WO2015056775A1 - 薄膜太陽電池モジュールの取付構造 - Google Patents

薄膜太陽電池モジュールの取付構造 Download PDF

Info

Publication number
WO2015056775A1
WO2015056775A1 PCT/JP2014/077678 JP2014077678W WO2015056775A1 WO 2015056775 A1 WO2015056775 A1 WO 2015056775A1 JP 2014077678 W JP2014077678 W JP 2014077678W WO 2015056775 A1 WO2015056775 A1 WO 2015056775A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
film solar
cell module
thin film
installation surface
Prior art date
Application number
PCT/JP2014/077678
Other languages
English (en)
French (fr)
Inventor
達二 神原
進二 加藤
敏明 山浦
夏紀 濱田
哲治 伊東
バグワドカ ニナド
智康 山田
満 荒崎
英輝 境
充 小野田
有希 成田
Original Assignee
ソーラーフロンティア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソーラーフロンティア株式会社 filed Critical ソーラーフロンティア株式会社
Priority to US15/029,313 priority Critical patent/US10958207B2/en
Priority to DE112014004754.6T priority patent/DE112014004754T5/de
Priority to JP2015542680A priority patent/JP6671959B2/ja
Publication of WO2015056775A1 publication Critical patent/WO2015056775A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/10Frame structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • F24S25/11Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface using shaped bodies, e.g. concrete elements, foamed elements or moulded box-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • F24S25/16Arrangement of interconnected standing structures; Standing structures having separate supporting portions for adjacent modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/30Arrangement of stationary mountings or supports for solar heat collector modules using elongate rigid mounting elements extending substantially along the supporting surface, e.g. for covering buildings with solar heat collectors
    • F24S25/33Arrangement of stationary mountings or supports for solar heat collector modules using elongate rigid mounting elements extending substantially along the supporting surface, e.g. for covering buildings with solar heat collectors forming substantially planar assemblies, e.g. of coplanar or stacked profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/30Arrangement of stationary mountings or supports for solar heat collector modules using elongate rigid mounting elements extending substantially along the supporting surface, e.g. for covering buildings with solar heat collectors
    • F24S25/33Arrangement of stationary mountings or supports for solar heat collector modules using elongate rigid mounting elements extending substantially along the supporting surface, e.g. for covering buildings with solar heat collectors forming substantially planar assemblies, e.g. of coplanar or stacked profiles
    • F24S25/35Arrangement of stationary mountings or supports for solar heat collector modules using elongate rigid mounting elements extending substantially along the supporting surface, e.g. for covering buildings with solar heat collectors forming substantially planar assemblies, e.g. of coplanar or stacked profiles by means of profiles with a cross-section defining separate supporting portions for adjacent modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/60Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
    • F24S25/61Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules for fixing to the ground or to building structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/10Supporting structures directly fixed to the ground
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • H02S20/24Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures specially adapted for flat roofs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/36Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • H02S40/425Cooling means using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/60Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
    • F24S2025/601Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules by bonding, e.g. by using adhesives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a structure for attaching a flexible thin-film solar cell module to a predetermined installation surface or attachment member.
  • a thin film solar cell module As a thin film solar cell module, a thin film Si solar cell module using microcrystalline Si (Si) or amorphous Si for a light absorption layer, a compound thin film solar cell module using a compound semiconductor for a light absorption layer, etc. It has been known.
  • these thin film solar cell modules have a structure in which semiconductor thin films are stacked on a substrate.
  • a general thin film solar cell module is formed by laminating a semiconductor thin film on a glass substrate.
  • a semiconductor thin film is laminated on a flexible or flexible substrate such as a metal substrate or a resin substrate. It can also be formed.
  • the thin film solar cell module using the flexible substrate as described above can give the module itself flexibility.
  • Such a flexible thin-film solar cell module is not selected for the installation surface compared to a general thin-film solar cell module using a glass substrate, and even when subjected to a load such as snow, it is damaged due to the flexibility of the substrate. It has characteristics such as difficulty, and has utility different from that of a general thin-film solar cell module using a glass substrate.
  • the thin film solar cell module having flexibility has a problem that its rigidity is small because it has flexibility, and it is difficult to mount it on a roof or a frame of a house.
  • the present invention is an attachment structure suitable for attaching a flexible thin film solar cell module to various installation surfaces and attachment members fixed to the installation surface, and can be easily and reliably attached. It aims to provide what can be done.
  • a thin film solar cell module mounting structure is a mounting structure in which a thin film solar cell module having flexibility is mounted on a predetermined installation surface or mounting member.
  • the back surface of the battery module and the installation surface or the mounting member are attached by being bonded with an adhesive.
  • the adhesive may be a foaming adhesive.
  • a spacer for forming a gap between the thin film solar cell module and the installation surface or the mounting member is at least partially between the thin film solar cell module and the installation surface or the mounting member. It is good also as what is pinched.
  • a terminal box for taking out the generated power is attached to the back surface of the thin film solar cell module, and the spacer is provided with a recess into which the terminal box is fitted, and the terminal box is It is good also as what is engage
  • a flexible thin film solar cell module can be easily and reliably attached to various installation surfaces and attachment members fixed to the installation surface.
  • connection structure of a thin film solar cell module Comprising: (a) Top view, (b) The perspective view which showed the connection structure of connectors It is.
  • connection structure of a thin film solar cell module Comprising: (a) Top view, (b) The shape of the terminal box of a thin film solar cell module It is the shown perspective view, (c) The top view which showed the connection structure of connectors, (d) The top view which showed the connection structure of connectors.
  • the attachment structure of the thin film solar cell module according to the embodiment of the present invention is a structure for attaching a flexible thin film solar cell module to an installation surface such as a roof.
  • FIG. 1 shows an example of a thin film solar cell module to which the thin film solar cell module mounting structure according to this embodiment is applied.
  • the thin film solar cell module 10 includes a thin film Si solar cell module using microcrystalline Si (Si) or amorphous Si as a light absorption layer, or a compound thin film solar cell module using a compound semiconductor as a light absorption layer, etc.
  • the thin film solar cell module 10 is formed by laminating a semiconductor thin film on a flexible thin plate-like metal or resin substrate. Since the substrate has flexibility, the module itself has flexibility.
  • a lead wire for outputting electric power generated by light reception to the outside is attached to the electrode provided on the semiconductor thin film of the thin film solar cell module 10, and this lead wire is once on the back side of the thin film solar cell module 10.
  • the terminal box 101 is attached to the terminal box 101. Further, from the terminal box 101, positive and negative output cables 10a and 10b that are electrically connected to the lead wires are led out.
  • the thin film solar cell module 10 in this example is comprised by the rectangular shape, and the terminal box 101 is biased and attached to the one end side of a longitudinal direction in the back surface side of the thin film solar cell module 10.
  • the terminal box 101 is easier to attach to the installation surface if the terminal box 101 is long and thin, and the height of the spacer described later can also be reduced.
  • the output cable 10a connected to one of the positive and negative poles from one side end is led out, and connected to the other pole from the side end opposite to the one side end.
  • the output cable 10b is derived. According to such a structure, when the adjacent thin film solar cell modules 10 are connected, the output cables 10a and 10b are easily wired.
  • the thin film solar cell module to which a terminal box from which a pair of output cables connected to the positive and negative poles from one side end portion is attached is also described below as the thin film solar cell module 10. This embodiment can be applied.
  • FIG. 2 shows an example of a mounting structure in which the roof inclined from the ridge side toward the eaves side is used as the installation surface R1, and the thin-film solar cell module 10 is installed on the installation surface R1.
  • the thin film solar cell module 10 is installed such that the longitudinal direction and the inclination direction of the installation surface R1 are parallel, and the terminal box 101 on the back side is located on the eaves side.
  • This thin-film solar cell module 10 is directly attached to the installation surface R1 with the adhesive 3 except for a part on the eave side where the terminal box 101 is installed on the back side.
  • the adhesive 3 for bonding the thin-film solar cell module 10 and the installation surface R1 for example, a foaming adhesive such as urethane foam is used.
  • a foaming adhesive such as urethane foam is used.
  • the adhesive 3 for attachment when installing the thin-film solar cell module 10 on the roof which is the installation surface R1, it can be installed in order from the roof ridge side to the eaves side. Safety can be improved. That is, when installing the thin film solar cell module 10 on the roof which is the installation surface R1, in the construction using a general mount, the thin film solar cell module 10 is installed from the eave side of the inclined roof toward the ridge side. Therefore, the worker has to work while standing on the ridge side of the thin-film solar cell module 10 to be installed. It is.
  • the thin film solar cell module 10 is directly bonded to the installation surface R1 with the adhesive 3, the weight of the mount or the like is not applied to the installation surface R1, and even if snow accumulates on the thin film solar cell module 10, Since the installation surface R1 supports the load due to snow, the load performance can be improved.
  • the attachment with the adhesive 3 eliminates the need for making a screw or screw hole in the roof, which is the installation surface R1, in order to fix the thin film solar cell module 10, thus preventing the risk of rain leakage and the like. it can.
  • the adhesive 3 it is possible to follow the shape of the installation surface R1, in particular, the uneven shape such as the distortion and deflection of the surface, and thereby the uneven shape of the installation surface R1.
  • the gap can be filled with the adhesive 3 to improve the adhesiveness.
  • the thin-film solar cell module 10 itself has flexibility, it is easy to follow the unevenness of the installation surface R1, and it is easy to adjust the unevenness of the installation surface R1, which is conventionally required, that is, the unevenness of the installation surface R1. It is not necessary to adjust the height in accordance with the above, and the thin-film solar cell module 10 can be installed on a curved surface.
  • the thin film solar cell is obtained by cutting the adhesive 3 composed of the solidified foamable adhesive with a wire or the like, or applying and dissolving an organic solvent such as acetone.
  • the module 10 can be easily removed from the installation surface R1.
  • the output cables 10 a and 10 b of the thin film solar cell module 10 can be fixed by the adhesive 3.
  • the foamable adhesive can be re-adhered even after being peeled off once, and the thin film solar cell module 10 can be easily replaced.
  • the foamable adhesive does not corrode due to salt damage, the thin film solar cell module 10 can be installed in a salt damage area.
  • the eaves side of the back surface to which the terminal box 101 of the thin film solar cell module 10 is attached has the spacer 21 between the installation surface R1 and an adhesive. 3 is attached by gluing.
  • the spacer 21 has a substantially triangular prism wedge shape with a substantially right triangle as a bottom surface, and is preferably made of a lightweight resin such as a foaming resin, but is made of other resin or metal. It may be.
  • the spacer 21 forms a curved surface having a gently rising curve on the upper surface side to which the thin film solar cell module 10 is bonded, so that the thin film solar cell module 10 to be bonded is not bent. Instead of forming the upper surface of the spacer 21 with a curved surface, it may be formed with a flat surface without bending.
  • the spacer 21 is provided with a groove-like recess 21a on the upper surface side for fitting the output cables 10a, 10b of the thin-film solar cell module 10 or fitting the terminal box 101 therein.
  • the recess 21a has at least a space in which the terminal box 101 is fitted, and the side end of the recess 21a is opened so that the output cables 10a and 10b can be led out.
  • the spacer 21 is sandwiched on the eaves side of the back surface to which the terminal box 101 of the thin film solar cell module 10 is attached, and in the recess 21a of the spacer 21.
  • the terminal box 101 and the output cables 10a and 10b are accommodated.
  • the adhesive agent 3 is apply
  • the terminal box 101 and the output cables 10 a and 10 b are accommodated in the recess 21 a of the spacer 21.
  • the terminal box 101 and the output cables 10a and 10b are in contact with the installation surface R1, and are directly affected by heat and vibration from the installation surface R1, or the installation surface R1 is immersed in rainwater or the like. It is possible to prevent problems such as
  • FIG. 4 shows an attachment structure of the thin-film solar cell module 10 by the spacer 22 according to the modified example of the spacer 21 described above.
  • the spacer 22 is sandwiched between the eaves side of the thin film solar cell module 10 and the installation surface R ⁇ b> 1, and the thin film solar cell module 10 and the installation surface R ⁇ b> 1 are bonded by the adhesive 3.
  • the spacer 22 has a substantially trapezoidal shape that is shallower than the spacer 21 and has a predetermined height as a whole.
  • the spacer 22 is preferably made of a lightweight resin such as a foamable resin, like the spacer 21, but may be made of other resin or metal.
  • the gap S1 is formed between the thin film solar cell module 10 and the installation surface R1 on the ridge side of the spacer 22. Is provided.
  • the gap S1 can accommodate the terminal box 101 and the output cables 10a and 10b attached to the back side of the thin film solar cell module 10, and the output cables 10a and 10b can be led out from the gap S1. .
  • FIG. 6 shows an attachment structure of the thin-film solar cell module 10 by the spacer 23 according to another modified example of the spacer 21 described above.
  • the spacer 23 is sandwiched between the eaves side of the thin film solar cell module 10 and the installation surface R ⁇ b> 1, and the thin film solar cell module 10 and the installation surface R ⁇ b> 1 are bonded by the adhesive 3.
  • the spacer 23 has a substantially trapezoidal shape that is shallower than the spacer 21 and has a predetermined height as in the spacer 22.
  • the spacer 23 is provided with a recess 23a into which the terminal box 101 can be fitted, near the center on the upper surface side. The ridge side of the recess 23a is opened so that the output cables 10a and 10b can be led out.
  • the spacer 23 is also preferably made of a lightweight resin such as a foamable resin like the spacer 21, but may be made of other resin or metal.
  • the gap S2 is formed between the thin film solar cell module 10 and the installation surface R1 on the ridge side of the spacer 23. Is provided.
  • the output cables 10a and 10b led out from the terminal box 101 fitted in the recess 23a can be accommodated in the gap S2, and the output cables 10a and 10b can be led out from the gap S2.
  • FIG. 8 shows an example in which the thin film solar cell module 10 is attached to the installation surface R ⁇ b> 1 via the mount 41.
  • the gantry 41 is an attachment member for attaching the thin-film solar cell module 10 on the installation surface, and is composed of vertical members 411 and 412, and is bonded to the installation surface with an adhesive and the thin-film solar cell module 10 on the upper surface. Is attached.
  • the vertical members 411 and 412 on the installation surface R1 they may be fixed with screws or the like instead of the adhesive.
  • the material of the gantry 41 may be made of metal, but it is preferable that the gantry 41 is made of a resin (foamable resin or the like) to be resistant to salt damage.
  • the longitudinal members 411 and 412 are all long rod-shaped members, and are preferably installed so that the inclined direction or the water flow direction and the length direction are parallel to the inclined installation surface.
  • the vertical members 411 and 412 are arranged at a constant pitch interval so that the length direction thereof is parallel to the water flow direction, a gap is formed between the vertical members 411 and 412, and rainwater or the like empties the gap. Flows through and facilitates drainage.
  • the longitudinal member 411 is provided with a recess 411a in the vicinity of one end portion on the water side.
  • the terminal box 101 of the thin film solar cell module 10 can be fitted into the recess 411a.
  • the concave portion 411a becomes a reference position when the thin-film solar cell module 10 is disposed, and the construction becomes simple.
  • the recesses 411a may be provided in the gantry 41.
  • FIG. 9 shows a gantry 42 according to a modification of the gantry 41 described above.
  • the gantry 42 is an attachment member for mounting the thin-film solar cell module 10 on the installation surface.
  • the gantry 42 includes a plurality of vertical members 421 that are long rod-shaped members, and a flat panel 422 that is spanned between the vertical members 421.
  • the thin film solar cell module 10 is attached to the upper surface of the material 421.
  • the material of the gantry 42 may be made of metal, but it is preferable that the pedestal 42 is made of a resin (foamable resin or the like) to be resistant to salt damage.
  • the plurality of longitudinal members 421 are arranged at a constant pitch interval so that the length direction thereof is parallel to the water flow direction. As a result, a gap is formed between the vertical members 421, and rainwater or the like flows through the gap, facilitating drainage.
  • the panel 422 spanned between the plurality of vertical members 421 is approximately half the length of the vertical member 421 and has a mesh-like gap.
  • the panel 422 is constituted by, for example, a metal mesh, a metal plate having a dot-like hole, or a flat plate made of resin.
  • one end of the panel 422 is attached to the central portion in the width direction of one vertical member 421 and the other end is attached to the central portion in the width direction of the other vertical member 421 between the pair of vertical members 421. .
  • the panel 422 is maintained in a state of floating at a certain height from the installation surface.
  • the panel 422 may be attached so as to be biased to the water side of the vertical member 421.
  • the panel 422 may be arranged over the entire surface between the vertical members 421.
  • the output cables 10a and 10b of the thin-film solar cell module 10 can be housed on the upper surface side and can be appropriately fixed with clips or the like, thereby preventing the output cables 10a and 10b from coming into contact with the installation surface. As a result, it is possible to prevent the output cables 10a and 10b from being immersed in rainwater flowing on the installation surface.
  • the lower surface side can be a drainage channel such as rainwater.
  • interval is formed in the panel 422, air permeability is good and contributes to the thermal radiation of the thin film solar cell module 10.
  • FIG. 10 shows an example of a structure for connecting a plurality of thin film solar cell modules 11 to each other.
  • the thin film solar cell module 11 is a solar cell module in which semiconductor thin films are stacked and has flexibility.
  • Positive and negative electrodes provided on the semiconductor thin film of the thin film solar cell module 11 are respectively attached with positive and negative lead wires, and these positive and negative lead wires are terminals attached to both side ends of the thin film solar cell module 11.
  • the boxes 111 and 112 are connected separately.
  • the terminal boxes 111 and 112 are provided with male or female connectors 111a and 112a, respectively, which can be fitted with each other, and each connector 111a and 112a has a lead connected to a positive electrode or a negative electrode, respectively.
  • the wires are connected electrically.
  • the connectors 111a and 112a are respectively configured as positive or negative connection terminals, and are electrically connected by male-female fitting.
  • the thin film solar cell modules 11 adjacent to each other are provided by connecting the thin film solar cell modules 11 at predetermined positions.
  • the connectors 111a and 112a can be connected to each other, and the construction is easy.
  • no output cable is used, there is no need to worry about the space for accommodating the output cable, the contact between the output cable and the installation surface, or the like.
  • FIG. 11 shows another example of a structure for connecting a plurality of thin film solar cell modules 12 to each other.
  • the thin film solar cell module 12 has terminal boxes 121 connected to the positive electrode or the negative electrode on both side ends.
  • the terminal box 121 attached to both side ends has the same structure regardless of whether it is connected to the positive electrode or the negative electrode, and a connecting connector 122 and a connecting cable 123 that connect the terminal boxes 121 to each other are provided on both side ends.
  • the connection connector 122 is provided with a pair of male connectors oriented in the same direction at a predetermined interval, and both connectors are fitted with the female connector 121a of the terminal box 121.
  • the connectors provided at both ends of the connecting cable 123 have a male shape, and both are configured so that the female connector 121a of the terminal box 121 can be fitted into the male and female.
  • the connector 121a provided in the terminal box 121 is a female connector.
  • the terminal box 121 is provided with a male connector, and the connection connector 122 and the connection cable 123 are connected.
  • the direction may be provided with a female connector.
  • each of the positive electrode and the negative electrode included in the thin film solar cell module 11 may include a male connector and a female connector.
  • the negative connector 121 a of the terminal box 12 of the thin film solar cell module 12 is connected by a connecting connector 122.
  • the connectors 121a of the pair of thin-film solar cell modules 12 connected by the connecting connector 122 are preferably connected in the same direction, and the connector 121a in the other direction is covered with a cap or the like.
  • the positive or negative connector 121a of the terminal box 121 of one thin film solar cell module 12 is adjacent.
  • the connector 121a of the same polarity of the terminal box 121 of the other thin film solar cell module 12 to be connected is connected by the connecting cable 123.
  • the connectors 121a of the pair of thin film solar cell modules 12 connected by the connecting cable 123 may be connected to each other.
  • connection cable 123 is determined by the dimension of the thin film solar cell module 12 and does not depend on the installation location of the thin film solar cell module 12, a connection cable 123 having a predetermined length can be prepared in advance. This makes it possible to suppress duplication of the connecting cable 123.
  • FIG. 12 shows an example of a structure in which a plurality of thin film solar cell modules 13 are connected to each other by a mount 43 and the thin film solar cell module 13 is attached to the installation surface R1.
  • the thin film solar cell module 13 is a solar cell module in which semiconductor thin films are stacked and has flexibility.
  • Positive and negative electrodes are attached to the positive and negative electrodes provided on the semiconductor thin film of the thin film solar cell module 13, respectively, and the positive and negative lead wires are further attached to the lengthwise ends of the thin film solar cell module 13. They are separately connected to a pair of attached connectors 131.
  • the gantry 43 is a rod-like vertically long member, and is a member to which the thin film solar cell module 13 is attached while being fixed on the installation surface R1 by a predetermined screw, metal fitting, or the like.
  • the gantry 43 is provided with a connector 431 into which the connector 131 of the thin film solar cell module 13 is inserted at one end.
  • an insertion groove 43a into which the side end of the thin film solar cell module 13 is inserted is provided at the side end opposite to the side end where the connector 431 is provided.
  • the connector 131 of the thin-film solar cell module 13 and the connector 431 of the gantry 43 have a male-type fitting structure, and the other has a female-type fitting structure. It is configured to be connectable.
  • wiring is provided inside the gantry 43 so that lead wires and the like that are electrically connected to the connector 431 can be led out or connected to the wiring of the gantry 43 outside or adjacent to the gantry 43. It has become.
  • the side end portion opposite to the side on which the connector 131 is provided is inserted into the insertion groove 43 a when the thin film solar cell module 13 is attached to the mount 43. It is.
  • the thin film solar cell module 13 When the thin film solar cell module 13 is attached to the installation surface R1 using the gantry 43, first, as shown in FIG. 12B, a plurality of gantry 43 are installed on the installation surface R1 at a constant pitch. Then, the connector 131 is connected to the connector 431 of the mount 43 on one end side of the thin film solar cell module 13. Further, the connector 131 is inserted into the insertion groove 431 on the other end side. In addition, between the adjacent mounts 43, the thin film solar cell module 13 and the installation surface R1 may be bonded by the adhesive 3.
  • one end of the thin film solar cell module 13 is inserted into the insertion groove 43 a of the gantry 43 and only one connector 131 of the thin film solar cell module 13 is connected to the connector 431 of the gantry 43.
  • the wiring and the installation on the installation surface R1 can be performed at a time, which is convenient.
  • the pair of connectors 131 electrically connected to the positive and negative electrodes of the thin film solar cell module 13 are collectively provided on one side end side of the thin film solar cell module 13. You may divide and provide an edge part and the side edge part on the opposite side of the said one side edge part.
  • a connector 431 corresponding to the connector 131 is provided on each side end of the gantry 43 and on the side end opposite to the one side end.
  • FIG. 13 shows an example in which the thin-film solar cell module 10 is attached via a gantry 44 to a flat installation surface R2 such as the ground or a rooftop.
  • the pedestal 44 installed on the installation surface R2 is a vertically long column 441, 442 standing on the installation surface R2, a vertical member 443 connecting between the columns 441, 442, and a flat plate shape spanned between the vertical members 443. Support plate 444.
  • the column 441 is lower than the column 442, and the gantry 44 as a whole is preferably inclined so as to be lowered from the column 442 toward the column 441.
  • the support plate 444 has a width that is at least equal to the width of the thin film solar cell module 10 attached to the upper surface side, and has a length shorter than the length of the thin film solar cell module 10.
  • the support plates 444 are provided at a constant pitch interval. Note that the support plate 444 may be formed of a mesh panel such as a wire mesh.
  • the thin-film solar cell module 10 is attached on the support plate 444 by an adhesive, but is adhered in a state where the underwater side protrudes from the support plate 444 along the inclination of the gantry 44. That is, since the length of the support plate 444 is shorter than the length of the thin-film solar cell module 10 and the support plates 444 are provided apart from each other, the underwater end is in a suspended state. Thus, even when snow accumulates on the thin film solar cell module 10 by making the end of the thin film solar cell module 10 on the underwater side float in the air, the snow falls under the inclination of the gantry 44. As it slides down to the side, the water-side end that floats in the air bends, and snow accumulated on the thin-film solar cell module 10 can be dropped to the ground.
  • the support plate 444 described above has a predetermined thickness, and the water passage 444a provided at the other side end from the water passage hole 444a provided at one side end.
  • a water passage 444b through which water can flow is provided. By passing water through the water passage 444b, the thin film solar cell module 10 can be cooled.
  • FIG. 15 shows an example in which the thin-film solar cell module 10 is attached to the wall surface as the installation surface R3 that is vertical or inclined.
  • the thin-film solar cell module 10 is attached to the installation surface R3 with an adhesive 3 and the upper and lower ends are fixed by rails 45.
  • the rail 45 is a vertically long rod-like member, and has insertion grooves 45a into which the thin film solar cell module 10 is inserted at both end portions.
  • the rail 45 may be bonded to the installation surface R3 with an adhesive or may be fixed using a metal fitting such as a screw.
  • the pair of rails 45 are attached to the installation surface R3 while being separated from each other by the length of the thin film solar cell module 10, and the adhesive 3 is applied to the installation surface R3. Apply it. Then, after inserting one end of the thin film solar cell module 10 into the insertion groove 45 a of one rail 45, the thin film solar cell module 10 is bent, and the other end is inserted into the insertion groove 45 a of the other rail 45.
  • FIG. 16 shows another example of an attachment structure in which the thin-film solar cell module 10 is attached to the installation surface R1.
  • the thin film solar cell module 10 is bonded to the installation surface R1 with the adhesive 3 and then fixed with the metal fitting 46.
  • the metal fitting 46 is a rectangular metal plate as shown in FIG. 16B, and a pair of screw holes 46 a provided at the center, and biting on the surface of the thin film solar cell module 10 at both side ends.
  • the claw claw 46b is provided.
  • a glass plate is used as a surface protection material, the surface cannot be bitten by the biting claw 46b, but in order to impart flexibility to the thin film solar cell module 10. If a resinous transparent plate is used for the surface protective material, the biting claw 46b can be bitten by such a surface protective material.
  • the thin film solar cell module 10 When the thin film solar cell module 10 is installed on the installation surface R1, the thin film solar cell module 10 is bonded to the installation surface R1 with the adhesive 3, and then the pair of thin film solar cell modules 10 bonded to the installation surface R1.
  • a metal fitting 46 is attached between the two. In attaching the metal fitting 46, the pair of biting claws 46 b included in the metal fitting 46 are respectively bitten on the end surface of the adjacent thin film solar cell module 10. Then, the screw 47 is inserted into the screw hole 46a and fixed to the installation surface R1.
  • the thin film solar cell module 10 can be more firmly installed on the installation surface R1. Become. Furthermore, the structure which installs the thin film solar cell module 10 in the installation surface R1 only by the metal fitting 46, without using the adhesive agent 3 is also possible.
  • FIG. 17 shows another example in which the thin-film solar cell module 10 is attached to a flat installation surface R2 such as the ground or the roof via a predetermined attachment member.
  • Structures 51, 52, and 53 which are predetermined attachment members, are attachment members for attaching the thin-film solar cell module 10 on the installation surface, and are different examples.
  • Each of the structures 51, 52, 53 is made of a material having a constant weight, such as concrete, is placed on the installation surface R2, and the thin film solar cell module 10 is attached to the upper surface.
  • the structure 51 shown in FIG. 17A is substantially U-shaped, and includes a base portion 511 placed on the installation surface R2, and a support portion 512 that is bent upward and extends from both ends of the base portion 511.
  • the upper surfaces of the support portions 512 and 513 constitute attachment surfaces 512a and 513a for attaching the thin-film solar cell module 10, respectively.
  • the structure 51 has a certain width necessary to support the thin film solar cell module 10 on the mounting surfaces 512a and 513a, for example, the same width as the width of the thin film solar cell module 10. .
  • the support portion 512 is lower than the support portion 513, and the mounting surfaces 512a and 513a are inclined surfaces that are lowered from the support portion 513 side toward the support portion 512 side in accordance with the height difference of the support portions 512 and 513. ing.
  • the thin film solar cell module 10 is installed on the installation surface R2 using the structure 51, the thin film solar cell module 10 is attached on the attachment surfaces 512a and 513a by the adhesive 3 and attached. Since the support parts 512 and 513 have a height difference and the attachment surfaces 512a and 513a are inclined surfaces, the thin film solar cell module 10 attached on the attachment surfaces 512a and 513a is supported from the support part 513 side. Inclined to become lower toward the side.
  • the thin film solar cell module 10 can be installed on the installation surface R2 regardless of the influence of wind or the like. Moreover, the thin film solar cell module 10 can be installed diagonally so that it may become an angle suitable for light reception by the height difference of the support parts 512 and 513 and the inclination of the attachment surfaces 512a and 513a.
  • the structure 52 shown in FIG. 17B is substantially U-shaped, and includes a base portion 521 placed on the installation surface R2, and a support portion 522 that bends and extends upward from both side ends of the base portion 521. 523, and the upper surfaces of the support portions 522 and 523 constitute attachment surfaces 522a and 523a for attaching the thin film solar cell module 10, respectively.
  • the structure 52 has a certain width necessary to support the thin film solar cell module 10 on the mounting surfaces 522a and 523a.
  • the structure 52 has the same width as the thin film solar cell module 10. have.
  • the support portion 522 is higher than the support portion 523, and the mounting surfaces 522a and 523a form an inclined surface that decreases from the support portion 523 side toward the support portion 522 side.
  • a plurality of structures 52 are arranged on the installation surface R2 at a constant pitch interval, The one end side of the thin film solar cell module 10 is attached to the attachment surface 522a of one structure 52, and the other end side of the thin film solar cell module 10 is attached to the attachment surface 523a of the other structure 52. Note that the thin-film solar cell module 10 is attached to the attachment surfaces 522a and 523a by bonding with the adhesive 3.
  • the support parts 522 and 523 have a height difference and the attachment surfaces 522a and 523a are inclined surfaces, the thin film solar cell modules 10 attached on the attachment surfaces 522a and 523a are adjacent to each other. It inclines so that it may become low toward the support part 512 side of the other structure 52 from the support part 513 side of one structure 52 of the structures 52. As shown in FIG.
  • the thin film solar cell module 10 can be installed on the installation surface R2 while supporting the end of the thin film solar cell module 10 regardless of the length of the thin film solar cell module 10. Therefore, it can prevent that the edge part of the thin film solar cell module 10 bends.
  • the structure 53 shown in FIG. 17C is substantially W-shaped, and includes a pair of base portions 531 and 532 placed on the installation surface R2, and a support portion 533 extending obliquely upward from the base portion 531.
  • the support portions 534 integrally extending upward from the base portions 531 and 532 and the support portions 535 extending obliquely upward from the base portions 532, and the upper surfaces of the support portions 533, 534 and 535 are respectively thin film solar cell modules.
  • the mounting surfaces 533a, 534a, and 535a for mounting 10 are configured. Similar to the structure 51, the structure 53 has a certain width necessary to support the thin film solar cell module 10 on the mounting surfaces 533a, 534a, and 535a. Have the same width.
  • the support portions 535, 534, and 533 are configured to become lower in this order, and the mounting surfaces 533a, 534a, and 535a correspond to the height difference of the support portions 533, 534, and 535, and the support portions from the support portion 535 side.
  • the inclined surface which becomes low toward the 533 side is comprised.
  • the support portions 533, 534, and 535 have a height difference and the attachment surfaces 533a, 534a, and 535a are inclined surfaces, the thin film solar cell module 10 attached on the attachment surfaces 533a, 534a, and 535a has the support portion. It inclines so that it may become low toward the support part 533 side from 535 side.
  • this structure 53 can support not only the end portion of the thin film solar cell module 10 but also the central portion, the thin film solar cell module 10 is prevented from being bent toward the center and kept straight. be able to.
  • FIG. 18 shows an example of an attachment structure in which the thin-film solar cell module 10 is attached to the folded plate roof 54, in particular, a goby type folded plate roof.
  • the folded-plate roof 54 as an installation surface in this example is obtained by fixing a folded-plate main body made of a corrugated steel plate in which peaks 541 and valleys 542 are alternately arranged on a tight frame.
  • the adhesive agent 3 is apply
  • the thin film solar cell module 10 is bent so that the central portion of the thin film solar cell module 10 is lifted upward. May be installed.
  • a space is formed on the back surface of the thin film solar cell module 10, and the thin film solar cell module is formed by this space. 10 can improve the air permeability of the back surface of the thin film solar cell module 10 and prevent the thin film solar cell module 10 from being overheated.
  • the thin-film solar cell module 10 is bent and installed on the folded roof, but the thin-film solar cell module 10 is bent and attached to the folded roof. It can also be applied to roofs of other types of houses such as thatched roofs and tiled roofs.
  • FIG. 19 shows an example in which the thin-film solar cell module 10 is attached and attached to an installation surface R1 such as a roof using a double-sided tape 55.
  • a double-sided tape 55 in which an adhesive is applied to both sides of the tape is adhered to either or both of the back surface and the installation surface R1 of the thin-film solar cell module 10, and the thin-film solar cell module is used by the double-sided tape 55. 10 is attached to the installation surface R1 by bonding. According to this example, the thin film solar cell module 10 can be easily attached to the installation surface R1.
  • FIG. 20 shows an example in which the thin-film solar cell module 10 is attached to the installation surface R1 using the double-sided fastener 56.
  • a surface fastener 561 composed of a loop surface densely raised in a loop shape is attached to the back surface of the thin-film solar cell module 10, and a hook surface raised on the hook on the surface of the installation surface R ⁇ b> 1.
  • a surface fastener 562 is attached.
  • the surface fasteners 561 and 562 can be attached to the back surface or the installation surface R1 of the thin-film solar cell module 10 by various means such as adhesion with an adhesive or fixing with a tacker.
  • the thin film solar cell module 10 can be attached to the installation surface R1 by engaging the surface fasteners 561 and 562 with each other. Regardless of this example, a surface fastener 562 made of a hooked surface raised on a hook is attached to the back surface of the thin-film solar cell module 10, and a loop raised densely in a loop shape on the surface of the installation surface R1. It is good also as what attaches the surface fastener 561 which consists of a surface. According to this example, since the thin film solar cell module 10 can be detachably attached to the installation surface R1, the thin film solar cell module 10 can be removed or replaced as necessary. is there.
  • FIG. 21 shows an example in which the thin-film solar cell module 14 is attached to the installation surface R1 using a tucker or the like.
  • semiconductor thin films are stacked, and a non-power generation region 142 is formed around a power generation region 141 that generates power by receiving light.
  • this thin-film solar cell module 14 When this thin-film solar cell module 14 is attached to the installation surface R1, the thin-film solar cell module 14 is placed on the installation surface R1, and a tacker or the like is used to penetrate the non-power generation region 142 and the installation surface R1 to form the flange 57. Type in. Thereby, the thin film solar cell module 14 can be easily attached to the installation surface R ⁇ b> 1 without affecting the power generation region 141. Regardless of this example, screws or nails or the like may be driven into the non-power generation region 142 instead of attaching with a tack using a tucker or the like.
  • FIG. 22 shows an example in which the thin-film solar cell module 15 is attached using the wire 58 to the installation surface R1.
  • the thin film solar cell module 15 in this example is a non-power generation region around a power generation region 151 where a semiconductor thin film is stacked and generates power by receiving light, as shown in FIG. 152 is formed.
  • a plurality of through holes 152 a for passing the wires 58 are formed in advance on both side ends of the non-power generation region 152.
  • a through-hole for passing the wire 58 is also formed in the installation surface R1 in advance. Then, after the thin film solar cell module 15 is placed on the installation surface R1, the wire 58 is passed through the through hole provided in the installation surface R1 and the through hole 152a formed in the non-power generation region 152 of the thin film solar cell module 10. Further, both ends of the wire 58 are fixed to the installation surface R1. The both ends of the wire 58 can be fixed by, for example, screwing to the installation surface R1 or attaching to the anchor provided on the installation surface R1. Also according to this example, the thin-film solar cell module 15 can be easily attached to the installation surface R1 without affecting the power generation region 151.
  • FIG. 23 shows a pallet 61 suitable for transporting the thin-film solar cell module 10, particularly a plurality of thin-film solar cell modules 10, and a transport mode of the thin-film solar cell module 10 by the pallet 61.
  • the pallet 61 has an L shape, and a placement portion 611 on which a plurality of stacked thin film solar cell modules 10 are placed, and one end portion of the placement portion 611. And a standing part 612 standing at a right angle.
  • the pallet 61 in this example is provided by assembling rod-shaped frame members, but it may be provided by assembling a plurality of flat plates made of wood or metal, or a metal flat plate may be bent at a right angle. It may be provided.
  • the plurality of thin film solar cell modules 10 are stacked on the mounting portion 611. Then, as shown in FIG. 23 (c), the pallet 61 is transported by the lifter 62. At this time, the thin film solar cell module 10 is supported from both sides of the mounting portion 611 and the standing portion 612 by tilting and holding the pallet 61 so that the standing portion 612 side of the mounting portion 611 is lowered.
  • the thin film solar cell module 10 can be transported in a stable state. As a result, it is possible to simply unload to a high place such as a roof of a building such as a house or a rooftop.
  • FIG. 24 shows an example in which a back support 63 made of a corrugated metal plate having continuous peaks and valleys is attached to the back surface of the thin film solar cell module 10 with an adhesive.
  • the back support 63 is provided with a gap S3.
  • a terminal box attached to the back side of the thin film solar cell module 10 can be accommodated in the gap S3, and an output cable led out from the terminal box can be attached.
  • weather resistance such as a butyl adhesive
  • FIG. According to this example, the rigidity of the thin thin film solar cell module 10 can be increased, and the load performance can be improved.
  • FIG. 25 shows an example in which a ladder-like or substantially cross-shaped back support 64 is attached to the back surface of the thin-film solar cell module 10 with an adhesive.
  • the back support 64 is made of resin or metal, has a length substantially equal to two opposite long end portions of the thin-film solar cell module 10, and a pair of support pieces 641 that support the two opposite long end portions. And a pair of support pieces 642 that connect the pair of support pieces 641. Also according to this example, the rigidity of the thin thin film solar cell module 10 can be increased, and the load performance can be improved.
  • the back support 64 showed the example used as a ladder shape, you may comprise the back support 64 by X shape or square shape instead.
  • FIG. 26 shows an example of an attachment structure in which the thin-film solar cell module 10 is attached to the installation surface R1 via the mount 65.
  • the gantry 65 is a rod-like vertically long member, and an insertion groove 65a into which the thin-film solar cell module 10 can be inserted is provided at a side end, and the thin-film solar cell module 10 inserted by the insertion groove 65a.
  • One side end of the one side end is supported on the installation surface R1.
  • a sufficient space is provided in the back of the insertion groove 65a.
  • the drawn out output cable 10a (10b) can be accommodated and routed.
  • the gantry 65 is fixed to the installation surface R1.
  • the gantry 65 and the installation surface R1 are fixed with screws 66 in the through holes 65b provided in the gantry 65 in advance or at the construction site in accordance with the pitch interval of the rafter 67.
  • This is realized by a structure in which the screw 66 is inserted into the rafter 67 of the installation surface R1 while being inserted.

Abstract

【課題】様々な設置面や設置面に固定される取付部材に対し、可撓性を有する薄膜太陽電池モジュールを取り付けるのに適した取付構造であって、容易に且つ確実に取り付けを行うことができるものを提供することを目的とする。 【解決手段】可撓性を有する薄膜太陽電池モジュール10を、設置面R1や、設置面R1に固定される取付部材に取り付けた取付構造は、薄膜太陽電池モジュール10の裏面と設置面R1又は取付部材とが、接着剤3によって接着して取り付けられている。

Description

薄膜太陽電池モジュールの取付構造
 本発明は、可撓性を有する薄膜太陽電池モジュールを、所定の設置面又は取付部材に取り付ける構造に関する。
 従来、薄膜太陽電池モジュールとして、光吸収層に微結晶Si(Si:シリコン)やアモルファスSiを用いた薄膜Si系太陽電池モジュールや、光吸収層に化合物半導体を用いた化合物系薄膜太陽電池モジュール等が知られている。
 これらの薄膜太陽電池モジュールは、結晶系Si太陽電池モジュールと異なり、基板上に半導体薄膜が積層された構造からなる。
 また、一般的な薄膜太陽電池モジュールはガラス基板上に半導体薄膜を積層して形成されるが、この他にも金属基板や樹脂基板などのフレキシブルあるいは可撓性を有する基板上に半導体薄膜を積層して形成することもできる。
 上述したようなフレキシブルな基板を用いた薄膜太陽電池モジュールは、モジュール自体に可撓性を持たせることが可能である。このようなフレキシブルな薄膜太陽電池モジュールは、ガラス基板を用いた一般的な薄膜太陽電池モジュールに比べ、設置面を選ばないし、積雪等の荷重を受けた際でも、基板の可撓性ゆえに破損し難いといった特徴を有しており、ガラス基板を用いた一般的な薄膜太陽電池モジュールとはまた違った有用性を有している。
 しかしながら、可撓性を有する薄膜太陽電池モジュールは、可撓性を有するがゆえにその剛性が小さく、家屋の屋根や架台上への取り付けが難しいという問題を有していた。
 そこで、本発明は、様々な設置面や設置面に固定される取付部材に対し、可撓性を有する薄膜太陽電池モジュールを取り付けるのに適した取付構造であって、容易に且つ確実に取り付けを行うことができるものを提供することを目的とする。
 上記目的を達成するため、本発明に係る薄膜太陽電池モジュールの取付構造は、可撓性を有する薄膜太陽電池モジュールを、所定の設置面又は取付部材に取り付けた取付構造であって、上記薄膜太陽電池モジュールの裏面と上記設置面又は取付部材とが、接着材によって接着して取り付けられていることを特徴とする。
 また、上記接着材は、発泡性接着剤であるものとしてもよい。
 また、上記薄膜太陽電池モジュールと上記設置面又は取付部材との間には、少なくともその一部において、上記薄膜太陽電池モジュールと上記設置面又は取付部材との間に間隙を形成するためのスペーサが挟み込まれているものとしてもよい。
 また、上記薄膜太陽電池モジュールの裏面に、発電した電力を取り出すための端子箱が取り付けられていると共に、上記スペーサには、上記端子箱が嵌め込まれる凹部が設けられており、上記端子箱が、上記スペーサの凹部に嵌め込まれているものとしてもよい。
 本発明によれば、様々な設置面や設置面に固定される取付部材に対し、可撓性を有する薄膜太陽電池モジュールを容易に且つ確実に取り付けることができる。
本発明の実施形態に係る薄膜太陽電池モジュールの取付構造が適用される薄膜太陽電池モジュールを示した斜視図である。 本実施形態に係る薄膜太陽電池モジュールの取付構造の一例を示した側面図である。 本実施形態に係る薄膜太陽電池モジュールの取付構造において用いられるスペーサを示した図であって、(a)平面図、(b)側面図である。 本実施形態に係る薄膜太陽電池モジュールの取付構造の一例を示した側面図である。 本実施形態に係る薄膜太陽電池モジュールの取付構造において用いられるスペーサを示した斜視図である。 本実施形態に係る薄膜太陽電池モジュールの取付構造の一例を示した図であって、(a)側面図、(b)断面図である。 本実施形態に係る薄膜太陽電池モジュールの取付構造において用いられるスペーサを示した図であって、(a)平面図、(b)側面図である。 本実施形態に係る薄膜太陽電池モジュールの取付構造の一例を示した斜視図である。 本実施形態に係る薄膜太陽電池モジュールの取付構造において用いられる架台を示した図であって、(a)斜視図、(b)正面図である。 本実施形態に係る薄膜太陽電池モジュールの取付構造において、薄膜太陽電池モジュールの接続構造の一例を示した図であって、(a)平面図、(b)コネクタ同士の接続構造を示した斜視図である。 本実施形態に係る薄膜太陽電池モジュールの取付構造において、薄膜太陽電池モジュールの接続構造の一例を示した図であって、(a)平面図、(b)薄膜太陽電池モジュールの端子箱の形状を示した斜視図、(c)コネクタ同士の接続構造を示した平面図、(d)コネクタ同士の接続構造を示した平面図である。 本実施形態に係る薄膜太陽電池モジュールの取付構造の一例を示した図であって、(a)薄膜太陽電池モジュールと架台の接続構造を示した斜視図、(b)薄膜太陽電池モジュールと架台の接続構造を示した側面図である。 本実施形態に係る薄膜太陽電池モジュールの取付構造の一例を示した斜視図である。 本実施形態に係る薄膜太陽電池モジュールの取付構造において用いられるパネルの一例を示した斜視図である。 本実施形態に係る薄膜太陽電池モジュールの取付構造の一例を示した側面図である。 本実施形態に係る薄膜太陽電池モジュールの取付構造の一例を示した図であって、(a)平面図、(b)取り付けに用いられる金具を示した斜視図である。 本実施形態に係る薄膜太陽電池モジュールの取付構造の一例であって、(a)、(b)、(c)の三通りの変形例を示した側面図である。 本実施形態に係る薄膜太陽電池モジュールの取付構造の一例を示した側面図である。 本実施形態に係る薄膜太陽電池モジュールの取付構造の一例を示した斜視図である。 本実施形態に係る薄膜太陽電池モジュールの取付構造の一例を示した斜視図である。 本実施形態に係る薄膜太陽電池モジュールの取付構造の一例を示した図であって、(a)斜視図、(b)本例が適用される薄膜太陽電池モジュールの一例を示した平面図である。 本実施形態に係る薄膜太陽電池モジュールの取付構造の一例を示した図であって、(a)斜視図、(b)本例が適用される薄膜太陽電池モジュールの一例を示した平面図である。 本実施形態に係る薄膜太陽電池モジュールの取付構造が適用される薄膜太陽電池モジュールを輸送するのに好適なパレットを示した図であって、(a)斜視図、(b)薄膜太陽電池モジュールを積み重ねた側面図、(c)使用状態を示した側面図である。 本実施形態に係る薄膜太陽電池モジュールの取付構造の取付構造の一例を示した斜視図である。 本実施形態に係る薄膜太陽電池モジュールの取付構造の取付構造の一例を示した斜視図である。 本実施形態に係る薄膜太陽電池モジュールの取付構造の取付構造の一例を示した図であって、(a)架台に薄膜太陽電池モジュールを差し込む際の状態を示す斜視図、(b)架台に薄膜太陽電池モジュールを差し込んだ状態を示した斜視図、(c)架台に薄膜太陽電池モジュールを差し込んだ状態を示した側面図である。 本実施形態に係る薄膜太陽電池モジュールの取付構造の取付構造の一例において、架台と設置面との固定構造を示した斜視図である。
 本発明の実施形態に係る薄膜太陽電池モジュールの取付構造は、屋根等の設置面に対し、可撓性を有する薄膜太陽電池モジュールを取り付けるための構造である。
 図1は、本実施形態に係る薄膜太陽電池モジュールの取付構造が適用される薄膜太陽電池モジュールの一例を示している。
 薄膜太陽電池モジュール10は、光吸収層に微結晶Si(Si:シリコン)やアモルファスSiを用いた薄膜Si系太陽電池モジュール、あるいは光吸収層に化合物半導体を用いた化合物系薄膜太陽電池モジュール等、半導体薄膜を積層した太陽電池モジュールである。
 この薄膜太陽電池モジュール10は、可撓性を有する薄板状の金属や樹脂からなる基板上に、半導体薄膜を積層して形成されている。基板が可撓性を有することにより、モジュール自体に可撓性が持たせられている。
 薄膜太陽電池モジュール10の半導体薄膜に設けられた電極には、受光により発生した電力を外部に出力するためのリード線が取り付けられており、このリード線は一旦、薄膜太陽電池モジュール10の裏面側に取り付けられた端子箱101内に集約されている。さらに端子箱101からは、リード線と電気的に接続している正負の出力ケーブル10a、10bが導出されている。
 なお、本例における薄膜太陽電池モジュール10は長方形状に構成され、端子箱101は薄膜太陽電池モジュール10の裏面側において、長手方向の一端側に偏って取り付けられている。
 また、端子箱101は、細長く厚みの薄いものとした方が設置面に取り付けやすく、後述するスペーサの高さも低減できる。
 さらに、本例における端子箱101は、一の側端部から正負いずれかの極に接続した出力ケーブル10aが導出され、当該一の側端部と反対側の側端部から他方の極に接続した出力ケーブル10bが導出されている。かかる構造によれば、隣接する薄膜太陽電池モジュール10同士を接続する際、出力ケーブル10a、10bの配線が行いやすい。なお、これにかかわらず、一の側端部から正負の極に接続した一対の出力ケーブルが導出された端子箱が取り付けられた薄膜太陽電池モジュールについても、薄膜太陽電池モジュール10として、以下で説明する実施例の適用が可能である。
 図2は、棟側から軒側に向かって傾斜した屋根を設置面R1として、この設置面R1に薄膜太陽電池モジュール10を設置した取付構造の例を示している。
 薄膜太陽電池モジュール10は、長手方向と設置面R1の傾斜方向とが平行になると共に、裏面側の端子箱101が軒側に位置するように設置されている。この薄膜太陽電池モジュール10は、裏面側に端子箱101が設置されている軒側の一部を除き、設置面R1に直接、接着剤3によって接着して取り付けられている。
 ここで、薄膜太陽電池モジュール10と設置面R1とを接着する接着剤3には例えば、ウレタンフォーム等の発泡性接着剤等が用いられる。
 薄膜太陽電池モジュール10と設置面R1の接着に接着剤3を用いることにより、接着剤3が硬化するまでの間、薄膜太陽電池モジュール10の取付位置を微調整しながら決めることが可能であり、施工が簡便になる。また、設置面R1である屋根の垂木位置に関係なく設置できることから、様々な屋根に対応することができる。また、接着剤3による設置により、従来必要であった固定金具を留めるためのレンチ等の特殊な工具が不要となる。
 また、取り付けに接着剤3を用いることにより、薄膜太陽電池モジュール10を設置面R1である屋根に設置する際、屋根の棟側から軒側に向かって順に設置していくことができ、施工の安全性を向上させることができる。即ち、設置面R1である屋根に薄膜太陽電池モジュール10を設置する際、一般的な架台を使用した施工では、傾斜した屋根の軒側から棟側に向かって薄膜太陽電池モジュール10を設置していくため、作業者は設置する薄膜太陽電池モジュール10の棟側に立って作業を行わなければならず、軒側へ前のめりになって危険な場合があったが、棟側に立つ必要がなくなり安全である。
 また、設置面R1に対して薄膜太陽電池モジュール10を接着剤3で直接接着させるため、架台等の重量が設置面R1にかかることがないし、薄膜太陽電池モジュール10上に雪が積もったとしても、積雪による荷重を設置面R1が支えることになるため荷重性能を向上させられる。
 また、接着剤3による取り付けでは、薄膜太陽電池モジュール10の固定のために設置面R1である屋根にネジやビス用の穴を開けることが不要となるため、雨漏り等のリスクを防止することができる。
 また、接着剤3として発泡性接着剤を用いることで、設置面R1の形状、特に表面の歪みや撓みといった凹凸形状に追従させることができ、これにより、このような設置面R1の凹凸形状による隙間を接着剤3で埋めて接着性を向上させることができる。加えて、薄膜太陽電池モジュール10自体が可撓性を有するため、設置面R1の不陸に追従させることが容易となり、従来必要であった不陸調整、即ち、架台を設置面R1の不陸に合わせて高さ調整することが不要であるし、曲面にも薄膜太陽電池モジュール10を設置することが可能となる。
 また、薄膜太陽電池モジュール10を設置した後においても、固化した発泡性接着剤からなる接着剤3をワイヤーなどで切断したり、アセトンなどの有機溶剤を塗布して溶かしたりして、薄膜太陽電池モジュール10を設置面R1から簡便に取り外すことができる。
 また、接着剤3によって薄膜太陽電池モジュール10の出力ケーブル10a、10bを固定することも可能である。
 さらに、発泡性接着剤はシリコーン系接着剤と異なり、一度剥がした後でも再接着が可能であり、薄膜太陽電池モジュール10の取り換えも容易である。また、発泡性接着剤は塩害によって腐食することがないため、塩害地域にも薄膜太陽電池モジュール10を設置することが可能となる。
 設置面R1に対する薄膜太陽電池モジュール10の取り付けに際し、薄膜太陽電池モジュール10の端子箱101が取り付けられている裏面の軒側は、設置面R1との間にスペーサ21を挟んだ状態で、接着剤3によって接着して取り付けられている。
 ここで、スペーサ21は図3に示されるように、略直角三角形を底面とした略三角柱の楔形状からなり、好適には発泡性樹脂等の軽量な樹脂からなるが、その他の樹脂や金属からなるものであってもよい。
 このスペーサ21は、薄膜太陽電池モジュール10が接着される上面側が、緩やかに立ち上がるカーブを描いた曲面を形成しており、接着される薄膜太陽電池モジュール10が折曲しないようになっている。なお、スペーサ21の上面を曲面で形成する代わりに、曲がりのない平面で形成してもよい。
 また、このスペーサ21には、薄膜太陽電池モジュール10の出力ケーブ10a、10bをはわせたり、端子箱101を嵌め込んだりするための溝状の凹部21aが上面側に設けられている。この凹部21aは少なくとも、端子箱101が嵌まり込むスペースを有しており、凹部21aの側端部は、出力ケーブル10a、10bを外部へ導出可能に開放されている。
 薄膜太陽電池モジュール10を設置面R1に接着剤3で取り付ける際は、薄膜太陽電池モジュール10の端子箱101が取り付けられている裏面の軒側にスペーサ21が挟み込まれ、スペーサ21の凹部21a内に端子箱101と出力ケーブル10a、10bが収められる。
 そして、スペーサ21と設置面R1の間、スペーサ21と薄膜太陽電池モジュール10の間に接着剤3が塗布され、必要に応じて、端子箱101や出力ケーブル10a、10bが収められた凹部21a内に接着剤3が充填される。
 このように、接着剤3によりスペーサ21を介して設置面R1に接着された薄膜太陽電池モジュール10は、端子箱101や出力ケーブル10a、10bがスペーサ21の凹部21a内に収められている。これにより、端子箱101や出力ケーブ10a、10bが設置面R1に接し、設置面R1からの熱や振動の影響を直接的に受けてしまったり、設置面R1をつたう雨水等に浸かってしまったりするといった不具合を防ぐことができる。
 次に、図4は、上述したスペーサ21の変形例に係るスペーサ22による薄膜太陽電池モジュール10の取付構造を示している。
 スペーサ22はスペーサ21と同様、薄膜太陽電池モジュール10の軒側と設置面R1の間に挟み込まれ、薄膜太陽電池モジュール10及び設置面R1とが接着剤3によって接着されている。
 ここで、スペーサ22は図5に示されるように、スペーサ21よりも奥行が浅く、全体が所定の高さを有した略台形形状からなる。
 なお、このスペーサ22はスペーサ21と同様、好適には発泡性樹脂等の軽量な樹脂からなるが、その他の樹脂や金属からなるものであってもよい。
 このようなスペーサ22の形状により、薄膜太陽電池モジュール10を設置面R1に接着剤3で取り付けた際は、スペーサ22の棟側において、薄膜太陽電池モジュール10と設置面R1との間に間隙S1が設けられる。
 この間隙S1には、薄膜太陽電池モジュール10の裏面側に取り付けられた端子箱101や出力ケーブル10a、10bを収めることができ、この間隙S1から出力ケーブル10a、10bを外部へ導出することができる。
 次に、図6は、上述したスペーサ21の他の変形例に係るスペーサ23による薄膜太陽電池モジュール10の取付構造を示している。
 スペーサ23はスペーサ21と同様、薄膜太陽電池モジュール10の軒側と設置面R1の間に挟み込まれ、薄膜太陽電池モジュール10及び設置面R1とが接着剤3によって接着されている。
 ここで、スペーサ23は図7に示されるように、スペーサ22と同様に、スペーサ21よりも奥行が浅く、全体が所定の高さを有した略台形形状からなる。また、このスペーサ23には、端子箱101を嵌め込むことのできる凹部23aが上面側の中央付近に設けられている。この凹部23aの棟側は、出力ケーブル10a、10bを外部へ導出可能に開放されている。
 なお、このスペーサ23もスペーサ21と同様、好適には発泡性樹脂等の軽量な樹脂からなるが、その他の樹脂や金属からなるものであってもよい。
 このようなスペーサ23の形状により、薄膜太陽電池モジュール10を設置面R1に接着剤3で取り付けた際は、スペーサ23の棟側において、薄膜太陽電池モジュール10と設置面R1との間に間隙S2が設けられる。
 この間隙S2には、凹部23aに嵌め込まれた端子箱101から導出された出力ケーブル10a、10bを収めることができ、この間隙S2から出力ケーブル10a、10bを外部へ導出することができる。
 次に、設置面に対し、所定の取付部材を介して薄膜太陽電池モジュールを取り付けた取付構造を説明する。
 図8は、設置面R1に対し、架台41を介して薄膜太陽電池モジュール10を取り付けた例を示している。
 架台41は、薄膜太陽電池モジュール10を設置面上に取り付けるための取付部材であり、縦材411、412から構成され、設置面上に接着剤で接着されると共に、上面に薄膜太陽電池モジュール10が取り付けられる。なお、縦材411、412を設置面R1上に取付ける際、接着剤の代わりにネジ等で固定してもよい。また、この架台41の材質は、金属からなるものであってもよいが、樹脂(発泡性樹脂等)からなる方が塩害にも強く好ましい。
 縦材411、412はいずれも長尺の棒状部材であって、傾斜を有する設置面に対しては、傾斜方向あるいは水流れ方向と長さ方向とが平行となるように設置されことが好ましい。
 この縦材411、412を一定のピッチ間隔で、その長さ方向が水流れ方向と平行になるように配置することで、縦材411、412間に空隙が形成され、雨水などがこの空隙を通って流れ、排水が容易となる。
 また、縦材411には、水下側の一端部近傍に凹部411aが設けられている。この凹部411aには、薄膜太陽電池モジュール10の端子箱101を嵌め込むことができる。
 このように、端子箱101を嵌め込むことのできる凹部411aを縦材411に設けることで、この凹部411aが薄膜太陽電池モジュール10を配置する際の基準位置となり、施工が簡便となる。
 なお、凹部411aのみならず、架台41にさらに、出力ケーブル10a、10bを通すための凹部を設けてもよい。
 次に、図9は、上述した架台41の変形例に係る架台42を示している。
 架台42は架台41と同様、薄膜太陽電池モジュール10を設置面上に取り付けるための取付部材である。この架台42は、長尺の棒状部材である複数の縦材421と、縦材421間に架け渡された平板状のパネル422から構成され、設置面上に接着剤で接着されると共に、縦材421の上面に薄膜太陽電池モジュール10が取り付けられる。なお、縦材421を設置面R1上に取付ける際、接着剤の代わりにネジ等で固定してもよい。さらに、この架台42の材質は、金属からなるものであってもよいが、樹脂(発泡性樹脂等)からなる方が塩害にも強く好ましい。
 前述の縦材411、412と同様、複数の縦材421は一定のピッチ間隔で、その長さ方向が水流れ方向と平行になるように配置されている。これによって縦材421間に空隙が形成され、雨水などがこの空隙を通って流れ、排水が容易となっている。
 複数の縦材421間に架け渡されたパネル422は、縦材421の長さの略半分の長さからなり、メッシュ状の間隙を有している。このパネル422は例えば、金網や、ドット状に孔が開けられた金属板や樹脂からなる平板によって構成される。
 また、このパネル422は一対の縦材421間において、一の縦材421の幅方向の中央部分に一端が取り付けられ、他の縦材421の幅方向の中央部分に他端が取り付けられている。これによりパネル422は、設置面から一定の高さの位置に浮いた状態に維持されている。
 また、パネル422は、縦材421の水下側に偏って取り付けられてもよい。この変形例として、パネル422が縦材421間の全面に渡って配置される構成であってもよい。
 このパネル422により、その上面側に薄膜太陽電池モジュール10の出力ケーブル10a、10bを収め、適宜クリップ等で固定することができ、これにより、出力ケーブル10a、10bが設置面に当接することを防止し、結果、出力ケーブル10a、10bが設置面を流れる雨水等に浸かることを防ぐことができる。その一方で、下面側は雨水等の排水路とすることができる。また、パネル422にメッシュ状の間隙が形成されているため、通気性がよく、薄膜太陽電池モジュール10の放熱に資する。
 また、縦材421の水下側に偏って取り付けられているため、水上側の縦材421間には遮るものがない。そのため、水上側から薄膜太陽電池モジュール10の施工を行う作業者はこのスペースを利用することができるため、作業しやすく便利である。
 次に、本実施形態に係る薄膜太陽電池モジュールの取付構造において、薄膜太陽電池モジュール同士を接続する構造の一例について説明する。
 図10は、複数の薄膜太陽電池モジュール11同士を接続する構造の一例を示している。
 薄膜太陽電池モジュール11は、薄膜太陽電池モジュール10と同様、半導体薄膜を積層し、可撓性を有する太陽電池モジュールである。
 薄膜太陽電池モジュール11の半導体薄膜に設けられた正負の電極には夫々、正負のリード線が取り付けられており、さらにこの正負のリード線は、薄膜太陽電池モジュール11の両側端に取り付けられた端子箱111、112に別々に接続している。
 また、端子箱111、112には夫々、互いと雌雄嵌合可能な雄型又は雌型のコネクタ111a、112aが設けられており、各コネクタ111a、112aには夫々、正極又は負極に接続したリード線が電気的に接続している。これにより、コネクタ111a、112aは夫々、正又は負の接続端子として構成され、雌雄嵌合することによって電気的に接続される。
 薄膜太陽電池モジュール11が備える上記の構成により、複数の薄膜太陽電池モジュール11を設置する際には、各薄膜太陽電池モジュール11を所定の位置に連設させることによって、隣接する薄膜太陽電池モジュール11のコネクタ111a、112a同士を接続することが可能となり、施工が容易である。
 また、出力ケーブルを用いていないため、出力ケーブルを収めるスペースや、出力ケーブルと設置面との接触等を懸念する必要もない。
 なお、薄膜太陽電池モジュール11の設置面への取り付けに関しては、設置面に上述した接着剤3を使用して直接取り付けてもよいし、架台を介して取り付けてもよい。
 次に、図11は、複数の薄膜太陽電池モジュール12同士を接続する構造の別の例を示している。
 薄膜太陽電池モジュール12は、薄膜太陽電池モジュール11と同様、両側端に正極又は負極に接続した端子箱121が取り付けられている。両側端に取り付けられた端子箱121は、正極又は負極のいずれに接続しているかによらず同一の構造からなり、両側端部には、端子箱121同士を連結する連結コネクタ122や連結ケーブル123が接続する雌型のコネクタ121aが設けられている。
 ここで、連結コネクタ122には、所定の間隔をあけて同じ向きに向いた一対の雄型のコネクタが設けられており、いずれのコネクタも、端子箱121の雌型のコネクタ121aと雌雄嵌合可能に構成されている。また、連結ケーブル123の両端に設けられたコネクタも雄型形状からなり、いずれも端子箱121の雌型のコネクタ121aと雌雄嵌合可能に構成されている。なお、図11に示す実施例では、端子箱121に設けられるコネクタ121aを雌型のコネクタとしたが、これに代わり、端子箱121が雄型のコネクタを設け、連結コネクタ122および連結ケーブル123の方が雌型のコネクタを備える構成であってもよい。さらには、薄膜太陽電池モジュール11が備える正極と負極の夫々が、雄型と雌型のコネクタを備える構成であってもよい。
 薄膜太陽電池モジュール12同士を幅方向に直列接続する場合には、図11(c)に示されるように、一の薄膜太陽電池モジュール12の端子箱12の正極のコネクタ121aと、隣接する他の薄膜太陽電池モジュール12の端子箱12の負極のコネクタ121aとを連結コネクタ122によって接続する。この際、連結コネクタ122によって接続する一対の薄膜太陽電池モジュール12のコネクタ121aは、同じ向きのもの同士を接続し、他の向きのコネクタ121aにはキャップ等を被せるとよい。
 他方、薄膜太陽電池モジュール12同士を縦方向に並列接続する場合も、図11(d)に示されるように、一の薄膜太陽電池モジュール12の端子箱121の正極又は負極のコネクタ121aと、隣接する他の薄膜太陽電池モジュール12の端子箱121の同極性のコネクタ121aとを連結ケーブル123によって接続する。この際、連結ケーブル123によって接続する一対の薄膜太陽電池モジュール12のコネクタ121aは、互いに向き合うもの同士を接続するとよい。
 この例によれば、正極又は負極用途それぞれに別構造の端子箱121を用意する必要がない。また、連結ケーブル123の長さは薄膜太陽電池モジュール12の寸法によって決定され、薄膜太陽電池モジュール12の設置場所に依存することがないため、予め所定の長さの連結ケーブル123を準備することが可能となり、連結ケーブル123のダブつきを抑えることができる。
 次に、設置面に対し、所定の取付部材を介して薄膜太陽電池モジュールを取り付ける構造の別の例について説明する。
 図12は、架台43によって、複数の薄膜太陽電池モジュール13同士を接続すると共に、設置面R1に薄膜太陽電池モジュール13を取り付ける構造の一例を示している。
 薄膜太陽電池モジュール13は、半導体薄膜を積層し、可撓性を有する太陽電池モジュールである。薄膜太陽電池モジュール13の半導体薄膜に設けられた正負の電極には夫々、正負のリード線が取り付けられており、さらにこの正負のリード線は、薄膜太陽電池モジュール13の長さ方向の端部に取り付けられた一対のコネクタ131に別々に接続している。
 架台43は、棒状の縦長部材であって、所定のネジや金具等によって設置面R1上に固定されると共に、薄膜太陽電池モジュール13が取り付けられる部材である。
 この架台43には、一側端部に、薄膜太陽電池モジュール13のコネクタ131が差し込まれるコネクタ431が設けられている。また、コネクタ431が設けられている側端部と反対側の側端部には、薄膜太陽電池モジュール13の側端部が差し込まれる差込溝43aが設けられている。
 ここで、薄膜太陽電池モジュール13のコネクタ131と架台43のコネクタ431とは、一方が雄型、他方が雌型の嵌合構造を有しており、互いと雌雄嵌合することによって電気的に接続可能となるように構成されている。
 また、架台43の内部には配線が施されており、コネクタ431と電気的に接続したリード線等は、架台43の外部や隣接する他の架台43の配線に導出あるいは接続することができるようになっている。
 また、薄膜太陽電池モジュール13の側端部のうち、コネクタ131が設けられている側と反対側の側端部は、薄膜太陽電池モジュール13が架台43に取り付けられる際、差込溝43aに差し込まれる。
 このような架台43により、薄膜太陽電池モジュール13を設置面R1に取り付ける場合にはまず、図12(b)に示されるように、一定のピッチで複数の架台43を設置面R1に設置しておいてから、薄膜太陽電池モジュール13の一端側について、コネクタ131を架台43のコネクタ431に接続する。さらに他端側について、コネクタ131を差込溝431に差し込む。なお、隣接する架台43間において、薄膜太陽電池モジュール13と設置面R1の間は、接着剤3によって接着するとよい。
 これにより、薄膜太陽電池モジュール13の一端を架台43の差込溝43aに差し込むと共に、薄膜太陽電池モジュール13の1コネクタ131と、架台43のコネクタ431とを接続するだけで、薄膜太陽電池モジュール13の配線と、設置面R1への設置を一度に行うことができ、便利である。
 なお、本例においては、薄膜太陽電池モジュール13の正負の電極と電気的に接続した一対のコネクタ131を、薄膜太陽電池モジュール13の一の側端部側にまとめて設けたが、一の側端部と、当該一の側端部の反対側の側端部に分けて設けてもよい。この場合には、架台43の一の側端部と、当該一の側端部の反対側の側端部夫々に、コネクタ131に対応したコネクタ431を設ける。
 また、薄膜太陽電池モジュール13と架台43のコネクタ131とコネクタ431による接続を強固にするため、コネクタ131、及びこれに対応するコネクタ431の数を増やしてもよい。
 次に、設置面に対し、所定の取付部材を介して薄膜太陽電池モジュールを取り付けた取付構造の別の例を説明する。
 図13は、地上や屋上といった平坦な設置面R2に対し、架台44を介して薄膜太陽電池モジュール10を取り付けた例を示している。
 設置面R2上に設置される架台44は、設置面R2上に起立する縦長の支柱441、442と、支柱441、442間を繋ぐ縦材443と、縦材443間に架け渡された平板状の支持板444とからなる。
 支柱441は、支柱442よりも低く、架台44は全体として、支柱442から支柱441側へ低くなるように傾斜していることが好ましい。
 支持板444は、少なくとも上面側に取り付けられる薄膜太陽電池モジュール10の幅以上の幅を有する一方、薄膜太陽電池モジュール10の長さよりも短い長さからなる。また、この支持板444は、一定のピッチ間隔で設けられている。
 なお、支持板444は、金網等のメッシュパネルで構成してもよい。
 薄膜太陽電池モジュール10は、支持板444上に接着剤によって接着して取り付けられるが、架台44の傾斜に沿って水下側が支持板444からはみ出した状態に接着される。即ち、支持板444の長さが薄膜太陽電池モジュール10の長さよりも短く、支持板444同士が離間して設けられているため、水下側の端部は宙に浮いた状態となる。
 このように、薄膜太陽電池モジュール10の水下側の端部が宙に浮いた状態にすることで、薄膜太陽電池モジュール10上に雪が積もった場合でも、架台44の傾斜に応じて雪が水下側に滑り落ちると共に、当該宙に浮いた水下側の端部が屈曲し、薄膜太陽電池モジュール10上に積もった雪を地上に落とすことができる。
 なお、上述した支持板444は、図14に示されるように、所定の厚みを有し、一の側端部に設けられた通水孔444aから他の側端部に設けられた通水路444aに水を流すことのできる通水路444bが設けられたものであってもよい。
 この通水路444bに通水することで、薄膜太陽電池モジュール10を冷却することができる。
 次に、壁面等の設置面に対し、所定の取付部材を介して薄膜太陽電池モジュールを取り付けた取付構造の例について説明する。
 図15は、垂直又は傾斜する設置面R3としての壁面に対し、薄膜太陽電池モジュール10を取り付けた例を示している。
 薄膜太陽電池モジュール10は、設置面R3に対し、接着剤3で接着して取り付けられていると共に、上下端がレール45によって固定されている。
 レール45は、縦長の棒状部材であって、薄膜太陽電池モジュール10が差し込まれる差込溝45aを両側端部に有している。
 なお、このレール45は、設置面R3に対し、接着剤で接着してもよいし、ネジ等の金具を用いて固定してもよい。
 薄膜太陽電池モジュール10を設置面R3に取り付ける場合には、予め一対のレール45を薄膜太陽電池モジュール10の長さだけ離間させて設置面R3に取り付けておくと共に、設置面R3に接着剤3を塗布しておく。そして、一のレール45の差込溝45aに薄膜太陽電池モジュール10の一端を差し込んでから、薄膜太陽電池モジュール10を撓ませ、他端を他のレール45の差込溝45aに差し込む。
 このように、接着剤3のみならず、レール45によって上下から薄膜太陽電池モジュール10を固定することで、薄膜太陽電池モジュール10が設置面R3からずり落ちるのを防止することができる。
 次に、図16は、設置面R1に対し、薄膜太陽電池モジュール10を取り付けた取付構造の別の例を示している。
 この例では、設置面R1に対し、薄膜太陽電池モジュール10を接着剤3で接着した上、金具46で固定する。
 金具46は、図16(b)に示されるように矩形状の金属板であって、中央にビス孔46aが設けられた、両側端部には薄膜太陽電池モジュール10の表面に咬止する一対の咬止爪46bが設けられている。なお、一般的な太陽電池モジュールの場合は表面保護材としてガラス板が用いられるため、咬止爪46bで表面を咬止させることはできないが、薄膜太陽電池モジュール10に可撓性を付与するために表面保護材に樹脂性の透明板が用いられていれば、このような表面保護材には咬止爪46bを咬止させることができる。
 薄膜太陽電池モジュール10を設置面R1に設置する際には、設置面R1に対して薄膜太陽電池モジュール10を接着剤3で接着した上、設置面R1に接着された一対の薄膜太陽電池モジュール10の間に金具46を取り付ける。金具46の取り付けにおいては、金具46が備える一対の咬止爪46bを夫々、隣接する薄膜太陽電池モジュール10の端部表面に咬止させる。そして、ビス47をビス孔46aに挿通させて設置面R1に固定させる。
 このように、接着剤3のみならず、金具46を用いて薄膜太陽電池モジュール10を設置面R1に固定することで、より強固に薄膜太陽電池モジュール10を設置面R1に設置することが可能となる。さらには、接着剤3を用いず、金具46のみで薄膜太陽電池モジュール10を設置面R1に設置する構成も可能である。
 次に、図17は、地上や屋上といった平坦な設置面R2に対し、所定の取付部材を介して薄膜太陽電池モジュール10を取り付けた別の例を示している。
 所定の取付部材である構造体51、52、53は、薄膜太陽電池モジュール10を設置面上に取り付けるための取付部材であって、夫々、別の例である。この構造体51、52、53はいずれも、コンクリート等の一定の重量を有する材質からなり、設置面R2上に載置され、上面に薄膜太陽電池モジュール10が取り付けられる。
 図17(a)に示される構造体51は、略U字形状からなり、設置面R2上に載置される基底部511と、基底部511の両側端から上方に屈曲して延びる支持部512、513とからなり、支持部512、513の上面は夫々、薄膜太陽電池モジュール10を取り付けるための取付面512a、513aを構成する。
 なお、構造体51は、取付面512a、513a上に薄膜太陽電池モジュール10を支持するのに必要な一定の幅を有し、例えば、薄膜太陽電池モジュール10の幅と同じ幅を有している。
 支持部512は支持部513よりも低く、また、取付面512a、513aは支持部512、513の高低差に即し、支持部513側から支持部512側に向かって低くなる傾斜面を構成している。
 構造体51を用いて設置面R2上に薄膜太陽電池モジュール10を設置する場合には、取付面512a、513a上に、薄膜太陽電池モジュール10を接着剤3によって接着して取り付ける。支持部512、513が高低差を有し、取付面512a、513aが傾斜面であることから、取付面512a、513a上に取り付けられた薄膜太陽電池モジュール10は、支持部513側から支持部512側へ向かって低くなるように傾斜する。
 この構造体51は一定の重量を有しているため、風等の影響にかかわらず、設置面R2上に薄膜太陽電池モジュール10を設置することができる。また、支持部512、513の高低差や取付面512a、513aの傾斜によって、太陽光の受光に適した角度となるよう、薄膜太陽電池モジュール10を斜めに設置することができる。
 図17(b)に示される構造体52は、略U字形状からなり、設置面R2上に載置される基底部521と、基底部521の両側端から上方に屈曲して延びる支持部522、523とからなり、支持部522、523の上面は夫々、薄膜太陽電池モジュール10を取り付けるための取付面522a、523aを構成する。
 なお、構造体52も構造体51と同様、取付面522a、523a上に薄膜太陽電池モジュール10を支持するのに必要な一定の幅を有し、例えば、薄膜太陽電池モジュール10の幅と同じ幅を有している。
 支持部522は支持部523よりも高く、また、取付面522a、523aは、支持部523側から支持部522側に向かって低くなる傾斜面を構成している。
 構造体52を用いて設置面R2上に薄膜太陽電池モジュール10を設置する場合には、複数の構造体52を一定のピッチ間隔で設置面R2上に配設し、隣接する構造体52のうち、一の構造体52の取付面522aに薄膜太陽電池モジュール10の一端側を取り付け、他の構造体52の取付面523aに薄膜太陽電池モジュール10の他端側を取り付ける。
 なお、薄膜太陽電池モジュール10は、取付面522a、523a上に接着剤3によって接着して取り付けられる。
 構造体52においても、支持部522、523が高低差を有し、取付面522a、523aが傾斜面であることから、取付面522a、523a上に取り付けられた薄膜太陽電池モジュール10は、隣接する構造体52のうちの一の構造体52の支持部513側から、他の構造体52の支持部512側へ向かって低くなるように傾斜する。
 この構造体52により、薄膜太陽電池モジュール10の長さによらず、薄膜太陽電池モジュール10の端部を支持した状態で、薄膜太陽電池モジュール10を設置面R2に設置することができる。そのため、薄膜太陽電池モジュール10の端部が撓んだりするのを防ぐことができる。
 図17(c)に示される構造体53は、略W字形状からなり、設置面R2上に載置される一対の基底部531、532と、基底部531から斜め上方に延びる支持部533と、両基底部531、532から一体的に上方に延びる支持部534と、基底部532から斜め上方に延びる支持部535とからなり、支持部533、534、535の上面は夫々、薄膜太陽電池モジュール10を取り付けるための取付面533a、534a、535aを構成する。
 なお、構造体53も構造体51と同様、取付面533a、534a、535a上に薄膜太陽電池モジュール10を支持するのに必要な一定の幅を有し、例えば、薄膜太陽電池モジュール10の幅と同じ幅を有している。
 支持部535、534、533はこの順に低くなるように構成されており、また、取付面533a、534a、535aは支持部533、534、535の高低差に即し、支持部535側から支持部533側に向かって低くなる傾斜面を構成している。
 構造体53を用いて設置面R2上に薄膜太陽電池モジュール10を設置する場合には、取付面533a、534a、535a上に、薄膜太陽電池モジュール10を接着剤3によって接着して取り付ける。支持部533、534、535が高低差を有し、取付面533a、534a、535aが傾斜面であることから、取付面533a、534a、535a上に取り付けられた薄膜太陽電池モジュール10は、支持部535側から支持部533側へ向かって低くなるように傾斜する。
 この構造体53により、薄膜太陽電池モジュール10の端部付近のみならず、中央部分も支持することができるので、薄膜太陽電池モジュール10が中央に向かって撓むのを防ぎ、まっすぐな状態に保つことができる。
 次に、図18は、折板屋根54、特にハゼ(馳)式折板屋根に薄膜太陽電池モジュール10を取り付けた取付構造の例を示している。
 本例における設置面としての折板屋根54は、山部541と谷部542が交互に連続した波型形状の鋼板からなる折板本体をタイトフレーム上に固定したものである。
 この折板屋根54に薄膜太陽電池モジュール10を取り付ける場合、折板屋根54の山部541に薄膜太陽電池モジュール10を渡設する。この際、薄膜太陽電池モジュール10と山部541の接触箇所には接着剤3を塗布しておき、薄膜太陽電池モジュール10と折板屋根54とを接着させる。
 この際、山部541あるいはハゼ部541aのピッチよりも、薄膜太陽電池モジュール10の幅が大きい場合は、薄膜太陽電池モジュール10の中央部分が上方に持ち上げられるように薄膜太陽電池モジュール10を湾曲させて設置してもよい。
 このように湾曲させて設置することで、薄膜太陽電池モジュール上の排水性を向上させることが可能となり、さらに、薄膜太陽電池モジュール10の裏面に空間が形成され、この空間によって、薄膜太陽電池モジュール10の裏面の通気性を向上させ、薄膜太陽電池モジュール10の過熱を防いだりすることができる。
 なお、本例では折板屋根に対して薄膜太陽電池モジュール10を湾曲させて設置する構造を示したが、薄膜太陽電池モジュール10を湾曲させて取り付ける構造については、折板屋根だけでなく、スレート葺屋根や瓦屋根等、他のタイプの家屋の屋根にも適用することができる。
 次に、上述した接着剤とは異なる接着手段によって、薄膜太陽電池モジュールを設置面に取り付ける構造について説明する。
 図19は、屋根等の設置面R1に対し、両面テープ55を用いて薄膜太陽電池モジュール10を接着して取り付けた例を示す。
 本例では、薄膜太陽電池モジュール10の裏面あるいは設置面R1のいずれか又は双方に、テープの両面に接着剤が塗布された両面テープ55を接着させておき、この両面テープ55によって薄膜太陽電池モジュール10を設置面R1に接着して取り付ける。
 本例によれば、設置面R1に容易に薄膜太陽電池モジュール10を取り付けることができる。
 上述した接着剤とは異なる接着手段によって、薄膜太陽電池モジュールを設置面に取り付ける構造の別の例について説明する。
 図20は、設置面R1に対し、両面ファスナ56を用いて薄膜太陽電池モジュール10を取り付けた例を示す。
 本例では、薄膜太陽電池モジュール10の裏面に、ループ状に密集して起毛されたループ面からなる面ファスナ561を取り付けられており、設置面R1の表面に、フック上に起毛されたフック面からなる面ファスナ562が取り付けられている。なお、薄膜太陽電池モジュール10の裏面又は設置面R1に対する面ファスナ561、562の取り付けは夫々、接着剤による接着やタッカーによる固定等、各種の手段によることができる。
 そして、面ファスナ561、562同士を係合させることにより、設置面R1に薄膜太陽電池モジュール10を取り付けることができる。
 なお、本例にかかわらず、薄膜太陽電池モジュール10の裏面に、フック上に起毛されたフック面からなる面ファスナ562を取り付け、設置面R1の表面に、ループ状に密集して起毛されたループ面からなる面ファスナ561を取り付けるものとしてもよい。
 本例によれば、設置面R1に対し、薄膜太陽電池モジュール10を係脱自在に取り付けることができるため、必要に応じて薄膜太陽電池モジュール10を外したり、付け替えたりすることができ、便利である。
 次に、上述した接着剤とは異なる接着手段によって、薄膜太陽電池モジュールを設置面に取り付ける構造のさらに別の例について説明する。
 図21は、設置面R1に対し、タッカー等を用いて薄膜太陽電池モジュール14を取り付けた例を示す。
 本例における薄膜太陽電池モジュール14は、図21(b)に示されるように、半導体薄膜が積層され、受光により発電する発電領域141の周囲に、非発電領域142が形成されている。
 この薄膜太陽電池モジュール14を設置面R1に取り付ける場合には、薄膜太陽電池モジュール14を設置面R1に載置した上、タッカー等を用い、非発電領域142と設置面R1を貫いて鋲57を打ち込む。
 これにより、発電領域141に影響を及ぼすことなく、薄膜太陽電池モジュール14を簡易に設置面R1に取り付けることができる。
 なお、本例にかかわらず、タッカー等を用いた鋲による取り付けに代えて、非発電領域142にビスや釘等を打ち込んで取り付けてもよい。
 次に、上述した非発電領域を利用した薄膜太陽電池モジュールの取付構造の変形例について説明する。
 図22は、設置面R1に対し、ワイヤー58を用いて薄膜太陽電池モジュール15を取り付けた例を示す。
 本例における薄膜太陽電池モジュール15は上述した薄膜太陽電池モジュール14と同様、図22(b)に示されるように、半導体薄膜が積層され、受光により発電する発電領域151の周囲に、非発電領域152が形成されている。一方で、薄膜太陽電池モジュール14と異なり、予めワイヤー58を通すための貫通孔152aが非発電領域152の両側端部に複数、形成されている。
 この薄膜太陽電池モジュール15を設置面R1に取り付ける場合には、予め、設置面R1にもワイヤー58を通すための貫通孔を形成する。そして、薄膜太陽電池モジュール15を設置面R1に載置した上、設置面R1に設けた貫通孔と、薄膜太陽電池モジュール10の非発電領域152に形成された貫通孔152aにワイヤー58を通す。さらに、ワイヤー58の両端を設置面R1に固定する。ワイヤー58の両端の固定は例えば、設置面R1へのネジ止めや、設置面R1に設けたアンカーへの取り付けによることができる。
 本例によってもやはり、発電領域151に影響を及ぼすことなく、薄膜太陽電池モジュール15を簡易に設置面R1に取り付けることができる。
 次に、薄膜太陽電池モジュールの輸送形態として好適な例を説明する。
 図23は、薄膜太陽電池モジュール10、特に複数の薄膜太陽電池モジュール10を輸送するのに好適なパレット61、及びパレット61による薄膜太陽電池モジュール10の輸送形態を示している。
 図23(a)に示されるように、パレット61はL字形状からなり、積み重ねられた複数の薄膜太陽電池モジュール10が載置される載置部611と、載置部611の一側端部から直角に立設した立設部612とからなる。
 なお、本例におけるパレット61は、棒状の枠材を組んで設けられているが、木製あるいは金属製等の平板を複数、組んで設けたものでもよいし、金属製の平板を直角に屈曲させて設けたものでもよい。
 パレット61を用いて複数の薄膜太陽電池モジュール10を輸送する場合にはまず、図23(b)に示されるように、載置部611上に複数の薄膜太陽電池モジュール10を積み重ねる。
 そして、図23(c)に示されるように、リフター62でパレット61ごと輸送する。この際、載置部611の立設部612側が低くなるようにパレット61を傾けて保持することで、複数の薄膜太陽電池モジュール10は載置部611と立設部612の両面から支持され、安定した状態で薄膜太陽電池モジュール10を輸送することができる。
 これにより、家屋等の建物の屋根や屋上などの高所にも簡便に荷揚げすることができる。
 次に、本実施形態に係る薄膜太陽電池モジュールの取付構造において、薄膜太陽電池モジュールの剛性を高めるための構造の例について説明する。
 図24は、薄膜太陽電池モジュール10の裏面に、山部と谷部が連続した波型の金属板からなるバックサポート63を接着剤によって接着して取り付ける例を示している。
 バックサポート63には間隙S3が設けられている。この間隙S3には、薄膜太陽電池モジュール10の裏面側に取り付けられた端子箱を収めることができると共に、端子箱から導出される出力ケーブルをはわせることができる。
 なお、薄膜太陽電池モジュール10とバックサポート63を接着する接着剤には、ブチル系の接着剤など、耐候性を有するものを用いるのが好ましい。
 本例によれば、薄い薄膜太陽電池モジュール10の剛性が高められ、荷重性能を向上させることができる。
 次に、本実施形態に係る薄膜太陽電池モジュールの取付構造において、薄膜太陽電池モジュールの剛性を高めるための構造の別の例について説明する。
 図25は、薄膜太陽電池モジュール10の裏面に、梯子状あるいは略井桁形状のバックサポート64を接着剤によって接着して取り付ける例を示している。
 バックサポート64は樹脂や金属からなり、薄膜太陽電池モジュール10の対向する長手の端部二辺と略同じ長さを有し、当該対向する長手の端部二辺を支持する一対の支持片641と、当該一対の支持片641を連結する一対の支持片642とで構成されている。
 本例によってもやはり、薄い薄膜太陽電池モジュール10の剛性が高められ、荷重性能を向上させることができる。なお、図25においては、バックサポート64が梯子形状となる例を示したが、これに代わり、バックサポート64をX形状や四角形状で構成してもよい。
 次に、設置面に対し、所定の取付部材を介して薄膜太陽電池モジュールを取り付けた別の例について説明する。
 図26は、設置面R1に対し、架台65を介して薄膜太陽電池モジュール10を取り付けた取付構造の例を示している。
 架台65は、棒状の縦長部材であって、薄膜太陽電池モジュール10を差し込むことのできる差込溝65aが側端部に設けられ、この差込溝65aによって、差し込まれた薄膜太陽電池モジュール10の一側端部の一側端部を設置面R1上に支持する。
 さらに、差込溝65aの奥には十分なスペースが設けられており、この差込溝65aに薄膜太陽電池モジュール10を差し込んだ際、差込溝65a奥のスペースにおいて、薄膜太陽電池モジュール10から引き出された出力ケーブル10a(10b)を収めると共に、引き回すことができる。
 なお、架台65は設置面R1に固定されている。
 ここで、架台65と設置面R1との固定は例えば、図27に示されるように、予め又は施工時に現場において垂木67のピッチ間隔に合わせて架台65に設けられた貫通孔65bにネジ66が挿通されると共に、このネジ66が設置面R1の垂木67にねじ込まれる構造によって実現される。垂木67に直接、ネジをねじ込むことによって、架台65を設置面R1に固定するために別途、専用の固定金具等を用意する必要がなく、コストがかからない上に施工が容易である。
 10   薄膜太陽電池モジュール
 101  端子箱
 101a 出力ケーブル
 101b 出力ケーブル
 11   薄膜太陽電池モジュール
 111  端子箱
 111a コネクタ
 112  端子箱
 112a コネクタ
 12   薄膜太陽電池モジュール
 121  端子箱
 121a コネクタ
 122  連結コネクタ
 123  連結ケーブル
 13   薄膜太陽電池モジュール
 131  コネクタ
 14   薄膜太陽電池モジュール
 141  発電領域
 142  非発電領域
 15   薄膜太陽電池モジュール
 151  発電領域
 152  非発電領域
 152a 貫通孔
 21   スペーサ
 21a  凹部
 22   スペーサ
 23   スペーサ
 23a  凹部
 3    接着剤
 41   架台
 411  縦材
 411a 凹部
 412  縦材
 42   架台
 421  縦材
 422  パネル
 43   架台
 43a  差込溝
 431  コネクタ
 44   架台
 441  支柱
 442  支柱
 443  縦材
 444  支持板
 444a 通水孔
 444b 通水路
 45   レール
 45a  差込溝
 46   金具
 46a  ビス孔
 46b  咬止爪
 47   ビス
 51   構造体
 511  基底部
 512  支持部
 512a 取付面
 513  支持部
 513a 取付面
 52   構造体
 521  基底部
 522  支持部
 522a 取付面
 523  支持部
 523a 取付面
 53   構造体
 531  基底部
 532  基底部
 533  支持部
 533a 取付面
 534  支持部
 534a 取付面
 535  支持部
 535a 取付面
 54   折板屋根
 541  山部
 541a ハゼ部
 542  谷部
 55   両面テープ
 561  面ファスナ
 562  面ファスナ
 57   鋲
 58   ワイヤー
 61   パレット
 611  載置部
 612  立設部
 62   リフター
 63   バックサポート
 64   バックサポート
 641  支持片
 642  支持片
 65   架台
 65a  差込溝
 65b  貫通孔
 66   ネジ
 67   垂木
 R1   設置面
 R2   設置面
 R3   設置面
 S1   間隙
 S2   間隙
 S3   間隙

Claims (4)

  1.  可撓性を有する薄膜太陽電池モジュールを、所定の設置面又は取付部材に取り付けた取付構造であって、
     上記薄膜太陽電池モジュールの裏面と上記設置面又は取付部材とが、接着材によって接着して取り付けられている、
     ことを特徴とする薄膜太陽電池モジュールの取付構造。
  2.  上記接着材は、発泡性接着剤である、
     請求項1記載の薄膜太陽電池モジュールの取付構造。
  3.  上記薄膜太陽電池モジュールと上記設置面又は取付部材との間には、少なくともその一部において、上記薄膜太陽電池モジュールと上記設置面又は取付部材との間に間隙を形成するためのスペーサが挟み込まれている、
     請求項1又は2記載の薄膜太陽電池モジュールの取付構造。
  4.  上記薄膜太陽電池モジュールの裏面に、発電した電力を取り出すための端子箱が取り付けられていると共に、
     上記スペーサには、上記端子箱が嵌め込まれる凹部が設けられており、
     上記端子箱が、上記スペーサの凹部に嵌め込まれている、
     請求項3記載の薄膜太陽電池モジュールの取付構造。
PCT/JP2014/077678 2013-10-18 2014-10-17 薄膜太陽電池モジュールの取付構造 WO2015056775A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/029,313 US10958207B2 (en) 2013-10-18 2014-10-17 Attachment structure of photovoltaic cell module
DE112014004754.6T DE112014004754T5 (de) 2013-10-18 2014-10-17 Befestigungsstruktur eines Dünnschicht-Photovoltaikzellenmoduls
JP2015542680A JP6671959B2 (ja) 2013-10-18 2014-10-17 薄膜太陽電池モジュールの取付構造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013217666 2013-10-18
JP2013-217666 2013-10-18

Publications (1)

Publication Number Publication Date
WO2015056775A1 true WO2015056775A1 (ja) 2015-04-23

Family

ID=52828213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077678 WO2015056775A1 (ja) 2013-10-18 2014-10-17 薄膜太陽電池モジュールの取付構造

Country Status (4)

Country Link
US (1) US10958207B2 (ja)
JP (1) JP6671959B2 (ja)
DE (1) DE112014004754T5 (ja)
WO (1) WO2015056775A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10079569B1 (en) 2017-06-16 2018-09-18 Bluescope Buildings North America, Inc. Roof system for production of electrical power
DE102017122293A1 (de) * 2017-09-26 2019-03-28 Innogy Se Solarfoliensystem
US11545929B2 (en) 2019-02-07 2023-01-03 United States Department Of Energy Solar panel racking system
CN111327254B (zh) * 2020-04-07 2020-12-18 浙江鼎兴企业管理有限公司 一种能够自由调节太阳能板的太阳能发电设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233355A (ja) * 1986-04-01 1987-10-13 株式会社ダイフレックス 平板状発泡材の貼着方法
JP2004278173A (ja) * 2003-03-17 2004-10-07 Kozakura:Kk 壁構造、その構築方法及び切断装置
JP2012250468A (ja) * 2011-06-03 2012-12-20 Takenaka Komuten Co Ltd 電子部材固定構造

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5746839A (en) * 1996-04-08 1998-05-05 Powerlight Corporation Lightweight, self-ballasting photovoltaic roofing assembly
JP2007035976A (ja) 2005-07-27 2007-02-08 Ntt Facilities Inc 太陽電池による自立型発電システム
DE102005057468A1 (de) * 2005-11-30 2007-05-31 Solarwatt Solar-Systeme Ag Photovoltaisches rahmenloses Solarmodul in Plattenform
US20090114262A1 (en) * 2006-08-18 2009-05-07 Adriani Paul M Methods and Devices for Large-Scale Solar Installations
JP5197733B2 (ja) * 2008-02-28 2013-05-15 京セラ株式会社 太陽光発電システム
US20110146793A1 (en) * 2008-07-02 2011-06-23 Saint-Gobain Performance Plastics Chaineux Framed device, seal, and method for manufacturing same
US8646228B2 (en) * 2009-03-24 2014-02-11 Certainteed Corporation Photovoltaic systems, methods for installing photovoltaic systems, and kits for installing photovoltaic systems
US20120085391A1 (en) * 2010-10-06 2012-04-12 Uday Varde Structure and method for mounting a photovoltaic material
JP5945656B2 (ja) 2011-06-15 2016-07-05 株式会社竹中工務店 電子部材固定構造

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233355A (ja) * 1986-04-01 1987-10-13 株式会社ダイフレックス 平板状発泡材の貼着方法
JP2004278173A (ja) * 2003-03-17 2004-10-07 Kozakura:Kk 壁構造、その構築方法及び切断装置
JP2012250468A (ja) * 2011-06-03 2012-12-20 Takenaka Komuten Co Ltd 電子部材固定構造

Also Published As

Publication number Publication date
US20160261228A1 (en) 2016-09-08
JP6671959B2 (ja) 2020-03-25
DE112014004754T5 (de) 2016-08-11
US10958207B2 (en) 2021-03-23
JPWO2015056775A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
US10365017B2 (en) Self-adjusting end clamp
EP1104029B1 (en) Solar battery unit
ES2366332T3 (es) Sistema de placas.
JP3416927B2 (ja) 太陽電池装置の屋根上設置方法
US20090293383A1 (en) Solar Panel Roof Mounting System Having Integrated Standoff
US20110314751A1 (en) Solar panel mounting rack system
WO2015056775A1 (ja) 薄膜太陽電池モジュールの取付構造
JP2002146978A (ja) 板屋根用モジュールはめ込み構造及びモジュールはめ込み用ホルダ
JP2009130183A (ja) 太陽電池モジュール用架台、及び取付構造
JP2001152619A (ja) 太陽電池パネルの支持構造
JP3455750B2 (ja) 太陽電池モジュールの取付け構造
JP2000297501A (ja) 太陽電池付屋根材の取付構造
JP2565611B2 (ja) 太陽電池付き屋根
US20210057590A1 (en) Apparatus and method for solar panel with integrated wire management
JP4693491B2 (ja) 太陽電池モジュール装置及びこれを用いた太陽電池アレイ
JP4549123B2 (ja) 太陽光発電システム
JP2587133Y2 (ja) 太陽電池付き屋根パネル
JP2501724B2 (ja) 太陽電池付き屋根パネル
JP2559186B2 (ja) 太陽電池付き屋根パネル
JP2018162575A (ja) 太陽光発電装置用架台
JP5751468B2 (ja) 瓦屋根への外設構造の構築法、及び外装構造
JP2006274551A (ja) 太陽光発電システム
CN111699626A (zh) 太阳能电池模块及太阳能发电系统
JP2011202489A (ja) 太陽電池パネルの取付構造
JP5308987B2 (ja) 太陽電池モジュール一体型屋根材の固定治具及びこの固定治具を使用した太陽電池モジュール一体型屋根材の連結構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015542680

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15029313

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140047546

Country of ref document: DE

Ref document number: 112014004754

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14853302

Country of ref document: EP

Kind code of ref document: A1