WO2015059902A1 - 伸びの面内異方性が小さい高強度鋼板およびその製造方法 - Google Patents
伸びの面内異方性が小さい高強度鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2015059902A1 WO2015059902A1 PCT/JP2014/005225 JP2014005225W WO2015059902A1 WO 2015059902 A1 WO2015059902 A1 WO 2015059902A1 JP 2014005225 W JP2014005225 W JP 2014005225W WO 2015059902 A1 WO2015059902 A1 WO 2015059902A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- elongation
- less
- rolling
- plane anisotropy
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
- B32B15/015—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/018—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of a noble metal or a noble metal alloy
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0426—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0436—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0473—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C13/00—Alloys based on tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/02—Alloys based on gold
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/04—Alloys based on a platinum group metal
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/06—Alloys based on silver
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/004—Heat treatment in fluid bed
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/05—Grain orientation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/003—Cementite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
Definitions
- the present invention relates to a high-strength steel sheet having a small in-plane anisotropy of elongation that is useful for use in automobiles, electric machines, and the like, and a method for producing the same.
- a high strength steel plate for example, when the yield strength (YP) is 440 MPa class, Ti and Nb are added to an extremely low carbon steel plate having excellent formability to fix solute C and solute N, and IF is formed (Interstitial free). ), And a steel plate to which a solid solution strengthening element such as Si, Mn, or P is added.
- the yield strength (YP) is 500 MPa or more
- a composite structure steel sheet is put into practical use, and there are a DP steel sheet having a two-phase structure of ferrite and martensite, and a TRIP steel sheet utilizing residual austenite.
- the former is characterized by low yield strength and high work hardening ability due to residual strain around the martensite.
- the latter is characterized by high uniform elongation due to plasticity-induced martensitic transformation.
- the mechanical properties of high-strength steel plates are evaluated by the tensile properties in a specific direction such as the direction perpendicular to rolling.
- part formability for example, the height that can be formed by stretch forming or the Erichsen test, is greatly influenced by the in-plane anisotropy of elongation. Therefore, improvement in press formability can be expected by reducing the in-plane anisotropy of elongation.
- Patent Document 1 discloses a cold-rolled steel sheet having excellent bake hardenability and a small in-plane anisotropy and a manufacturing method thereof.
- ⁇ r is defined by the amount of C and the rolling reduction during cold rolling, and both in-plane anisotropy and dent resistance can be achieved.
- it is necessary to start cooling within 2 seconds after hot rolling and to cool at a cooling rate of 70 ° C./s or more over a temperature range of 100 ° C. or more.
- the in-plane anisotropy here is ⁇ r and does not necessarily match the in-plane anisotropy of elongation.
- Patent Document 2 discloses a high-strength steel sheet having a small in-plane anisotropy of elongation and a method for producing the same.
- a steel sheet is a composite structure steel including martensite having a ferrite phase in an area ratio of 85% or more and 99% or less, and an area ratio of 1% or more and 13% or less.
- the composite steel containing martensite has a problem in that the yield strength (YP) is low, so that the effect of suppressing deformation at the time of product transportation or accidental dropping becomes small. Even if martensite is included, if the tensile strength (TS) is increased by high alloying, the yield strength (YP) also increases. However, in this case, there is a problem that the manufacturing cost increases.
- the present invention advantageously solves the above problems, and has a high yield strength (YP) of 300 MPa or more, which is suitable for automobile parts and electrical parts, and reduces the in-plane anisotropy of elongation and press molding.
- An object of the present invention is to provide a high-strength steel sheet having excellent properties and a method for producing the same.
- the rolled texture of a cold-rolled steel sheet develops an ⁇ fiber whose ⁇ 100> direction is parallel to the rolling direction and a ⁇ fiber whose ⁇ 111> direction is parallel to the normal direction.
- the ⁇ fiber becomes weaker and the ⁇ fiber becomes stronger. Since ⁇ -fiber reduces the elongation in the 45 ° direction with respect to the rolling direction, the cold-rolled steel sheet produced by a normal process has a low elongation in the 45 ° direction with respect to the rolling direction and a strong elongation anisotropy. Become.
- the present invention has been made based on the above findings, and the gist thereof is as follows. [1] By mass%, C: 0.040 to 0.090%, Si: 0.20% or less, Mn: 0.50 to 0.99%, P: 0.050% or less, S: 0.03 % Or less, sol.
- a steel slab having the composition described in [1] is prepared, the steel slab is heated, held at a temperature range of 1150 ° C. or higher for 60 minutes or more, then subjected to rough rolling, and then finished.
- a method for producing a high-strength steel sheet having a small in-plane anisotropy of elongation in which the hot-rolled steel sheet is subjected to pickling and cold rolling and then annealed.
- the present invention it is possible to obtain a high-strength steel sheet having a small in-plane anisotropy of elongation and excellent press formability. Moreover, since the yield strength (YP) is high, deformation at the time of product transportation or accidental dropping is suppressed.
- the high-strength steel sheet of the present invention can be applied to automotive parts and electrical parts, and is extremely useful.
- C 0.040 to 0.090%
- C is an element necessary for refining the crystal and increasing the strength. Moreover, it has the effect of forming a precipitate with Nb, which will be described later, and increasing the yield strength (YP). If the amount of C is less than 0.040%, the effect of increasing the strength due to fine graining is low, and therefore it is necessary to contain 0.040% or more. On the other hand, when the amount of C exceeds 0.090%, it becomes easy to form the second phase, and the elongation decreases. Therefore, the C content is in the range of 0.040 to 0.090%. Preferably it is 0.040 to 0.060% of range.
- Si 0.20% or less
- Si has the effect of improving the surface quality by delaying the scale formation in hot rolling in a small amount.
- the Si content is 0.20% or less.
- Mn 0.50 to 0.99%
- Mn is an element useful for increasing the strength of a steel sheet through solid solution strengthening and crystal grain refining effects. If the amount of Mn is less than 0.50%, the effect of solid solution strengthening and refining is low, so 0.50% or more is required. On the other hand, when the amount of Mn exceeds 0.99%, it becomes easy to form a martensite phase and the yield strength (YP) decreases. Therefore, the amount of Mn is set to a range of 0.50 to 0.99%. Preferably it is 0.61 to 0.79% of range.
- the P content is 0.050% or less. Preferably, it is 0.040% or less.
- S 0.03% or less S has an effect of improving the peelability of the primary scale of the steel sheet and improving the appearance quality.
- the amount of S increases, the amount of MnS precipitated in the steel increases.
- ductility such as elongation of a steel plate and stretch flangeability, is reduced, and press formability is reduced.
- the hot ductility at the time of hot-rolling a slab is reduced, and surface defects are likely to occur.
- the S amount is set to 0.03% or less.
- it is 0.01% or less, More preferably, it is 0.005% or less, More preferably, it is 0.002% or less.
- sol. Al 0.01 to 0.09% sol.
- Al has the effect of fixing solid solution N present as an impurity and improving formability. For this reason, sol.
- the amount of Al is 0.01% or more.
- the Al content is in the range of 0.01 to 0.09%. Preferably, the content is 0.02 to 0.07%.
- N 0.005% or less If the amount of N is too large, the moldability is deteriorated and a large amount of Al is required to fix the solid solution N. For this reason, it is preferable to reduce as much as possible. From such a viewpoint, the N amount is set to 0.005% or less.
- Nb 0.015 to 0.040%
- Nb is an element necessary for refining the crystal and increasing the strength.
- the above-mentioned C and precipitates are formed, and in particular, it has the effect of increasing the yield strength (YP).
- Nb precipitates are finely precipitated in the finish rolling step of the hot rolling process to partially suppress recrystallization of the steel, and Nb has the effect of increasing the ⁇ fiber after cold rolling and annealing. It is the most important element of the invention. In order to acquire such an effect, it is necessary to contain Nb amount 0.015% or more.
- the Nb content is in the range of 0.015 to 0.040% or less. Preferably, it is 0.030% or less.
- the following elements are elements that have particularly high hardenability and facilitate the formation of a martensite phase. Therefore, the following range is preferable.
- Cr 0.05% or less Cr, like Mn, is an element that easily forms a martensite phase, and yield strength (YP) decreases when the martensite phase is generated. For this reason, the Cr content is 0.05% or less. Preferably it is 0.02% or less, More preferably, it is 0.01% or less. Since excessive reduction causes an increase in cost, the lower limit is preferably set to 0.001%.
- Mo 0.05% or less Mo, like Mn, is an element that easily forms a martensite phase. When a martensite phase is generated, yield strength (YP) decreases. For this reason, the Mo amount is 0.05% or less. Preferably it is 0.02% or less, More preferably, it is 0.01% or less. Since excessive reduction causes an increase in cost, the lower limit is preferably set to 0.001%.
- the components other than the above are Fe and inevitable impurities. However, as long as the effects of the present invention are not impaired, the inclusion of components other than those described above is not rejected.
- the microstructure of the steel sheet of the present invention is a ferrite + pearlite structure or a structure made of cementite or the like, and does not include a martensite phase and a retained austenite phase.
- the martensite phase and the retained austenite phase are based on the entire structure.
- the volume fraction is 1% or less. Moreover, it can control by a manufacturing condition mentioned later that a martensite phase and a retained austenite phase are not included.
- the pole figure represents a statistical crystal orientation distribution regarding a large number of crystal grains, and is therefore a method suitable for determining the preferred orientation.
- the texture of polycrystalline materials often exhibits a number of preferred orientations as well as a single preferred orientation.
- a fiber texture such as an ⁇ fiber or ⁇ fiber that is an orientation group rotated around a crystal axis
- the evaluation of the three-dimensional crystal orientation distribution function it is obtained by the series expansion method from the incomplete pole figures (200), (211), and (110) obtained by the reflection method.
- FIG. 1 shows the relationship between the average crystal orientation densities I ⁇ and I ⁇ thus obtained and the absolute value of ⁇ E1 (hereinafter sometimes simply referred to as
- the average crystal orientation density I ⁇ is 2.0 or more and 4.0 or less and the average crystal orientation density I ⁇ is 2.0 or more and 10 or less.
- is 2.0%.
- El 0 , El 45 and El 90 are values of elongation at break measured in directions of 0 °, 45 ° and 90 ° with respect to the rolling direction of the steel sheet.
- the yield ratio YR is preferably 0.79 or more. If the tensile strength is higher than the yield strength, the press load becomes higher than necessary, and a large press must be introduced. For this reason, it is preferable that the tensile strength TS is 560 MPa or less.
- the yield strength YP is preferably 300 MPa or more. By increasing the yield strength, deformation during product transportation or accidental dropping is suppressed. In order to obtain this effect, the yield strength YP is preferably 300 MPa or more. On the other hand, if it is too high, the spring back becomes large and it is difficult to maintain the component shape.
- the steel slab to be used is preferably manufactured by a continuous casting method in order to prevent macro segregation of components.
- the slab is manufactured and then cooled to room temperature and then reheated, it is charged directly into the heating furnace without being cooled and placed in a heating furnace and hot rolled, or a little heat retention
- an energy saving process such as direct rolling which is immediately hot rolled can be applied without any problem.
- Slab heating temperature Hold for 60 minutes or more in a temperature range of 1150 ° C or higher
- Nb precipitates are completely dissolved and finely precipitated in the finish rolling step of the hot rolling process to recrystallize the steel.
- the heating temperature is high and the holding time is long. From such a viewpoint, in the present invention, the slab heating temperature is maintained for 60 minutes or more in a temperature range of 1150 ° C. or more.
- the heating temperature is preferably 1300 ° C. or less, and the holding time is 500 minutes or less. It is preferable.
- the steel slab heated under the above conditions is subjected to hot rolling consisting of rough rolling and finish rolling.
- the steel slab is made into a sheet bar by rough rolling.
- the conditions for rough rolling need not be specified, and may be performed according to a conventional method.
- it is effective to use a so-called sheet bar heater or edge heater that heats the sheet bar for the purpose of preventing troubles during hot rolling or improving temperature unevenness in the width direction.
- the finish rolling entry temperature is preferably 1050 ° C. or lower.
- the sheet bar is preferably water-cooled before finish rolling in order to cool to 1050 ° C. on the finish rolling entry side.
- excessively low temperature increases the load during hot rolling, and is preferably 930 ° C. or higher.
- Finish rolling temperature 820-920 ° C
- the sheet bar is finish-rolled to obtain a hot-rolled steel sheet.
- the finish rolling temperature that is, the finish rolling exit temperature (FT) is set to 820 to 920 ° C. This is for obtaining a texture preferable for in-plane anisotropy of elongation after cold rolling and recrystallization annealing.
- the FT is less than 820 ° C., not only the load during hot rolling becomes high, but in some component systems, rolling occurs in the ferrite region, and the texture changes greatly.
- the finish rolling temperature is 820 to 920 ° C., more preferably 820 to 890 ° C.
- Final rolling ratio of finish rolling 15-25% Texture formation by rolling in the austenite region during finish rolling enhances the ⁇ fiber after cold rolling and annealing. This effect is most strongly influenced by the final pass of finish rolling.
- the final pass rolling ratio of the finish rolling is less than 15%, the texture formation by rolling in the austenite region is insufficient, and the ⁇ fiber after cold rolling and annealing does not become strong, so the content is made 15% or more.
- it exceeds 25% the load during rolling becomes high, so it is 25% or less.
- Time until start of water cooling after finish rolling within 2 seconds Since it is necessary to transform austenite in a partially recrystallized state after finish rolling, holding in the austenite region is not preferable. Therefore, water cooling is started within 2 seconds after finish rolling. More preferably, it is within 0.5 seconds.
- the cooling rate from finish rolling to coil winding is not particularly specified. In order to suppress recrystallization in the austenite region during cooling, it is preferably 20 ° C./second or more. Moreover, since excessive cooling tends to cause temperature unevenness in the plate thickness direction and in-plane direction, it is preferably 200 ° C./second or less. More preferably, it is 99 degrees C / second or less, More preferably, it is 40 degrees C / second or less.
- the coil winding temperature is not particularly specified.
- CT coil winding temperature
- CT exceeds the upper limit, the crystal grains become coarse and the strength is reduced.
- Pickling is not particularly specified and is performed by a conventional method. In order to suppress scale defects, shot blasting or leveling may be performed before pickling.
- Cold rolling is not particularly specified.
- the rolling rate is preferably 30 to 80%. If the rolling rate is less than 30%, recrystallization at the time of annealing becomes unstable and the elongation is lowered. Moreover, when it exceeds 80%, the load at the time of rolling will become high.
- the annealing temperature is preferably 700 to 900 ° C.
- the annealing temperature is less than 700 ° C.
- the crystal is not sufficiently recrystallized and the elongation is lowered.
- it exceeds 900 degreeC the austenite fraction at the time of annealing will become high, the balance of (alpha) fiber and (gamma) fiber will collapse, and the in-plane anisotropy of elongation will increase.
- the temperature is preferably 600 to 800 ° C. If it is less than 600 ° C., it will not be sufficiently recrystallized, leading to a decrease in elongation.
- a plating layer may be formed on the surface of the steel sheet by adding a surface treatment such as electroplating or hot dipping after the cold-rolled steel sheet annealing process.
- the plating layer is not limited to pure zinc plating or zinc-based alloy plating, but may be various plating layers conventionally applied to the surface of a steel sheet, such as Al plating or Al-based alloy plating. Moreover, you may apply
- temper rolling or leveler processing may be applied to the cold-rolled annealed sheet or plated steel sheet produced as described above for the purpose of adjusting the shape correction, surface roughness, and the like.
- the total elongation of temper rolling or leveler processing is preferably in the range of 0.2 to 15%. If it is less than 0.2%, the intended purpose of shape correction and roughness adjustment cannot be achieved. More preferably, it is 1.3% or more. On the other hand, if it exceeds 15%, it tends to cause a significant decrease in ductility, which is not preferable.
- Molten steel having various compositions shown in Table 1 was melted in a converter and made into a steel slab by a continuous casting method. These steel slabs were hot rolled under the conditions shown in Table 2 to obtain 3.2 mm thick hot rolled steel sheets. These hot-rolled steel sheets were pickled and then made into 1.6 mm thick as roll material by cold rolling at a reduction rate of 50%. Next, these as roll materials were subjected to continuous annealing at 820 ° C. in a continuous annealing line, and cooled at an average cooling rate of 15 ° C./sec. Furthermore, the obtained cold-rolled annealed steel sheet was subjected to temper rolling with an elongation of 1.3%.
- the thus obtained cold-rolled annealed sheet and hot-dip galvanized steel sheet were examined for tensile properties, steel structure and texture.
- ⁇ El was used as an index of in-plane anisotropy of elongation. This ⁇ El indicates the in-plane anisotropy of elongation, and was calculated from the following equation (1).
- ⁇ El (El 0 ⁇ 2El 45 + El 90 ) / 2 (1)
- El 0 , El 45 , and El 90 indicate the elongation of the test specimens taken from 0 ° (L direction), 45 ° (D direction), and 90 ° (C direction) directions. If ⁇ El is ⁇ 2.0% to 2.0%, it can be said that the in-plane anisotropy of elongation is excellent.
- volume fraction of phase The volume fraction of each phase is determined by measuring the area ratio of each phase by the point count method (according to ASTM E562-83 (1988)). The rate was defined as the volume fraction.
- the area ratio of each phase was obtained by collecting a test piece from each of the obtained cold-rolled annealed plates, and corroding the vertical section (L section) parallel to the rolling direction with nital after polishing, and using a scanning electron microscope (SEM).
- SEM scanning electron microscope
- the type of phase was identified by observation at 4000 times, and the area ratio (martensite fraction) of the martensite phase was determined. In the structure photograph, particles with white contrast were martensite.
- the abundance ratio of residual austenite phase is obtained by performing X-ray diffraction of the plate surface at the 1/4 thickness, and measuring the integrated intensity of ⁇ phase (211) and ⁇ phase (220), Obtained by standardization.
- B Three-dimensional crystal orientation distribution function (200), (211), (110) obtained by the reflection method by performing X-ray diffraction of the plate surface at the 1/4 thickness of each cold-rolled annealed plate.
- a steel sheet having I ⁇ of 2.0 or more and 4.0 or less and I ⁇ of 2.0 or more and 10 or less has small in-plane anisotropy of elongation.
- the steel types D, E, F, H, I, N, O, and R which are steel plates of the present invention, are high strength and high yield ratio steel plates with YP ⁇ 300 MPa and YR ⁇ 0.79. is there. And it has the structure
- the steel bar E with the sheet bar cooled with water and having a finish rolling entry temperature of 1050 ° C. or lower and a finishing temperature of 890 ° C. or lower is more It can be seen that the in-plane anisotropy of elongation is small.
- the steel sheets of the present invention when comparing the steel types O and R, the steel type R has lower strength and lower ductility, although they are the same component. This is presumably because the hot rolling cooling rate is high and the structure is non-uniform.
- the steel types A and J which are steel plates deviating from the component range of the present invention, have a low strength with YP of less than 300 MPa.
- the steel types G, K, L, and M which are steel plates that deviate from the component range of the present invention, lose the texture balance and increase anisotropy.
- the steel type G which is a steel sheet including a martensite phase and a retained austenite phase, not only has a large anisotropy but also has a low YR.
- the steel grades B, C, P, and Q are out of the texture balance because the manufacturing conditions such as the slab heating temperature and the cooling start time do not satisfy the scope of the present invention. As a result, anisotropy increases.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
[1]質量%で、C:0.040~0.090%、Si:0.20%以下、Mn:0.50~0.99%、P:0.050%以下、S:0.03%以下、sol.Al:0.01~0.09%、N:0.005%以下、Nb:0.015~0.040%を含有し、残部がFe及び不可避的不純物からなり、マルテンサイト相および残留オーステナイト相を含まず、鋼板の1/4板厚位置における板面の集合組織において、ODF(結晶方位分布関数)で表されるαファイバー(φ1=0°、φ2=45°、Φ=0°~55°)のうちΦ=25°~35°の範囲での平均結晶方位密度Iαが2.0以上4.0以下であり、γファイバー(φ1=0°~60°、φ2=45°、Φ=55°)の平均結晶方位密度Iγが2.0以上10以下である伸びの面内異方性が小さい高強度鋼板。
[2]下記(1)式で示されるΔElが-2.0%~2.0%である[1]に記載の伸びの面内異方性が小さい高強度鋼板。
ΔEl=(El0-2El45+El90)/2・・・(1)
ただし、El0、El45およびEl90は、鋼板の圧延方向に対して0°、45°および90°の方向で測定した破断伸びの値とする。
[3]降伏強度YPと引張強度TSの比である降伏比YR(YR=YP/TS)が0.79以上である[1]または[2]に記載の伸びの面内異方性が小さい高強度鋼板。
[4]表面に亜鉛系めっき皮膜を有する[1]~[3]のいずれかに記載の伸びの面内異方性が小さい高強度鋼板。
[5][1]に記載の成分組成を有する鋼スラブを準備し、前記鋼スラブを加熱し、スラブ加熱温度1150℃以上の温度域で60分以上保持した後、粗圧延を行い、その後仕上圧延温度を820~920℃で仕上圧延の最終パス圧延率を15~25%で仕上圧延を行い、仕上圧延後2秒以内に水冷を開始して冷却して、熱延鋼板を製造した後、前記熱延鋼板に酸洗および冷間圧延を施し、その後焼鈍を行う伸びの面内異方性が小さい高強度鋼板の製造方法。
[6]前記粗圧延の後水冷により仕上圧延入側温度を1050℃以下とした後、前記仕上圧延を行う[5]に記載の伸びの面内異方性が小さい高強度鋼板の製造方法。
[7][5]または[6]に記載の高強度鋼板の製造方法において、焼鈍後の鋼板に亜鉛めっき処理を施す伸びの面内異方性が小さい高強度鋼板の製造方法。
なお、本発明における高強度とは、降伏強度YPが300MPa以上をいう。
Cは、結晶を細粒化し、高強度化するために必要な元素である。また、後述のNbとの析出物を形成し、特に降伏強度(YP)を高める効果を有する。C量が0.040%未満では、細粒化による強度上昇効果が低いため、0.040%以上含有することを必要とする。一方、C量が0.090%を超えると、第2相を形成しやすくなり、伸びが低下する。したがって、C量は0.040~0.090%の範囲とする。好ましくは0.040~0.060%の範囲である。
Siは、微量で熱間圧延でのスケール生成を遅延させて表面品質を改善する効果がある。この他に、フェライト相の加工硬化能を上げる効果等がある。このような観点から、0.01%程度以上含有させることが好ましい。しかしながら、Si量が0.20%を超えると、外観品質が劣化する。したがって、Si量は0.20%以下とする。好ましくは0.10%以下とする。
Mnは、固溶強化、結晶の細粒化効果を通じて、鋼板強度を高めるのに有用な元素である。Mn量が0.50%未満では、固溶強化、細粒化効果が低いため、0.50%以上含有することを必要とする。一方、Mn量が0.99%を超えると、マルテンサイト相を形成しやすくなり、降伏強度(YP)が低下する。したがって、Mn量は0.50~0.99%の範囲とする。好ましくは0.61~0.79%の範囲である。
P量が0.050%を超えると、溶接性の劣化や偏析による表面欠陥が発生する。したがって、P量は0.050%以下とする。好ましくは、0.040%以下である。
Sは、鋼板の1次スケールの剥離性を向上させ、外観品質を向上させる作用がある。しかしながら、S量が多くなると、鋼中に析出するMnSが多くなる。このため、鋼板の伸びや伸びフランジ性といった延性を低下させ、プレス成形性を低下させる。また、スラブを熱間圧延する際の熱間延性を低下させ、表面欠陥が発生しやすくなる。このような観点から、S量は0.03%以下とする。好ましくは0.01%以下、より好ましくは0.005%以下、さらに好ましくは0.002%以下である。
sol.Alは、鋼の脱酸元素として有用であるほか、不純物として存在する固溶Nを固定して成形性を向上させる作用がある。このため、sol.Al量は0.01%以上とする。一方、sol.Al量が0.09%を超えると、コストアップにつながり、さらには表面欠陥を誘発する。したがって、sol.Al量は0.01~0.09%の範囲とする。好ましくは0.02~0.07%である。
Nは、量が多すぎると、成形性を劣化させるとともに、固溶Nを固定するために多量のAl添加が必要となる。このため、できるだけ低減することが好ましい。このような観点から、N量は0.005%以下とする。
Nbは、結晶を細粒化し、高強度化するために必要な元素である。また、前述のCと析出物を形成し、特に降伏強度(YP)を高める効果を有する。さらに、熱間圧延プロセスの仕上圧延工程においてNb析出物を微細析出させて鋼の再結晶を部分的に抑制し、冷間圧延および焼鈍後のαファイバーを高める効果を有することから、Nbは本発明の最重要元素である。このような効果を得るためには、Nb量を0.015%以上含有することが必要である。一方、0.040%を超えると、熱間圧延プロセスの仕上げ圧延工程での再結晶を完全に抑制し、冷間圧延および焼鈍後のαファイバーを高めすぎて伸びの異方性が劣化するとともに、熱間圧延荷重が高くなる。したがって、Nb量は0.015~0.040%以下の範囲とする。好ましくは、0.030%以下である。
Crは、Mnと同様、マルテンサイト相を形成しやすくする元素であり、マルテンサイト相が生成すると降伏強度(YP)が低下する。このため、Cr量は0.05%以下とする。好ましくは0.02%以下、より好ましくは0.01%以下である。過度な低減はコスト上昇を招くため、その下限は0.001%とすることが好ましい。
Moは、Mnと同様、マルテンサイト相を形成しやすくする元素であり、マルテンサイト相が生成すると降伏強度(YP)が低下する。このため、Mo量は0.05%以下とする。好ましくは0.02%以下、より好ましくは0.01%以下である。過度な低減はコスト上昇を招くため、その下限は0.001%とすることが好ましい。
マルテンサイト相および残留オーステナイト相が生成した場合、降伏強度(YP)が低下し、製品運搬時や不慮の落下時の変形抑制効果が小さくなる。したがって、マルテンサイト相および残留オーステナイト相を含まないことを必要とする。なお、本発明の鋼板のミクロ組織は、フェライト+パーライト組織あるいはさらに、セメンタイト等からなる組織であり、マルテンサイト相および残留オーステナイト相を含まないとは、マルテンサイト相および残留オーステナイト相は組織全体に対する体積分率で1%以下をいう。また、マルテンサイト相および残留オーステナイト相を含まないことは、後述する製造条件により、制御することができる。
従来、集合組織の解析にはX線回折(XRD)による極点図が用いられてきた。極点図は、多数の結晶粒に関する統計的な結晶方位分布を表していることから、優先方位の決定に適した方法である。しかしながら、多結晶材料の集合組織は単一の優先方位のみならず、多数の優先方位を示すことが多い。例えば、ある結晶軸の周りに回転した方位群であるαファイバーやγファイバーといった繊維集合組織では、極点図から個々の方位の存在割合を正確に評価することは困難である。そのため、極点図の情報に基づいて3次元結晶方位分布関数を作成し、個々の方位の存在割合を評価する。上記3次元結晶方位分布関数の評価に際し、反射法により得られた(200)、(211)、(110)の不完全極点図より、級数展開法にて求める。その結果、上記のようにマルテンサイト相や残留オーステナイト相を含まない鋼組織において、αファイバー(φ1=0°、φ2=45°、Φ=0°~55°)のうちΦ=25°~35°の範囲での平均結晶方位密度Iαが2.0以上4.0以下であり、且つ、γファイバー(φ1=0°~60°、φ2=45°、Φ=55°)の平均結晶方位密度Iγが2.0以上10以下とした場合に、伸びの面内異方性が小さくなることが究明された。集合組織を上記の範囲とした場合に伸びの面内異方性が小さくなる理由は、必ずしも明らかではない。理由としては、圧延方向や、圧延方向に対して90°の方向の伸びを向上させるγファイバーの存在割合と、圧延方向に対して45°の方向の伸びを向上させるαファイバー(φ1=0°、φ2=45°、Φ=0°~55°)のうちのΦ=25°~35°の存在割合のバランスが良いと考えられる。
ΔEl=(El0-2El45+El90)/2・・・(1)
ただし、El0、El45およびEl90は、冷延焼鈍鋼板から圧延方向に対して0°方向(L方向)、45°方向(D方向)、90°方向(C方向)にJIS5号試験片を採取し、JIS Z 2241の規定に準拠してクロスヘッド速度10mm/分で引張試験を行って測定した破断伸びの値である。
ΔEl=(El0-2El45+El90)/2・・・(1)
ただし、El0、El45およびEl90は、鋼板の圧延方向に対して0°、45°および90°の方向で測定した破断伸びの値とする。
降伏比YRは0.79以上であることが好ましい。なお、降伏強度に対して引張強度が高くなると、プレス荷重が必要以上に高くなり、大型プレス機を導入しなければならなくなる。このため、引張強度TSは560MPa以下であることが好ましい。
スラブ加熱では、Nb析出物を完全に溶解して、熱間圧延プロセスの仕上圧延工程においてNb析出物を微細析出させて鋼の再結晶を部分的に抑制し、冷間圧延および焼鈍後のαファイバーを高めるために、加熱温度は高く、また、保持時間は長い方が好ましい。このような観点から、本発明ではスラブ加熱温度1150℃以上の温度域で60分以上保持する。一方、スラブ加熱温度が高すぎたり、保持時間が長すぎる場合、酸化重量の増加に伴うスケールロスが増大するため、加熱温度は1300℃以下とすることが好ましく、保持時間は500分以下であることが好ましい。
次いで、シートバーを仕上圧延して熱延鋼板とする。このとき、仕上圧延温度、すなわち仕上圧延出側温度(FT)は820~920℃とする。これは、冷間圧延および再結晶焼鈍後における伸びの面内異方性に好ましい集合組織を得るためである。FTが820℃未満では、熱間圧延時の負荷が高くなるだけでなく、一部の成分系ではフェライト域での圧延となり、集合組織が大きく変化する。一方、FTが920℃を超えると、組織が粗大化するだけでなく、オーステナイトが部分再結晶状態で圧延できず、冷延焼鈍後、伸びの面内異方性が大きくなる。このため、仕上圧延温度は820~920℃、より好ましくは820~890℃とする。
仕上圧延中のオーステナイト域での圧延による集合組織形成が、冷間圧延および焼鈍後のαファイバーを高める。この効果は、仕上圧延の最終パスが最も強く影響する。仕上圧延の最終パス圧延率が15%未満の場合は、オーステナイト域での圧延による集合組織形成が不十分であり、冷間圧延および焼鈍後のαファイバーが強くならないため、15%以上とする。一方、25%超えでは、圧延時の負荷が高くなるため25%以下とする。
仕上圧延後、オーステナイトを部分再結晶状態のまま変態させる必要があるため、オーステナイト域での保持は好ましくない。したがって、仕上圧延後には2秒以内に水冷を開始する。より好ましくは、0.5秒以内である。
焼鈍後の冷却が速い場合には、マルテンサイト相が生成しやすくなるため、50℃/sec以下の平均冷却速度で冷却することが望ましい。
得られた各冷延焼鈍板の圧延方向に対して0°(L方向)、45°(D方向)および90°(C方向)方向からJIS5号引張試験片を採取し、JIS Z 2241の規定に準拠してクロスヘッド速度10mm/分で引張試験を行い、降伏強度(YP)、引張強度(TS)、伸び(El)を求めた。ここで、降伏強度(YP)、引張強度(TS)、伸び(El)、降伏比(YP/TS)の代表値は、0°方向から採取した試験片の値とした。降伏強度300MPa以上を合格とする。
また、伸びの面内異方性の指標として、ΔElを用いた。このΔElは、伸びの面内異方性を示すものであり、次式(1)より算出した。
ΔEl=(El0-2El45+El90)/2・・・(1)
ただし、El0、El45、El90は、0°(L方向)、45°(D方向)および90°(C方向)方向から採取した試験片の伸びを示す。
ΔElが-2.0%~2.0%であれば、伸びの面内異方性に優れていると言える。
(a)相の体積分率
各相の体積分率は、ポイントカウント法(ASTM E562-83(1988)に準拠)により各相の面積率を測定し、その面積率を、体積分率とした。各相の面積率は、得られた各冷延焼鈍板から試験片を採取し、圧延方向に平行な垂直断面(L断面)について、研磨後ナイタールで腐食し、走査型電子顕微鏡(SEM)を用い、4000倍で観察して相の種類を同定するとともに、マルテンサイト相の面積率(マルテンサイト分率)を求めた。なお、組織写真で、白いコントラストの付いている粒子をマルテンサイトとした。また、残留オーステナイト相の存在率(残留γ分率)は、板厚1/4面における板面のX線回折を行い、α相(211)、γ相(220)の積分強度を測定し、規格化して求めた。
(b)3次元結晶方位分布関数
得られた各冷延焼鈍板の板厚1/4面における板面のX線回折を行い、反射法により得られた(200)、(211)、(110)の不完全極点図より、級数展開法にて3次元結晶方位分布関数を求め、αファイバー(φ1=0°、φ2=45°、Φ=0°~55°)のうちΦ=25°~35°の範囲での平均結晶方位密度Iα、および、γファイバー(φ1=0°~60°、φ2=45°、Φ=55°)の平均結晶方位密度Iγを求め、評価した。Iαが2.0以上4.0以下、Iγが2.0以上10以下である鋼板が、伸びの面内異方性が小さい。
Claims (7)
- 質量%で、C:0.040~0.090%、Si:0.20%以下、Mn:0.50~0.99%、P:0.050%以下、S:0.03%以下、sol.Al:0.01~0.09%、N:0.005%以下、Nb:0.015~0.040%を含有し、残部がFe及び不可避的不純物からなり、マルテンサイト相および残留オーステナイト相を含まず、鋼板の1/4板厚位置における板面の集合組織において、ODF(結晶方位分布関数)で表されるαファイバー(φ1=0°、φ2=45°、Φ=0°~55°)のうちΦ=25°~35°の範囲での平均結晶方位密度Iαが2.0以上4.0以下であり、γファイバー(φ1=0°~60°、φ2=45°、Φ=55°)の平均結晶方位密度Iγが2.0以上10以下である伸びの面内異方性が小さい高強度鋼板。
- 下記(1)式で示されるΔElが-2.0%~2.0%である請求項1に記載の伸びの面内異方性が小さい高強度鋼板。
ΔEl=(El0-2El45+El90)/2・・・(1)
ただし、El0、El45およびEl90は、鋼板の圧延方向に対して0°、45°および90°の方向で測定した破断伸びの値とする。 - 降伏強度YPと引張強度TSの比である降伏比YR(YR=YP/TS)が0.79以上である請求項1または2に記載の伸びの面内異方性が小さい高強度鋼板。
- 表面に亜鉛系めっき皮膜を有する請求項1~3のいずれか1項に記載の伸びの面内異方性が小さい高強度鋼板。
- 請求項1に記載の成分組成を有する鋼スラブを準備し、前記鋼スラブを加熱し、スラブ加熱温度1150℃以上の温度域で60分以上保持した後、粗圧延を行い、その後仕上圧延温度を820~920℃で仕上圧延の最終パス圧延率を15~25%で仕上圧延を行い、仕上圧延後2秒以内に水冷を開始して冷却して、熱延鋼板を製造した後、前記熱延鋼板に酸洗および冷間圧延を施し、その後焼鈍を行う伸びの面内異方性が小さい高強度鋼板の製造方法。
- 前記粗圧延の後、水冷により仕上圧延入側温度を1050℃以下とした後、前記仕上圧延を行う請求項5に記載の伸びの面内異方性が小さい高強度鋼板の製造方法。
- 請求項5または6に記載の高強度鋼板の製造方法において、焼鈍後の鋼板に亜鉛めっき処理を施す伸びの面内異方性が小さい高強度鋼板の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167013338A KR101813912B1 (ko) | 2013-10-22 | 2014-10-15 | 연신의 면내 이방성이 작은 고강도 강판 및 그의 제조 방법 |
CN201480058319.8A CN105658832B (zh) | 2013-10-22 | 2014-10-15 | 伸长率的面内各向异性小的高强度钢板及其制造方法 |
MX2016005136A MX2016005136A (es) | 2013-10-22 | 2014-10-15 | Lamina de acero de alta resistencia que tiene una pequeña anisotropia planar de elongacion y metodo para la produccion de la misma. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013218832A JP5817804B2 (ja) | 2013-10-22 | 2013-10-22 | 伸びの面内異方性が小さい高強度鋼板およびその製造方法 |
JP2013-218832 | 2013-10-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015059902A1 true WO2015059902A1 (ja) | 2015-04-30 |
Family
ID=52992521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/005225 WO2015059902A1 (ja) | 2013-10-22 | 2014-10-15 | 伸びの面内異方性が小さい高強度鋼板およびその製造方法 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5817804B2 (ja) |
KR (1) | KR101813912B1 (ja) |
CN (1) | CN105658832B (ja) |
MX (1) | MX2016005136A (ja) |
WO (1) | WO2015059902A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180135146A1 (en) * | 2015-05-26 | 2018-05-17 | Nippon Steel & Sumitomo Metal Corporation | Steel sheet and method of production of same |
US10941461B2 (en) | 2016-03-31 | 2021-03-09 | Jfe Steel Corporation | Steel sheet, coated steel sheet, method for producing steel sheet, and method for producing coated steel sheet |
EP4339304A1 (de) * | 2016-09-20 | 2024-03-20 | ThyssenKrupp Steel Europe AG | Verfahren zum herstellen von stahlflachprodukten und stahlflachprodukt |
JP6414246B2 (ja) | 2017-02-15 | 2018-10-31 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
KR102648242B1 (ko) * | 2018-12-19 | 2024-03-18 | 주식회사 포스코 | 전기 저항 점용접성이 우수한 고강도 아연도금강판 및 그 제조방법 |
CN113718167B (zh) * | 2020-05-25 | 2022-07-15 | 上海梅山钢铁股份有限公司 | 一种屈服强度330MPa级液晶背板用热镀铝锌钢板 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012021225A (ja) * | 2010-06-16 | 2012-02-02 | Nippon Steel Corp | 圧延方向に対して45°の方向の均一伸びが極めて高い高強度冷延鋼板及びその製造方法 |
WO2013015428A1 (ja) * | 2011-07-27 | 2013-01-31 | 新日鐵住金株式会社 | 伸びフランジ性及び精密打ち抜き性に優れた高強度冷延鋼板とその製造方法 |
WO2013047760A1 (ja) * | 2011-09-30 | 2013-04-04 | 新日鐵住金株式会社 | 耐遅れ破壊特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4042560B2 (ja) | 2002-12-18 | 2008-02-06 | Jfeスチール株式会社 | 焼付硬化性に優れ、かつ面内異方性の小さい自動車外板パネル部品用冷延鋼板およびその製造方法 |
JP2007162089A (ja) * | 2005-12-15 | 2007-06-28 | Jfe Steel Kk | 燃料タンク用表面処理鋼板の製造方法 |
JP5217395B2 (ja) * | 2007-11-30 | 2013-06-19 | Jfeスチール株式会社 | 伸びの面内異方性が小さい高強度冷延鋼板およびその製造方法 |
JP5477002B2 (ja) * | 2010-01-13 | 2014-04-23 | 新日鐵住金株式会社 | 冷延鋼板 |
JP5678695B2 (ja) | 2011-01-31 | 2015-03-04 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP5533765B2 (ja) * | 2011-04-04 | 2014-06-25 | 新日鐵住金株式会社 | 局部変形能に優れた高強度冷延鋼板とその製造方法 |
-
2013
- 2013-10-22 JP JP2013218832A patent/JP5817804B2/ja active Active
-
2014
- 2014-10-15 WO PCT/JP2014/005225 patent/WO2015059902A1/ja active Application Filing
- 2014-10-15 MX MX2016005136A patent/MX2016005136A/es unknown
- 2014-10-15 CN CN201480058319.8A patent/CN105658832B/zh active Active
- 2014-10-15 KR KR1020167013338A patent/KR101813912B1/ko active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012021225A (ja) * | 2010-06-16 | 2012-02-02 | Nippon Steel Corp | 圧延方向に対して45°の方向の均一伸びが極めて高い高強度冷延鋼板及びその製造方法 |
WO2013015428A1 (ja) * | 2011-07-27 | 2013-01-31 | 新日鐵住金株式会社 | 伸びフランジ性及び精密打ち抜き性に優れた高強度冷延鋼板とその製造方法 |
WO2013047760A1 (ja) * | 2011-09-30 | 2013-04-04 | 新日鐵住金株式会社 | 耐遅れ破壊特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
MX2016005136A (es) | 2016-07-18 |
CN105658832A (zh) | 2016-06-08 |
CN105658832B (zh) | 2017-10-10 |
JP2015081359A (ja) | 2015-04-27 |
JP5817804B2 (ja) | 2015-11-18 |
KR101813912B1 (ko) | 2018-01-02 |
KR20160075620A (ko) | 2016-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5983895B2 (ja) | 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 | |
KR100760593B1 (ko) | 심인발성이 뛰어난 고강도 강판 및 그 제조방법 | |
JP5884714B2 (ja) | 溶融亜鉛めっき鋼板およびその製造方法 | |
JP5217395B2 (ja) | 伸びの面内異方性が小さい高強度冷延鋼板およびその製造方法 | |
JP5408314B2 (ja) | 深絞り性およびコイル内材質均一性に優れた高強度冷延鋼板およびその製造方法 | |
KR101607041B1 (ko) | 내시효성과 베이킹 경화성이 우수한 고강도 냉연 강판의 제조 방법 | |
KR20170072322A (ko) | 고강도 강판 및 그 제조 방법 | |
JP5967318B1 (ja) | 高強度溶融亜鉛めっき鋼板およびその製造方法 | |
JP5817804B2 (ja) | 伸びの面内異方性が小さい高強度鋼板およびその製造方法 | |
JP5532088B2 (ja) | 深絞り性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 | |
CN111684096A (zh) | 热浸镀锌钢板以及合金化热浸镀锌钢板 | |
JP4816595B2 (ja) | 冷延鋼板およびめっき鋼板ならびに該鋼板の製造方法 | |
JP5978838B2 (ja) | 深絞り性に優れた冷延鋼鈑、電気亜鉛系めっき冷延鋼板、溶融亜鉛めっき冷延鋼板、合金化溶融亜鉛めっき冷延鋼板、及び、それらの製造方法 | |
JP2013181183A (ja) | 降伏強度の面内異方性の小さい高強度冷延鋼板およびその製造方法 | |
JP5817805B2 (ja) | 伸びの面内異方性が小さい高強度鋼板およびその製造方法 | |
JP6007571B2 (ja) | 高強度冷延鋼板及び高強度亜鉛めっき鋼板 | |
JP5660291B2 (ja) | 成形性に優れた高強度冷延薄鋼板およびその製造方法 | |
JP5655436B2 (ja) | 深絞り性に優れた高強度鋼板およびその製造方法 | |
JP4525386B2 (ja) | 形状凍結性と深絞り性に優れた高強度鋼板の製造方法 | |
JP5245948B2 (ja) | 冷延鋼帯の製造方法 | |
JP6658708B2 (ja) | 低降伏比を有する鋼板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14855330 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201602465 Country of ref document: ID |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2016/005136 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20167013338 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14855330 Country of ref document: EP Kind code of ref document: A1 |