑制部6を圧縮機2に直接接続した場合には、オーバーホール時、または冷媒交換時に、適宜、酸抑制部のメンテナンス(酸抑制材の交換など)を実施できる。
〔第2実施形態〕
 本実施形態に係るヒートポンプ装置の構成は、特に説明がない限り、第1実施形態と同様とされる。図4は、本実施形態に係るヒートポンプ装置(冷媒循環装置)の一例を示す概略構成図である。図5は、酸抑制部の断面図である。図6および図7は、酸抑制材の一例を示す斜視図である。
 酸抑制部16は、圧縮機2から凝縮器3までを接続する配管に、直列に接続されている。酸抑制部16は、収容室11、冷媒入口12および冷媒出口13を有する。収容室11は、圧力容器構造とされ、内部に第1酸抑制材17が冷媒と接触可能に収容されている。収容室11は、ヒートポンプ装置10の凝縮器3またはその周辺に設置されるフレームに固定される。冷媒入口12は、バルブ14を介して吐出配管15に接続されている。冷媒入口12は、圧縮機2から吐出された冷媒の全量を収容室11へと導く。冷媒入口12は、冷媒(ガス)が入口部から滑らかに内部を旋回ながら流れる構造を有する。冷媒入口12の流路断面は、冷媒(ガス)の損失が発生しないよう十分な流路面積を有する構造とされる。冷媒出口13は、収容室11へと導かれた冷媒が第1酸抑制材17を経由して凝縮器3へと流れ出る位置に設けられている。冷媒出口13は、バルブ18を介して流入配管19に接続されている。
 酸抑制部16は、メンテナンス部を備えているとよい。図5において、酸抑制部16には、メンテナンス部20が設けられている。メンテナンス部20は、酸抑制部16に設けられた開口を塞ぐ蓋部材とされる。蓋部材は、ボルトなどにより酸抑制部16に固定されている。図4に示すように、メンテナンス部20’として、ディスチャージバルブが設けられていてもよい(簡略化のため、図5では記載を省略した)。メンテナンス部20を設けることで、第1酸抑制材17を交換できるなど、酸抑制部16のメンテナンスが容易となる。
 第1酸抑制材17の材料は、第1実施形態と同様とされる。
 第1酸抑制材17は、固定具などによって酸抑制部内に固定されていると良い。図5では、第1酸抑制材17とメンテナンス部20との間に固定具22が設けられている。固定具22は、ばねなどとされる。第1酸抑制材17と冷媒出口13側の酸抑制部16との間には、別の固定具23が設けられている。別の固定具23は、パッキンまたはシール材などとされる。
 図6および図7に、第1酸抑制材を例示する。
 図6に示す第1酸抑制材17は、極細線のワイヤーメッシュを積層し、それを巻いた形状とされる。酸抑制部16に第1酸抑制材17を収容したときの、酸抑制部内の空間率は、冷媒の流れを阻害しない程度、例えば95%を超えるものされる。
 図7に示す第1酸抑制材17は、多孔質構造の円筒ブロックとされる。図7の第1酸抑制材17はスポンジ形状とされ、適度な剛性を有する固体とされる。「適度な剛性」とは、冷媒の流れを受けても、元の形状を維持し、冷媒流路を塞がない程度の硬さを意味する。
 酸抑制部16の内面は、第2酸抑制材で被覆されているとよい(不図示)。第2酸抑制材の材料は、第1実施形態と同様とされる。それにより、冷媒が酸抑制材と接触できる面積がより広くなる。
 吐出配管15および流入配管19の内面も、第2酸抑制材で被覆されているとよい。それにより、吐出配管15および流入配管19の内面が酸抑制部の一部として作用する。
 本実施形態に係るヒートポンプ装置10では、圧縮機2から吐出された冷媒の全量が、酸抑制部16に導かれる。冷媒は酸抑制部16を通過する際に、酸抑制材と接触することができる。それにより、冷媒中の酸濃度の上昇を抑制できる。
 酸抑制部16を経由した冷媒は、凝縮器3、膨張弁4および蒸発器5を経由して圧縮機2に吸い込まれ、以降同じサイクルが繰り返される。
(変形例)
 図8に、本実施形態に係るヒートポンプ装置(冷媒循環装置)の別の例を示す概略構成図である。本変形例の構成は、酸抑制部の接続位置が異なる以外、第2実施形態と同様とする。
 酸抑制部26は、圧縮機2から凝縮器3までを接続する配管に、並列に接続されている。冷媒入口は、バルブ24を介して配管の上流側Aに接続されている。冷媒入口は、圧縮機2から吐出された冷媒の一部または全部を収容室へと導くことができる。収容室に導く冷媒量は、バルブ24の開閉によって調整できる。冷媒出口は、収容室へと導かれた冷媒が酸抑制材を経由して凝縮器3へと流れ出る位置に設けられている。冷媒出口は、バルブ28を介して配管の下流側Bに接続されている。小さなサーキットを作成することで、酸抑制部のメンテナンスが容易となる。
 冷媒出口は、冷媒が凝縮器3に直接吸入されるよう設計されてもよい。
 本実施形態に係るヒートポンプ装置では、圧縮機2から吐出された冷媒の一部が、分流されて酸抑制部26に導かれる。例えば、圧縮機2と凝縮器3とをつなぐ配管のA地点から、ヒートポンプサイクルを循環する冷媒の2体積%を分流し、収容室へと導く。収容室に導かれた冷媒は、酸抑制材(第1酸抑制部、第2酸抑制部)と接触することができる。それにより、冷媒中の酸濃度の上昇を抑制できる。
 酸抑制部26を経由した冷媒は、凝縮器3、膨張弁4および蒸発器5を経由して圧縮機2に吸い込まれ、以降同じサイクルが繰り返される。
〔第3実施形態〕
 本実施形態に係るヒートポンプ装置の構成は、凝縮器と膨張弁との間に、別途、酸抑制部が設けられる以外は、第1実施形態と同様とされる。図9は、本実施形態に係るヒートポンプ装置(冷媒循環装置)の一例を示す概略構成図である。
 酸抑制部36は、凝縮器3と膨張弁4との間に直列に接続されている。
 酸抑制部36は、収容室、冷媒入口、および冷媒出口を備えている。冷媒入口は、バルブ34を介して流出配管31に接続されている。冷媒入口は、凝縮器3から流出した冷媒の全量を収容室へと導く。収容室は、耐圧容器とされ、内部に第1酸抑制材が冷媒と接触可能に収容されている。第1酸抑制材の材料は、第1実施形態と同様とされる。第1酸抑制材は、ポーラス構造体、メッシュ構造体、または、ひだ状構造体であることが好ましい。冷媒出口は、収容室に導かれた冷媒が、第1酸抑制材を介して膨張弁4へ向けて流出するよう設計されている。
 冷媒は、凝縮器3で凝縮されて液化する。液化された冷媒は、ガス体であるときよりも体積が小さくなる。凝縮器3と膨張弁4との間に酸抑制部36を設けることで、より多くの冷媒を酸抑制材と接触させることができる。
 酸抑制部36の内面は、第1実施形態と同様に、第2酸抑制材で被覆されているとよい。
 凝縮器3から膨張弁4までをつなぐ配管の内面も、第2酸抑制材で被覆されているとよい。
 本実施形態に係るヒートポンプ装置30では、圧縮機2から吐出された冷媒は、酸抑制部6を経由して凝縮器3へと流れる。冷媒は、酸抑制部6を通過する際に、酸抑制材(第1酸抑制材、第2酸抑制材)と接触することができる。それにより、冷媒中の酸濃度が上昇するのを抑えられる。酸抑制部6を経由した冷媒は、凝縮器3に吸入され、凝縮される。凝縮された冷媒は、凝縮器3から流出して、酸抑制部36に導かれる。冷媒は酸抑制部36を通過する際に、酸抑制材と接触することができる。それにより、冷媒中の酸濃度の上昇を抑制できる。
 酸抑制部36を経由した冷媒は、膨張弁4および蒸発器5を経由して圧縮機2に吸い込まれ、以降同じサイクルが繰り返される。
 なお、本実施形態では、酸抑制部36が凝縮器3と膨張弁4とをつなぐ配管に直列に接続させたが、第2実施形態の変形例と同様に、並列に接続してもよい。
〔第4実施形態〕
 本実施形態に係る冷媒循環装置は、酸抑制部が、別途、凝縮器に組み込まれている。その他、説明のない構成は、第1実施形態と同様とされる。
 図10に、本実施形態に係る冷媒循環装置(ヒートポンプ装置)の凝縮器の縦断面図を示す。凝縮器43はシェルアンドチューブ式の熱交換器とされる。凝縮器43は、複数の伝熱管41、冷媒入口管42、冷媒出口管44を備えている。複数の伝熱管41は、水平に配設され、内部には冷却流体が流れる。冷媒は冷媒入口管42から入り、伝熱管41を流れる冷却流体と熱交換を行い、冷媒出口管44から流出する。本実施形態において酸抑制部46は、冷媒出口管44に設けられている。凝縮器43の出口部では、冷媒(液)は冷媒出口管44を液封する状態で存在するため、酸抑制部は冷媒(液)中に沈める形で設置される。酸抑制部46が冷媒の流れを阻害すると、最大負荷域の運転時において、凝縮器43に冷媒(液)が滞留し、ヒートポンプの性能を低下するなどの弊害が生じる。そのため、酸抑制部46は、十分な空間をもって設置されることが好ましい。酸抑制部46は、酸抑制材そのものである。酸抑制材は、第2実施形態の第1酸抑制材と同様のものを用いることができる。
 酸抑制部46を凝縮器43に組み込むことで、別途耐熱容器を設けなくてよいため、ヒートポンプ装置を軽くできる。
 なお、上記実施形態において、凝縮器は1つであるが、これに限定されず、凝縮器は複数設けられてもよい。凝縮器を2以上備える場合、第3実施形態および第4実施形態の酸抑制部は、一番上流側(圧縮機側)にある凝縮器から膨張弁までの間に設けることができる。例えば、圧縮機側から順に第1凝縮器、第2凝縮器および膨張弁を備えるヒートポンプ装置では、第1凝縮器と第2凝縮器との間に酸抑制部が設けられてもよい。
〔第5実施形態〕
 図11は、本実施形態に係る有機ランキンサイクル装置(冷媒循環装置)の一例を示す概略構成図である。
 有機ランキンサイクル装置50は、ポンプ52、蒸発器55、膨張機54、凝縮器53、および酸抑制部56を備えている。ポンプ52、蒸発器55、膨張機54および凝縮器53は、順次、配管で接続され冷媒循環回路(有機ランキンサイクル)を形成する。有機ランキンサイクル装置の各構成部材は、冷媒からの圧力に耐えうるよう設計されている。有機ランキンサイクル内には、冷媒として第1実施形態と同様のHFOが充填されている。
 ポンプ52は、凝縮器53から流れてくる冷媒を吸入した冷媒を、蒸発器55に向けて圧送するものである。
 蒸発器55は、圧送された低温・高圧の冷媒を、外部からの熱源を利用して加熱し、蒸発させることができる。熱源は、タービンまたはエンジンの排気などの廃熱とされ、冷媒の温度を175℃以上に高めることができる。蒸発器55は、ボイラまたはエバポレータなどとされ得る。
 膨張機54は、蒸発させた高温・高圧の冷媒を膨張させてタービン等を回転させ、発電機を駆動させ電力を発生させるものである。
 凝縮器53は、膨張機54で膨張された高温・低圧冷媒を冷却して凝縮し、冷媒液とすることができる。凝縮器53は、復水器などとされる。
 酸抑制部56は、冷媒中の酸濃度の上昇を抑制するものである。酸抑制部56は、冷媒の温度が175℃以上となりえる領域に設けられる。本実施形態において、冷媒の温度が175℃以上となりえる領域は、蒸発器55から膨張機54までの間とされる。酸抑制部56は、蒸発器55と膨張機54とを接続する配管の少なくとも一部を兼ねている。酸抑制部56は、蒸発器55と膨張機54とを接続する配管の全部を兼ねることが好ましい。
 酸抑制部56は、第1実施形態と同様の第1酸抑制材を含む。
 第1酸抑制材は、冷媒が蒸発器55から出て膨張機54に吸入されるまでの間、常に冷媒と接触可能であるよう配置されることが好ましい。すなわち、蒸発器55から膨張機54までを接続する配管の全長にわたり、第1酸抑制材が配置されるとよい。
 酸抑制部56の内面は、第1実施形態と同様に、第2酸抑制材で被覆されていることが好ましい。
 次に、有機ランキンサイクル装置50の動作を説明する。
 有機ランキンサイクル装置50に充填されている冷媒は、蒸発器55において外部からの熱源により加熱され、高温・高圧の蒸気となる。有機ランキンサイクル装置50において、蒸発器55の出口で最も冷媒の温度が高くなる。
 蒸気は、酸抑制部56を経由して膨張機54へと流れる。冷媒は、酸抑制部56を通過する際に、酸抑制材(第1酸抑制材、第2酸抑制材)と接触することができる。それにより、冷媒中の酸濃度の上昇を抑制できる。
 冷媒は、膨張機54にて断熱膨張され、これによって発生する仕事によって、タービンを駆動させる。膨張した冷媒は、凝縮器53へと流れ、冷却されて液体となる。凝縮された冷媒は、ポンプ52に吸い込まれ、以降同じサイクルが繰り返される。
<HFO中の酸濃度>
 酸抑制材の効果を以下の試験で確認した。
 試験は、JIS K2211 シールドチューブ試験に準拠した方法で実施した。
 冷媒は、HFO1234ze(Z)(セントラル硝子株式会社製、純度99.8%)を用いた。
 酸抑制材は、鉄(Fe)、銅(Cu)、アルミニウム(Al)、SUS304、SUS316、または、鉄と銅とアルミニウムとをそれぞれ同体積で混在させたものとした。
 鉄は、JIS C 2504に規定する材質で、直径1.60mm、長さ50mmの試験片を用いた。銅は、JIS C 3102に規定する材質で、直径1.60mm、長さ50mmの試験片を用いた。アルミニウムは、JIS H 4040に規定する材質で、直径1.60mm、長さ50mmの試験片を用いた。SUS304およびSUS316は、JISオーステナイト系ステンレス鋼の試験片を用いた。酸抑制材は、試験前に脱脂処理および研磨処理を施し、新しいはだを出したものを使用した。
 Pyrex(登録商標)ガラス管(直径10mm×内径8mm×長さ200mm)に、冷媒0.5gおよび各酸抑制材の試験片を入れ、密封した。密封したガラス管を試験温度175℃~250℃で14日間加熱した。試験片は、酸抑制材が1種類の金属である場合には3片、3種類の金属を混在させる場合には金属種毎に1片入れた。
 14日後の冷媒を、水素炎イオン化検出器(FID)を備えるガスクロマトグラフ(島津製作所製,GC-2010plus)、および、イオンクロマトグラフィー(IC,日本ダイオネクス社製,ICS-2100)にて分析した。また、試験前後に冷媒の外観を目視で確認した。
 比較対照として、1,1,1,3,3-ペンタフルオロプロパン(HFC245fa)を冷媒に用いて、同様の試験を実施した。
 FID分析結果、およびIC分析結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 図12に、冷媒中のフッ素イオン濃度を示す。同図において、横軸は試験温度(℃)、縦軸は冷媒中のフッ素イオン(F)濃度(ppm)である。同図において、●は試料No.1,3,5,7に対応する。▲は、試料No.2,4,6,8に対応する。○は、冷媒HFC245fa/酸抑制材なしの試料に対応する。△は冷媒HFC245fa/酸抑制材Fe,Cu,Alを混在させた試料に対応する。HFC245fa中のフッ素イオン濃度は、いずれの試験温度でも5ppm以下であった。
 酸抑制材が無い場合(試料No.1,3,5,7)、試験温度が高くなるにつれて、HFO1234ze(Z)中のフッ素イオン濃度が上昇した。特に、試験温度が225℃を超えると、フッ素イオン濃度の増加は顕著となった。酸抑制材が無い場合、HFO1234ze(Z)中のフッ素イオン濃度は、試験温度175℃で6ppm、試験温度250℃で20ppmであった。
 一方、酸抑制材を入れた冷媒中のフッ素イオン濃度は、試験温度175℃(試料No.2)で3ppm、試験温度250℃(試料No.8)で5ppmとなった。酸抑制材を入れた冷媒中のフッ素イオン濃度は、試験温度が225℃を超えても、変化の傾きが大きく変わらなかった。
 次に、試験温度250℃の試料(No.7-14)に着目する。酸抑制材として金属の単品を用いた試料(試料No.9-13)のフッ素イオン濃度は、酸抑制材が無い試料(試料No.7)と同等もしくはそれよりも高かった。一方、3種の金属(鉄、銅及びアルミニウム)を混在させた試料(試料No.8)、及び、2種の金属(鉄及び銅)を混在させた試料(試料No.14)のフッ素イオン濃度は、他の試料(No.7,9~13)よりも低く抑えられていた。
 HFC245faの純度は、試験温度によらず99.9GC%より高かった。
 HFO1234ze(Z)の純度は、試料No.7(試験温度250℃)で75.2GC%まで低下したが、試料No.8(試験温度250℃)では96.3GC%を維持していた。試料No.14(試験温度250℃)では94.1GC%を維持していた。
 HFO1234ze(Z)は、熱分解されると、トルフルオロプロピンおよびフッ化水素になる。上記結果から、HFO中に二種または三種の金属を混在させた酸抑制材を入れることで、HFO中のフッ素イオン濃度(すなわちフッ化水素濃度)の上昇が抑えられるとともに、HFOが安定化されることが確認された。
 三種の金属を混在させた酸抑制材を用いた試料において、試験前後の冷媒の外観に変化はなく、冷媒およびガラス管は無色透明を維持し、スラッジなどの不要物の生成もみられなかった。
1,10,30 ヒートポンプ装置(冷媒循環装置)
2 圧縮機
3,43 凝縮器
4 膨張弁
5 蒸発器
6,16,26,36,46,56 酸抑制部
7,17 第1酸抑制材
14,18,24,28,34 バルブ
15 吐出配管
19 流入配管
20,20’ メンテナンス部
22 固定具
23 別の固定具
31 流出配管
41 伝熱管
42 冷媒入口管
44 冷媒出口管
50 有機ランキンサイクル装置(冷媒循環装置)
52 ポンプ
53 凝縮器
54 膨張機
55 蒸発器

Claims (10)

  1.  分子構造中に炭素-炭素二重結合を有するハイドロフルオロオレフィンまたはハイドロクロロフルオロオレフィンを含む冷媒が充填され、
     冷媒循環回路中に、前記冷媒の作動温度が175℃以上となる領域を有する冷媒循環装置であって、
     前記冷媒の温度が175℃以上になりえる領域に、前記冷媒中で発生する酸濃度の上昇を抑制する酸抑制部が設けられ、
     前記酸抑制部が、銅、鉄、アルミニウム、ニッケル、チタニウム、金属シリコン、ケイ素鋼、スズ、マグネシウム、亜鉛およびSUS、からなる群から選択される少なくとも2種の材料を主体とする酸抑制材を含む冷媒循環装置。
  2.  前記酸抑制材が、銅、鉄、およびアルミニウムを混在させた構成物である請求項1に記載の冷媒循環装置。
  3.  前記酸抑制材が、ポーラス構造体、メッシュ構造体、または、ひだ状構造体である請求項1または請求項2に記載の冷媒循環装置。
  4.  前記冷媒を圧縮する圧縮機と、
     圧縮された冷媒を凝縮させる凝縮器と、
     凝縮された冷媒を膨張させる膨張弁と、
     膨張させた冷媒を蒸発させる蒸発器と、
    を備え、
     前記酸抑制部が、前記圧縮機と前記凝縮器との間に設けられる請求項1乃至請求項3のいずれかに記載の冷媒循環装置。
  5.  前記酸抑制部が、前記凝縮器と前記膨張弁との間に設けられる請求項4に記載の冷媒循環装置。
  6.  前記酸抑制部が、前記凝縮器に組み込まれる請求項5に記載の冷媒循環装置。
  7.  前記冷媒を圧送するポンプと、
     圧送された冷媒を、熱源により加熱して蒸発させる蒸発器と、
     蒸発させた冷媒を膨張させる膨張機と、
     膨張させた冷媒を凝縮させる凝縮器と、
    を備え、
     前記酸抑制部が、前記蒸発器と前記膨張機との間に設けられる請求項1乃至請求項3のいずれかに記載の冷媒循環装置。
  8.  前記酸抑制部が、前記蒸発器と前記圧送するポンプとの間に設けられる請求項7に記載の冷媒循環装置。
  9.  分子構造中に炭素-炭素二重結合を有するハイドロフルオロオレフィンまたはハイドロクロロフルオロオレフィンを含む冷媒が充填され、
     冷媒循環回路中に、前記冷媒の作動温度が175℃以上となる領域を有する冷媒循環装置において、
     前記冷媒の温度が175℃以上になりえる領域に、前記冷媒中で発生する酸濃度の上昇を抑制する酸抑制部を設け、
     前記酸抑制部が、銅、鉄、アルミニウム、ニッケル、チタニウム、金属シリコン、ケイ素鋼、スズ、マグネシウム、亜鉛およびSUS、からなる群から選択される少なくとも2種の材料を主体とする酸抑制材を含むよう構成し、
     前記冷媒を前記酸抑制材と接触させる酸抑制方法。
  10.  分子構造中に炭素-炭素二重結合を有するハイドロフルオロオレフィンまたはハイドロクロロフルオロオレフィンを含む冷媒が充填され、
     冷媒循環回路中に、前記冷媒の作動温度が175℃以上となる領域を有する冷媒循環装置における冷媒循環方法であって、
     前記冷媒の温度が175℃以上になりえる領域に、前記冷媒中で発生する酸濃度の上昇を抑制する酸抑制部を設け、
     前記酸抑制部が、銅、鉄、アルミニウム、ニッケル、チタニウム、金属シリコン、ケイ素鋼、スズ、マグネシウム、亜鉛およびSUS、からなる群から選択される少なくとも2種の材料を主体とする酸抑制材を含むよう構成し、
     前記冷媒を前記酸抑制材と接触させる冷媒循環方法。
     
PCT/JP2014/078260 2013-10-25 2014-10-23 冷媒循環装置、冷媒循環方法および酸抑制方法 WO2015060407A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14855304.3A EP3026368A4 (en) 2013-10-25 2014-10-23 REFRIGERANT CIRCULATION DEVICE, METHOD FOR CIRCULATING A REFRIGERANT AND METHOD FOR ACIDIFYING THE ACID
US14/914,589 US10443912B2 (en) 2013-10-25 2014-10-23 Refrigerant circulation device, method for circulating refrigerant and acid suppression method
JP2015543915A JP6138957B2 (ja) 2013-10-25 2014-10-23 冷媒循環装置、冷媒循環方法および酸抑制方法
CN201480046122.2A CN105473955B (zh) 2013-10-25 2014-10-23 冷媒循环装置、冷媒循环方法以及酸抑制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013222326 2013-10-25
JP2013-222326 2013-10-25

Publications (1)

Publication Number Publication Date
WO2015060407A1 true WO2015060407A1 (ja) 2015-04-30

Family

ID=52992994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078260 WO2015060407A1 (ja) 2013-10-25 2014-10-23 冷媒循環装置、冷媒循環方法および酸抑制方法

Country Status (5)

Country Link
US (1) US10443912B2 (ja)
EP (1) EP3026368A4 (ja)
JP (1) JP6138957B2 (ja)
CN (1) CN105473955B (ja)
WO (1) WO2015060407A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096571A (ja) * 2016-12-09 2018-06-21 ダイキン工業株式会社 熱搬送装置及びそれを用いた熱搬送方法
WO2021044613A1 (ja) * 2019-09-06 2021-03-11 東芝キヤリア株式会社 冷凍サイクル装置
WO2021064908A1 (ja) 2019-10-02 2021-04-08 三菱電機株式会社 冷凍サイクル装置
JP2021055878A (ja) * 2019-09-27 2021-04-08 株式会社富士通ゼネラル 冷凍サイクル装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3557158A4 (en) * 2016-12-13 2020-07-22 Daikin Industries, Ltd. HEAT TRANSFER DEVICE AND HEAT TRANSFER METHOD USING IT
JP2018169060A (ja) * 2017-03-29 2018-11-01 三菱重工サーマルシステムズ株式会社 冷媒循環装置および冷媒循環方法
JP6938273B2 (ja) * 2017-08-10 2021-09-22 三菱重工サーマルシステムズ株式会社 ヒートポンプおよびその設計方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315663A (ja) * 2006-05-25 2007-12-06 Sanden Corp 冷凍装置
JP2009222329A (ja) * 2008-03-18 2009-10-01 Daikin Ind Ltd 冷凍装置
JP2010121927A (ja) 2008-10-22 2010-06-03 Panasonic Corp 冷却サイクル装置
JP2010203759A (ja) * 2009-02-04 2010-09-16 Panasonic Corp 冷凍装置
JP2010243148A (ja) * 2009-03-17 2010-10-28 Panasonic Corp 冷凍サイクル装置
JP2010265429A (ja) * 2009-05-18 2010-11-25 Japan Sun Oil Co Ltd カーエアコン用作動流体
JP2011226728A (ja) * 2010-04-22 2011-11-10 Panasonic Corp 冷凍装置
JP2011237146A (ja) * 2010-05-13 2011-11-24 Panasonic Corp 空気調和機
JP2012012532A (ja) * 2010-07-02 2012-01-19 Panasonic Corp 圧縮機及びそれを用いた冷凍サイクル装置
JP2013525720A (ja) * 2010-03-19 2013-06-20 アルケマ フランス 高温熱伝達用の冷媒

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB296498A (en) * 1927-06-16 1928-09-06 Allan Chester Thayer Scrubber or purifier for refrigerating apparatus
JPH06341737A (ja) * 1993-05-28 1994-12-13 Nippondenso Co Ltd 冷媒再生装置
JPH0718173U (ja) 1993-08-10 1995-03-31 株式会社ゼクセル オイルセパレータ
JPH07294066A (ja) * 1994-04-22 1995-11-10 Matsushita Refrig Co Ltd 冷凍システム
JPH08219594A (ja) * 1995-02-14 1996-08-30 Mitsubishi Electric Corp 冷凍装置および冷凍装置用密閉型回転電機
JPH0948990A (ja) * 1995-05-24 1997-02-18 Matsushita Electric Ind Co Ltd 冷凍サイクル
TW482761B (en) * 1999-07-19 2002-04-11 New Japan Chem Co Ltd Dicarboxylic acid diester, a process for preparation thereof and refrigerator lubricating oil containing the diester
JP4078812B2 (ja) * 2000-04-26 2008-04-23 株式会社デンソー 冷凍サイクル装置
JP2002188872A (ja) * 2000-12-20 2002-07-05 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
EP2277942A3 (en) 2002-10-25 2014-07-09 Honeywell International, Incorporated. Compositions containing fluorine substituted olefins
US7279451B2 (en) 2002-10-25 2007-10-09 Honeywell International Inc. Compositions containing fluorine substituted olefins
US7563936B2 (en) 2006-10-27 2009-07-21 Honeywell International Inc Processes for geometric isomerization of halogenated olefins
JP2006089801A (ja) 2004-09-24 2006-04-06 Mitsubishi Heavy Ind Ltd 鋳造廃棄物の処理方法、鋳造システム
US20060243945A1 (en) 2005-03-04 2006-11-02 Minor Barbara H Compositions comprising a fluoroolefin
US7569170B2 (en) 2005-03-04 2009-08-04 E.I. Du Pont De Nemours And Company Compositions comprising a fluoroolefin
US20060243944A1 (en) 2005-03-04 2006-11-02 Minor Barbara H Compositions comprising a fluoroolefin
TWI645031B (zh) 2005-06-24 2018-12-21 哈尼威爾國際公司 含有經氟取代之烯烴之組合物及其用途
GB2442743A (en) 2006-10-12 2008-04-16 Energetix Group Ltd A Closed Cycle Heat Transfer Device
JP2008111576A (ja) * 2006-10-30 2008-05-15 Sanden Corp 冷凍回路
WO2008085314A2 (en) 2006-12-19 2008-07-17 E. I. Du Pont De Nemours And Company Dual row heat exchanger and automobile bumper incorporating the same
CN105333653A (zh) 2007-05-11 2016-02-17 纳幕尔杜邦公司 蒸汽压缩热传递系统
JPWO2009157325A1 (ja) * 2008-06-24 2011-12-08 三菱電機株式会社 冷凍サイクル装置及び空気調和装置
JP2010012927A (ja) 2008-07-03 2010-01-21 Mazda Motor Corp 車体前部構造
US8217208B2 (en) 2008-12-12 2012-07-10 Honeywell International, Inc. Isomerization of 1-chloro-3,3,3-trifluoropropene
JP5386201B2 (ja) 2009-03-12 2014-01-15 三菱重工業株式会社 ヒートポンプ装置
JP5582713B2 (ja) 2009-03-30 2014-09-03 三菱重工業株式会社 ヒートポンプ装置
JP5529432B2 (ja) 2009-03-30 2014-06-25 三菱重工業株式会社 ヒートポンプ装置
FR2948679B1 (fr) 2009-07-28 2011-08-19 Arkema France Procede de transfert de chaleur
JP2011220594A (ja) * 2010-04-08 2011-11-04 Toyota Industries Corp 冷凍サイクル
FR2973717B1 (fr) * 2011-04-08 2013-03-29 Ceca Sa Procede de reduction de l'acidite totale de compositions frigorigenes
JP2014141538A (ja) 2011-05-19 2014-08-07 Asahi Glass Co Ltd 作動媒体および熱サイクルシステム
CN103534328B (zh) 2011-05-19 2016-02-24 旭硝子株式会社 工作介质及热循环系统
RU2625307C2 (ru) 2011-05-19 2017-07-13 Асахи Гласс Компани, Лимитед Рабочая среда и система теплового цикла
WO2013028476A2 (en) 2011-08-19 2013-02-28 E. I. Du Pont De Nemours And Company Processes and compositions for organic rankine cycles for generating mechanical energy from heat
US10190808B2 (en) * 2012-04-30 2019-01-29 Trane International Inc. Refrigeration system with purge and acid filter
KR102257508B1 (ko) * 2014-06-24 2021-05-31 엘지전자 주식회사 냉각 시스템 및 이를 포함하는 냉장고

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315663A (ja) * 2006-05-25 2007-12-06 Sanden Corp 冷凍装置
JP2009222329A (ja) * 2008-03-18 2009-10-01 Daikin Ind Ltd 冷凍装置
JP2010121927A (ja) 2008-10-22 2010-06-03 Panasonic Corp 冷却サイクル装置
JP2010203759A (ja) * 2009-02-04 2010-09-16 Panasonic Corp 冷凍装置
JP2010243148A (ja) * 2009-03-17 2010-10-28 Panasonic Corp 冷凍サイクル装置
JP2010265429A (ja) * 2009-05-18 2010-11-25 Japan Sun Oil Co Ltd カーエアコン用作動流体
JP2013525720A (ja) * 2010-03-19 2013-06-20 アルケマ フランス 高温熱伝達用の冷媒
JP2011226728A (ja) * 2010-04-22 2011-11-10 Panasonic Corp 冷凍装置
JP2011237146A (ja) * 2010-05-13 2011-11-24 Panasonic Corp 空気調和機
JP2012012532A (ja) * 2010-07-02 2012-01-19 Panasonic Corp 圧縮機及びそれを用いた冷凍サイクル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3026368A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096571A (ja) * 2016-12-09 2018-06-21 ダイキン工業株式会社 熱搬送装置及びそれを用いた熱搬送方法
WO2021044613A1 (ja) * 2019-09-06 2021-03-11 東芝キヤリア株式会社 冷凍サイクル装置
JP2021055878A (ja) * 2019-09-27 2021-04-08 株式会社富士通ゼネラル 冷凍サイクル装置
WO2021064908A1 (ja) 2019-10-02 2021-04-08 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
EP3026368A1 (en) 2016-06-01
CN105473955A (zh) 2016-04-06
JP6138957B2 (ja) 2017-05-31
JPWO2015060407A1 (ja) 2017-03-09
US10443912B2 (en) 2019-10-15
CN105473955B (zh) 2017-12-08
US20160201958A1 (en) 2016-07-14
EP3026368A4 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP6138957B2 (ja) 冷媒循環装置、冷媒循環方法および酸抑制方法
EP3121242B1 (en) Working fluid for heat cycle, composition for heat-cycle systems, and heat-cycle system
US10443899B2 (en) Refrigerant circulation device, refrigerant circulation method, refrigerant filling method, and method for operating refrigerant circulation device
ES2926226T3 (es) Uso de R-1233 en enfriadores de líquidos
JP6019759B2 (ja) フルオロアルケンを含有する熱伝達媒体
JP2023001216A (ja) 作動媒体および熱サイクルシステム
WO2015060400A1 (ja) 冷媒循環装置、冷媒循環方法および異性化抑制方法
EP2711406B1 (en) Working medium and heat-cycle system
JP6299763B2 (ja) 熱伝達方法および高温ヒートポンプ装置
JP2019032155A (ja) 熱伝達方法
JP5987497B2 (ja) フッ素化エーテルを含む熱伝達作動媒体
EP3153560A1 (en) Working medium for heat cycle, composition for heat cycle system, and heat cycle system
WO2015022958A1 (ja) 熱伝達方法及び高温ヒートポンプ装置
US10253231B2 (en) Azeotrope to azeotrope-like composition containing 1-chloro-3,3,3-trifluoropropene and 1,1,1,3,3-pentafluoropropane
JP2015083899A5 (ja)
TW201139334A (en) Composition comprising 2,3,3,3-tetrafluoropropene and 1,1,1,2-tetrafluoroethane, chillers containing same and methods of producing cooling therein
US11149178B2 (en) Azeotropic or azeotrope-like composition, working fluid for heat cycle, and heat cycle system
JP6435854B2 (ja) 2−クロロ−1,3,3,3−テトラフルオロプロペンを含む熱伝達媒体
JP7320785B2 (ja) 冷凍サイクル用作動媒体および冷凍サイクルシステム
WO2019031094A1 (ja) ヒートポンプおよびその設計方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480046122.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855304

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015543915

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14914589

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE