WO2015053854A1 - Système et procédé permettant de commander plusieurs lasers accordés en longueur d'onde contigus - Google Patents

Système et procédé permettant de commander plusieurs lasers accordés en longueur d'onde contigus Download PDF

Info

Publication number
WO2015053854A1
WO2015053854A1 PCT/US2014/050575 US2014050575W WO2015053854A1 WO 2015053854 A1 WO2015053854 A1 WO 2015053854A1 US 2014050575 W US2014050575 W US 2014050575W WO 2015053854 A1 WO2015053854 A1 WO 2015053854A1
Authority
WO
WIPO (PCT)
Prior art keywords
power source
lasers
proximal
laser
output
Prior art date
Application number
PCT/US2014/050575
Other languages
English (en)
Inventor
Derek TREESE
Ben Ver Steeg
Len Cech
Original Assignee
Automotive Coalition For Traffic Safety, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Coalition For Traffic Safety, Inc. filed Critical Automotive Coalition For Traffic Safety, Inc.
Priority to CA2925806A priority Critical patent/CA2925806C/fr
Priority to EP14755950.4A priority patent/EP3055908A1/fr
Priority to JP2016516589A priority patent/JP6656144B2/ja
Priority to CN201480055848.2A priority patent/CN105659449B/zh
Publication of WO2015053854A1 publication Critical patent/WO2015053854A1/fr
Priority to ZA2016/01639A priority patent/ZA201601639B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/06835Stabilising during pulse modulation or generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06804Stabilisation of laser output parameters by monitoring an external parameter, e.g. temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0261Non-optical elements, e.g. laser driver components, heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/06837Stabilising otherwise than by an applied electric field or current, e.g. by controlling the temperature

Definitions

  • Semiconductor laser wavelength can vary due to changes in the device temperature.
  • Semiconductor lasers such as distributed feedback (DFB) and/or ridge waveguide lasers often include electronic means to control the intensity and wavelength of the laser by applying a differential voltage to the positive and negative terminal and varying the laser current. By gradually increasing the applied current, the laser will operate with higher optical intensity and increasing wavelength. Only a portion of the applied energy is converted to optical energy while the remaining energy is converted to heat.
  • Various control methods are employed to mitigate thermal variation to maintain desired nominal laser wavelength.
  • One method used to control wavelength in semiconductor lasers is to apply a secondary current to an electrode in proximity to the laser device (e.g., with a heater) to tune the wavelength to a desired target wavelength. Applying this secondary current will induce thermal transfer into the laser assembly (element) which changes the properties of the laser element including the physical dimension(s). The physical dimensions of the element can be controlled to increase and then stabilize the laser for operation at a target wavelength.
  • the application of a constant target laser drive current and a heater current can be combined to achieve a stable target optical power and wavelength for a single laser element.
  • Multiple laser elements may be packaged together in a single package to normalize the devices across a target operational temperature; minimizing space/cost and allowing for consolidated control through pin-through electronic PCB mounted to a multi-element laser packages.
  • combinations of lasers mounted within a single package may be turned on and off rapidly. It may be desirable to achieve the same high stability (power level and wavelength) over long term operation for multiple proximally located, unique wavelength lasers which are modulated in patterns of varying on/off states as can be achieved with a single laser.
  • proximal laser elements when packaging multiple laser elements in spatial proximity to each other, and modulating these lasers in various patterns (states), induced heat from proximal laser elements can induce undesirable spatial/temporal temperature variations that effect the stabilization of the active lasers in that state. Accordingly thermal effects of the proximal lasers can affect the achieved optical power and wavelength causing deviation from the target optical power and wavelength and/or a delay in reaching stable operation at a given state. Unless these effects are known and compensated for, they can limit the achievable accuracy and precision of measurements, or the achievable rate of change (modulation rate) of the laser states, limiting the practical utility of the multi-element design. Summary
  • One embodiment of the invention relates to a method for applying a controlled primary current and a secondary current to a laser device having multiple laser assemblies.
  • the primary current and the secondary current are controlled to reduce the thermal proximal dissipation and the resulting effects on optical power and wavelength variance, and to achieve a minimal settling time between laser modulation states. This is useful for optimizing an arrangement of multiple assemblies in close proximity.
  • a method for controlling a plurality of collocated lasers is provided by detecting at a controller, an arrangement of a plurality of proximal lasers, determining a thermal effect caused by a first of the plurality of lasers on a second of the plurality of proximal lasers, and controlling an output of a primary power source and an output of a secondary power source to power the first of the plurality of proximal lasers and the second of the plurality of proximal lasers, based on the thermal effect.
  • the output of the primary power source and the output of the secondary power source may include cycling the primary power source and the secondary power source in an off state and an on state; wherein when the primary power source is in an on state, the secondary power source is in an off state.
  • Thermal effect caused by the first of the plurality of proximal lasers on the second of the plurality of proximal lasers differs from a second thermal effect caused by the second of the plurality of proximal lasers on a third of the plurality of proximal lasers; and further comprising controlling the output of the primary power source and an output of a secondary power source to power the third of the plurality of proximal lasers.
  • the primary power source may provide current for generating a laser beam
  • the secondary power source may provide a current for heating the respective laser.
  • the output of the primary power source and the secondary power source may be varied based on a detected thermal transient.
  • a modulating pattern of off states and on states of the output of the primary power source and the secondary power source may be used.
  • the power for the proximal lasers may be controlled to optimize a specified wavelength and optical power for obtaining a spectrometry measurement.
  • FIG. 1 is a schematic diagram of a laser assembly, according to an exemplary embodiment.
  • FIG. 2 is schematic view of an array of multiple laser assemblies, according to an exemplary embodiment.
  • FIGS. 3A-F are graphs showing state transitions for the laser assembly array of FIG. 2, according to an exemplary embodiment.
  • FIG. 4 is a table of modulation states for the laser assembly array of FIG. 2, according to an exemplary embodiment.
  • FIG. 5 is a method for controlling multiple laser assemblies
  • the systems and methods described herein may relate to controlling light and optical beams, using one or more wavelengths, for use in measurements, in particular biochemical measurements, or other measurements using discrete wavelength spectrometry.
  • the embodiments described herein relate to multiple proximal lasers, the principles may be applied to a single laser, for example, a single laser that is operating in a modulated fashion having on off switching.
  • a semiconductor laser assembly 100 is shown schematically according to an exemplary embodiment to include a laser device 105.
  • the semiconductor laser device may be, for example, a distributed feedback (DFB) or a ridge waveguide laser.
  • the laser assembly includes an input for a primary power source 1 10.
  • the primary power source provides a current to the laser device 105 to generate a laser beam 130.
  • a portion of the applied energy is converted to optical energy and the remaining energy is converted to waste heat.
  • This waste heat may have an effect on various properties of the laser device (e.g., physical dimensions), thereby varying the properties of the laser beam output (e.g., the wavelength, power output, etc.).
  • the laser assembly may further include an input for a secondary power source 120.
  • the secondary power source 120 (e.g., heater) provides a current to the laser device to cause heating of the body of the laser device. In general, the secondary power source 120 provides thermal power, not optical.
  • the current supplied to the laser device 105 by the primary power source 1 10 may be cycled on and off. Concurrently, the current supplied by the secondary power source 120 may also be cycled on and off. In some
  • the currents are supplied by the primary power source 1 10 and secondary power source 120 may be input on different cycles so that when the heater (secondary power source 120) inputs current in an "on” state, the primary power source 1 10 may be in an "off state, and vice versa.
  • the cycles are adjusted to maintain normalized and balanced power to the laser device 105 to maintain an optimized beam 130.
  • the optical beam should perform at an optimized power level and wavelength. Controlling the power and heater inputs can help achieve the optimal performance.
  • the currents provided to the laser device 105 from the primary power source 1 10 and the secondary power source 120 may be varied depending on the state of the laser. To accomplish a nominal applied energy, when a laser assembly is in an "off mode, the primary current is held below a threshold (e.g., a lasing threshold) while the heater current is held higher so that the
  • the laser assemblies 201 , 202, 203, 204 may be coupled together in an array or package to minimize space/cost and allows for consolidated electronic control through pin-through PCB mounts.
  • the laser assemblies 201 , 202, 203, 204 may each operate to produce lasers 231 , 232, 233, 234 of unique
  • the individual lasers 231 , 232, 233, 234 may be modulated rapidly in patterns by varying on/off states of the individual laser assemblies 201 , 202, 203, 204.
  • the lasers assemblies 201 , 202, 203, 204 may be controlled with a controller 250 that varies the currents provided by the primary power source 210 and the secondary power source 220 to normalize thermal proximal dissipation between the collocated laser assemblies 201 , 202, 203, 204 and the resulting effects on optical power and wavelength variance, and to achieve a minimized settling time between laser modulation states, as shown in FIGS. 3A-F.
  • a settling time may be 10 ⁇ 8 ⁇ Other settling times may also be achieved, for example, in the range 5-10 ⁇ $ ⁇ .
  • the transition settling time is optimized to provide a net zero thermal transient when cycling from an off state to an on state so that there is no thermal interplay with the surrounding laser assemblies or a laser temperature control loop.
  • various wavelength transient responses, output power transients, and laser current waveforms may be achieved.
  • the controller 250 is configured to apply a constant total current (sum of primary current and secondary current) to maintain a nominal applied energy profile (e.g. thermal) profile across all proximal laser assemblies 201 , 202, 203, 204 in the package while supporting the laser modulation of all state
  • FIG. 4 shows states of lasers 231 , 232, 233, 234 having cycling on and off states.
  • outer laser assemblies 201 and 204 may have different current combinations than inner laser assemblies 202 and 203 because the inner assemblies 202 and 203 may have an increased thermal condition due to having two neighboring assemblies.
  • thermal characteristics of the laser assembly and package will affect a selection of appropriate primary and secondary currents.
  • the thermal transients in the multi-laser package can be reduced through more continuous energy loading.
  • Controlling the primary and secondary currents can also reduce the settling time between states and provide potential for measuring additional states (improved signal to noise ratio) in a fixed measurement time.
  • Controlling the primary and secondary currents can also decrease the measurement times in discrete wavelength spectrometer applications in various fields (e.g., industrial, commercial, medical, consumer, etc.). [0024] Controlling the primary and secondary currents further normalize thermal dissipation, potentially improving the power stability and wavelength stability of the emitted laser beam.
  • controlling the primary current and the secondary current improves the stabilization time for individual laser assemblies and reduces thermal variation across proximal lasers in an array.
  • the array includes a plurality of proximally mounted ridge wave guide lasers being modulated through all permutations of states. .
  • the array may be stabilized between modulation states within 10 micro seconds.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Lasers (AREA)

Abstract

La présente invention concerne des systèmes et des procédés permettant de commander des faisceaux laser pour une pluralité d'ensembles laser contigus. Les faisceaux laser sont optimisés en commandant les sorties d'une source d'énergie primaire (courant permettant de générer un faisceau laser) et une source d'énergie secondaire (dispositif de chauffage) pour chacun des ensembles laser respectifs. Les états de l'alimentation électrique peuvent être examinés et modulés pour assurer la performance optimale.
PCT/US2014/050575 2013-10-10 2014-08-11 Système et procédé permettant de commander plusieurs lasers accordés en longueur d'onde contigus WO2015053854A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2925806A CA2925806C (fr) 2013-10-10 2014-08-11 Systeme et procede permettant de commander plusieurs lasers accordes en longueur d'onde contigus
EP14755950.4A EP3055908A1 (fr) 2013-10-10 2014-08-11 Système et procédé permettant de commander plusieurs lasers accordés en longueur d'onde contigus
JP2016516589A JP6656144B2 (ja) 2013-10-10 2014-08-11 配列された複数の波長調整レーザを制御するためのシステムおよび方法
CN201480055848.2A CN105659449B (zh) 2013-10-10 2014-08-11 用于控制同位多波长调谐激光器的系统和方法
ZA2016/01639A ZA201601639B (en) 2013-10-10 2016-03-09 System and method for controlling collocated multiple wavelength tuned lasers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361889320P 2013-10-10 2013-10-10
US61/889,320 2013-10-10
US14/456,738 2014-08-11
US14/456,738 US9281658B2 (en) 2013-10-10 2014-08-11 System and method for controlling collocated multiple wavelength tuned lasers

Publications (1)

Publication Number Publication Date
WO2015053854A1 true WO2015053854A1 (fr) 2015-04-16

Family

ID=52809614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/050575 WO2015053854A1 (fr) 2013-10-10 2014-08-11 Système et procédé permettant de commander plusieurs lasers accordés en longueur d'onde contigus

Country Status (7)

Country Link
US (2) US9281658B2 (fr)
EP (1) EP3055908A1 (fr)
JP (1) JP6656144B2 (fr)
CN (1) CN105659449B (fr)
CA (1) CA2925806C (fr)
WO (1) WO2015053854A1 (fr)
ZA (1) ZA201601639B (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3010352C (fr) * 2016-01-04 2023-11-07 Automotive Coalition For Traffic Safety, Inc. Rechauffeur sur dissipateur thermique
CN113725725A (zh) 2017-09-28 2021-11-30 苹果公司 使用量子阱混合技术的激光架构
US11552454B1 (en) * 2017-09-28 2023-01-10 Apple Inc. Integrated laser source
CN108123364A (zh) * 2017-12-28 2018-06-05 中国科学院长春光学精密机械与物理研究所 一种半导体激光装置
US11171464B1 (en) 2018-12-14 2021-11-09 Apple Inc. Laser integration techniques

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5515391A (en) * 1994-03-07 1996-05-07 Sdl, Inc. Thermally balanced diode laser package
WO2002065598A2 (fr) * 2001-02-15 2002-08-22 Bookham Technology Plc Laser a semi-conducteur
US20050169327A1 (en) * 1998-10-20 2005-08-04 Quantum Devices, Inc. Method and apparatus reducing electrical and thermal crosstalk of a laser array
US20070092177A1 (en) * 2001-10-09 2007-04-26 Infinera Corporation WAVELENGTH LOCKING AND POWER CONTROL SYSTEMS FOR MULTI-CHANNEL PHOTONIC INTEGRATED CIRCUITS (PICs)
EP2161800A1 (fr) * 2007-12-29 2010-03-10 Huawei Technologies Co., Ltd. Procede et systeme de regulation de longueurs d'onde de lasers multivoie

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348477A (ja) * 1989-07-17 1991-03-01 Hitachi Ltd 半導体レーザ装置
JPH0430487A (ja) * 1990-05-26 1992-02-03 Nippon Steel Corp 半導体レーザ装置
JPH04115585A (ja) * 1990-09-05 1992-04-16 Nec Corp アレイ型半導体レーザ装置及び駆動方法
JPH0541558A (ja) * 1991-08-02 1993-02-19 Nippon Telegr & Teleph Corp <Ntt> レ―ザ発振波長安定化方式
JPH07249818A (ja) * 1994-03-08 1995-09-26 Nippon Telegr & Teleph Corp <Ntt> 周波数可変半導体レーザの周波数安定化方法
JPH10256676A (ja) * 1997-01-09 1998-09-25 Yokogawa Electric Corp 半導体レーザデバイス
DE19755453A1 (de) * 1997-12-01 1999-07-01 Deutsche Telekom Ag Verfahren zur Wellenlängenabstimmung einer optoelektronischen Bauelemente-Anordnung
JP3504848B2 (ja) * 1998-02-02 2004-03-08 日本電信電話株式会社 半導体光源装置、および、その制御方法
JP3651764B2 (ja) * 2000-02-17 2005-05-25 日本電信電話株式会社 半導体レーザの波長制御方法および光装置
JP4833509B2 (ja) * 2003-09-22 2011-12-07 古河電気工業株式会社 波長可変レーザ、波長可変レーザアレイ素子ならびにそれらの制御方法
EP1899754B1 (fr) * 2005-06-30 2020-04-08 Infinera Corporation Système de rétroaction pour un circuit photonique intégré monolithique
JP2008205259A (ja) * 2007-02-21 2008-09-04 Mitsubishi Electric Corp 光モジュール
JP4850757B2 (ja) * 2007-03-08 2012-01-11 日本電信電話株式会社 波長可変半導体レーザ素子及びその制御装置、制御方法
JP2009231526A (ja) * 2008-03-24 2009-10-08 Fujitsu Ltd 半導体レーザの制御方法および半導体レーザの制御装置
JP5737777B2 (ja) * 2010-03-18 2015-06-17 日本電信電話株式会社 波長可変レーザアレイ素子の制御方法および制御装置
JP2012209501A (ja) * 2011-03-30 2012-10-25 Sony Corp 補正回路、駆動回路、発光装置、および電流パルス波形の補正方法
JP6231934B2 (ja) * 2014-04-08 2017-11-15 日本電信電話株式会社 波長可変レーザの波長制御装置
JP6328040B2 (ja) * 2014-12-08 2018-05-23 三菱電機株式会社 波長可変光源、波長可変光源の制御方法、及び波長可変光源の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5515391A (en) * 1994-03-07 1996-05-07 Sdl, Inc. Thermally balanced diode laser package
US20050169327A1 (en) * 1998-10-20 2005-08-04 Quantum Devices, Inc. Method and apparatus reducing electrical and thermal crosstalk of a laser array
WO2002065598A2 (fr) * 2001-02-15 2002-08-22 Bookham Technology Plc Laser a semi-conducteur
US20070092177A1 (en) * 2001-10-09 2007-04-26 Infinera Corporation WAVELENGTH LOCKING AND POWER CONTROL SYSTEMS FOR MULTI-CHANNEL PHOTONIC INTEGRATED CIRCUITS (PICs)
EP2161800A1 (fr) * 2007-12-29 2010-03-10 Huawei Technologies Co., Ltd. Procede et systeme de regulation de longueurs d'onde de lasers multivoie

Also Published As

Publication number Publication date
JP2016533026A (ja) 2016-10-20
ZA201601639B (en) 2023-12-20
US9281658B2 (en) 2016-03-08
US20170033531A1 (en) 2017-02-02
JP6656144B2 (ja) 2020-03-04
CN105659449A (zh) 2016-06-08
EP3055908A1 (fr) 2016-08-17
US20150103852A1 (en) 2015-04-16
CA2925806A1 (fr) 2015-04-16
CN105659449B (zh) 2020-01-10
CA2925806C (fr) 2022-01-04

Similar Documents

Publication Publication Date Title
US20170033531A1 (en) System and method for controlling collocated multiple wavelength tuned lasers
US11469570B2 (en) Independent control of emission wavelength and output power of a semiconductor laser
CN107005020B (zh) 激光系统以及调谐激光系统的输出功率的方法
KR20090058548A (ko) 반도체 레이저에서의 열 보상
EP2120301A4 (fr) Element de laser semi-conducteur a longueur d&#39;onde variable, et appareil et procede pour le commander
US8902938B2 (en) Method to tune emission wavelength of wavelength tunable laser diode
US20230163573A1 (en) Integrated Laser Source
JP6510895B2 (ja) 波長可変レーザアレイ及び波長可変レーザアレイの波長制御方法
Werner et al. Direct modulation capabilities of micro-integrated laser sources in the yellow–green spectral range
US20100303107A1 (en) Methods for Obtaining Stabilized Output Beams from Frequency Converted Light Sources and Frequency Converted Light Sources Utilizing the Same
JP6998903B2 (ja) 波長可変光源装置および波長可変光源装置の制御方法
EP3675295A1 (fr) Ensembles laser
JP2015207738A (ja) 波長可変レーザアレイ及び波長可変レーザアレイの波長制御方法
US5042041A (en) Radiation source for partially coherent radiation
Nayak et al. Development of an auto-synchronization technique for improving the power stability of copper vapour laser oscillator and amplifier configuration
Kono et al. Cooperative Control of Injection Current and Temperature at DFB-LD for High-speed High-Reliability Wavelength Switching
Fukuda et al. Fast wavelength stabilization of tunable laser after starting laser oscillation
JP6389448B2 (ja) 波長可変レーザアレイの波長制御方法
Sun et al. Laser Diode Basics
JPH1065283A (ja) 自由電子レーザ出力安定化装置
JP2016200618A (ja) 光源装置
JP2012156558A (ja) 半導体レーザ装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14755950

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016516589

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2925806

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014755950

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014755950

Country of ref document: EP