WO2015058480A1 - 一种用于凝胶聚合物电解质的组合物、凝胶聚合物电解质及电化学装置 - Google Patents

一种用于凝胶聚合物电解质的组合物、凝胶聚合物电解质及电化学装置 Download PDF

Info

Publication number
WO2015058480A1
WO2015058480A1 PCT/CN2014/072402 CN2014072402W WO2015058480A1 WO 2015058480 A1 WO2015058480 A1 WO 2015058480A1 CN 2014072402 W CN2014072402 W CN 2014072402W WO 2015058480 A1 WO2015058480 A1 WO 2015058480A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
gel polymer
composition
gel
electrolyte
Prior art date
Application number
PCT/CN2014/072402
Other languages
English (en)
French (fr)
Inventor
石桥
张海玲
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Publication of WO2015058480A1 publication Critical patent/WO2015058480A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • composition for gel polymer electrolyte, gel polymer electrolyte and electrochemical device Composition for gel polymer electrolyte, gel polymer electrolyte and electrochemical device
  • the present invention relates to the field of electrochemistry, and more particularly to a composition for a gel polymer electrolyte, a gel polymer electrolyte obtained by polymerizing the composition, and a gel polymer electrolyte.
  • Electrochemical device Background technique
  • a gel polymer electrolyte lithium ion battery is a new type of battery developed on the basis of this.
  • the gel state prevents the flow of the liquid, effectively preventing the battery from leaking.
  • the safety of the lithium ion battery is greatly improved, and the conductivity of the gel polymer electrolyte is similar to that of the liquid electrolyte, which can meet practical requirements.
  • the gel polymer electrolyte has a certain mechanical strength, which is advantageous for making ultra-thin batteries of any shape and any size, and has wide application prospects.
  • the gel polymer electrolyte is composed of a relatively polar polymer, an electrolyte salt, an organic solvent and an additive. Since the polymer and the organic solvent have a certain association, the electrolyte can be effectively prevented from flowing, which is helpful. Solve the safety problems such as leakage of lithium ion batteries.
  • Gel polymer electrolytes for lithium ion batteries fall into two categories: physically crosslinked and chemically crosslinked.
  • the polymer used in the physically crosslinked gel polymer electrolyte includes poly(mercapto methacrylate) (PMMA) and its copolymer, polyacrylonitrile (PAN) and its copolymer, polyvinylidene fluoride (PVDF) and its copolymer. Wait.
  • the chemically cross-linked gel polymer electrolyte generally uses an acrylate-based polymer, and usually forms a gel by in-situ polymerization.
  • the specific process is as follows: Adding a polymer monomer to a liquid electrolyte, adding an initiator, mixing After uniformly, the battery is injected, and then the monomer polymer is induced by heating or the like to gel the electrolyte.
  • the application of the in-situ polymerization type gel electrolyte can process the production process of the gel electrolyte lithium ion battery to be substantially the same as the liquid electrolyte lithium ion battery.
  • CN1302069C discloses a polymer electrolyte having a poly(propylene) glycol di(meth)acrylate having a weight average molecular weight of 5,000 to 100,000 as a monomer, although the polymer electrolyte has Strong gel strength, but monomer molecular weight Description
  • CN101195670B discloses a gel electrolyte containing a diacrylamide-based monomer, the gel electrolysis is infiltrated, high temperature safety is good, but the strength of the gel electrolyte is to be treated improve.
  • the strength of the gel electrolyte is low, which is not conducive to the mechanical processing of the battery, or to ensure the strength of the gel electrolyte after polymerization, a large amount of monomer is added, usually more than 5% of the total mass of the electrolyte, resulting in viscosity of the electrolyte. Significantly increased, the conductivity decreased, which in turn caused a drop in battery performance.
  • the technical problem to be solved by the present invention is to provide a composition for effectively infiltrating an electrode and a separator, and capable of forming a gel polymer electrolyte having good mechanical strength and good ion conductivity after polymerization, and further providing a higher A gel polymer electrolyte having properties and an electrochemical device containing the gel polymer electrolyte.
  • the present invention has found that the gel monomer mentioned in the present invention has a small molecular weight and a small surface tension between the electrode sheets, which is advantageous for rapid infiltration of the electrolyte, and can be formed by adding a small amount.
  • Composition for gel polymer electrolyte with good mechanical strength and ion conductivity is advantageous for rapid infiltration of the electrolyte, and can be formed by adding a small amount.
  • composition for a gel polymer electrolyte comprising:
  • n is an integer from 0 to 3;
  • m is an integer from 0 to 2;
  • R 2 and R 3 are each independently selected from a hydrogen group or a ⁇ C 3 alkyl group.
  • the properties of the gel polymer electrolyte are particularly advantageous for improving coagulation.
  • R 2 and R 3 are all hydrogen groups, such monomers having as small a molecular weight as possible and as large a double bond content as possible.
  • the monomer is contained in an amount of not more than 5% by weight based on the total weight of the composition. More preferably, the monomer is present in an amount of from 0.1 to 3% by weight based on the total weight of the composition.
  • the auxiliary monomer is further included, and the auxiliary is a compound represented by the following formula 2:
  • R 4 is H or CH 3 ; and R 5 is (: a wide alkyl group, a halogenated fluorenyl group, or an aryl group).
  • the auxiliary monomer is contained in an amount of not more than 5% by weight based on the total weight of the composition. More preferably, the auxiliary monomer is contained in an amount of 0.1 to 3 wt% based on the total weight of the composition.
  • the non-aqueous organic solvent is at least one selected from the group consisting of a cyclic carbonate, a chain carbonate, an aliphatic carboxylic acid ester, a ⁇ -lactone, and a fluorine derivative thereof.
  • the non-aqueous organic solvent is contained in an amount of 10 to 90% by weight based on the total weight of the composition.
  • the electrolyte salt is a lithium salt
  • the lithium salt is at least one selected from the group consisting of LiPF 6 and LiBF 4 .
  • the concentration of the lithium salt in the composition is 0.5 to 2 mol/L.
  • the polymerization initiator is further included, the polymerization initiator is at least one initiator selected from the group consisting of an azo initiator and a peroxide initiator, and the polymerization initiator is contained in an amount of the total weight of the composition. 0.001 ⁇ lwt%.
  • the present invention provides a gel polymer electrolyte which is a gel polymer electrolyte formed by polymerizing the composition described in the above aspect.
  • the present invention also provides an electrochemical device comprising a cathode, an anode and a gel polymer electrolyte according to the above technical solution.
  • the electrochemical device is a lithium ion battery.
  • the composition for the gel polymer electrolyte has a lower viscosity, is advantageous for infiltrating the electrode and the separator, and has a small monomer content, and the condensation obtained after polymerization.
  • the gel polymer electrolyte has a high electrical conductivity close to that of the liquid electrolyte, so that the lithium ion battery has better performance.
  • composition for a gel polymer electrolyte according to the present invention is a pre-solution of a gel polymer electrolyte which is used as an integral part of an electrochemical device such as lithium.
  • An ion battery the composition characterized by comprising:
  • n is an integer from 0 to 3;
  • m is an integer from 0 to 2;
  • R 2 and R 3 are each independently selected from a hydrogen group or an alkyl group of d to C 3 .
  • the content of the above monomer is not particularly limited, and is preferably not more than 5 ⁇ 1% based on the total weight of the composition.
  • the use of the specification more preferably, is 0.1 to 3% by weight based on the total weight of the composition.
  • the content is not more than 5% by weight, the internal resistance of the battery increases slowly, and when the content is not more than 3% by weight, the increase of the internal resistance of the battery can be significantly suppressed, thereby improving the quality of the battery.
  • the composition for a gel polymer electrolyte according to the present invention is dissolved using a non-aqueous organic solvent.
  • the nonaqueous organic solvent is not particularly limited as long as the solvent is used as an electrolyte solvent for the battery.
  • the non-aqueous organic solvent is selected from the group consisting of a cyclic carbonate, a chain carbonate, an aliphatic carboxylic acid ester, a ⁇ -lactone, and a fluorine derivative thereof, in combination of two or more kinds.
  • the total weight of the substance is preferably from 10 to 90% by weight.
  • the electrolyte salt of the present invention is not particularly limited as long as the electrolyte salt is a salt for a non-aqueous electrolyte.
  • the electrolyte salt is a lithium salt
  • the lithium salt is at least one selected from the group consisting of LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN(S0 2 CF 3 ) 2 , LiN (S0 2 C 2 F 5 2 ) LiC(S0 2 CF 3 ) 3 and a lithium salt of LiN(S0 2 F) 2 , wherein the concentration of the lithium salt in the composition is preferably 0.5 to 2 mol/L.
  • composition for a gel polymer electrolyte of the present invention may further comprise an auxiliary monomer which is at least one compound selected from the group consisting of the following formula 2:
  • R 4 is H or CH 3 ;
  • R 5 is a C 6 alkyl group, a haloalkyl group, an aryl group or an N (CH 3 ) part of an auxiliary monomer represented by Formula 2 is shown in Table 2 below. But not limited to this:
  • auxiliary monomer can improve the ionic conductivity of the gel polymer electrolyte, but it cannot be added too much to avoid lowering the mechanical strength of the gel polymer electrolyte.
  • the auxiliary monomer is contained in an amount of not more than 5% by weight based on the total weight of the composition; more preferably, the auxiliary monomer is contained in an amount of from 0.1 to 3% by weight based on the total weight of the composition.
  • the composition for a gel polymer electrolyte of the present invention may further include a polymerization initiator which thermally decomposes to form a radical and forms a gel polymer electrolyte with a monomer by radical polymerization.
  • a polymerization initiator which thermally decomposes to form a radical and forms a gel polymer electrolyte with a monomer by radical polymerization.
  • a non-limiting example of the polymerization initiator is at least one initiator selected from the group consisting of an azo initiator and a peroxide initiator, preferably in an amount of from 0.001 to 1% by weight based on the total weight of the composition.
  • composition for a gel polymer electrolyte of the present invention may further comprise other additives known to those skilled in the art.
  • the gel polymer electrolyte of the present invention can be obtained by polymerizing the above composition for a gel polymer electrolyte by a conventional method known to those skilled in the art.
  • the gel polymer electrolyte of the present invention can be formed by in-situ polymerization of a composition for electrolysis of a gel polymer in situ inside an electrochemical device.
  • the forming method comprises: a. winding a positive electrode, a negative electrode and a separator interposed between the positive electrode and the negative electrode to form an electrode assembly; b. injecting the composition for a gel polymer electrolyte of the present invention into a battery cell And polymerizing the polymer to form a gel polymer electrolyte.
  • the in-situ polymerization in the electrochemical device can be carried out by thermal polymerization, and the polymerization time is usually 4 to 8 hours, and the polymerization temperature is preferably controlled at about 70 °C.
  • the process of injecting the composition is preferably carried out in a glove box having a dew point control of -40 ° C or less.
  • the electrochemical device according to the present invention comprises a cathode, an anode and a gel polymer electrolyte which are formed by polymerizing a composition for a gel polymer electrolyte of the present invention.
  • the electrochemical device of the present invention includes all types of devices in which electrochemical reactions are performed.
  • Specific embodiments of the electrochemical device include all types of primary batteries, secondary batteries, fuel cells, solar cells, capacitors, and the like.
  • a lithium battery is preferable, and a non-limiting embodiment of the lithium battery includes a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium ion polymer secondary battery.
  • the electrochemical device of the specification can be obtained by using a conventional method known in the art. As described above, comprising: a. placing the electrode assembly in the outer casing of the electrochemical device; b, injecting the composition for the gel polymer electrolyte of the present invention into the cell, and polymerizing the polymer to form A gel polymer electrolyte.
  • Lithium hexafluorophosphate (LiPF 6 ) was added to a molar concentration of 1.1 mol/L, and then 2 wt% of 1,3,5-triacryloylhexahydro-1,3,5-triazine (based on the total mass of the composition) was added.
  • the compound 1) shown in Table 1 is 2% by weight of the ethoxyethoxyethyl acrylate (Compound 9 shown in Table 2) based on the total mass of the composition, and based on the total mass of the composition.
  • a composition of 0.01% by weight of AIBN was mixed to form a composition for a gel polymer electrolyte.
  • NMP N-mercapto-2-pyrrolidone
  • the positive electrode slurry was uniformly coated on both sides of the aluminum foil, dried, calendered and vacuum dried, and the aluminum lead wire was welded by an ultrasonic welding machine to obtain a positive electrode plate having a thickness of 120 to 150 ⁇ m.
  • modified natural graphite as a negative electrode active material carbon black Super-P as a conductive agent, and styrene-butadiene rubber (SBR) and carboxymethyl cellulose (CMC) as a binder are changed by mass ratio.
  • Natural graphite: carbon black Super-P: SBR: CMC 94: 1: 2.5: 2.5 waste ratio is mixed, and then they are dispersed in deionized water to obtain a negative electrode slurry.
  • the negative electrode slurry was uniformly coated on both sides of the copper foil, dried, calendered, and vacuum dried, and the nickel lead wire was welded by an ultrasonic welder to obtain a negative electrode plate having a thickness of 120 to 150 ⁇ m.
  • the film was supplied with a battery, and the composition for gel polymer electrolyte prepared above was injected into a cell in a glove box having a dew point controlled to be -40 ° C or less, sufficiently wetted, and then sealed. Then gel at 70 ° C for 4 to 8 hours to obtain a finished battery.
  • Example 2
  • Example 5 The same procedure as in Example 2 was carried out except that the amount of the ethoxyethoxyethyl acrylate (compound 9 shown in Table 2) was changed to 3 wt% in the preparation of the composition for the gel polymer electrolyte.
  • the amount of the ethoxyethoxyethyl acrylate compound 9 shown in Table 2 was changed to 3 wt% in the preparation of the composition for the gel polymer electrolyte.
  • Example 6 The same as in Example 2 except that the amount of ethoxyethoxyethyl acrylate (compound 9 shown in Table 2) was changed to 5 wt% in the preparation of the composition for the gel polymer electrolyte.
  • Example 6 The same as in Example 2 except that the amount of ethoxyethoxyethyl acrylate (compound 9 shown in Table 2) was changed to 5 wt% in the preparation of the composition for the gel polymer electrolyte.
  • Example 7 The same as in Example 2 except that the amount of azobisisobutyronitrile (AIBN) was changed to 0.1 wt% in the preparation of the composition for the gel polymer electrolyte.
  • AIBN azobisisobutyronitrile
  • Example 2 The same as Example 2 except that the amount of azobisisobutyronitrile (AIBN) was changed to 1% by weight in the preparation of the composition for the gel polymer electrolyte.
  • AIBN azobisisobutyronitrile
  • Example 9 The same as in Example 2 except that azobisisobutyronitrile (AIBN) was replaced with azobisisoheptanenitrile (ABVN) in the preparation of the composition for the gel polymer electrolyte.
  • AIBN azobisisobutyronitrile
  • ABSVN azobisisoheptanenitrile
  • Example 10 The same as in Example 2 except that azobisisobutyronitrile (AIBN) was replaced with dibenzoyl peroxide (BPO) in the preparation of the composition for the gel polymer electrolyte.
  • AIBN azobisisobutyronitrile
  • BPO dibenzoyl peroxide
  • Example 15 The ethoxyethoxyethyl acrylate (compound 9 shown in Table 2) was replaced with the compound 11 shown in Table 2 except for the preparation of the composition for the gel polymer electrolyte, and the same as in Example 2 the same.
  • Example 15 The ethoxyethoxyethyl acrylate (compound 9 shown in Table 2) was replaced with the compound 11 shown in Table 2 except for the preparation of the composition for the gel polymer electrolyte, and the same as in Example 2 the same.
  • Example 15 The ethoxyethoxyethyl acrylate (compound 9 shown in Table 2) was replaced with the compound 11 shown in Table 2 except for the preparation of the composition for the gel polymer electrolyte, and the same as in Example 2 the same.
  • Example 15 The ethoxyethoxyethyl acrylate (compound 9 shown in Table 2) was replaced with the compound 11 shown in Table 2 except for the preparation of the composition for the gel polymer electrolyte, and the same as in Example 2 the same.
  • Example 16 The ethoxyethoxyethyl acrylate (compound 9 shown in Table 2) was replaced with the compound 12 shown in Table 2 except for the preparation of the composition for the gel polymer electrolyte, and the same as in Example 2 the same.
  • Example 16 The ethoxyethoxyethyl acrylate (compound 9 shown in Table 2) was replaced with the compound 12 shown in Table 2 except for the preparation of the composition for the gel polymer electrolyte, and the same as in Example 2 the same.
  • Example 16 The ethoxyethoxyethyl acrylate (compound 9 shown in Table 2) was replaced with the compound 12 shown in Table 2 except for the preparation of the composition for the gel polymer electrolyte, and the same as in Example 2 the same.
  • Example 16 The ethoxyethoxyethyl acrylate (compound 9 shown in Table 2) was replaced with the compound 12 shown in Table 2 except for the preparation of the composition for the gel polymer electrolyte, and the same as in Example 2 the same.
  • the ethoxyethoxyethyl acrylate (compound 9 shown in Table 2) was replaced with the compound 13 shown in Table 2 except for the preparation of the composition for the gel polymer electrolyte, and the other Example 2 the same.
  • Example 2 The same procedure as in Example 2 was carried out except that the monomer and the polymerization initiator were not added in the preparation of the composition for the gel polymer electrolyte, and the gel in the step 4) was not required. Comparative example 2
  • compositions for gel polymer electrolytes of Examples 1 to 17 and Comparative Example 2 were respectively subjected to thermal curing to obtain a gel polymer electrolyte, and then each gel polymer electrolyte was subjected to strength test using a cylinder having a diameter of 1 cm. The surface of the gel was pierced vertically, the required maximum pressure F was recorded, and then the pressure P was calculated. The results are shown in Table 3 below.
  • compositions for gel polymer electrolytes of Examples 1 to 17 and Comparative Examples 1 and 2 were each thermally cured to obtain a gel polymer electrolyte, and then each gel polymer electrolyte was polymerized according to a stainless steel sheet/gel.
  • Test Example 3 Viscosity test before gel polymer electrolyte gel
  • Test Example 4 Infiltration test of gel polymer electrolyte
  • the lithium cobaltate/graphite (1.5) battery in a soft-packed, unfilled liquid was disassembled to separate the positive and negative electrode sheets. Cut the positive and negative plates into the appropriate size with scissors. Use a micro-injection injector to accurately measure 2 ⁇ l of the electrolyte, and quickly drop it on the positive or negative electrode, and record the required electrolyte to dry on the pole piece. Time, the results are shown in Table 3 below. Inspection Example 5: Normal temperature cycle performance test of the battery
  • the finished batteries obtained in Examples 1 to 17 and Comparative Examples 1 and 2 were tested in the following manners: firstly, they were charged at a constant current of 1 C at room temperature to 4.2 V, and then charged at a constant voltage until the current dropped to 20 mA. The thickness of the battery was measured at this time, and then the battery was stored in an oven at a constant temperature of 85 ° C for 4 hours. After the battery was taken out, the battery was cooled to room temperature. The thickness of the battery was measured and discharged at a constant current of 1 C to 3.0 V.
  • Thickness expansion ratio (battery thickness after storage - battery thickness before storage) / battery thickness before storage X 100%
  • Capacity retention rate discharge retention capacity after storage / discharge capacity before storage X 100%
  • Capacity recovery rate recovery capacity after storage / discharge capacity before storage X 100%
  • Example 3 has the same amount of monomer as Comparative Example 1, but the examples The electrolyte of 3 has greater gel strength and higher conductivity. As the amount of compound 1 decreases, the conductivity of the gel electrolyte gradually increases, and although the gel strength decreases to some extent, it is still larger than that of Comparative Example 1. Therefore, by adding a small amount of the gel monomer of the present invention to the electrolytic solution, a gel electrolyte having a large gel strength, a high electrical conductivity, and a relatively easy to infiltrate can be obtained.
  • Table 4 Normal temperature cycle
  • Example 1 94. 2% 90. 8% 95. 4% 4. 3%
  • Example 3 93. 3% 90. 5% 95. 4% 1. 5%
  • Example 8 94. 7% 90. 9% 95. 8% 1. 9%
  • Example 10 94. 2% 90. 1% 95. 8% 2. 4%
  • Example 11 94. 3% 90. 6% 95. 9% 2. 6%
  • the performance of the gel polymer electrolyte using Compound 1 as a monomer is superior to that of a liquid electrolyte, especially in ? Wenshan's high temperature expansion has a significant effect.
  • the gel polymer electrolyte using Compound 1 as a monomer has a greater improvement in the normal temperature cycle performance and high temperature storage performance of the battery. It can be seen from Examples 1 to 3 that when the amount of the compound 1 is not more than 5%, the battery performance is improved as compared with the liquid battery, but the optimum ratio is not more than 3% because the electrolyte solution increases as the amount of the compound 1 increases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

一种用于凝胶聚合物电解质的组合物,将该组合物聚合而获得的凝胶聚合物电解质,以及一种含有该凝胶聚合物电解质的电化学装置。所述用于凝胶聚合物电解质的组合物包括非水有机溶剂、电解质盐以及一种单体,由该凝胶聚合物电解质聚合得到的凝胶聚合物电解质在常温下具有较高的电导率,可以改善电池的循环性能;凝胶后有较大的凝胶强度,便于推广和应用,且有较好的耐高温性能,可以有效抑制电池的膨胀。

Description

说 明 书
一种用于凝胶聚合物电解质的组合物、 凝胶聚合物电解质及电化学装置 技术领域
本发明涉及电化学领域, 具体说是一种用于凝胶聚合物电解质的组合物、 一种将该组合物聚合而获得的凝胶聚合物电解质, 以及一种含有该凝胶聚合物 电解质的电化学装置。 背景技术
自 20世纪 90年代以来, 液体电解质锂离子电池因其能量密度高、 温度范 围广、 工作电压高、 无重金属污染等优势, 广泛应用于各类电子电器中。 凝胶 聚合物电解质锂离子电池是在此基础上发展起来的一种新型电池, 其除了具有 液体电解质锂离子电池的优点外, 由于凝胶态阻止了液体的流动, 有效的防止 了电池漏液, 大大提高了锂离子电池的安全性, 另外凝胶聚合物电解质的电导 率与液体电解质相近, 能够满足实用的要求。 凝胶聚合物电解质有一定的机械 强度, 有利于制作任意形状和任意尺寸的超薄电池, 应用前景广泛。
凝胶聚合物电解质由极性较强的聚合物、 电解质盐、 有机溶剂和添加剂组 成, 由于聚合物和有机溶剂之间有一定的締合作用, 可以有效地防止电解液的 流动, 有助于解决锂离子电池存在的漏液等安全性问题。 用于锂离子电池的凝 胶聚合物电解质分为两类: 物理交联型和化学交联型。 物理交联型凝胶聚合物 电解质采用的聚合物包括聚曱基丙烯酸曱酯 (PMMA ) 及其共聚物、 聚丙烯腈 ( PAN )及其共聚物、 聚偏氟乙烯(PVDF )及其共聚物等。 化学交联型凝胶聚 合物电解质一般采用丙烯酸酯类聚合物, 且通常采用原位聚合的方式形成凝胶, 具体过程如下: 将聚合物单体加入到液体电解质中, 并加入引发剂, 混合均匀 后注入电池, 然后用加热等方式引发单体聚合物使电解液凝胶化。 原位聚合型 凝胶电解质的应用可以筒化凝胶电解质锂离子电池的生产工艺, 使其与液体电 解质锂离子电池基本相同。公开的那些聚合物电解质实例如下: CN1302069C公 开了一种以重均分子量 5000-100000的聚乙(丙 )二醇二(甲基)丙烯酸酯为单 体的聚合物电解质, 尽管该聚合物电解质有较强的凝胶强度, 但是单体分子量 说 明 书
较大, 粘度较大, 电解液难以渗透; CN101195670B公开了一种含二丙烯酰胺基 单体的凝胶电解质, 该凝胶电解^浸润均勾, 高温安全性好, 但是凝胶电解质 的强度有待提高。
原位聚合型凝胶电解质存在一些问题, 具体如下:
1、 目前多采用大分子型单体, 单体分子量较大, 加入到液体电解质中会导 致电解液的粘度显著增大, 导致注液后电解液在极片和隔膜中的渗透较为困难, 容易出现浸润不完全的现象, 从而导致电池不良。
2、 凝胶电解质的强度较低, 不利于电池机械加工性, 或者为了保证聚合后 凝胶电解质的强度, 加入大量的单体量, 通常大于电解液总体质量的 5%, 导致 电解液的粘度显著增加, 电导率下降, 进而引起电池性能的下降。 发明内容
本发明所要解决的技术问题是提供一种能够有效浸润电极和隔膜, 并且聚 合后能够形成机械强度好、 离子导电性好的用于凝胶聚合物电解质的组合物, 并进而提供一种更高性能的凝胶聚合物电解质以及含有该凝胶聚合物电解质的 电化学装置。
通过大量的广泛的深入的研究, 本发明发现本发明中提到的凝胶单体, 分 子量小, 与极片间的表面张力小, 有利于电解液的快速浸润, 且加入少量就可 以形成较强机械强度、 离子导电性好的用于凝胶聚合物电解质的组合物
本发明采用的技术方案为:
一种用于凝胶聚合物电解质的组合物, 该组合物包括:
( i ) 非水有机溶剂;
( ii ) 电解质盐; 以及
( iii ) 下式 1表示的单体: 说 明 书
Figure imgf000004_0001
(式 1 )
其中, X、 Υ、 Ζ分别独立的代表下式中的任一个取代基团:
-i CH2-CH— 0 ^ -fCH2- CH2- CH2-〇 其中, n为一个 0~3的整数; m为一个 0~2的整数;
其中, R2、 R3分别独立的选自氢基或 ~C3的烷基。
优选的, n=0且 m=0, 这样的单体分子量小, 可以降低组合物的粘度, 且双 键的含量高, 可以降低单体的含量来获得同样的凝胶效果, 有利于提高凝胶聚 合物电解质的性能。
优选的, R2、 R3均为氢基, 这样的单体具有尽可能小的分子量和尽可 能大的双键含量。
优选的, 所述单体的含量按组合物的总重量计不大于 5wt%。 更优选的, 所 述单体的含量按组合物的总重量计为 0.1-3 wt%。
优选的, 还包括辅助单体, 所述辅助 体为下式 2表示的化合物:
Figure imgf000004_0002
(式 2 )
其中, R4为 H或 CH3; R5为(:广^的烷基、 卤代炕基、 芳基。
优选的,所述辅助单体的含量按组合物的总重量计不大于 5wt%。更优选的, 所述辅助单体的含量按组合物的总重量计为 0.1 ~3wt 。 说 明 书 优选的, 所述非水有机溶剂为至少一种选自环状碳酸酯、 链状碳酸酯、 脂 肪族羧酸酯、 γ -内酯和它们的氟衍生物的溶剂。
优选的, 所述非水有机溶剂的含量按组合物的总重量计为 10~90wt%。
优选的, 所述电解质盐为锂盐, 所述锂盐为至少一种选自 LiPF6、 LiBF4
LiSbF6、 LiAsF6、 LiN(S02CF3)2、 LiN(S02C2F5)2、 LiC(S02CF3)3和 LiN(S02F)2的 锂盐。
优选的, 所述锂盐在组合物中的浓度为 0.5~2mol/L。
优选的, 还包括聚合引发剂, 所述聚合引发剂为至少一种选自偶氮类引发 剂和过氧化物引发剂的引发剂, 所述聚合引发剂的含量按组合物的总重量计为 0.001~lwt%。
进一步的, 本发明还提供了一种凝胶聚合物电解质, 所述凝胶聚合物电解 质为将上述技术方案所述的组合物聚合而形成的凝胶聚合物电解质。
更进一步的, 本发明还提供了一种电化学装置, 所述电化学装置包括阴极、 阳极和上述技术方案所述的凝胶聚合物电解质。
其中, 所述电化学装置为锂离子电池。
本发明与现有技术相比, 具有以下有益效果: 用于凝胶聚合物电解质的组 合物具有较低的粘度, 有利于浸润电极和隔膜, 且单体的含量少, 聚合后所得 到的凝胶聚合物电解质具有与液体电解质相近的高电导率, 从而使得锂离子电 池具有更好的性能。 具体实施方式
为详细说明本发明的技术内容、 构造特征、 所实现目的及效果, 以下结合 实施方式详予说明。
本发明所述的用于凝胶聚合物电解质的组合物是一种凝胶聚合物电解质的 前溶液, 该凝胶聚合物电解质用作构成电化学装置的组成部分, 所述电化学装 置如锂离子电池, 该组合物的特征为包括:
( i ) 非水有机溶剂;
( ii ) 电解质盐; 以及 说 明 书
( iii ) 下式 1表示的单体:
Figure imgf000006_0001
(式 1 )
其中, X、 Υ、 Ζ分别独立的代表下式中的任一个取代基团:
- CH2-CH— 0 ^ - CH2- CH2- CH2- 0 其中, n为一个 0~3的整数; m为一个 0~2的整数;
其中, R2、 R3分别独立的选自氢基或 d~C3的烷基。
式 1所表示的单体的部分实施例在下表 1中示出, 但不限于此:
表 1
Figure imgf000006_0002
上述单体的含量没有特殊限制, 优选的按组合物的总重量计不大于 5\¥1%来 说 明 书 使用, 更优选的, 按组合物的总重量计为 0.1~3\^%来使用。 含量不高于 5wt% 时, 电池内阻增加较緩慢, 而含量不高于 3wt%时, 则可以明显抑制电池内阻的 增加, 从而提高电池的质量。
本发明所述的用于凝胶聚合物电解质的组合物, 使用非水有机溶剂来溶解。 对于非水有机溶剂, 没有特别的限制, 只要该溶剂被用作电池的电解质溶剂即 可。 优选的, 所述非水有机溶剂为选自环状碳酸酯、 链状碳酸酯、 脂肪族羧酸 酯、 γ -内酯和它们的氟衍生物中的两种或两种以上, 含量按组合物的总重量计 优选为 10~90wt%。
本发明所述的电解质盐, 没有特别的限制, 只要该电解质盐是用于非水性 电解质的盐即可。 优选的, 所述电解质盐为锂盐, 所述锂盐为至少一种选自 LiPF6、 LiBF4、 LiSbF6、 LiAsF6、 LiN(S02CF3)2、 LiN(S02C2F5)2、 LiC(S02CF3)3 和 LiN(S02F)2的锂盐, 所述锂盐在组合物中的浓度优选为 0.5~2mol/L。
本发明的用于凝胶聚合物电解质的组合物, 还可以包括辅助单体, 所述辅 助单体为至少一种选自下式 2表示的化合物:
Figure imgf000007_0001
其中, R4为 H或 CH3; R5为 ~C6的烷基、 卤代烷基、 芳基或 N ( CH3 ) 式 2所表示的辅助单体的部分实施例在下表 2中示出, 但不限于此:
表 2
化 化 化
合 化学结构式 合 化学结构式 合 化学结构式 物 物 物 X 一、
7 — 8 γ 、 ' \、ζ、-、 ,ζ 9
。 0
Figure imgf000007_0002
Figure imgf000008_0001
加入一定量的辅助单体, 可以改善凝胶聚合物电解质的离子导电性, 但不 能加入过多, 以免降低凝胶聚合物电解质的机械强度。 优选的, 辅助单体的含 量按组合物的总重量计不大于 5 wt%; 更优选的, 辅助单体的含量按组合物的总 重量计为 0.1~3wt%。
本发明的用于凝胶聚合物电解质的組合物, 还可以包括聚合引发剂, 所述 聚合引发剂发生热分解形成自由基并通过自由基聚合与单体形成凝胶聚合物电 解质。 所述聚合引发剂的非限制性实施例为至少一种选自偶氮类引发剂和过氧 化物引发剂的引发剂, 含量按组合物的总重量计优选为 0.001~lwt%。
除了上文所述的组分以外, 本发明的用于凝胶聚合物电解质的组合物还可 以包括本领域技术人员已知的其他添加剂。
本发明所述的凝胶聚合物电解质, 可通过本领域技术人员已知的常规方法 将上述的用于凝胶聚合物电解质的组合物聚合而获得。 例如, 本发明的凝胶聚 合物电解质可通过将用于凝胶聚合物电解廣的组合物在电化学装置内部原位聚 合形成。 形成方法包括: a、 将一个正极、 负极和一个插入正极和负极之间的隔 膜缠绕在一起形成一个电极组装体; b、 将本发明的用于凝胶聚合物电解质的组 合物注入电芯中, 并将聚合物聚合以形成一种凝胶聚合物电解质。
电化学装置内的原位聚合可通过热聚合进行, 聚合时间通常为 4~8 小时, 聚合温度控制在 70 °C左右为宜。
注入组合物的过程优选在露点控制在 -40°C以下的手套箱中进行。
本发明所述的电化学装置, 包括阴极、 阳极和凝胶聚合物电解质, 该凝胶 聚合物电解质通过将本发明的用于凝胶聚合物电解质的组合物聚合而形成。
本发明的电化学装置包括其中进行电化学反应的所有类型的装置。 电化学 装置的具体实施例包括所有类型的一次电池、 二次电池、 燃料电池、 太阳能电 池、 电容器等。 具体而言, 优选锂电池, 并且锂电池的非限制性实施例包括锂 金属二次电池、 锂离子二次电池、 锂聚合物二次电池或锂离子聚合物二次电池。 说 明 书 电化学装置可通过使用一种本领域已知的常规方法获得。 如上所述, 包括: a、 将电极組装体放入电化学装置的外壳中; b、 将本发明的用于凝胶聚合物电 解质的组合物注入电芯中, 并将聚合物聚合以形成一种凝胶聚合物电解质。 实施例 1
1) 用于凝胶聚合物电解质的组合物的制备
首先, 将碳酸乙烯酯 (EC )、 碳酸二乙酯 (DEC ) 和碳酸曱乙酯 (EMC ) 按质量比为 EC: DEC: EMC=1 : 1 : 1 进行混合制成非水有机溶剂, 再加入六 氟磷酸锂(LiPF6 )至摩尔浓度为 l.lmol/L,然后加入按组合物的总质量计为 2wt% 的 1 , 3, 5-三丙烯酰基六氢 -1 , 3, 5-三嗪(表 1所示的化合物 1 ), 按组合物的 总质量计为 2\^%的乙氧基乙氧基乙基丙烯酸酯(表 2所示的化合物 9 ) , 以及按 组合物的总质量计为 0.01\^%的 AIBN, 混合制成用于凝胶聚合物电解质的组合 物。
2) 正极板的制备
首先, 将作为正极活性材料的钴酸锂、 作为导电剂的炭黑 Super-P和作为粘 结剂的聚偏二氟乙烯(PVDF ), 按质量比为钴酸锂:炭黑 Super-P: PVDF=93: 4: 3进行混合, 然后将它们分散在 N-曱基 -2-吡咯烷酮(NMP ) 中, 得到正极浆 料。 将正极浆料均句涂布在铝箔的两面上, 经过烘干、 压延和真空千燥, 并用 超声波焊机焊上铝制引出线后得到正极板, 正极板的厚度在 120~150 μ m。
3) 负极板的制备
首先, 将作为负极活性材料的改性天然石墨、 作为导电剂的炭黑 Super-P、 以及作为粘结剂的丁苯橡胶(SBR )和羧曱基纤维素 (CMC ), 按质量比为改性 天然石墨:炭黑 Super-P: SBR: CMC=94: 1: 2.5: 2.5的廢量比进行混合, 然 后将它们分散在去离子水中, 得到负极浆料。 将负极浆料均匀涂布在铜箔的两 面上, 经过烘千、 压延和真空干燥, 并用超声波焊机焊上镍制引出线后得到负 极板, 负极板的厚度在 120-150 μ m。
4) 电池的制备
使用上述阴极板、 阳极板和一种聚丙烯 /聚乙烯 /聚丙烯(PP/PE/PP )三层隔 说 明 书
膜提供一个电池, 在露点控制在 -40°C以下的手套箱中, 将上述制备的用于凝胶 聚合物电解质的組合物注入电芯中, 充分浸润后,封口。 然后在 70°C下凝胶 4~8 小时, 得到一个成品电池。 实施例 2
除了用于凝胶聚合物电解质的组合物的制备中将 1 , 3 , 5-三丙烯酰基六氢- 1 , 3 , 5-三嗪(表 1所示的化合物 1 ) 的量(按组合物的总质量计, 以下实施例均 同此意)换成 3wt%^、外, 其它与实施例 1相同。 实施例 3
除了用于凝胶聚合物电解质的组合物的制备中将 1 , 3 , 5-三丙烯酰基六氢 - 1 , 3 , 5-三嗪(表 1所示的化合物 1 ) 的量换成 5wt%以外, 其它与实施例 1相同。 实施例 4
除了用于凝胶聚合物电解质的組合物的制备中将乙氧基乙氧基乙基丙烯酸 酯 (表 2所示的化合物 9 ) 的量换成 3wt%以外, 其它与实施例 2相同。 实施例 5
除了用于凝胶聚合物电解质的组合物的制备中将乙氧基乙氧基乙基丙烯酸 酯 (表 2所示的化合物 9 ) 的量换成 5wt%以外, 其它与实施例 2相同。 实施例 6
除了用于凝胶聚合物电解质的组合物的制备中将偶氮二异丁氰(AIBN ) 的 量换成 0.1 wt%以外, 其它与实施例 2相同。 实施例 7
除了用于凝胶聚合物电解质的组合物的制备中将偶氮二异丁氰(AIBN ) 的 量换成 1\^%以外, 其它与实施例 2相同。 说 明 书
实施例 8
除了用于凝胶聚合物电解质的组合物的制备中将偶氮二异丁氰(AIBN )换 成偶氮二异庚腈 ( ABVN ) 以外, 其它与实施例 2相同。 实施例 9
除了用于凝胶聚合物电解质的组合物的制备中将偶氮二异丁氰(AIBN )换 成过氧化二苯曱酰(BPO ) 以外, 其它与实施例 2相同。 实施例 10
除了用于凝胶聚合物电解质的组合物的制备中将 1 , 3 , 5-三丙烯酰基六氢 - 1 , 3 , 5-三嗪(表 1所示的化合物 1 )换成表 1所示的化合物 2以外, 其它与实施 例 2相同。 实施例 11
除了用于凝胶聚合物电解质的组合物的制备中将 1, 3, 5-三丙烯酰基六氢 - 1, 3, 5-三嗪(表 1所示的化合物 1 )换成表 1所示的化合物 3以外, 其它与实施 例 2相同。 实施例 12
除了用于凝胶聚合物电解质的组合物的制备中将 1, 3, 5-三丙烯酰基六氢 - 1, 3 , 5-三嗪(表 1所示的化合物 1 )换成表 1所示的化合物 6以外, 其它与实施 例 2相同。 实施例 13
除了用于凝胶聚合物电解质的组合物的制备中将乙氧基乙氧基乙基丙烯酸 酯(表 2所示的化合物 9 )换成表 2所示的化合物 Ί以夕卜,其它与实施例 2相同。 说 明 书 实施例 14
除了用于凝胶聚合物电解质的組合物的制备中将乙氧基乙氧基乙基丙烯酸 酯 (表 2所示的化合物 9 )换成表 2所示的化合物 11以外, 其它与实施例 2相 同。 实施例 15
除了用于凝胶聚合物电解质的组合物的制备中将乙氧基乙氧基乙基丙烯酸 酯 (表 2所示的化合物 9 )换成表 2所示的化合物 12以外, 其它与实施例 2相 同。 实施例 16
除了用于凝胶聚合物电解质的组合物的制备中将乙氧基乙氧基乙基丙烯酸 酯 (表 2所示的化合物 9 )换成表 2所示的化合物 13以外, 其它与实施例 2相 同。
比较例 1
除了用于凝胶聚合物电解质的组合物的制备中不加入单体和聚合引发剂, 且不需要步骤 4 ) 中的凝胶以外, 其它与实施例 2相同。 比较例 2
除了用于凝胶聚合物电解质的组合物的制备中将 1 , 3 , 5-三丙烯酰基六氢 - 1 , 3 , 5-三嗪(表 1所示的化合物 1 )换成三乙二醇二丙烯酸酯 (PEGDA ) 以外, 其它与实施例 3相同。 检验实施例 1 : 凝胶聚合物电解质的凝胶强度的测试
将实施例 1~17和比较例 2中的用于凝胶聚合物电解质的组合物分别通过热 固化得到凝胶聚合物电解质, 然后对各个凝胶聚合物电解质进行强度测试, 用 直径 lcm的圓柱, 垂直刺破凝胶表面, 记录所需的最大压力 F, 然后计算出压 强 P,结果示于下表 3。 说 明 书
检验实施例 2: 凝胶聚合物电解质的电导率的测试
将实施例 1~17和比较例 1~2中的用于凝胶聚合物电解质的组合物分别通过 热固化得到凝胶聚合物电解质, 然后将各个凝胶聚合物电解质按照不锈钢片 /凝 胶聚合物电解质 /不锈钢片的安装方式制成测试体系, 进行交流阻抗测试, 频率 范围为 0.01~100kHz, 然后根据公式: a =D/(SR), 其中, D为凝胶聚合物电解 质的厚度, S为凝胶聚合物电解质的面积, R为交流阻抗法测得的阻抗, 计算出 凝胶聚合物电解质的电导率, 计算结果示于下表 3。 检验实施例 3: 凝胶聚合物电解液凝胶前的粘度测试
将实施例 1~17和比较例 1~2中的用于凝胶聚合物电解质的组合物通过粘度 计测试粘度, 结果示于下表 3。 检验实施例 4: 凝胶聚合物电解液的浸润性测试
采用未注液的软包装的钴酸锂 /石墨( 1.5 ) 电池, 将其拆解, 将正、 负极片 分离。 用剪刀将正, 负极片裁剪成合适的大小, 用微量注射进样器, 准确量取 2 微升的电解液, 分别快速滴在正极或负极片上 , 记录电解液在极片上变干所 需要的时间, 结果示于下表 3。 检验实施例 5: 电池的常温循环性能测试
将实施例 1~17和比较例 1~2中得到的成品电池, 分别按照以下方式进行测 试:先在室温下以 1C的电流恒流充电至 4.2V,再恒压充电至电流下降至 20mA, 最后以 1C的电流恒流放电至 3.0V。如此循环 100周,记录第 1周的放电容量和 第 100周的放电容量, 然后根据公式: 容量保持率 = 第 100周的放电容量 /第 1 周的放电容量 X 100%, 计算出电池的常温循环的容量保持率, 计算结果示于下 表 4。 检验实施例 6: 电池的高温保存性能测试 说 明 书
将实施例 1~17和比较例 1~2中得到的成品电池, 分别按照以下方式进行测 试:先在室温下以 1C的电流恒流充电至 4.2V,再恒压充电至电流下降至 20mA, 测量此时电池的厚度, 然后将电池置于恒温 85°C的烘箱中储存 4h, 取出后让电 池冷却到室温, 测量此时电池的厚度, 并以 1C的电流恒流放电至 3.0V, 得到放 电保持容量,再在室温下以 1C的电流恒流充电至 4.2V, 然后恒压充电至电流下 降至 20mA,最后以 1C的电流恒流放电至 3.0V,得到放电恢复容量。根据公式: 厚度膨胀率 = (储存后的电池厚度-储存前的电池厚度) /储存前的电池厚度 X 100%
容量保持率 =储存后放电保持容量 /储存前放电容量 X 100%
容量恢复率 =储存后的恢复容量 /储存前的放电容量 X 100%
计算出电池的厚度膨胀率、容量保持率和容量恢复率,计算结果示于下表 4。 表 3
Figure imgf000014_0001
从表 3的数据可以看出以化合物 1为单体的电解液, 与比较例 2相比, 粘 度虽然相差不大, 但是对电池正负极的浸润显著加快, 且化合物 1 的量越少, 说 明 书
浸润的最快, 这是因为化合物 1 中的酰胺极性基团减小了极片和电解液间的表 面张力; 另外实施例 3与比较例 1相比, 单体的量相同, 但是实施例 3的电解 质有更大的凝胶强度和较高的电导率, 随着化合物 1 量的降低, 凝胶电解质的 电导率逐渐增加, 凝胶强度虽有一定程度的下降, 但是仍旧大于比较例 1 , 因此 在电解液中加入少量本发明中的凝胶单体, 就可以得到较大凝胶强度、 较高电 导率和较易浸润的凝胶电解液。 表 4 常温循环
单体及 辅助单体 高温保存 (85°C4hr ) 引发剂及
编号 100周容
比例 及比例 比例 容量保 容量恢复 厚度膨 量保持率
持率 率 胀率 比较例 1 91. 5% 75. 1% 80. 0% 20. 7¾
PEGDA: 化合物 9: AIBN:
比较例 1 85% 85. 6% 90. 1% 4. 3%
5% 2¾ 0. 01%
化合物 化合物 9: AIBN:
实施例 1 94. 2% 90. 8% 95. 4% 4. 3%
1: 2% 2% 0. 01%
化合物 化合物 9: AIBN:
实施例 2 95. 1% 91. 8% 96. 8% 2. 1%
1: 3% 2% 0. 01%
化合物 化合物 9: AIBN:
实施例 3 93. 3% 90. 5% 95. 4% 1. 5%
1: 5% 2% 0. 01%
化合物 化合物 9: AIBN:
实施例 4 94. 1% 90% 94. 9% 1. 9%
1: 3% 3% 0. 01%
化合物 化合物 9: AIBN:
实施例 5 91. 9% 88. 9% 93. 2% 1. 8%
1: 3% 5% 0. 01%
化合物 化合物 9: AIBN:
实施例 6 94. 4% 89. 5% 94. 3% 3. 2%
1: 3% 2% 0. 1%
化合物 化合物 9:
实施例 7 AIBN: 1% 94% 88. 4% 93. 8% 4. 8%
1 : 3% 2%
化合物 化合物 9: ABVN:
实施例 8 94. 7% 90. 9% 95. 8% 1. 9%
1: 3% 2¾ 0. 01%
化合物 化合物 9: BPO:
实施例 9 94. 9% 90. 4% 95. 6% 3. 6%
1: 3% 2% 0. 01%
化合物 化合物 9: AIBN:
实施例 10 94. 2% 90. 1% 95. 8% 2. 4%
2: 3% 2% 0. 01% 化合物 化合物 9: AIBN:
实施例 11 94. 3% 90. 6% 95. 9% 2. 6%
3: 3% 2% 0. 01% 说 明 书
Figure imgf000016_0001
从表 4中可以看出, 以化合物 1作为单体的凝胶聚合物电解质性能明显优 于液体电解质, 特别是在?文善高温膨胀有显著效果, 另外与比较例 2的 PEGDA 相比, 以化合物 1 为单体的凝胶聚合物电解质对电池的常温循环性能和高温保 存性能有更大的提高。 从实施例 1~3可以看到, 化合物 1的量在不大于 5%时, 电池性能都比液体电池有改善, 但是最佳比例不大于 3%, 因为随着化合物 1量 的增多, 电解液粘度增加, 电导率下降, 电池比较难以浸润, 且容易析锂, 所 以化合物 1的量不是越多越好。 从实施例 4~5可以看到, 辅助单体化合物 9的 量在不大于 5%时, 电池性能都比液体电池有改善, 但是最佳比例不大于 3% , 因为随着化合物 9量的增多, 凝胶过程中会有更多的辅助单体剩余, 剩余的辅 助单体分解形成比较厚的 SEI,导致电池比较容易析锂。从实施例 6~9可以看到, 引发剂量太多, 剩余引发剂分解会形成大量的气体, 不利于电池性能的发挥。 从实施例 10~16可以看到, 专利中覆盖的其他单体和辅助单体对电池性能有同 样的作用。
以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利 用本发明说明书内容所作的等效结构或等效流程变换, 或直接或间接运用在其 他相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权 利 要 求 书
1、 一种用于凝胶聚合物电解质的组合物, 该组合物包括:
(i) 非水有机溶剂;
(ii) 电解质盐; 以及
(iii) 下式 1表示的单体:
Figure imgf000017_0001
(式 1)
其中, X、 Υ、 Ζ分别独立的代表下式中的任一个取代基团:
~t CH -CH— 0 ^ - CH2- CH2- CH2- Oj^ 其中, n为一个 0~3的整数; m为一个 0~2的整数;
其中, R2、 R3分别独立的选自氢基或 C^Cs的烷基。
2、 根据权利要求 1所述的用于凝胶聚合物电解质的组合物, 其特征在于: 所述单体的含量按组合物的总重量计不大于 5wt%。
3、 根据权利要求 1所述的用于凝胶聚合物电解质的组合物, 其特征在于: 还包括辅助单体 , 所述辅助单体为下式 2 示的化合物:
Figure imgf000017_0002
其中, R4为 H或 CH3; R5为(:广( 6的烷基、 卤代烷基、 芳基或 N (CH3) :
4、 根据权利要求 3所述的用于凝胶聚合物电解质的组合物, 其特征在于: 所述辅助单体的含量按组合物的总重量计不大于 5wt%。 权 利 要 求 书
5、 根据权利要求 1所述的用于凝胶聚合物电解质的组合物, 其特征在于: 所述非水有机溶剂选自环状碳酸酯、 链状碳酸酯、 脂肪族羧酸酯、 γ -内酯和它 们的氟衍生物中的两种或两种以上。
6、 根据权利要求 1所述的用于凝胶聚合物电解质的组合物, 其特征在于: 所述电解质盐为锂盐, 所述锂盐为至少一种选自 LiPF6、 LiBF4、 LiSbF6、 LiAsF6、 LiN(S02CF3)2、 LiN(S02C2F5)2、 LiC(S02CF3)3和 LiN(S02F)2的锂盐。
7、 根据权利要求 1所述的用于凝胶聚合物电解质的组合物, 其特征在于: 还包括聚合引发剂, 所述聚合引发剂为至少一种选自偶氮类引发剂和过氧化物 引发剂的引发剂, 所述聚合引发剂的含量按组合物的总重量计为 0.001~lwt%。
8、 一种凝胶聚合物电解质, 通过将权利要求 1至 7任意一项所述的用于凝 胶聚合物电解质的组合物聚合而形成。
9、 一种电化学装置, 包括阴极、 阳极和权利要求 8所述的凝胶聚合物电解 质。
10、 根据权利要求 9所述的电化学装置, 其特征在于: 所述电化学装置为 锂电池。
PCT/CN2014/072402 2013-10-23 2014-02-21 一种用于凝胶聚合物电解质的组合物、凝胶聚合物电解质及电化学装置 WO2015058480A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310501351.6 2013-10-23
CN201310501351.6A CN103570873B (zh) 2013-10-23 2013-10-23 一种用于凝胶聚合物电解质的组合物、凝胶聚合物电解质及电化学装置

Publications (1)

Publication Number Publication Date
WO2015058480A1 true WO2015058480A1 (zh) 2015-04-30

Family

ID=50043644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072402 WO2015058480A1 (zh) 2013-10-23 2014-02-21 一种用于凝胶聚合物电解质的组合物、凝胶聚合物电解质及电化学装置

Country Status (2)

Country Link
CN (1) CN103570873B (zh)
WO (1) WO2015058480A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017125094A (ja) * 2016-01-12 2017-07-20 信越ポリマー株式会社 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
US10566657B2 (en) 2015-03-11 2020-02-18 Murata Manufacturing Co., Ltd. Electrolyte, battery, battery pack, electronic apparatus, electric vehicle, power storage apparatus, and power system
US20220109188A1 (en) * 2020-10-05 2022-04-07 NOHMs Technologies, Inc. Lithium ion battery electrolyte additive

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103570873B (zh) * 2013-10-23 2016-04-13 深圳新宙邦科技股份有限公司 一种用于凝胶聚合物电解质的组合物、凝胶聚合物电解质及电化学装置
CN103996869B (zh) * 2014-05-13 2017-03-22 东莞新能源科技有限公司 凝胶电解质及其含有该电解质的锂离子电池的制备方法
WO2017171442A1 (ko) 2016-03-30 2017-10-05 주식회사 엘지화학 겔 폴리머 전해질용 조성물, 이로부터 제조된 겔 폴리머 전해질, 및 이를 포함하는 전기화학소자
CN108530625B (zh) * 2018-05-31 2019-07-12 西京学院 一种具有微米孔穴的两亲性共聚网络的凝胶及方法
CN112151920A (zh) * 2019-06-28 2020-12-29 北京卫蓝新能源科技有限公司 一种固态锂空气电池
KR20220048776A (ko) * 2020-10-13 2022-04-20 주식회사 엘지에너지솔루션 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11286900A (ja) * 1998-03-31 1999-10-19 Arakawa Chem Ind Co Ltd 繊維板用バインダー、繊維板およびその製造方法
JP2001357877A (ja) * 2000-06-16 2001-12-26 Mitsubishi Chemicals Corp 非水電解液及び非水電解液二次電池
JP2007059478A (ja) * 2005-08-22 2007-03-08 Nichicon Corp 電解コンデンサの駆動用電解液
CN1981401A (zh) * 2004-07-06 2007-06-13 东亚合成株式会社 电解质膜及使用了该电解质膜的燃料电池
CN102153697A (zh) * 2010-01-20 2011-08-17 荒川化学工业株式会社 水溶性聚合物分散液、纸力增强剂、造纸用助滤剂和造纸用助留剂
CN103570873A (zh) * 2013-10-23 2014-02-12 深圳新宙邦科技股份有限公司 一种用于凝胶聚合物电解质的组合物、凝胶聚合物电解质及电化学装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100298802B1 (ko) * 1999-06-28 2001-09-22 김순택 고체 고분자 전해질용 가교제 및 이를 이용하여 제조된 가교형 고체 고분자 전해질
CN1518544A (zh) * 2001-06-15 2004-08-04 三井化学株式会社 哌嗪衍生物、其制造方法、高分子固体电解质及二次电池
CN102569880B (zh) * 2011-12-31 2015-12-02 深圳新宙邦科技股份有限公司 锂离子二次电池及其电解液以及酰胺类化合物的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11286900A (ja) * 1998-03-31 1999-10-19 Arakawa Chem Ind Co Ltd 繊維板用バインダー、繊維板およびその製造方法
JP2001357877A (ja) * 2000-06-16 2001-12-26 Mitsubishi Chemicals Corp 非水電解液及び非水電解液二次電池
CN1981401A (zh) * 2004-07-06 2007-06-13 东亚合成株式会社 电解质膜及使用了该电解质膜的燃料电池
JP2007059478A (ja) * 2005-08-22 2007-03-08 Nichicon Corp 電解コンデンサの駆動用電解液
CN102153697A (zh) * 2010-01-20 2011-08-17 荒川化学工业株式会社 水溶性聚合物分散液、纸力增强剂、造纸用助滤剂和造纸用助留剂
CN103570873A (zh) * 2013-10-23 2014-02-12 深圳新宙邦科技股份有限公司 一种用于凝胶聚合物电解质的组合物、凝胶聚合物电解质及电化学装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10566657B2 (en) 2015-03-11 2020-02-18 Murata Manufacturing Co., Ltd. Electrolyte, battery, battery pack, electronic apparatus, electric vehicle, power storage apparatus, and power system
JP2017125094A (ja) * 2016-01-12 2017-07-20 信越ポリマー株式会社 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
US20220109188A1 (en) * 2020-10-05 2022-04-07 NOHMs Technologies, Inc. Lithium ion battery electrolyte additive
WO2022076347A1 (en) * 2020-10-05 2022-04-14 NOHMs Technologies, Inc. Lithium-ion battery electrolyte additive
US11830980B2 (en) * 2020-10-05 2023-11-28 NOHMs Technologies, Inc. Lithium ion battery electrolyte additive

Also Published As

Publication number Publication date
CN103570873B (zh) 2016-04-13
CN103570873A (zh) 2014-02-12

Similar Documents

Publication Publication Date Title
WO2015058480A1 (zh) 一种用于凝胶聚合物电解质的组合物、凝胶聚合物电解质及电化学装置
CN106505249B (zh) 一种锂离子电池电解液及含该电解液的锂离子电池
CN111933894B (zh) 一种原位聚合的有机无机复合固态电池
Qiu et al. Surface activated polyethylene separator promoting Li+ ion transport in gel polymer electrolytes and cycling stability of Li-metal anode
CN106797053B (zh) 凝胶聚合物电解质和包括其的锂二次电池
CN103633367B (zh) 一种凝胶聚合物电解质和聚合物锂离子电池及其制备方法
CN104604014B (zh) 非水电解质溶液和包含其的锂二次电池
US8632916B2 (en) Lithium ion polymer battery
CN111533851A (zh) 一种聚合物电解质的制备方法及其在全固态电池中的应用
CN104882612A (zh) 一种粘结剂及应用该粘结剂的锂离子电池
JP2011012238A (ja) 親水性高分子で表面改質されたポリオレフィン微細多孔性膜、その表面改質方法及び表面改質されたポリオレフィン微細多孔性膜をセパレータとして備えるリチウムイオンポリマー電池
WO2018094773A1 (zh) 凝胶聚合物电解质动力电池
JP2013194112A (ja) ゲル電解質形成剤、ゲル電解質形成用組成物、ゲル電解質、および蓄電デバイス
WO2022205032A1 (zh) 负极极片、电化学装置及电子装置
JP7143069B2 (ja) リチウムイオン電池用負極及びリチウムイオン電池
CN108550835A (zh) 一种磷酸铁锂/凝胶电解质复合正极材料及其制备方法和一种固态锂电池及其制备方法
CN107507950A (zh) 含多巴胺复合粘结剂的陶瓷隔膜及在锂离子电池中的应用
CN103427113B (zh) 凝胶聚合物电解质和聚合物电池及其制备方法
WO2023226345A1 (zh) 一种自由基原位聚合半固态电池
CN110311138A (zh) 一种具有热动保护功能的锂离子二次电池
Yan et al. Copolymer-assisted polypropylene separator for fast and uniform lithium ion transport in lithium-ion batteries
CN112599859A (zh) 一种高能量密度动力电池的制备方法
CN111600075A (zh) 一种辐照提高锂电池负极极片中粘结剂耐电解液性能的方法
JP2022536290A (ja) リチウムイオン電池用のその場重合されたポリマー電解質
Zhang et al. Functional polyethylene glycol-based solid electrolytes with enhanced interfacial compatibility for room-temperature lithium metal batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14855422

Country of ref document: EP

Kind code of ref document: A1