WO2015053333A1 - ディスクブレーキ - Google Patents

ディスクブレーキ Download PDF

Info

Publication number
WO2015053333A1
WO2015053333A1 PCT/JP2014/076983 JP2014076983W WO2015053333A1 WO 2015053333 A1 WO2015053333 A1 WO 2015053333A1 JP 2014076983 W JP2014076983 W JP 2014076983W WO 2015053333 A1 WO2015053333 A1 WO 2015053333A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic body
rotor
piston
disc brake
screw
Prior art date
Application number
PCT/JP2014/076983
Other languages
English (en)
French (fr)
Inventor
吉川 和宏
昭彦 関口
利史 前原
Original Assignee
曙ブレーキ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013229023A external-priority patent/JP2015090157A/ja
Priority claimed from JP2014191324A external-priority patent/JP2015096767A/ja
Application filed by 曙ブレーキ工業株式会社 filed Critical 曙ブレーキ工業株式会社
Publication of WO2015053333A1 publication Critical patent/WO2015053333A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/02Fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic
    • F16D2121/24Electric or magnetic using motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2123/00Multiple operation forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/02Fluid-pressure mechanisms
    • F16D2125/10Plural pistons interacting by fluid pressure, e.g. hydraulic force amplifiers using different sized pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/20Mechanical mechanisms converting rotation to linear movement or vice versa
    • F16D2125/34Mechanical mechanisms converting rotation to linear movement or vice versa acting in the direction of the axis of rotation
    • F16D2125/36Helical cams, Ball-rotating ramps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/20Mechanical mechanisms converting rotation to linear movement or vice versa
    • F16D2125/34Mechanical mechanisms converting rotation to linear movement or vice versa acting in the direction of the axis of rotation
    • F16D2125/40Screw-and-nut
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2127/00Auxiliary mechanisms
    • F16D2127/08Self-amplifying or de-amplifying mechanisms

Definitions

  • the present invention relates to a disc brake.
  • FIG. 31 shows a first example of a conventional structure described in Patent Document 1.
  • This disc brake with an electric parking mechanism is also supported by the vehicle body 1 in a state of being adjacent to a rotor (not shown) that rotates together with wheels, as in the case of a conventionally known hydraulic disc brake.
  • the inner and outer pads 2 and 3 are supported so as to be axially displaceable with the rotor sandwiched from both sides in the axial direction.
  • the outer means the outer side in the width direction of the vehicle body while being supported by the vehicle body
  • the inner means the same side in the width direction
  • the axial direction is not particularly specified.
  • a caliper 4 is supported on the support 1 so as to be capable of axial displacement.
  • the caliper 4 is provided with a caliper claw 5 facing the outer side surface of the outer pad 3 at an outer side end portion, and a hydraulic cylinder (cylinder) 6 at an inner side end portion.
  • a piston 7 is mounted in the hydraulic cylinder 6 so as to be oil-tight and capable of axial displacement.
  • the service brake is operated, the piston 7 is pushed out to the outer side with the introduction of the pressure oil into the hydraulic cylinder 6, and the inner pad 2 is pushed against the inner side surface of the rotor.
  • the caliper 4 is displaced toward the inner side with respect to the support 1, and the outer pad 3 is pressed against the outer side surface of the rotor by the caliper claw 5.
  • the rotor is strongly clamped from both the inner and outer side surfaces, and braking is performed.
  • the piston 7 has a bottomed cylindrical shape with the outer side as the piston bottom 8 and the inner side as an opening.
  • a thrust generating mechanism 9 and a booster mechanism 10 are incorporated.
  • this thrust generating mechanism 9 an electric motor 11 which is a drive source fixed outside the caliper 4 is operated, the rotational driving force of the electric motor 11 is converted into axial thrust, and the piston 7 is connected to the rotor. It is pushed (moved) toward the inner side surface until the gap between the inner and outer pads 2, 3 and both side surfaces of the rotor is eliminated.
  • Such a thrust generation mechanism 9 is formed by combining an adjustment nut 12, an adjustment screw 13 corresponding to a first pressing member, an input screw 14 corresponding to a second pressing member, and a preset spring 15. These members 12 to 15 are assembled on the inner diameter side of the piston 7. The structure of each of the members 12 to 15 is described in Patent Document 1 and will not be described in detail.
  • the booster mechanism 10 is configured so that the piston 7 is pushed out by the thrust generating mechanism 9 and the gap is eliminated, and then the axial direction from the input screw 14 of the thrust generating mechanism 9 is reduced. And the piston 7 is pushed out (moved) toward the inner side surface of the rotor.
  • a booster mechanism 10 includes a plurality of cam levers 16 radially arranged on the outer side of the adjusting screw 13 and the input screw 14 and spaced apart from each other in the circumferential direction, and on the outer side of each cam lever 16.
  • the disc-shaped plug member 17 is arranged. The structure of each of the members 16 and 17 is also described in Patent Document 1 and will not be described in detail.
  • the adjusting screw 13 and the input screw 14 rotate in synchronization with the drive rod 23 rotated by the electric motor 11 based on the elastic force of the preset spring 15. Then, the adjusting screw 13 and the input screw 14 are based on screwing between a male screw portion 24 formed on the outer peripheral surface of the adjusting screw 13 and a female screw portion 25 formed on the inner peripheral surface of the adjusting nut 12. It moves in the axial direction toward the inner side surface of the rotor.
  • each cam lever 16 uses the contact portion with the outer side end surface of the input screw 14 as a power point, and uses the contact portion with the outer side end surface of the adjustment screw 13 as a fulcrum. Oscillating displacement with the part as the action point. With respect to the radial direction of the plug member 17, this point of action exists between the force point and the fulcrum, so that the force that presses the piston 7 to the outer side via the plug member 17 is increased by the lever principle.
  • the piston 7 is directed toward the rotor and pressed with a large force. As a result, both the pads 2 and 3 are strongly pressed against both side surfaces of the rotor.
  • each said screw part 24,25 mutually screwed and the said screw parts 26 and 27 are screwed together irreversibly, if the electricity supply to the said electric motor 11 is stopped, In particular, the necessary braking force can be maintained without performing the holding operation.
  • this booster mechanism 10 can employ a structure with a large boost ratio instead of a short stroke, and can particularly increase the force with which the piston 7 is pressed against the rotor.
  • the above-described uneven contact is different in the magnitude of the pressing force in the outer direction transmitted from the input screw 14 during braking, and is transmitted from each cam lever 16 to the piston 7. There is a possibility that the magnitude of the pressing force varies in the circumferential direction.
  • Patent Document 1 as shown in FIG. 33, a structure in which a booster mechanism 10a is constituted by a case 18, a pressing plate 19 corresponding to an input member, and a reaction disk 20 is described. .
  • the structure other than the booster mechanism 10a is the same as the structure shown in FIG.
  • the case 18 has a bottomed cylindrical shape comprising a case cylindrical portion 21 and a case bottom portion 22 that closes the outer side end portion of the case cylindrical portion 21, and is formed in the outer side end portion inside the piston 7. It is fitted.
  • the pressing plate 19 has a disk shape and is fitted on the outer side of the outer side end surface of the input screw 14 and on the inner diameter side of the outer side end portion of the adjusting screw 13.
  • the reaction disk 20 is a disk-shaped member made of an elastic material.
  • an elastic material such as a resin or an elastomer such as rubber or vinyl can be used.
  • the reaction disk 20 includes an inner peripheral surface of the case cylindrical portion 21 of the case 18, an inner side surface of the case bottom portion 22, an outer side end surface of the adjustment screw 13, and an outer side surface of the pressing plate 19. In the defined space, these members 13, 18, 19 are arranged without gaps.
  • the case 18 can be omitted.
  • the adjusting screw 13 and the input screw 14 rotate in synchronization with the drive rod 23 rotated by the electric motor 11 based on the elastic force of the preset spring 15. Then, the adjusting screw 13 and the input screw 14 are based on screwing between a male screw portion 24 formed on the outer peripheral surface of the adjusting screw 13 and a female screw portion 25 formed on the inner peripheral surface of the adjusting nut 12. It moves in the axial direction toward the inner side surface of the rotor.
  • the outer side end surface of the input screw 14 presses the pressing plate 19 constituting the booster mechanism 10a in the outer direction. Then, the pressing plate 19 strongly presses the inner side surface central portion of the reaction disk 20 in the outer direction. As a result, the reaction disk 20 is elastically deformed.
  • the reaction disk 20 presses the mating surface surrounding the reaction disk 20 by a behavior like a kind of incompressible fluid.
  • the pressure per unit area at which the reaction disk 20 presses the mating surface is the same as the pressure per unit area of the pressing surface by the outer side surface of the input screw 14.
  • the reaction disk 20 constituting the booster mechanism 10 a is constituted by a single disk-like member, and the outer diameter dimension thereof is larger than the outer diameter dimension of the pressing plate 19. Is also big.
  • the mechanism is to realize a structure that can prevent the force with which the piston presses the piston from varying in the circumferential direction.
  • the above object of the present invention is achieved by the following configurations.
  • the disc brake includes a rotor, an inner pad and an outer pad, a caliper, a piston, a thrust generating mechanism, and a booster mechanism.
  • the rotor rotates with the wheels.
  • the inner pad and the outer pad are disposed in a state of facing the axial side surface of the rotor.
  • the caliper has a cylinder having an opening on the side facing the inner pad.
  • the piston is mounted in the cylinder so as to be axially displaceable, and has a bottomed cylindrical shape having a bottom at the end on the rotor side.
  • the thrust generating mechanism includes a first pressing member and a second pressing member.
  • the first pressing member is disposed inside the piston, and the clearance between the inner pad and the outer pad and both side surfaces of the rotor is eliminated based on the rotational driving force of the driving source.
  • the piston is pushed in the axial direction toward the rotor.
  • the second pressing member is axially directed toward the rotor based on the rotational driving force of the driving source after the clearance is eliminated and the movement of the first pressing member in the axial direction is stopped. By moving, the piston is pushed in the axial direction toward the rotor.
  • the drive source is not limited to an electric type, and includes a manual type.
  • the booster mechanism includes a reaction disk having an inner elastic body and a cylindrical outer elastic body that is externally fitted to the inner elastic body without a gap from an outer peripheral surface of the inner elastic body.
  • the shape of the outer elastic body includes not only a cylindrical shape having a central hole penetrating in the axial direction but also a bottomed cylindrical shape having a bottom portion at an end portion on the rotor side. Further, based on the movement of the second pressing member in the axial direction, the pressing surface of the input member to which the reaction disk is pressed directly and the input member out of the side surface opposite to the rotor in the inner elastic body are pressed.
  • the pressed surface to be pressed has the same shape (for example, a circular shape, an annular shape, an elliptical shape, a rectangular shape, etc., excluding a similar shape). Even when there is a difference in shape between the pressing surface and the pressed surface due to a dimensional tolerance allowed in manufacturing or a normal chamfering (thread chamfering, R chamfering, C chamfering, etc.). In the same shape. Further, when viewed from the axial direction of the rotor, in a state where the pressing surface and the pressed surface are aligned (a phase in the circumferential direction is matched), the input member Press.
  • a phase in the circumferential direction is matched
  • the inner elastic body is configured in a columnar shape (the pressed surface is circular), and the outer elastic body is configured in a cylindrical shape. .
  • the axial dimension of the inner elastic body is made equal to the axial dimension of the outer elastic body.
  • the axial dimension of the inner elastic body and the axial dimension of the outer elastic body are different.
  • the axial dimension of the inner elastic body is made larger than the axial dimension of the outer elastic body.
  • an axial dimension of the outer elastic body is made larger than an axial dimension of the inner elastic body.
  • the inner elastic body is configured in a columnar shape in which an outer diameter of an outer peripheral surface becomes larger as approaching the rotor. Is done.
  • the outer elastic body is formed in a cylindrical shape that increases as the inner diameter of the inner peripheral surface approaches the rotor.
  • the inner elastic body has a cylindrical shape that decreases as the outer diameter of the outer peripheral surface approaches the rotor. Is done.
  • the outer elastic body is formed in a cylindrical shape that becomes smaller as the inner diameter of the inner peripheral surface approaches the rotor.
  • the disc brake includes a caliper, a piston, a thrust generating mechanism, and a booster mechanism.
  • the caliper is supported so as to be capable of axial displacement with respect to a support that is supported by the vehicle body in a state adjacent to a rotor that rotates together with the wheels.
  • the caliper has a caliper claw facing the outer side surface of the outer pad of the inner pad and the outer pad supported by the support so that the rotor can be displaced in the axial direction with the rotor sandwiched from both sides in the axial direction.
  • the cylinder is provided at the inner side end.
  • the piston is mounted in the cylinder so as to be axially displaceable and has a bottomed cylindrical shape.
  • the thrust generating mechanism includes a first pressing member and a second pressing member.
  • the first pressing member is disposed inside the piston, and the clearance between the inner pad and the outer pad and both side surfaces of the rotor is eliminated based on the rotational driving force of the driving source.
  • the piston is pushed out toward the inner side surface of the rotor.
  • the second pressing member is directed toward the inner side surface of the rotor based on the rotational driving force of the driving source after the clearance is eliminated and the movement of the first pressing member in the axial direction is stopped.
  • the booster mechanism amplifies the input from the second pressing member and transmits it to the piston.
  • An equalizer member provided in a swingable state is provided between the second pressing member and the booster mechanism.
  • the first pressing member is a thrust plate constituting a thrust bearing.
  • the thrust plate is formed with an inner track on the inner side surface to prevent rotation with respect to the piston.
  • the booster mechanism includes a plurality of cam levers arranged in a circumferential direction.
  • the inner diameter side portion of the inner side surface of each cam lever is a portion that acts as a force point by contacting the outer side surface of the equalizer member.
  • the outer diameter side portion of the inner side surface of each cam lever is a portion that acts as a fulcrum by contacting the outer side surface of the first pressing member.
  • a portion between the portion acting as the force point and the portion acting as the fulcrum in the radially intermediate portion of the outer side surface of each cam lever acts as an action point for transmitting axial force to the piston. Part.
  • An electric disc brake comprising: a disc brake having any one of the above configurations (1) to (17); and an electric motor as a drive source for rotationally driving the thrust generating mechanism.
  • the shearing force is prevented from acting on the reaction disc constituting the booster mechanism, and the durability of the disc brake can be improved. That is, in the case of the disc brake having the configurations (1) to (9) described above, the reaction disc is configured by combining the inner elastic body and the outer elastic body, and based on the movement of the second pressing member in the axial direction. Thus, the input member to which the reaction disk is directly pressed and the pressed surface to be pressed by the input member on the side opposite to the rotor in the inner elastic body have the same shape.
  • the input member when viewed from the axial direction of the rotor, is configured to press the inner elastic body in a state where the pressing surface and the pressed surface are aligned. For this reason, it can prevent that a shearing force acts on the part pressed by the radial direction outer end edge of the pressing surface of the said input member among the inner side surfaces of the said reaction disk.
  • the thrust generation mechanism and the boost mechanism are prevented from being biased, and the durability of the two mechanisms can be improved. It is possible to prevent the force with which the mechanism presses the piston from varying in the circumferential direction. That is, in the case of the disc brake having the configuration (10), a swingable equalizer member is provided between the second pressing member constituting the thrust generating mechanism and the booster mechanism. For this reason, the second pressing member and the booster mechanism are not in direct contact with each other based on the dimensional tolerance of the second pressing member or the booster mechanism. As a result, the durability of the second pressing member and the booster mechanism can be improved.
  • the equalizer member swings between the second pressing member and the booster mechanism, the dimensional tolerance of the second pressing member or the booster mechanism can be absorbed. For this reason, it is possible to prevent the force with which the booster mechanism presses the piston from being inclined with respect to the central axis of the piston or being biased with respect to the circumferential direction of the booster mechanism. Further, in the case of the disc brake having the configuration (10), even when the caliper is deformed during braking and the central axis of the second pressing member is inclined with respect to the central axis of the booster mechanism, as described above. Since a swingable equalizer member is provided, it is possible to prevent an excessive stress such as a bending stress from being applied between the boost mechanism and the second pressing member, thereby improving durability. I can do things.
  • a convex curved surface portion is formed at a contact portion between at least one of the second pressing member and the member constituting the booster mechanism in the equalizer member. Is formed.
  • a concave curved surface portion is formed on the second pressing member, and the concave curved surface portion is engaged with the convex curved surface portion of the equalizer member. For this reason, the equalizer member can be easily swung and displaced between the second pressing member and the booster mechanism.
  • the equalizer member is prevented from rotating with respect to the piston. For this reason, the booster mechanism can be pressed toward the outer side without rotating the equalizer member. As a result, it is possible to improve the stability of the operation of the booster mechanism and to improve the durability of the equalizer member and the booster mechanism.
  • the first pressing member is a thrust plate that constitutes a thrust bearing so as to prevent rotation with respect to the piston. Therefore, the first pressing member improves the stability of the operation of pressing the piston toward the outer side, and the durability of the first pressing member and the member pressed in the outer direction by the first pressing member. The improvement of sex can be aimed at.
  • the rotation amount of the second pressing member with respect to the first pressing member is restricted within a predetermined range. For this reason, the second pressing member may rotate too much with respect to the first pressing member, and the components disposed around the second pressing member may be damaged, or the pressing force of the booster mechanism may be excessive. Can be prevented.
  • FIG. 1 is a cross-sectional view regarding a virtual plane including a central axis of a rotor, showing a first example of a disc brake according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the piston shown in FIG. 1 and components arranged inside the piston.
  • 3A is an exploded perspective view showing the inner elastic body and the outer elastic body shown in FIG. 2, and
  • FIG. 3B is a state in which the inner elastic body and the outer elastic body are combined.
  • FIG. FIG. 4 is an exploded perspective view showing the piston shown in FIG. 2 and the components arranged inside the piston as viewed from the outer side.
  • FIG. 5 is a cross-sectional view similar to FIG. 2, showing a second example of the disc brake according to the embodiment of the present invention.
  • FIG. 6 (a) is an exploded perspective view showing the inner elastic body and the outer elastic body shown in FIG. 5, and FIG. 6 (b) is a combination of the inner elastic body and the outer elastic body.
  • FIG. FIG. 7 is a cross-sectional view similar to FIG. 2, showing a third example of the disc brake according to the embodiment of the present invention.
  • FIG. 8A is an exploded perspective view showing the inner elastic body and the outer elastic body shown in FIG. 7, and FIG. 8B is a combination of the inner elastic body and the outer elastic body.
  • FIG. FIG. 9 is a cross-sectional view of a reaction disk showing a fourth example of the disk brake according to the embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of a reaction disk showing a fifth example of the disk brake according to the embodiment of the present invention.
  • FIG. 11 is a sectional view of a reaction disk showing a sixth example of the disk brake according to the embodiment of the present invention.
  • FIG. 12 is a cross-sectional view regarding a virtual plane including the central axis of the rotor, showing a seventh example of the disc brake according to the embodiment of the present invention.
  • FIG. 13A is a cross-sectional view showing a state before the booster mechanism is actuated by taking out the piston shown in FIG. 12 and the components arranged inside the piston
  • FIG. FIG. 5 is a cross-sectional view showing a state where a booster mechanism is operating.
  • FIG. 14 is an exploded perspective view showing the piston shown in FIG. 12 and the components arranged inside the piston as viewed from the outer side.
  • FIG. 15 is an exploded perspective view showing the piston shown in FIG. 12 and the components arranged inside the piston as viewed from the inner side.
  • 16 (a) is a perspective view showing a state in which components are incorporated inside the piston shown in FIG. 14 and viewed from the outer side
  • FIG. 16 (b) is a view in FIG. 16 (a). It is a fragmentary sectional view which cuts and shows only a piston by AA.
  • FIGS. 17A and 17B are views seen from the inner side and the outer side in a state in which components are incorporated inside the piston shown in FIG. FIG.
  • FIG. 18 is a cross-sectional view of a piston and parts arranged inside the piston, showing an eighth example of the disc brake according to the embodiment of the present invention.
  • FIG. 19 is a cross-sectional view regarding a virtual plane including the central axis of the rotor, showing a ninth example of the disc brake according to the embodiment of the present invention.
  • FIG. 20 is an exploded perspective view showing the piston shown in FIG. 19 and the components arranged inside the piston as seen from the outer side.
  • FIG. 21 is a cross-sectional view regarding a virtual plane including the central axis of the rotor, showing a tenth example of the disc brake according to the embodiment of the present invention.
  • FIG. 22 is an exploded perspective view showing the piston shown in FIG.
  • FIG. 23 is a partial cross-sectional exploded perspective view showing the input screw, equalizer member, and cam lever shown in FIG.
  • FIG. 24 is a cross-sectional view regarding an imaginary plane including the central axis of the rotor, showing an eleventh example of the disc brake according to the embodiment of the present invention.
  • FIG. 25 is an exploded perspective view showing the piston shown in FIG. 24 and the components arranged inside the piston as viewed from the outer side.
  • FIG. 26 is a partial cross-sectional perspective view showing the piston, the input screw, the equalizer member, some components of the thrust generating mechanism, and the booster mechanism shown in FIG. FIG.
  • FIG. 27 is a cross-sectional view regarding a virtual plane including the central axis of the rotor, showing a twelfth example of the disc brake according to the embodiment of the present invention.
  • FIG. 28 is a cross-sectional view showing the piston shown in FIG. 27 and components arranged inside the piston.
  • FIG. 29 is a view of the piston shown in FIG. 28 and the components arranged inside the piston as seen from the right side.
  • FIG. 30 is an exploded perspective view showing the piston shown in FIG. 28 and the components arranged inside the piston as viewed from the inner side.
  • FIG. 31 is a cross-sectional view relating to a virtual plane including the central axis of the rotor, showing a first example of a conventional structure.
  • FIG. 32 is a cross-sectional view of the piston shown in FIG. 31 and parts arranged inside the piston.
  • FIG. 33 is a cross-sectional view of a piston and components disposed inside the piston, showing a second example of a conventional structure.
  • FIG. 31 The structure of this portion is the same as that of a conventionally known hydraulic floating caliper type disc brake (also referred to as a guide pin type disc brake), and thus detailed description thereof is omitted.
  • a conventionally known hydraulic floating caliper type disc brake also referred to as a guide pin type disc brake
  • the support 1 is supported by the vehicle body in a state adjacent to a rotor (not shown) that rotates with the wheel, and the inner pad 2 and the outer pad 3 can be displaced in the axial direction with the rotor sandwiched from both sides in the axial direction. It is supported by.
  • a caliper claw 5a is provided at the outer side end of the caliper 4a, and a hydraulic cylinder (cylinder) 6a is provided at the inner side end.
  • a piston 7a is incorporated in the hydraulic cylinder 6a in an oil-tight manner and capable of axial displacement.
  • pressure oil is introduced into the hydraulic cylinder 6a and the piston 7a is displaced to the outer side.
  • the piston 7a presses the inner pad 2 against the inner side surface of the rotor
  • the caliper claw 5a presses the outer pad 3 against the outer side surface of the rotor.
  • the rotor is strongly held by the inner pad 2 and the outer pad 3 from both sides in the axial direction, and braking is performed.
  • the above description is the same as that of a general hydraulic floating caliper type disc brake.
  • the electric disc brake of the first example as described above is configured such that the piston 7a has a bottomed cylindrical shape in which the outer side is a piston bottom 8a and the inner side is an opening. Further, inside the hydraulic cylinder 6 a, in order from the inner side, an inner side thrust ball bearing 28, a mechanical thrust generating mechanism 29, an equalizer member 30 corresponding to an input member in claims, and a booster mechanism 31 And are incorporated. Of these, the inner side thrust ball bearing 28 is exposed to the outside of the piston 7a in the illustrated structure, but may be disposed inside the piston 7a.
  • the inner side thrust ball bearing 28 is provided so as to be able to roll between the inner side thrust raceway 32 having an arcuate cross section, the outer side thrust raceway 33 having an arcuate cross section, and the two raceways 32, 33.
  • the inner side thrust track 32 is formed over the entire circumference of the outer side surface of the annular inner side thrust plate 36.
  • Such an inner side thrust plate 36 is inserted through the center hole 37 in the axial intermediate portion of the drive rod 23a, and is fitted into a portion of the inner peripheral surface of the hydraulic cylinder 6a near the cylinder bottom 38.
  • the outer side thrust track 33 is formed over the entire circumference on the inner side surface of the outward flange portion 40 of the adjusting screw 13a, which will be described later.
  • the thrust generating mechanism 29 includes an adjusting screw 13a, an adjusting nut 12a, a power nut 39, a thrust plate 41 corresponding to a first pressing member in claims, a thrust ball bearing 42, and An input screw 14a corresponding to the second pressing member and a preset spring 15a are combined.
  • the adjusting screw 13a is a cylindrical member with a flange in which an outward flange 40 is formed at the inner end of the outer peripheral surface.
  • a male screw portion 43 is formed on the outer half of the outer peripheral surface of the adjusting screw 13a.
  • at least a part of the inner peripheral surface of the adjustment screw 13a has a hexagonal shape.
  • the outer thrust track 33 described above is formed on the inner side surface of the outward flange 40.
  • a hexagonal portion of the inner peripheral surface of the adjusting screw 13a is externally fitted to a hexagonal portion formed on the outer peripheral surface of the drive rod 23a. In this way, the drive rod 23a and the adjustment screw 13a are combined so that torque transmission is possible.
  • the structure of this combination part can also be made into a general spline engagement.
  • the drive rod 23a has an axially intermediate portion inserted through a cylinder through hole 44 formed in the central portion of the cylinder bottom 38 of the caliper 4a, and an inner side end extending from the caliper 4a to the inner side. And is supported by the caliper 4a. Further, between the inner peripheral surface of the cylinder through hole 44 and the outer peripheral surface of the drive rod 23a, a small diameter locking groove 45 formed over the entire periphery of the outer side end portion portion and the outer peripheral surface of the drive rod 23a. An O-ring 46, which is a seal member for ensuring internal oil tightness, is provided.
  • a central diameter groove 47 formed on the outer side of the small diameter locking groove 45 on the inner peripheral surface of the cylinder through hole 44 and the outer peripheral surface of the drive rod 23a are arranged in the center.
  • a stepped annular washer 48 having a crank-like cross-section with a protruding portion protruding in the inner direction is locked.
  • the inner side surface of the flange part 49 formed in the axial direction intermediate part of the said drive rod 23a and the center side part of the outer side surface of the said washer 48 are contact
  • Such a drive rod 23a has a base end portion coupled to an output shaft 51 of a gear type reduction gear 50 (see FIG. 31) so that torque can be transmitted.
  • the speed reducer 50 is housed in a speed reducer case 52 coupled to the inner side end of the caliper 4a.
  • the output shaft 51 reduces the rotation of the electric motor 11 (increases torque).
  • the adjustment screw 13a is rotationally driven by the electric motor 11 with a large torque via the drive rod 23a.
  • the entire adjustment nut 12a is cylindrical, and an internal thread portion 54 is formed on the inner peripheral surface.
  • a bottomed hole 55 for connection is formed at one position in the circumferential direction of the outer peripheral surface of the adjusting nut 12a near the outer end.
  • an engagement protrusion 56 that protrudes radially outward from the outer peripheral surface and is long in the axial direction. Is formed.
  • Such an adjusting nut 12a is installed on the outer diameter side of the adjusting screw 13a in a state where the female screw portion 54 and the male screw portion 43 of the adjusting screw 13a are screwed together. It should be noted that the screwed state between the screw parts 43 and 54 is irreversible.
  • the power nut 39 is a cylindrical member with a hook in which an outward flange 57 is formed at the outer side end of the outer peripheral surface.
  • a female screw part 58 is formed on the outer half of the inner peripheral surface of the power nut 39.
  • the inner diameter of the outer half of the power nut 39 is smaller than the inner diameter of the inner half.
  • the pitch of the female screw portion 58 of the power nut 39 and the pitch of the female screw portion 54 of the adjusting nut 12a are formed to be the same. It should be noted that the pitches of these female thread portions 54 and 58 can be made different from each other.
  • the pitch of the female screw portion 58 is made larger than the pitch of the female screw portion 54
  • the booster mechanism 31 described later when the booster mechanism 31 described later is operated, the input screw 14a is displaced to the outer side by a predetermined amount.
  • the amount of rotation (rotation angle) of the power nut 39 can be reduced.
  • the twist angle of the preset spring 15a which will be described later, can be reduced, and the design of the preset spring 15a is facilitated.
  • a locking hole 59 penetrating the outward flange 57 in the axial direction is formed at one position in the circumferential direction of the outward flange 57 (upward in FIGS. 1 and 4).
  • an inner side thrust track 60 having an arcuate cross section is formed over the entire circumference of the outer side surface of the power nut 39.
  • a connecting hole 61 that penetrates the portion in the radial direction is formed.
  • Such a power nut 39 is connected to the connection hole 61 of the power nut 39 and the adjustment nut 12a in a state in which the outer side end portion of the adjustment nut 12a is disposed on the inner diameter side of the inner half.
  • a cylindrical connecting pin 62 is stretched over the bottomed hole 55 for use. In this way, the power nut 39 is assembled to the adjustment nut 12a in a state where it can be rotated in a synchronized manner and in a state where a synchronized axial displacement is possible.
  • the thrust plate 41 is a cylindrical member with a flange having an outward flange 63 formed at the inner side end of the outer peripheral surface.
  • An outer side thrust track 64 is formed on the inner side surface of the thrust plate 41.
  • the outer side end surface of the thrust plate 41 is a flat annular first pressing surface 65.
  • outer diameter side protrusions 66 and 66 are formed at two positions in the circumferential direction on the outer circumferential surface of the outward flange 63 which are opposite to each other (diameter direction opposite side).
  • Inner diameter side protrusions 67 and 67 are formed at two positions in the circumferential direction that are opposite to each other (diameter opposite side) of the inner side end of the inner peripheral surface of the thrust plate 41.
  • Such a thrust plate 41 is formed at a portion closer to the outer side end portion of the locking grooves 68, 68 that are formed in two axial positions on the inner peripheral surface of the piston 7a opposite to each other in the circumferential direction. Each outer diameter side protrusion 66, 66 is locked. In this way, the thrust plate 41 is assembled in a state in which the thrust plate 41 cannot rotate with respect to the piston 7a and is capable of axial displacement.
  • the thrust ball bearing 42 is provided so as to be able to roll between the inner side thrust track 60 of the power nut 39, the outer side thrust track 64 of the thrust plate 41, and both the tracks 60, 64. It comprises a plurality of balls 69, 69 and a retainer 70 that holds the balls 69, 69 in a rollable manner.
  • the input screw 14a corresponds to the second pressing member in the claims, is a substantially cylindrical member, and has an external thread portion 71 formed on the outer peripheral surface.
  • An engaging recess 72 is formed on the outer side surface of the input screw 14a.
  • the engaging recess 72 is recessed from the outer side surface toward the inner side.
  • the rear end surface of the engaging recess 72 is a partial (semi-) spherical surface. Further, at the two positions in the circumferential direction of the outer side end portion of the inner peripheral surface of the engaging recess 72, rotation stoppers 73, 73 are formed.
  • Such an input screw 14 a is installed on the inner diameter side of the power nut 39 in a state where the male screw portion 71 and the female screw portion 58 of the power nut 39 are screwed together.
  • the input screw 14a is prevented from rotating with respect to the piston 7a through an equalizer member 30 and a thrust plate 41 which will be described later. Therefore, the input screw 14 a can be displaced in the axial direction with respect to the power nut 39 based on the threaded engagement between the male screw portion 71 and the female screw portion 58 of the power nut 39.
  • the preset spring 15a is a torsion coil spring, and is provided between the positioning plate 74 locked to the piston 7a and the power nut 39.
  • the positioning plate 74 is a ring-shaped member, and at two positions opposite to the circumferential direction of the outer circumferential surface, an outer diameter side engaging projection 75 projecting radially outward from the outer circumferential surface, 75 is formed.
  • an inner diameter side engaging protrusion 76 protruding inward in the radial direction from the inner peripheral surface is formed.
  • a locking hole 77 is formed at one position in the circumferential direction of the positioning plate 74 so as to penetrate the positioning plate 74 in the axial direction.
  • Such a positioning plate 74 is configured such that the outer diameter side engaging protrusions 75 and 75 are engaged with the inner side end portions of the locking grooves 68 and 68 of the piston 7a, respectively. 7a is assembled in a state where rotation with respect to 7a is prevented. Further, on the inner peripheral surface of the piston 7a on the inner side with respect to the positioning plate 74, a semicircular retaining ring 78 having a discontinuous portion in a part in the circumferential direction is fitted.
  • the spacer 80 is a partially cylindrical member having a discontinuous portion at one place in the circumferential direction, and is bent radially outward at a position opposite to the discontinuous portion in the circumferential direction of the outer end surface.
  • An outward projecting piece 81 is formed.
  • the outward projecting piece 81 is formed with a locking hole 82 penetrating in the axial direction.
  • Such a spacer 80 is externally fitted to the inner half of the power nut 39 in a state where the locking hole 82 and the locking hole 59 of the power nut 39 are aligned.
  • the locking portion 79b of the preset spring 15a is locked in the locking holes 59 and 82.
  • the preset spring 15a imparts rotational force to the power nut 39 and the adjustment nut 12a.
  • the direction of this elasticity is the direction in which the power nut 39 and the adjustment nut 12a are displaced toward the inner side based on the threaded engagement of the male threaded portion 43 of the adjusting screw 13a and the female threaded portion 54 of the adjusting nut 12a. ing.
  • the inner end of the engaging projection 56 of the adjusting nut 12a and the inner diameter of the positioning plate 74 in a state before the booster mechanism 31 operates (the state shown in FIG. 1).
  • the side engaging protrusion 76 is in contact with the circumferential direction. In this manner, the elastic force in the circumferential direction applied to the input screw 14a is received from the preset spring 15a, and the positioning in the circumferential direction of the input screw 14a in a state before the booster mechanism 31 is operated is achieved. Yes.
  • the equalizer member 30 is a substantially columnar member, and is provided with a hemispherical swing protrusion 83 provided in a state of protruding in the inner direction from the center of the inner side surface, and the swing protrusion 83.
  • At two positions in the circumferential direction of the outer side end portion of the outer peripheral surface there are anti-rotation protrusions 84 and 84 formed in a state of projecting radially outward from the outer peripheral surface.
  • the outer side surface of the equalizer member 30 is a circular flat surface, and the portion is a second pressing surface 85 corresponding to the pressing surface in the claims.
  • anti-rotation locking grooves 86 and 86 that are long in the axial direction are formed at two positions in the circumferential direction on the opposite sides of the inner half.
  • the swinging protrusion 83 and the engaging recess 72 of the input screw 14a are engaged, and the anti-rotation protrusions 84 and 84 and the input screw 14a are prevented from rotating. Notches 73, 73 are engaged. Further, the respective rotation stop locking grooves 86, 86 of the equalizer member 30 and the inner diameter side protrusions 67, 67 of the thrust plate 41 are engaged. In this way, the equalizer member 30 is assembled between the input screw 14a and the booster mechanism 31. In addition, the equalizer member 30 is connected to the input screw 14a and the booster mechanism 31 in the engaged state between the anti-rotation locking grooves 86 and 86 and the inner diameter side protrusions 67 and 67 of the thrust plate 41. Is adjusted to such an extent that it can swing.
  • the booster mechanism 31 has a case 87 and a reaction disk 88.
  • the case 87 is a bottomed cylindrical member including a case cylindrical portion 89 and a case bottom portion 90 provided so as to close an outer side end portion of the case cylindrical portion 89.
  • Such a case 87 is fitted into the outer end of the inner peripheral surface of the piston 7a in a state where the outer side surface of the case bottom 90 is in contact with the inner side surface of the piston bottom 8a of the piston 7a. Yes.
  • the reaction disk 88 is made of, for example, an elastic material such as resin, rubber, or an elastomer such as vinyl, and has an inner elastic body 91 configured in a columnar shape and an outer elastic body 92 configured in a cylindrical shape. It consists of.
  • the inner elastic body 91 and the outer elastic body 92 are made of the same material. However, the materials of these members 91 and 92 (and the rigidity associated therewith) can be made different from each other.
  • the materials of the inner elastic body 91 and the outer elastic body 92 can be appropriately determined in accordance with the durability of the reaction disk 88 and the transmission characteristics of the pressing force when the booster mechanism is operated. .
  • the inner elastic body 91 is fitted (press-fitted) into the inner diameter side of the outer elastic body 92 so as to have no gap over the entire circumference.
  • the both members 91 and 92 are arranged concentrically with each other, and the inner elastic body 91 corresponding to the pressed surface of the claims.
  • reaction disk 88 is fitted in the outer side end portion on the inner diameter side of the case 87, and the inner side surface of the outer elastic body 92 is the outer side surface (first pressing surface 65 of the thrust plate 41). ) And the inner side surface (pressed surface 93) of the inner elastic body 91 is disposed in contact with the outer side surface (second pressing surface 85) of the equalizer member 30. That is, the reaction disk 88 is formed in a space defined by the inner peripheral surface of the case 87, the outer side surface of the thrust plate 41, and the outer side surface of the equalizer member 30. 87 and no gap.
  • the operation of the parking brake in the electric disk brake of the first example configured as described above is as follows.
  • the adjustment screw 13a is rotationally driven by the electric motor 11 via the drive rod 23a.
  • the force required to move the pads 2 and 3 toward the rotor is as follows. It's small.
  • the adjusting screw 13a rotates, the adjusting nut 12a and the power nut 39 do not rotate with respect to the piston 7a due to the elasticity of the preset spring 15a.
  • the adjustment nut 12a and the power nut 39 are displaced toward the rotor toward the outer side based on the threaded engagement between the male screw portion 43 of the adjusting screw 13a and the female screw portion 54 of the adjusting nut 12a.
  • the input screw 14a provided on the inner diameter side of the power nut 39 is also displaced toward the outer side in synchronization.
  • the pressing force based on each displacement is as follows: power nut 39 ⁇ thrust ball bearing 42 ⁇ thrust plate 41 ⁇ radially outer half of reaction disk 88 (outer elastic body 92) ⁇ path of case 87 and input screw 14a.
  • Equalizer member 30 Recently center part of reaction disk 88 (inner elastic body 91) ⁇ Transmitted through the path of case 87 and finally presses the piston 7a so that the piston 7a is connected to the pads 2, 3 Until the gap between the rotor and both sides of the rotor is eliminated.
  • the outer side surface (first pressing surface 65) of the thrust plate 41 and the outer side surface (second pressing surface 85) of the equalizer member 30 are located on the same virtual plane. To do.
  • the adjusting screw 13a is based on the axial reaction force applied to the adjusting nut 12a and the power nut 39.
  • the rotational resistance of the threaded portion between the male screw portion 43 and the female screw portion 54 of the adjusting nut 12a increases.
  • the rotational resistance becomes larger than the elasticity given to the adjustment nut 12a and the power nut 39 by the preset spring 15a, the adjustment nut 12a and the power nut 39 are against the elasticity. It rotates in synchronization with the adjusting screw 13a.
  • the outer side surface (second pressing surface 85) of the equalizer member 30 is changed to the outer side surface (first pressing surface) of the thrust plate 41.
  • the inner side surface (pressed surface 93) of the inner elastic body 91 constituting the reaction disk 88 is pressed by being displaced to the outer side from the surface 65).
  • the outer side surface (second pressing surface 85) of the equalizer member 30 and the inner side surface (pressed surface 93) of the inner elastic body 91 have the same shape. Presses only the inner elastic body 91 portion of the reaction disk 88 toward the outer side.
  • the equalizer member 30 is prevented from rotating with respect to the piston 7a. For this reason, even when the outer side surface (second pressing surface 85) of the equalizer member 30 and the inner side surface (pressed surface 93) of the inner elastic body 91 are configured in a rectangular shape, for example, the assembled state However, if these both surfaces 85 and 93 when viewed from the axial direction of the rotor are made to coincide with each other, the equalizer member 30 can press only the inner elastic body 91 portion.
  • the inner elastic body 91 and the outer elastic body 92 constituting the reaction disk 88 are elastically deformed integrally.
  • the reaction disk 88 (the inner elastic body 91 and the outer elastic body 92) has a counterpart surface that surrounds the reaction disk 88 (the inner elastic body 91 and the outer elastic body 92) by a behavior like a kind of incompressible fluid. Press.
  • the inner elastic body 91 is elastically expanded in diameter by the amount that the inner elastic body 91 is elastically deformed in the axial direction.
  • the outer elastic body 92 exerts an axial pressing force by the amount compressed in the radial direction.
  • the pressure per unit area with which the reaction disk 88 (the inner elastic body 91 and the outer elastic body 92) presses the mating surface is the unit area of the pressing surface by the outer side surface (second pressing surface 85) of the equalizer member 30. It becomes the same as the hit pressure.
  • the piston 7a is increased by a ratio (S 1 / S 2 ) of the abutting area and pushed toward the rotor through the case 87 with respect to the thrust applied to the input screw 14a.
  • both the pads 2 and 3 are strongly pressed against both side surfaces of the rotor.
  • each said screw part 43 and 54 currently screwed together and the said screw parts 54 and 71 are screwing irreversibly, if the electricity supply to the said electric motor 11 is stopped, In particular, the necessary braking force can be maintained without performing the holding operation.
  • the electric motor 11 When releasing the brake, the electric motor 11 is rotated in the reverse direction, and the piston 7a is retracted from the rotor. At this time, after the moment when both the pads 2 and 3 are separated from both side surfaces of the rotor, the electric motor 11 is rotated in a reverse direction by a predetermined angle so that both the pads 2 and 3 and both side surfaces of the rotor are A gap with an appropriate thickness is secured between the two. The proper clearance is ensured when the adjusting nut 12a is displaced by an appropriate amount toward the inner side of the adjusting screw 13a by the screwing of the two screw portions 43 and 54. In this way, the gap is always kept at an appropriate thickness regardless of the wear of the pads 2 and 3.
  • the reaction disk 88 is configured by combining the inner elastic body 91 and the outer elastic body 92, and based on the movement of the input screw 14a in the axial direction,
  • the outer side surface (second pressing surface 85) of the equalizer member 30 that directly presses the reaction disk 88 and the inner side surface (pressed surface 93) of the inner elastic body 91 are configured in the same shape, and the rotor
  • the equalizer member 30 is in a state where the outer side surface (second pressing surface 85) of the equalizer member 30 and the inner side surface (pressed surface 93) of the inner elastic body 91 coincide with each other.
  • the inner elastic body 91 is pressed. For this reason, it is possible to prevent a shearing force from acting on a portion of the inner side surface of the reaction disk 88 that is pressed against the radially outer edge of the outer side surface (second pressing surface 85) of the equalizer member 30. . As a result, it is possible to improve the durability of the reaction disc 88 and, in turn, the durability of the electric disc brake.
  • the inner elastic body 91 is fitted and combined on the inner diameter side of the outer elastic body 92 with no gap. Therefore, when the equalizer member 30 presses the inner elastic body 91, the deformation of the inner elastic body 91 can be directly transmitted to the outer elastic body 92 without delay. As a result, the characteristics of the output of the booster mechanism 31 with respect to the pressing force (input) applied from the equalizer member 30 to the inner elastic body 91 can be made smooth based on the axial displacement of the input screw 14a.
  • FIG. 5 to 6 show a second example of the embodiment of the present invention.
  • the axial dimension L 91a of the inner elastic body 91a constituting the reaction disk 88a is different from the axial dimension L 92a of the outer elastic body 92a (L 91a ⁇ L 92a ).
  • the axial dimension L 91a of the inner elastic member 91a is made larger than the axial dimension L 92a of the outer elastic member 92a (L 91a> L 92a) .
  • the axial dimension L 91a of the inner elastic member 91a is larger than the axial dimension L 91 of the inner elastic member 91 of the first example of the embodiment described above (see FIG. 2) (L 91a > L 91 ).
  • the dimensions L 30a in the axial direction of the equalizer member 30a has been smaller than the axial dimension L 30 of the equalizer member 30 of the first example of embodiment (L 30a ⁇ L 30).
  • the outer diameter D 91a of the inner elastic body 91a is equal to or slightly larger than the inner diameter d 92a of the outer elastic body 92a.
  • the inner side surface of the outer elastic body 92a is in contact with the outer side surface (first pressing surface 65) of the thrust plate 41 in a state in which the reaction disk 88a is fitted inside the outer end portion on the inner diameter side of the case 87.
  • the inner side surface (pressed surface 93) of the inner elastic body 91a is disposed in contact with the outer side surface (second pressing surface 85) of the equalizer member 30.
  • the inner side end portion of the inner elastic body 91 a is disposed to the inner diameter side of the outer end portion of the thrust plate 41.
  • the reaction disk 88a includes an inner peripheral surface of the case 87, an outer side surface of the thrust plate 41, a portion closer to an outer side end portion of the inner peripheral surface of the thrust plate 41, In the space defined by the outer side surface of the equalizer member 30a, the members 30a, 41, and 87 are disposed without any gaps.
  • the axial dimension L 91a of the inner elastic body 91a is made larger than the axial dimension L 92a of the outer elastic body 92a. For this reason, it is possible to ensure a large amount of deformation of the inner elastic body 91a with respect to the axial displacement of the input screw 14a and the equalizer member 30a. As a result, during braking, the piston 7a can be pressed with a large pressing force while suppressing an increase in the axial dimension L 92a of the outer elastic body 92a. Since the configuration, operation, and effect of the other parts are the same as those in the first example of the above-described embodiment, description of the equivalent parts is omitted.
  • [Third example of embodiment] 7 to 8 show a third example of the embodiment of the present invention.
  • the axial dimension L 91b of the inner elastic body 91b constituting the reaction disk 88b is different from the axial dimension L 92b of the outer elastic body 92b (L 91b ⁇ L 92b ).
  • the axial dimension L 92b of the outer elastic member 92b are larger than the axial dimension L 91b of the inner elastic body 91b (L 92b> L 91b) .
  • the axial dimension L 91b of the inner elastic body 91b is smaller than the axial dimension L 91 of the inner elastic member 91 of the first example of the embodiment described above (see FIG. 2) (L 91b ⁇ L 91 ).
  • the dimension L 30b in the axial direction of the equalizer member 30b are larger than the axial dimension L 30 of the equalizer member 30 of the first example of embodiment (L 30b> L 30).
  • the outer diameter D 91b of the inner elastic body 91b is equal to or slightly larger than the inner diameter d 92b of the outer elastic body 92b.
  • the inner elastic body 91b is fitted and combined with the inner diameter side of the outer elastic body 92b with no gap.
  • the reaction disc 88b as described above is fitted in the outer side end of the inner diameter side of the case 87, and the inner side surface of the outer elastic body 92b is connected to the outer side surface (first pressing surface 65) of the thrust plate 41.
  • the inner side surface (pressed surface 93) of the inner elastic body 91b is disposed in contact with the outer side surface (second pressing surface 85) of the equalizer member 30b.
  • the outer end portion of the equalizer member 30b is disposed on the inner diameter portion of the inner end portion of the outer elastic body 92b.
  • the reaction disk 88b includes the inner peripheral surface of the case 87, the outer side surface of the thrust plate 41, the outer side end of the outer peripheral surface of the equalizer member 30b, and the equalizer member.
  • the reaction disk 88b includes the inner peripheral surface of the case 87, the outer side surface of the thrust plate 41, the outer side end of the outer peripheral surface of the equalizer member 30b, and the equalizer member.
  • the outer side surface of 30b it arrange
  • FIG. 9 shows a fourth example of the embodiment of the present invention.
  • the inner elastic body 91c constituting the reaction disc 88c has a columnar shape in which the outer diameter D 91c of the outer peripheral surface increases as it approaches the rotor (to the left in FIG. 9). It is configured.
  • the outer elastic body 92c has a cylindrical shape in which the inner diameter d 92c of the inner peripheral surface becomes larger as it approaches the rotor.
  • the inner elastic body 91c is fitted (press-fitted) into the inner diameter side of the outer elastic body 92c with no gap over the entire circumference.
  • the both members 91c and 92c are arranged concentrically with each other, and correspond to the pressed surface of the claims.
  • the inner side surface of the outer elastic body 92c and the outer side surface (first pressing surface 65) of the thrust plate 41 have the same shape (annular shape). Since the configuration, operation, and effect of the other parts are the same as those in the first example of the above-described embodiment, description of the equivalent parts is omitted.
  • FIG. 10 shows a fifth example of the embodiment of the present invention.
  • the inner elastic body 91d constituting the reaction disc 88d has a cylindrical shape that decreases as the outer diameter D 91d of the outer peripheral surface approaches the rotor (to the left in FIG. 10). It is configured.
  • the outer elastic body 92d is formed in a cylindrical shape whose inner diameter d 92d of the inner peripheral surface decreases toward the outer side.
  • the inner elastic body 91d is fitted and press-fitted to the inner diameter side of the outer elastic body 92d with no gap over the entire circumference.
  • the inner side surface of the outer elastic body 92d and the outer side surface (first pressing surface 65) of the thrust plate 41 have the same shape (annular shape). Since the configuration, operation, and effect of the other parts are the same as those in the first example of the above-described embodiment, description of the equivalent parts is omitted.
  • FIG. 11 shows a sixth example of the embodiment of the present invention.
  • the inner elastic body 91e constituting the reaction disc 88e has a cylindrical shape that decreases as the outer diameter D 91e of the outer peripheral surface approaches the rotor (to the left in FIG. 11). It is configured.
  • the outer elastic body 92e is formed in a bottomed cylindrical shape having an inner end face opened and a bottom portion 94 on the outer end face. The inner diameter d 92e of the inner peripheral surface of such an outer elastic body 92e becomes smaller toward the outer side.
  • the inner elastic body 91e is fitted (press-fit) on the inner diameter side of the outer elastic body 92e with no gap between the inner peripheral surface of the outer elastic body 92e and the inner side surface of the bottom portion 94. Are combined.
  • the inner side surface of the outer elastic body 92e and the outer side surface (first pressing surface 65) of the thrust plate 41 have the same shape (annular shape). Since the configuration, operation, and effect of the other parts are the same as those in the first example of the above-described embodiment, description of the equivalent parts is omitted.
  • FIG. 31 The structure of this portion is the same as that of a conventionally known hydraulic floating caliper type disc brake (also referred to as a guide pin type disc brake), and thus detailed description thereof is omitted.
  • the support 1 is supported by the vehicle body in a state adjacent to a rotor (not shown) that rotates with the wheel, and the inner pad 2a and the outer pad 3a can be displaced in the axial direction with the rotor sandwiched from both sides in the axial direction. It is supported by.
  • the caliper claw 5b is provided at the outer side end of the caliper 4b, and the hydraulic cylinder 6b is provided at the inner side end.
  • the piston 7b is incorporated in the hydraulic cylinder 6b in an oil-tight manner and capable of axial displacement.
  • hydraulic pressure is introduced into the hydraulic cylinder 6b, and the piston 7b is displaced to the outer side.
  • the piston 7b presses the inner pad 2a against the inner side surface of the rotor
  • the caliper claw 5b presses the outer pad 3a against the outer side surface of the rotor. And this rotor is strongly clamped by the inner pad 2a and the outer pad 3a from both sides in the axial direction, and braking is performed.
  • the above description is the same as that of a general hydraulic floating caliper type disc brake.
  • the piston 7b is configured as a bottomed cylinder having an outer side as a piston bottom 123 and an inner side as an opening.
  • a mechanical thrust generating mechanism 124, an equalizer member 125, and a booster mechanism 126 are incorporated inside the piston 7b.
  • the thrust generating mechanism 124 is operated by the electric motor 11 (see FIG. 31), which is a drive source fixed outside the caliper 4b, and the rotational power is converted into axial thrust.
  • the piston 7b is displaced to the outer side. That is, the thrust generating mechanism 124 is provided between the piston bottom 123 of the piston 7b and the cylinder bottom 127, which is the inner side deep part of the hydraulic cylinder 6b, and is based on the rotational driving force of the electric motor 11. By extending in the axial direction, the piston 7b is moved toward the inner side surface of the rotor.
  • the thrust generating mechanism 124 as described above includes an adjusting nut 12b, an adjusting screw 13b, a thrust plate 128 corresponding to a first pressing member in claims, and a thrust ball bearing 129 corresponding to a thrust bearing in claims.
  • the input screw 14b corresponding to the second pressing member in the claims and the preset spring 15b are combined.
  • the adjusting nut 12b is a cylindrical member, and a female screw portion 130 is formed in a portion near the outer side end portion of the inner peripheral surface.
  • engaging convex portions 131, 131 that protrude radially outward from the outer peripheral surface over the entire length and that are long in the axial direction.
  • the engaging protrusions 131 and 131 are engaged with locking grooves 132 and 132 formed at three positions at equal intervals in the circumferential direction on the inner peripheral surface of the piston 7b.
  • the piston 7b is assembled in a state in which the displacement in the axial direction is possible and in a state in which the rotation is prevented.
  • the adjusting screw 13b is substantially crank-shaped in cross section and is entirely cylindrical, and a male threaded portion 133 is formed over the entire length of the outer peripheral surface.
  • a female thread portion 134 is formed in a portion near the outer side end portion of the inner peripheral surface of the adjustment screw 13b.
  • the inner diameter of the inner half of the inner peripheral surface of the adjusting screw 13b is made larger than the inner diameter of the portion where the female thread 134 is formed, so that the inner diameter of the inner half is A space for arranging the preset springs 15b is provided.
  • an inner side thrust track 135 having an arcuate cross section is formed over the entire periphery of the outer side surface of the adjusting screw 13b near the radially outer end.
  • notches 136 and 136 are formed at four positions at equal intervals in the circumferential direction of the inner side end of the adjusting screw 13b.
  • Such an adjustment screw 13b is installed on the inner diameter side of the adjustment nut 12b in a state where the male screw portion 133 and the female screw portion 130 of the adjustment nut 12b are screwed together.
  • the screwing state of these screw parts 133 and 130 is irreversible.
  • the thrust plate 128 is a substantially ring-shaped member. At three positions on the outer peripheral surface at equal intervals in the circumferential direction, the engagement convex portion 137 protrudes radially outward from the outer peripheral surface and is long in the axial direction. 137 are formed. Further, an outer side thrust track (outer side track) 138 having an arcuate cross section is formed on the inner side surface of the thrust plate 128 over the entire circumference. On the other hand, the outer side surface of the thrust plate 128 is a flat surface, and this portion is a first pressing surface 139.
  • the engaging convex portions 137 and 137 are engaged with the engaging convex portions 131 and 131 of the adjusting nut 12b in the engaging grooves 132 and 132 of the piston 7b.
  • the piston 7b can be displaced in the axial direction and is assembled in a state where rotation is prevented.
  • the thrust ball bearing 129 is provided between the inner thrust track 135 of the adjustment screw 13b, the outer thrust track 138 of the thrust plate 128, and between the tracks 135, 138 so as to be able to roll. It comprises a plurality of balls 140, 140 and a holder 141 that holds each of the balls 140, 140 so that they can roll.
  • the input screw 14b is a cylindrical member, and a portion of the inner peripheral surface near the inner side end is hexagonal.
  • a male screw portion 142 is formed in the outer half of the outer peripheral surface of the input screw 14b.
  • an engagement convex portion 143 that protrudes radially outward and is long in the axial direction is formed. ing.
  • the inner side edge part of this engagement convex part 143 protrudes in an inner direction rather than the remaining part of the inner side end surfaces of the said input screw 14b.
  • the outer side end surface of the input screw 14b is formed in a partially concave curved shape over the entire circumference. In this manner, a contact area with an inner spherical surface portion 167 of an equalizer member 125, which will be described later, is secured, and edge contact is prevented.
  • Such an input screw 14b is assembled to a hexagonal portion formed on the outer peripheral surface of the drive rod 23b in a state where the hexagonal portion of the inner peripheral surface of the input screw 14b is externally fitted. In this way, the drive rod 23b and the input screw 14b are combined so that torque transmission is possible and relative displacement in the axial direction is possible.
  • the structure of this combination part can also be made into a general spline engagement.
  • the input screw 14b is installed on the inner diameter side of the adjustment screw 13b in a state where the male screw portion 142 and the female screw portion 134 of the adjustment screw 13b are screwed together. The screwed state between these screw portions 142 and 134 is also irreversible.
  • the drive rod 23b has an axially intermediate portion inserted through a cylinder through hole 144 formed at the center of the cylinder bottom 127 of the caliper 4b, and an inner side end extending from the caliper 4b to the inner side. And is supported by the caliper 4b. Further, a retaining ring 145 is fitted and fixed to an outer side end portion of the outer peripheral surface of the driving rod 23b protruding from the caliper 4b to the inner side. In addition, between the inner peripheral surface of the cylinder through-hole 144 and the outer peripheral surface of the drive rod 23b, the cylinder is interposed between the small-diameter locking groove 146 formed over the entire periphery near the outer side end portion.
  • An O-ring 147 which is a seal member for ensuring internal oil tightness, is provided. Further, between the large-diameter engaging groove 148 formed on the outer side of the small-diameter engaging groove 146 on the inner peripheral surface of the cylinder through hole 144 and the outer peripheral surface of the driving rod 23b, An annular washer 149 is provided. And the inner side surface of the flange part 150 formed in the axial direction intermediate part of this drive rod 23b and the outer side surface of the said washer 149 are contact
  • Such a drive rod 23b has a base end portion coupled to an output shaft 51 of a gear type reduction gear 50 (see FIG. 31) so that torque can be transmitted.
  • the speed reducer 50 is housed in a speed reducer case 52 coupled to the inner side end of the caliper 4b.
  • the output shaft 51 reduces the rotation of the electric motor 11 (increases the torque). To communicate. Accordingly, the input screw 14b is rotationally driven by the electric motor 11 with a large torque via the drive rod 23b.
  • the preset spring 15b is a torsion coil spring, and is provided between the input screw 14b and the adjustment screw 13b via a spring guide 154 and a positioning plate 155.
  • the spring guide 154 includes a cylindrical portion 156, an outward flange portion 157 provided at an outer side end portion of the cylindrical portion 156, and an inward flange portion 158 provided at an inner side end portion.
  • a locking hole 59 that penetrates the outward flange 157 in the axial direction is formed at one position in the circumferential direction of the outward flange 157 (above FIGS. 12 to 14).
  • the spring guide 154 is formed with a slit 160 over the entire length at one place in the circumferential direction (below in FIGS. 12 to 14).
  • the spring guide 154 is a hooked part cylindrical member in which the slit 160 part is a discontinuous part.
  • Such a spring guide 154 is configured such that the outer side surface of the inward flange portion 158 is brought into contact with the inner side end surface of the input screw 14b and is externally fitted to the input screw 14b. Axial displacement is prevented.
  • the spring guide 154 is prevented from rotating with respect to the input screw 14b by the engagement protrusion 143 of the input screw 14b being disposed (engaged) between the slits 160.
  • the positioning plate 155 is a ring-shaped member, and is provided at two positions on the opposite side with respect to the radial direction of the outer peripheral surface. 161 is formed. On the other hand, at one position in the circumferential direction of the inner peripheral surface of the positioning plate 155 (below in FIGS. 12 to 14), an inner diameter side engaging protrusion 162 protruding radially inward from the inner peripheral surface is formed. ing. Further, a locking hole 163 penetrating the positioning plate 155 in the axial direction is formed at one position in the circumferential direction on the side surface of the positioning plate 155 (above FIGS. 12 to 14).
  • the outer diameter side engaging protrusions 161, 161 are notches 136, 136 formed at positions opposite to each other in the radial direction among the notches 136, 136 of the adjustment screw 13b. Are engaged with each other so that the rotation with respect to the adjusting screw 13b is prevented. Further, on the inner peripheral surface of the adjusting screw 13b, the inner ring side of the positioning plate 155 is fitted with a ring-shaped retaining ring 213 having a discontinuous part in the circumferential direction.
  • the locking portion 164a protruding in the inner direction from the inner side end portion is locked in the locking hole 163 of the positioning plate 155.
  • a locking portion 164 b protruding from the outer side end portion in the outer direction is locked in the locking hole 159 of the spring guide 154.
  • the preset spring 15b imparts rotational elasticity to the input screw 14b.
  • the elasticity of the preset spring 15b continues to be applied to the input screw 14b via the spring guide 154 regardless of the axial displacement of the input screw 14b.
  • the direction of the elasticity is a direction in which the input screw 14b is displaced toward the inner side based on the threaded engagement between the male threaded portion 142 of the input screw 14b and the female threaded portion 134 of the adjusting screw 13b.
  • the positioning plate 155 is in contact with the inner diameter-side engaging protrusion 162 in the circumferential direction, thus receiving elasticity in the circumferential direction applied to the input screw 14b from the preset spring 15b. It is intended to position the input screw 14b in the circumferential direction before the booster mechanism 126 is actuated, and instead of the input screw 14b, the spring guide 154 is prevented from rotating around the input screw 14b. Is abutted in the circumferential direction with respect to the inner diameter side engaging protrusion 162 of the positioning plate 155. It can also be.
  • the equalizer member 125 includes a disk portion 165 and a shaft portion 166 that protrudes from the center of the outer side surface of the disk portion 165 toward the outer side.
  • the disk portion 165 has an inner side spherical surface portion 167 corresponding to the convex curved surface portion of the claims on the inner side surface.
  • an outer side spherical surface portion 168 corresponding to the convex curved surface portion of the claims is formed in a portion other than the shaft portion 166 on the outer side surface of the disc portion 165.
  • the curvature of the inner spherical surface portion 167 is larger than the curvature of the outer spherical surface portion 168.
  • the radially outer end portion of the inner spherical surface portion 167 is brought into contact with the outer side end surface of the input screw 14b, and the outer spherical surface portion 168 has a booster described later.
  • the cam levers 169 and 169 constituting the mechanism 126 are in contact with the inner ends of the inner side surfaces in the radial direction.
  • the shaft portion 166 is disposed on the inner diameter side of the cam levers 169 and 169. In this assembled state, the equalizer member 125 can swing between the input screw 14b and the cam levers 169 and 169.
  • the booster mechanism 126 is of a so-called lever type, and abuts against the three cam levers 169 and 169 arranged radially and the inner side surface of the piston bottom 123 in a state of being separated in the circumferential direction. And a disc-shaped plug member 17b.
  • the cam levers 169 and 169 are provided between the outer side surface of the thrust plate 128 and the outer side spherical surface portion 168 of the equalizer member 125 and the inner side surface of the plug member 17b.
  • both inner and outer end portions with respect to the radial direction of the piston 7b, and among the outer side surfaces of the cam levers 169 and 169, intermediate portions with respect to the radial direction of the piston 7b are Each is a partially cylindrical convex curved surface.
  • the radially inner end portion of the inner side surface of each cam lever 169, 169 is the outer spherical surface portion 168 of the equalizer member 125, and the radially outer end portion of the inner side surface is the outer side surface of the thrust plate 128.
  • the rocking displacement is abutted against each other.
  • each of the cam levers 169, 169 is abutted against the inner side surface of the plug member 17b so as to be able to swing.
  • concave portions 170, 170 having a circular arc cross section are formed at a plurality of locations in the circumferential direction, and the intermediate portions in the radial direction between the respective concave portions 170, 170 and the outer side surfaces of the cam levers 169, 169.
  • the part is in contact with a sufficient area.
  • two engaging projections 171 and 171 projecting from the outer side surface in the outer direction are formed on the outer side surface of the plug member 17b.
  • engagement protrusions 171 and 171 are engaged with two engagement recesses (not shown) formed on the inner side surface of the piston bottom 123 of the piston 7b. In this way, the plug member 17b is prevented from rotating with respect to the piston 7b. Further, the radially outer ends of the cam levers 169 and 169 are engaged with the locking grooves 132 and 132 of the piston 7b. In this manner, the cam levers 169 and 169 are assembled in a state in which the displacement in the axial direction with respect to the piston 7b is possible and in a state where rotation is prevented.
  • the operation when the parking brake is operated in the electric disc brake of the seventh example configured as described above is as follows.
  • the electric motor 11 rotates the input screw 14b through the drive rod 23b.
  • the adjustment screw 13b is also rotated in synchronization with the input screw 14b so as to be pulled by the preset spring 15b as the input screw 14b rotates.
  • the adjustment screw 13b and the input screw 14b are displaced toward the rotor toward the outer side based on the screwing of the female screw portion 130 of the adjusting nut 12b and the male screw portion 133 of the adjusting screw 13b.
  • the pressing force in the outer direction based on this displacement is as follows: adjustment screw 13b ⁇ thrust ball bearing 129 ⁇ thrust plate 128 ⁇ portion near the radially outer end of each cam lever 169, 169 ⁇ path of plug member 17b and input screw 14b ⁇ equalizer
  • the member 125-> the radially inner end portion of each cam lever 169, 169-> is transmitted through the path of the plug member 17b and finally presses the piston 7b in the outer direction, and the piston 7b is moved to the two pads 2a, It is displaced until the gap between 3a and both side surfaces of the rotor is eliminated.
  • the rotational resistance of the adjustment screw 13b is based on the reaction force in the inner direction received by the adjustment screw 13b.
  • the frictional force of the screwed portion between the female screw portion 130 of the adjusting nut 12b and the male screw portion 133 of the adjusting screw 13b is larger than the elastic force applied to the adjusting screw 13b by the preset spring 15b. As a result, the adjustment screw 13b does not rotate any more, and the adjustment screw 13b stops.
  • the cam levers 169 and 169 When the equalizer member 125 is displaced to the outer side based on the displacement of the input screw 14b, the cam levers 169 and 169 have a contact point with the outer side spherical surface portion 168 of the equalizer member 125 as a power point.
  • the thrust plate 128 swings and displaces with the contact portion with the outer side surface as a fulcrum and the contact portion with the plug member 17b as an action point. With respect to the radial direction of the plug member 17b, this action point exists between the force point and the fulcrum, so that the force for displacing the piston 7b via the plug member 17b is increased, and the piston 7b is Push it toward the rotor with great force.
  • both the pads 2a and 3a are strongly pressed against both side surfaces of the rotor. Since the screw portions 130 and 133 and the screw portions 134 and 142 are screwed irreversibly, if the energization to the electric motor 11 is stopped, no holding operation is performed. Necessary braking force can be maintained.
  • the booster mechanism 126 in the process of eliminating the gap, the booster mechanism 126 does not need to operate, and the stroke of the booster mechanism 126 is not consumed for eliminating the gap. Therefore, as the booster mechanism 126, a structure having a large boost ratio can be adopted instead of a short stroke, and the force pressing the piston 7b toward the rotor can be particularly increased.
  • the electric motor 11 When releasing the brake, the electric motor 11 is rotated in the reverse direction and the piston 7b is retracted from the rotor in the same manner as the conventionally proposed electric disc brake. At this time, after the moment when both the pads 2a and 3a are separated from the both side surfaces of the rotor, the electric motor 11 is rotated in a reverse direction by a predetermined angle so that both the pads 2a and 3a and the both side surfaces of the rotor are A gap with an appropriate thickness is secured between the two. The proper clearance is ensured when the adjusting screw 13b is displaced to the inner side by an appropriate amount by screwing the screw portions 130 and 133 to the adjusting nut 12b. That is, in the case of the seventh example, the adjustment nut 12b is provided so that the gap is always kept at an appropriate thickness regardless of wear of the pads 2a and 3a.
  • the electric disk brake of the seventh example it is possible to prevent the input screw 14b constituting the thrust generating mechanism 124 and the cam levers 169 and 169 constituting the boosting mechanism 126 from being biased.
  • the durability between the mechanisms 124 and 126 is improved, and the force with which the cam levers 169 and 169 press the piston 7b through the plug member 17b is prevented from varying in the circumferential direction. Is planned.
  • the swingable equalizer member 125 is provided between the input screw 14 b constituting the thrust generating mechanism 124 and the cam levers 169 and 169 constituting the booster mechanism 126. It has been. For this reason, based on the dimensional tolerances of the input screw 14b or the cam levers 169 and 169, the two members 14b and 169 are not in direct contact with each other in a state where they are offset. Further, the equalizer member 125 can transmit the pressing force to the cam levers 169 and 169 while absorbing the influence of the rotation of the input screw 14b. As a result, durability of the thrust generating mechanism 124 and the booster mechanism 126 can be improved.
  • the equalizer member 125 swings between the input screw 14b and the cam levers 169 and 169, the dimensional tolerances of both the members 14b and 169 can be absorbed.
  • the inner side spherical surface portion 167 and the outer side spherical surface portion 168 are formed on both inner and outer side surfaces of the equalizer member 125 so as to easily swing. For this reason, the outer direction pressing force transmitted from the equalizer member 125 to the cam levers 169 and 169 is evenly transmitted to the cam levers 169 and 169, and the cam levers 169 and 169 press the piston 7b. It is possible to prevent the force from being biased in the circumferential direction.
  • the central axis of the input screw 14b constituting the thrust generating mechanism 124 may be inclined with respect to the central axis of the cam levers 169 and 169 constituting the booster mechanism 126.
  • the equalizer member 125 is swung, it is possible to prevent an excessive stress such as a bending stress from being applied between the thrust generating mechanism 124 and the booster mechanism 126, and both the mechanisms 124. 126, the durability is improved.
  • the radially outer ends of the cam levers 169 and 169 constituting the booster mechanism 126 are engaged with the locking grooves 132 and 132 of the piston 7b, so that The cam levers 169 and 169 are positioned in the circumferential direction. For this reason, the operational stability of the booster mechanism 126 can be improved.
  • the assemblability can be improved. That is, the adjusting nut 12b constituting the thrust generating mechanism 124 can be unitized by incorporating components such as the input screw 14b inside thereof. Furthermore, the component members such as the booster mechanism 126 and the equalizer member 125 and the above-described adjustment nut 12b can be incorporated into the piston 7b to form a unit. Such a unitized member can be easily assembled in the hydraulic cylinder 6b, so that the assemblability can be improved.
  • FIG. 18 shows an eighth example of the embodiment of the present invention.
  • the equalizer member 125a has a structure in which the shaft portion 166 of the equalizer member 125 of the seventh example of the embodiment described above is omitted.
  • the equalizer member 125a has an inner spherical surface portion 167a formed on the inner side surface.
  • an outer spherical surface portion 168a is formed on the outer side surface of the equalizer member 125a.
  • the curvature of the inner spherical surface portion 167a is larger than the curvature of the outer spherical surface portion 168a.
  • the booster mechanism 126a includes a plug member 17c and a reaction disk 172 corresponding to the elastic member in the claims.
  • the plug member 17c is a columnar member, and an outer side surface is a flat surface.
  • a recess 173 is formed in the center of the side surface of the plug member 17c so as to be recessed from the inner side surface to the outer side.
  • the bottom surface of the recess 173 has a curved surface (partial spherical surface) that is recessed toward the outer side toward the center.
  • the outer side half of the equalizer member 125a is disposed inside the recess 173, and the bottom surface of the recess 173 and the outer side spherical portion 68a of the equalizer member 125a are in contact with each other. In this state, it is fitted into the inner peripheral surface of the thrust plate 128a. In this way, the plug member 17c is assembled in a state in which the axial displacement with respect to the thrust plate 128a is possible.
  • the reaction disk 172 is made of an elastic material having oil resistance such as an elastomer such as rubber or vinyl.
  • the reaction disk 172 has an inner surface of the piston bottom 123 of the piston 7b and an inner peripheral surface of the piston cylindrical portion 174 of the piston 7b.
  • the space surrounded by the outer side end portion portion and the outer side surface of the thrust plate 128a is disposed with substantially no gap.
  • the central portion of the inner side surface of the reaction disk 172 is an inner side receiving surface 175, and the outer side surface of the plug member 17 c is abutted against the inner side receiving surface 175. Therefore, when the equalizer member 125a is displaced in the outer direction, the reaction disk 172 can be pressed in the outer direction via the plug member 17c.
  • the plug member 17c may be omitted, and the outer side surface of the equalizer member 125a may be directly abutted against the inner side receiving surface 175 of the reaction disk 172. In this case, the outer side surface of the equalizer member 125a is made flat.
  • the thrust generating mechanism 124 is operated, and the piston 7b is connected to both the pads 2a and 3a (see FIG. 12) and both side surfaces of the rotor. It is displaced until the gap between is eliminated. Thereafter, when only the input screw 14b is displaced toward the rotor toward the outer side, the outer side surface of the input screw 14b displaces the equalizer member 125a toward the outer side. Then, the outer side spherical surface portion 168a of the equalizer member 125a strongly presses the central portion of the inner side surface of the reaction disk 172 through the plug member 17c. As a result, the reaction disk 172 is elastically deformed.
  • the reaction disk 172 presses the mating surface surrounding the reaction disk 172 by a behavior like a kind of incompressible fluid.
  • the pressure per unit area at which the reaction disk 172 presses the mating surface is the same as the pressure per unit area of the pressing portion by the outer side surface of the input screw 14b.
  • contact area S 1 and the inner surface of the piston bottom 123 of the piston 7b is sufficiently than the outer side surface S 2 of the plug member 17c (S 1 >> S 2 ). Accordingly, the piston 7b is increased in force by a ratio (S 1 / S 2 ) of the contact area with respect to the thrust applied to the input screw 14b and is pressed toward the rotor. Since the configuration, operation, and effect of the other parts are the same as in the seventh example of the above-described embodiment, the description of the equivalent parts is omitted.
  • FIG. 19 to 20 show a ninth example of the embodiment of the invention.
  • the inner side thrust ball bearing 176, the thrust generating mechanism 124a, the equalizer member 125b, and the booster mechanism 126b are arranged inside the hydraulic cylinder 6b in order from the inner side. Is incorporated.
  • the inner side thrust ball bearing 176 is provided between the inner side thrust raceway 177 having an arcuate cross section, the outer side thrust raceway 178 having an arcuate cross section, and the two raceways 177 and 178 so as to be able to roll.
  • the inner side thrust track 177 is formed over the entire circumference of the outer side surface of the annular inner side thrust plate 181.
  • Such an inner-side thrust plate 181 is inserted through the center hole 182 in the intermediate portion in the axial direction of the drive rod 23b, and is fitted in a portion near the cylinder bottom 127 of the inner peripheral surface of the hydraulic cylinder 6b.
  • the outer side thrust track 178 is formed over the entire circumference on the inner side surface of the outward flange portion 183 of the adjusting screw 13c described later.
  • the thrust generating mechanism 124a includes an adjusting screw 13c, an adjusting nut 12c, a power nut 184, a thrust plate 128b corresponding to the first pressing member in the claims, a thrust ball bearing 129a, and An input screw 14c corresponding to the second pressing member and a preset spring 15b are combined.
  • the adjusting screw 13c is a cylindrical member with a flange in which an outward flange 183 is formed at an inner side end of the outer peripheral surface.
  • a male threaded portion 133a is formed on the outer half of the outer peripheral surface of the adjusting screw 13c.
  • at least a part of the inner peripheral surface of the adjustment screw 13c has a hexagonal shape.
  • the outer side thrust track 178 described above is formed on the inner side surface of the outward flange portion 183.
  • a hexagonal portion of the inner peripheral surface of the adjustment screw 13c is externally fitted to a hexagonal portion formed on the outer peripheral surface of the drive rod 23b. In this way, the drive rod 23b and the adjustment screw 13c are combined so that torque transmission is possible.
  • the structure of this combination part can also be made into a general spline engagement.
  • the adjustment nut 12c is a cylindrical member as a whole, and has an internal thread portion 130a formed on the inner peripheral surface.
  • a bottomed hole for connection 185 is formed at one position in the circumferential direction of the outer peripheral surface of the adjustment nut 12c near the outer side end.
  • an engagement convex portion 186 that protrudes radially outward from the outer peripheral surface and is long in the axial direction. Is formed.
  • Such an adjusting nut 12c is installed on the outer diameter side of the adjusting screw 13c in a state where the female screw portion 130a and the male screw portion 133a of the adjusting screw 13c are screwed together.
  • the screwing state of these both screw parts 130a and 133a is irreversible.
  • the power nut 184 is a cylindrical member with a hook having an outward flange 187 formed on the outer side end of the outer peripheral surface.
  • a female screw portion 188 is formed on the outer half of the inner peripheral surface of the power nut 184.
  • the inner diameter of the outer half of the power nut 184 is smaller than the inner diameter of the inner half.
  • the pitch of the female screw portion 188 of the power nut 184 is made larger than the pitch of the female screw portion 130a of the adjusting nut 12c.
  • a locking hole 189 penetrating the outward flange portion 187 in the axial direction is formed at one circumferential position (upper side in FIGS. 19 and 20) on the side surface of the outward flange portion 187.
  • an inner side thrust track 135a having an arcuate cross section is formed over the entire circumference of the outer side surface of the outward flange portion 187.
  • a connecting hole 190 that penetrates the portion in the radial direction is formed at one position in the circumferential direction of the axially intermediate portion of the inner half of the power nut 184.
  • the power nut 184 is connected to the connecting hole 190 of the power nut 184 and the adjusting nut 12c in a state where the outer end portion of the adjusting nut 12c is disposed on the inner diameter side of the inner half.
  • a cylindrical connecting pin 191 is stretched over the bottomed hole 185 for use. In this manner, the power nut 184 is assembled to the adjustment nut 12c in a state where it can be rotated in a synchronized manner and in a state where a synchronized axial displacement is possible.
  • the thrust plate 128b is a member of an annular member, and an outer side thrust track 138a having a circular arc shape is formed over the entire circumference of the inner side surface.
  • the outer side surface of the thrust plate 128b is a flat first pressing surface 139a.
  • Such a thrust plate 128b is installed on the outer side of the power nut 184 and is separated from the thrust plate 128b in the axial direction.
  • the thrust ball bearing 129a is rotatably provided between the inner side thrust track 135a of the power nut 184, the outer side thrust track 138a of the thrust plate 128b, and the tracks 135a and 138a. It comprises a plurality of balls 140, 140 and a holder 141a that holds each of the balls 140, 140 in a freely rolling manner.
  • the input screw 14c protrudes from the outer side surface in the outer direction at three positions in the circumferential direction of the substantially cylindrical screw main body 192 and the radially outer end portion of the outer side surface of the screw main body 192.
  • anti-rotation arm portions 193 and 193 formed in the above.
  • a male screw portion 142 a is formed on the outer peripheral surface of the screw main body 192. Further, it corresponds to the concave curved surface portion of the claims, which is recessed from the outer side surface at a central portion of the outer side surface of the screw main body 192 and at a radially inner position than the anti-rotation arm portions 193 and 193.
  • An engaging recess 194 is formed.
  • the rear end surface of the engagement recess 194 is a spherical concave surface.
  • Such an input screw 14c is installed on the inner diameter side of the power nut 184 in a state where the male screw portion 142a and the female screw portion 188 of the power nut 184 are screwed together.
  • the input screw 14c is prevented from rotating with respect to the piston 7b through a plug member 17d described later. Therefore, the input screw 14c can be displaced in the axial direction based on the threaded engagement between the male screw portion 142a and the female screw portion 188 of the power nut 184.
  • the preset spring 15b is provided between the positioning plate 155a locked to the piston 7b and the power nut 184.
  • the positioning plate 155a has substantially the same structure as the positioning plate 155 of the seventh example of the embodiment described above. However, in the case of the ninth example, such a positioning plate 155a is arranged on the outer diameter side near the inner end of the adjusting nut 12c, and the outer diameter side engaging projections 161a and 161a are engaged with the piston 7b. By being locked in the grooves 132a and 132a, the piston 7b is installed in a state of being prevented from rotating.
  • the locking portion 164a protruding from the inner side end portion to the inner side is the engagement of the positioning plate 155a. It is locked to the stop hole 163.
  • the locking portion 164 b protruding from the outer side end portion to the outer side is locked in the locking hole 189 of the power nut 184 via the spacer 195.
  • the spacer 195 is a part-cylindrical member having a discontinuous portion at one place in the circumferential direction.
  • An orientation protrusion 196 is formed.
  • the outward projecting piece 196 is formed with a locking hole 197 penetrating in the axial direction.
  • Such a spacer 195 is externally fitted to the inner half of the power nut 184 in a state where the locking hole 197 and the locking hole 189 of the power nut 184 are aligned.
  • the locking portion 164b of the preset spring 15b is locked in the locking holes 197 and 189.
  • the preset spring 15b provides elasticity in the rotational direction to the power nut 184 and the adjustment nut 12c.
  • the direction of the elasticity is a direction in which the power nut 184 and the adjustment nut 12c are displaced toward the inner side based on the threaded engagement between the male threaded portion 133a of the adjusting screw 13c and the female threaded portion 130a of the adjusting nut 12c. ing.
  • the adjustment nut 12c is engaged in the state before the booster mechanism 126b is activated (the state shown in FIG. 19).
  • the convex part 186 and the inner diameter side engaging protrusion 162a of the positioning plate 155a are in contact with each other in the circumferential direction.
  • the elastic force in the circumferential direction applied to the power nut 184 and the adjustment nut 12c is received from the preset spring 15b, and the power nut 184 and the adjustment nut 12c in a state before the booster mechanism 126b is operated. Positioning in the circumferential direction is achieved.
  • the equalizer member 125b is a substantially cylindrical member, and an inner side spherical surface portion 167b is formed on the inner side surface. On the other hand, an outer side spherical surface portion 168b is formed on the outer side surface of the equalizer member 125b.
  • the inner side half is disposed inside the engagement recess 194 of the input screw 14c, and the inner side spherical portion 167b of the equalizer member 125b and the input screw 14c are engaged with each other. The rear end surface of the mating recess 194 is engaged. In the assembled state, the equalizer member 125b can swing between the input screw 14c and the cam levers 169 and 169.
  • the booster mechanism 126b is a lever type as in the seventh example of the above-described embodiment, and is provided with three cam levers 169, 169 that are radially spaced apart from each other in the circumferential direction. And a plug member 17d.
  • the structure of the cam levers 169 and 169 is the same as the structure of the seventh example of the embodiment described above.
  • the plug member 17d has such a shape that the radially inner ends of the cam levers 169 and 169 are continuous with each other. That is, the plug member 17d has three arm portions 198 and 198 arranged radially at three circumferential positions spaced apart from each other, and the radially inner ends of these arm portions 198 and 198 are connected to each other.
  • concave portions 170a and 170a having arcuate cross sections are formed on the inner side surfaces of the respective arm portions 198 and 198.
  • an engaging convex part 200 protruding from the outer side surface in the outer direction is formed on the outer side surface of one of the arm parts 198 and 198 (the upper arm part 198 in FIG. 20).
  • a portion where the radially inner ends of the circumferential side surfaces of the arm portions 198 and 198 are continuous with each other can be engaged with the outer side end portions of the rotation preventing arm portions 193 and 193 of the input screw 14c.
  • Joint grooves 201 and 201 are formed.
  • the engagement convex portion 200 is engaged with the engagement concave portion 202 formed in the piston bottom portion 123 of the piston 7b, and is also abutted against the inner side surface of the piston bottom portion 123. It is assembled with. In this way, the plug member 17d is prevented from rotating with respect to the piston 7b.
  • the cam levers 169 and 169 are disposed between the outer side surface of the thrust plate 128b and the outer spherical surface portion 168b of the equalizer member 125b and the inner side surface of the plug member 17d in the axial direction.
  • the cam levers 169 and 169 are disposed between the rotation-preventing arm portions 193 and 193 of the input screw 14c in the circumferential direction. In this state, the outer side end portions of the anti-rotation arm portions 193 and 193 are engaged with the engagement grooves 201 and 201 of the plug member 17d.
  • the inner side surface portion of the inner side surface of each of the cam levers 169 and 169 is abutted against the outer spherical surface portion 168b of the equalizer member 125b so as to be able to swing and displace, and the outer diameter side portion of the inner side surface is The plate 128b is abutted against the first pressing surface 139a so as to be able to swing. Further, the radially intermediate portion of the outer side surface of each of the cam levers 169 and 169 is abutted against each of the recesses 170 and 170 of the plug member 17d so as to be able to swing and displace.
  • the operation when the parking brake is operated in the electric disc brake of the ninth example configured as described above is as follows.
  • the adjustment screw 13c is rotationally driven by the electric motor 11 via the drive rod 23b.
  • the force required to move the pads 2a and 3a toward the rotor is as follows. It's small.
  • the adjusting screw 13c rotates, the adjusting nut 12c and the power nut 184 do not rotate with respect to the piston 7b due to the elasticity of the preset spring 15b.
  • the adjusting nut 12c and the power nut 184 are displaced toward the rotor toward the outer side based on the screwing of the male threaded portion 133a of the adjusting screw 13c and the female threaded portion 130a of the adjusting nut 12c.
  • the input screw 14c provided on the inner diameter side of the power nut 184 is also displaced to the outer side in synchronization.
  • the pressing force based on each displacement is as follows: power nut 184 ⁇ thrust ball bearing 129a ⁇ thrust plate 128b ⁇ radial end portion of each cam lever 169, 169 ⁇ path of plug member 17d and input screw 14c ⁇ equalizer
  • the adjusting screw 13c is based on the axial reaction force applied to the adjusting nut 12c and the power nut 184.
  • the rotational resistance of the male threaded portion 133a and the threaded portion of the female threaded portion 130a of the adjusting nut 12c is increased.
  • the rotational resistance becomes larger than the elasticity applied to the adjustment nut 12c and the power nut 184 by the preset spring 15b, the adjustment nut 12c and the power nut 184 are resisted against the elasticity. It rotates in synchronization with the adjusting screw 13c.
  • the cam levers 169 and 169 When the equalizer member 125b is displaced to the outer side based on the displacement of the input screw 14c, the cam levers 169 and 169 have a contact point with the outer spherical surface portion 168b of the equalizer member 125b as a power point.
  • the thrust plate 128b swings and displaces with the contact portion with the outer side surface as a fulcrum and the contact portion with the plug member 17d as an action point. In this way, both the pads 2a and 3a are strongly pressed against both side surfaces of the rotor.
  • the adjusting nut 12c and the power nut 184 are connected in series in the axial direction. For this reason, the structure of the thrust generation mechanism 124a can be simplified.
  • a threaded portion between the male screw portion 133a of the adjusting screw 13c and the female screw portion 130a of the adjusting nut 12c, which is the first operating portion, is driven in the radial direction. It arrange
  • the pitch of the female threaded portion 188 of the power nut 184 is made larger than the pitch of the female threaded portion 130a of the adjusting nut 12c. Therefore, when the booster mechanism 126b is operated, the rotation amount (rotation angle) of the power nut 184 for displacing the input screw 14c to the outer side by a predetermined amount can be reduced. As a result, the twist angle of the preset spring 15b can be reduced, and the design of the preset spring 15b is facilitated.
  • the input screw 14c is prevented from rotating with respect to the piston 7b via the plug member 17d.
  • the booster mechanism 126b operates, the input screw 14c and the equalizer member 125b press the cam levers 169 and 169 in the outer direction without rotating.
  • the booster mechanism 126b can be operated stably, and the durability of the thrust generating mechanism 124a and the booster mechanism 126b can be improved.
  • [Tenth example of embodiment] 21 to 23 show a tenth example of the embodiment of the present invention.
  • the structure of the input screw 14d and the equalizer member 125c is different from the structure of the ninth example of the above-described embodiment. Since the structure of the other parts is the same as that of the ninth example, the following description will focus on the characteristic parts of the tenth example.
  • the input screw 14d is a substantially cylindrical member, and a male screw portion 142b is formed on the outer peripheral surface. Further, on the outer side surface of the input screw 14d, an engagement concave portion 194a corresponding to the concave curved surface portion of the claims and recessed from the outer side surface to the inner side is formed. Note that the rear end surface of the engaging recess 194a has a partial (semi) spherical shape. Further, rotation stop notches 203 and 203 are formed at two positions in the circumferential direction of the outer side end portion of the inner peripheral surface of the engagement recess 194a.
  • Such an input screw 14d is installed on the inner diameter side of the power nut 184 in a state where the male screw portion 142b and the female screw portion 188 of the power nut 184 are screwed together.
  • the input screw 14d is prevented from rotating with respect to the piston 7b via an equalizer member 125c and a plug member 17d described later. Therefore, the input screw 14d can be displaced in the axial direction with respect to the power nut 184 based on the threaded engagement between the male screw portion 142b and the female screw portion 188 of the power nut 184.
  • the equalizer member 125c includes a disc portion 204, a swinging convex portion 205 formed on the inner side surface of the disc portion 204, and a plurality (this example) formed on the outer side surface of the disc portion 204.
  • the disc portion 204 is formed with an outer spherical surface portion 168c corresponding to the convex curved surface portion of the claims at the central portion of the outer side surface.
  • the swinging convex portion 205 is provided in a state protruding in the inner direction from the center portion of the inner side surface of the disc portion 204, and the inner side end portion corresponds to the convex curved surface portion of the claims.
  • An inner side spherical surface portion 167c is formed.
  • anti-rotation convex portions 207 and 207 projecting radially outward from the outer peripheral surface are formed at two positions in the circumferential direction of the outer side end portion of the outer peripheral surface of the swinging convex portion 205.
  • each of the anti-rotation arm portions 206 and 206 protrudes from the three circumferential directions around the outer spherical surface portion 168c in the outer direction at a portion near the radially outer end of the outer side surface of the disc portion 204. It is provided in the state.
  • Such an equalizer member 125c is engaged with the inner spherical surface portion 167c of the swinging convex portion 205 and the inner end surface of the engaging concave portion 194a of the input screw 14c, and the anti-rotating convex portions 207, 207 and the rotation stoppers 203, 203 of the input screw 14c are engaged with each other so that the rotation with respect to the input screw 14c is prevented.
  • the equalizer member 125c is prevented from rotating with respect to the piston 7b.
  • the engagement convex portion 200 of the plug member 17d is engaged with the engagement concave portion 202 formed in the piston bottom 123 of the piston 7b, as in the ninth example of the above-described embodiment. By doing so, the rotation of the piston 7b is prevented.
  • the equalizer member 125c can swing between the input screw 14c and the cam levers 169 and 169.
  • the anti-rotation arm portions 206 and 206 are provided on the equalizer member 125c arranged in series in the axial direction with the input screw 14c. Stop is planned. For this reason, as in the ninth example of the above-described embodiment, the anti-rotation arm portions 193 and 193 are provided on the input screw 14c, and the equalizer member 125b is disposed on the inner diameter side of each of the anti-rotation arm portions 193 and 193. In the case of the tenth example, it is easy to ensure the rigidity of the anti-rotation arm portions 206 and 206 of the equalizer member 125c as compared with the structure to be achieved.
  • FIG. 24 to 26 show an eleventh example of the embodiment of the invention.
  • the structure of the thrust plate 128c and the equalizer member 125d is different from the structure of the tenth example of the embodiment described above. Since the structure of the other parts is the same as that of the tenth example, the following description will focus on the characteristic parts of the eleventh example.
  • the thrust plate 128c is a cylindrical member with a flange in which an outward flange 208 is formed at the inner side end of the outer peripheral surface.
  • Outer diameter side protrusions 209 and 209 are formed at two positions in the circumferential direction opposite to each other on the outer peripheral surface of the outward flange 208.
  • Inner diameter side protrusions 210 and 210 are formed at two positions in the circumferential direction opposite to each other in the radial direction among the inner side end portions of the inner peripheral surface of the thrust plate 128c.
  • the outer-diameter side protrusions 209 and 209 are locked to the outer groove end portions of the locking grooves 132a and 132a of the piston 7b.
  • the thrust plate 128c is assembled in a state in which the thrust plate 128c cannot rotate with respect to the piston 7b and can be displaced in the axial direction.
  • the equalizer member 125d is a substantially columnar member, and on the inner side surface, the swinging convex portion 205 and the rotation preventing convex portions 207, 207 included in the equalizer member of the tenth example of the above-described embodiment are provided. Is formed.
  • the outer side surface of the equalizer member 125d is a flat surface. Further, on the outer peripheral surface of the equalizer member 125d, rotation preventing locking grooves 211 and 211 that are long in the axial direction are formed at two positions in the circumferential direction on the opposite sides of the inner half.
  • the inner spherical surface portion 167c of the swinging convex portion 205 is engaged with the inner end surface of the engaging concave portion 194a of the input screw 14d, and each of the detent locking grooves 211 is provided.
  • 211 and the inner diameter side protrusions 210, 210 of the thrust plate 128c are engaged with each other between the input screw 14d and the reaction disk 172. It should be noted that the locking state of each of the anti-rotation locking grooves 211, 211 and each of the inner-diameter-side protrusions 210, 210 of the thrust plate 128c depends on the vibration of the equalizer member 125d relative to the input screw 14d and the reaction disk 172.
  • a bottomed cylindrical case 212 having a bottom at the outer end and an inner side opening is provided between the piston bottom 123 of the piston 7b and the reaction disk 172.
  • the booster mechanism 126c is constituted by the reaction disk 172.
  • the structure of the booster mechanism 126 using the cam lever 169 is used. Can also be adopted.
  • the equalizer member 125d in the equalizer member 125d arranged in series in the axial direction with the input screw 14d, the detent locking groove 211, 211 is formed, and the equalizer member 125d and the input screw 14d are prevented from rotating by the engagement between the equalizer member 125d and the inner diameter side protrusions 210 and 210 of the thrust plate 128c. For this reason, the design freedom of the input screw 14d can be increased.
  • the equalizer member 125d is not provided with the anti-rotation arm portions 206 and 206 as in the tenth example of the above-described embodiment. For this reason, it is easy to ensure the rigidity of the outer side portion of the equalizer member 125d. Since the configuration, operation, and effects of the other parts are the same as those of the tenth example of the above-described embodiment, the description of the equivalent parts is omitted.
  • FIG. 27 to 30 show a twelfth example of the embodiment of the present invention.
  • a mechanical thrust generating mechanism 124b, an equalizer member 125, and a booster mechanism 126e are incorporated inside the piston 7b.
  • the thrust generating mechanism 124b is configured by combining an adjusting nut 12b, an adjusting screw 13d, an input screw 14e corresponding to the second pressing member in the claims, a non-rotating plate 214, and a preset spring 15c.
  • the adjusting nut 12b has substantially the same structure as that of the seventh example of the embodiment described above.
  • the adjusting screw 13d is a member corresponding to the first pressing member in the claims.
  • the adjusting screw 13d has a structure in which the adjusting screw 13b (see FIGS. 12 and 13) of the seventh example of the embodiment described above and the thrust plate 128 are integrally formed.
  • the adjustment screw 13 d has a cylindrical portion 215, a flange portion 216, and a non-rotating convex portion 217.
  • the cylindrical part 215 is hung from the outer side end part of the axially intermediate part of the outer peripheral surface to the inner side end part to form a male thread part 133b.
  • a female threaded portion 134a is formed on the inner peripheral surface of the cylindrical portion 215 near the outer side end.
  • the inner side half (about 2/3 of the total length of the cylindrical portion 215 from the inner side end) has an inner diameter of the outer side half (outer side end).
  • a space for arranging the preset spring 15c is provided on the inner diameter side of the inner half.
  • the flange portion 216 is formed on the outer peripheral surface of the outer end portion of the cylindrical portion 215 so as to protrude radially outward over the entire circumference.
  • the flange portion 216 has a stepped shape in which the outer half is larger in diameter than the inner half.
  • the outer side surface of the flange portion 216 is a flat surface, and the portion is a first pressing surface 139b.
  • an axially intermediate portion of the inner peripheral surface of the cylindrical portion 215 includes an outer half portion (about one third of the entire length of the cylindrical portion 215 from the outer end portion) inner peripheral surface and an inner side half portion.
  • a step portion 218 is provided in which the inner peripheral surface of the portion (from the inner side end to about 2/3 of the entire length of the cylindrical portion 215) is continuous.
  • an inner side end opens to the stepped portion 218, and an outer side end opens to the outer side end surface of the cylindrical portion 215. Is formed.
  • the anti-rotation convex portion 217 is a partial cylindrical member, and the inner end surface of the cylindrical portion 215 is positioned from one position in the circumferential direction (in the case of this example, from above in FIGS. 27 and 28). It is formed in a state extending to the side.
  • the length dimension of the non-rotating projection 217 in the circumferential direction is set as appropriate based on the amount of rotation of the input screw 14e and the non-rotating plate 214 allowed for the adjusting screw 13d. is there.
  • the input screw 14e is a cylindrical member, and a portion of the inner peripheral surface near the inner side end is hexagonal.
  • a male screw portion 142c is formed on the outer half of the outer peripheral surface of the input screw 14e.
  • a cylindrical flange portion 220 having a cylindrical outer peripheral surface is provided on the outer peripheral surface of the input screw 14e near the inner side end, protruding outward in the radial direction over the entire periphery.
  • a position adjacent to the inner side of the cylindrical flange portion 220 protrudes outward in the radial direction over the entire periphery, and the outer peripheral surface is a hexagonal hexagon flange portion 221. Is formed.
  • a pair of penetrating holes penetrating in the radial direction is provided at four positions in the circumferential direction that are opposite to the radial direction of the outer side portion of the cylindrical flange portion 220. Holes 222a and 222b are formed. Further, the inner diameter side half of the outer end face of the input screw 14e is formed in a partially concave curved shape over the entire circumference. In this manner, a contact area with an inner spherical surface portion 167 of an equalizer member 125, which will be described later, is secured, and edge contact is prevented.
  • Such an input screw 14e is assembled to a hexagonal portion formed on the outer peripheral surface of the drive rod 23b in a state where the hexagonal portion of the inner peripheral surface of the input screw 14e is externally fitted. In this way, the drive rod 23b and the input screw 14e are combined so that torque transmission is possible and relative displacement in the axial direction is possible.
  • the structure of this combination part can also be made into a general spline engagement.
  • the input screw 14e is installed on the inner diameter side of the adjustment screw 13d in a state where the male screw portion 142c and the female screw portion 134a of the adjustment screw 13d are screwed together. The screwed state between these screw portions 142c and 134a is also irreversible.
  • the drive rod 23b has an axially intermediate portion inserted through a cylinder through hole 144 formed at the center of the cylinder bottom 127 of the caliper 4b, and an inner side end extending from the caliper 4b to the inner side. And is supported by the caliper 4b.
  • a retaining ring 145 (see FIG. 12) is fitted and fixed to the outer side end of the outer peripheral surface of the drive rod 23b that protrudes from the caliper 4b toward the inner side. Further, between the locking groove 223 formed over the entire circumference of the outer end of the inner circumferential surface of the cylinder through hole 144 and the outer circumferential surface of the drive rod 23b, the oil inside the cylinder is interposed.
  • An inner side seal member 224 is provided to ensure the tightness.
  • a cylindrical member is disposed between the inner peripheral surface of the inner end portion of the hydraulic cylinder 6b of the caliper 4b and a portion of the outer peripheral surface of the driving rod 23b that is opposed to the inner peripheral surface of the inner end portion in the radial direction.
  • the cylindrical member 225 includes, in order from the outer side, a large diameter cylindrical portion 226 whose outer diameter is a large diameter, a medium diameter cylindrical portion 227 whose outer diameter is a medium diameter, and a small diameter cylindrical portion 228 whose outer diameter is a small diameter. And have. Further, a locking groove 229 is formed on the inner peripheral surface of the medium diameter cylindrical portion 227 over the entire periphery.
  • the cylindrical member 225 having such a configuration is fitted into the inner peripheral surface of the inner end portion of the hydraulic cylinder 6b of the caliper 4b with no gap, and the inner surface of the driving rod 23b is the inner member.
  • the drive rod 23b is externally fitted to a portion facing the inner peripheral surface of the side end portion in the radial direction in a rotatable state.
  • the outer side sealing member 230 is locked in the locking groove 229 of the cylindrical member 225, and the inner peripheral surface of the outer side sealing member 230 is in contact with the outer peripheral surface of the drive rod 23b. It is in contact with no gap.
  • the inner side surface of the flange portion 150 of the drive rod 23b is in contact with the radially inner half of the outer side surface of the outer side seal member 230. In this way, oil tightness inside the cylinder is ensured.
  • the rotation-preventing plate 214 is a substantially ring-shaped member as a whole, and a pair of linear portions 231a and 231b are formed at two positions in the circumferential direction opposite to the radial direction of the outer circumferential surface. Yes.
  • a locking hole 232 is formed at one position in the circumferential direction of the radial intermediate portion so as to penetrate in the axial direction.
  • the circumferential position of the outer peripheral surface is a portion between the linear portions 231a and 231b in one position in the circumferential direction (in this example, above the FIGS. 27 to 29 and in the circumferential direction).
  • a rotation-preventing convex portion 233 is formed in a state of protruding to the outer diameter side. Both side surfaces in the circumferential direction of the anti-rotation convex portion 233 are straight lines parallel to each other. Further, the distance from the center of the non-rotating plate 214 to the radially outer end of the non-rotating convex portion 233 (the outer diameter of the non-rotating convex portion 233) is the distance from the center of the adjusting screw 13d to this adjustment. The distance to the outer peripheral surface of the non-rotating convex portion 217 of the screw 13d (the outer diameter dimension of the non-rotating convex portion 217) is substantially the same.
  • the outer diameter dimension of the non-rotating convex portion 233 is appropriately set within a range that is larger than the inner diameter dimension of the non-rotating convex portion 217 of the adjusting screw 13d and smaller than the outer diameter dimension of the non-rotating convex portion 217.
  • the outer diameter dimension of the non-rotating convex portion 233 is such that, in the assembled state, the circumferential side surface of the non-rotating convex portion 233 is the circumferential side surface of the non-rotating convex portion 217 of the adjusting screw 13d. And in a range that can be opposed in the circumferential direction.
  • the inner peripheral surface of the rotation-preventing plate 214 has a hexagonal shape.
  • the rotation-preventing plate 214 having the above-described configuration is prevented from rotating with respect to the input screw 14e because the inner peripheral surface is externally fitted to the outer peripheral surface of the hexagon flange portion 221 of the input screw 14e. It is assembled in a state. Further, a non-circular retaining ring 243 is fitted on the outer peripheral surface of the input screw 14e at a position adjacent to the inner side end surface of the hexagon flange portion 221. In this way, the anti-rotation plate 214 is prevented from coming off to the inner side.
  • the preset spring 15c is a torsion coil spring.
  • the locking portion 164c protruding in the inner direction from the inner side end portion is formed in the locking hole 232 of the anti-rotation plate 214.
  • the engaging portion 164d protruding in the outer direction from the outer side end portion is locked in a state inserted from the inner side into the through hole 219 of the adjusting screw 13d. ing. In this way, the preset spring 15c applies elastic force in the rotational direction to the input screw 14e via the rotation-preventing plate 214.
  • the direction of elasticity is a direction in which the input screw 14e is displaced toward the inner side based on the screwing of the male threaded portion 142c of the input screw 14e and the female threaded portion 134a of the adjusting screw 13d.
  • the boost mechanism 126e is actuated (the state shown in FIGS. 27 and 28)
  • one side surface in the circumferential direction of the anti-rotation convex portion 233 of the anti-rotation plate 214 right side of FIG.
  • the booster mechanism 126e is of a so-called lever type, and is separated from the circumferential direction by three cam levers 169, 169 and a plug member 17e. And a holding clip 234.
  • the structure of each of the cam levers 169 and 169 is the same as that of the seventh example of the embodiment described above.
  • the plug member 17e includes a cylindrical plate base portion 235 and plate arm portions 236 and 236 provided in a state protruding from the three circumferentially spaced positions of the plate base portion 235 toward the outer diameter side.
  • the plate base portion 235 and the outer side surfaces of the plate arm portions 236 and 236 are flat and exist on the same plane.
  • a plate recess 237 that is recessed toward the outer side is formed at the center of the inner side surface of the plate base 235.
  • the inner side surfaces of the plate arm portions 236 and 236 are formed with concave portions 170b and 170b each having an arcuate cross section that is recessed toward the outer side.
  • the cam levers 169 and 169 are provided between the outer side end surface of the adjusting screw 13d and the outer side spherical surface portion 168 of the equalizer member 125 and the inner side surface of the plug member 17e. Yes.
  • the inner side surfaces of the cam levers 169 and 169 are both radially inner and outer end portions, and the outer side surfaces of the cam levers 169 and 169 are radially intermediate portions that are partially cylindrical convex curved surfaces. Yes.
  • the inner side portions of the inner side surfaces of the cam levers 169 and 169 can be oscillated and displaced with respect to the outer spherical surface portion 168 of the equalizer member 125, and the outer diameter side portions of the inner side surfaces are also the adjusting screw 13d. Each of them is abutted against the outer end surface of the outer wall so as to be swingable and displaceable.
  • the radial intermediate portions of the outer side surfaces of the cam levers 169 and 169 are in contact with the recesses 170b and 170b of the plate arm portions 236 and 236 in a sufficient area so as to be able to swing and displace.
  • each of the members 169 and 17e is held by the holding clip 234 in a state where the cam levers 169 and 169 and the plug member 17e are assembled as described above.
  • a holding clip 234 includes a substantially disc-shaped substrate portion 238 provided on the outer side, and three circumferentially spaced positions on the outer periphery of the substrate portion 238 from the inner circumferential side to the inner side. And holding arm portions 239 and 239 provided in an extended state.
  • Each of the holding arm portions 239 and 239 includes a flat plate portion 240 provided in the central portion in the circumferential direction and a pair of bent portions formed in a state of being bent from the both circumferential ends of the flat plate portion 240 toward the inner diameter side. Parts 241 and 241. Further, one holding arm portion 239 of the holding arm portions 239 and 239 (in this example, the holding arm portion 239 below in FIGS. 27, 28, and 29) is connected to the inner side end of the flat plate portion 240. A locking arm portion 242 is provided in a state extending from the edge to the inner side.
  • the holding clip 234 having such a structure is disposed between the inner side surface of the piston bottom portion 123 of the piston 7b and the outer side surface of the plug member 17e with no gap therebetween,
  • the plate arm portions 236, 236 of the plug member 17e and the cam levers 169, 169 are assembled on the inner diameter side of the flat plate portion 240 of the holding arm portions 239, 239. Further, in this state, both side surfaces in the circumferential direction of the plate arm portions 236 and 236 and the cam levers 169 and 169 are sandwiched between the bent portions 241 and 241 of the holding arm portions 239 and 239 of the holding clip 234. Has been. Further, the locking arm portion 242 of the holding clip 234 is locked at one position in the circumferential direction on the outer peripheral surface of the flange portion 216 of the adjusting screw 13d.
  • the operation when the parking brake is operated in the electric disk brake of the twelfth example configured as described above is as follows.
  • the input screw 14e is rotationally driven by the electric motor 11 via the drive rod 23b.
  • the required force is small. Therefore, in the initial stage, the adjustment screw 13d is also rotated in synchronization with the input screw 14e so as to be pulled by the preset spring 15c as the input screw 14e rotates.
  • the adjusting screw 13d and the input screw 14e are displaced toward the rotor toward the outer side based on the screwing of the female screw portion 130 of the adjusting nut 12b and the male screw portion 133b of the adjusting screw 13d.
  • the pressing force in the outer direction based on this displacement is the adjustment screw 13d ⁇ the portion near the radially outer end of each cam lever 169, 169 ⁇ the path of the plug member 17e, and the input screw 14e ⁇ the equalizer member 125 ⁇
  • the portion near the radially inner end ⁇ is transmitted through the path of the plug member 17e, and finally the piston 7b is pressed in the outer direction, and this piston 7b is connected to both the pads 2a and 3a and both side surfaces of the rotor. It is displaced until the gap between them is eliminated.
  • the rotational resistance of the adjusting screw 13d is based on the reaction force in the inner direction received by the adjusting screw 13d. (The frictional force of the screwed portion between the female screw portion 130 of the adjusting nut 12b and the male screw portion 133b of the adjusting screw 13d) becomes larger than the elastic force applied to the adjusting screw 13d by the preset spring 15c. As a result, the adjustment screw 13d does not rotate any more, and the adjustment screw 13d stops.
  • the cam levers 169 and 169 When the equalizer member 125 is displaced to the outer side based on the displacement of the input screw 14e, the cam levers 169 and 169 have a contact point with the outer side spherical surface portion 168 of the equalizer member 125 as a power point.
  • the adjusting screw 13d swings and displaces with the contact portion with the outer end face of the adjusting screw 13d as a fulcrum and the contact portion with the plug member 17e as an action point. With respect to the radial direction of the plug member 17e, this action point exists between the force point and the fulcrum, so that the force for displacing the piston 7b via the plug member 17e is increased, and the piston 7b It is pressed against the rotor with great force.
  • both the pads 2a and 3a are strongly pressed against both side surfaces of the rotor. Since the screw parts 130 and 133b and the screw parts 134a and 142c are screwed irreversibly, if the energization of the electric motor 11 is stopped, no holding operation is performed. Necessary braking force can be maintained.
  • the regulation mechanism for regulating the rotation amount with respect to the rotation range within a predetermined range includes a rotation prevention projection 217 of the adjustment screw 13d, and a rotation prevention projection 233 of the rotation prevention plate 214 rotating together with the input screw 14e. It is comprised by engagement. That is, the input screw 14e from the state shown in FIG. 29, in the counterclockwise direction, the left side in the circumferential direction other side (FIG.
  • the engagement between the rotation preventing projection 217 of the adjustment screw 13d and the rotation preventing projection 233 of the rotation stopping plate 214 rotating together with the input screw 14e causes the input screw 14e to move.
  • the amount of displacement of the adjusting screw 13d toward the inner side is regulated within a predetermined range. That is, a mechanism for regulating the amount of displacement in the axial direction of the input screw 14e toward the inner side surface of the rotor by regulating the amount of relative rotation between the adjusting screw 13d and the input screw 14e within a predetermined range. Is provided.
  • the input screw 14e rotates too much with respect to the adjusting screw 13d (is displaced too much toward the inner side), and structural members (for example, the preset spring 15c) disposed around the input screw 14e are damaged, It is possible to prevent the pressing force of the booster mechanism 126e from becoming excessively large. Further, even when the adjustment screw 13d and the input screw 14e are to rotate together (a state before the booster mechanism 126e is activated) and the adjustment screw 13d does not rotate for some reason, this adjustment screw It is possible to prevent the input screw 14e from rotating excessively with respect to 13d.
  • Other configurations, operations, and effects are the same as those in the seventh example of the above-described embodiment.
  • a rotor that rotates with the wheel; An inner pad (2) and an outer pad (3) arranged in a state facing the axial side surface of the rotor; A caliper (4a) having a cylinder (hydraulic cylinder 6a) opened on the side facing the inner pad (2); A bottomed cylindrical piston (7a) that is mounted in the cylinder (hydraulic cylinder 6a) so as to be axially displaceable and has a bottom (piston bottom 8a) at the rotor side end; A gap between the inner pad (2) and the outer pad (3) and both side surfaces of the rotor, which is arranged inside the piston (7a) and based on the rotational driving force of the driving source (electric motor 11).
  • the piston (7a) that pushes the piston (7a) toward the rotor in the axial direction, and the clearance of the first pressing member (thrust plate 41) is eliminated.
  • the piston (7a) is directed toward the rotor by moving in the axial direction toward the rotor based on the rotational driving force of the drive source (electric motor 11).
  • a thrust generating mechanism (29) having a second pressing member (input screw 14a) for pushing in the direction;
  • a booster mechanism (10a) that amplifies an input from the second pressing member (input screw 14a) and transmits the amplified input to the piston (7a),
  • the booster mechanism (10a) has an inner elastic body (91) and a cylindrical outer elastic body that is externally fitted to the inner elastic body (91) without a gap from the outer peripheral surface of the inner elastic body (91).
  • the pressed surface (93) pressed by the input member (input screw 14a) on the side opposite to the rotor in the inner elastic body (91) has the same shape.
  • the input member (input screw 14a) is connected to the inner elastic body in a state where the pressing surface (second pressing surface 85) and the pressed surface (93) coincide with each other.
  • the inner elastic body (91c) is configured in a columnar shape that increases as the outer diameter of the outer peripheral surface approaches the rotor,
  • the inner elastic body (91d) is configured in a cylindrical shape that decreases as the outer diameter of the outer peripheral surface approaches the rotor.
  • the support (1) supported by the vehicle body in a state adjacent to the rotor rotating with the wheel is supported so as to be axially displaceable, and the rotor is axially sandwiched from both sides in the axial direction.
  • a caliper claw (5b) facing the outer side surface of the outer pad (3a) of the inner pad (2a) and the outer pad (3a) supported by the support (1) is provided at the outer side end.
  • the first pressing member (thrust plate 128) that pushes the piston (7b) toward the inner side surface of the rotor, and the shaft of the first pressing member (thrust plate 128) is released.
  • the piston (7b) is moved to the inner side surface of the rotor in the axial direction based on the rotational driving force of the drive source (electric motor 11), thereby moving the piston (7b) of the rotor.
  • a thrust generating mechanism (124) having a second pressing member (input screw 14b) for pushing out toward the inner side surface;
  • a booster mechanism (126) that amplifies the input from the second pressing member (input screw 14b) and transmits the amplified signal to the piston (7b),
  • a disc brake including an equalizer member (125) provided in a swingable state between the second pressing member (input screw 14b) and the booster mechanism (126).
  • the disc brake according to claim 10 wherein an outer side spherical surface portion 168 is formed.
  • the second pressing member (input screw 14b) has a concave curved surface portion (engaging concave portion 194), and the concave curved surface portion (engaging concave portion 194) and the convex curved surface of the equalizer member (125).
  • the disc brake according to any one of [10] to [12], wherein the equalizer member (125b) is prevented from rotating with respect to the piston (7b).
  • the first pressing member is a thrust plate (128) constituting a thrust bearing (thrust ball bearing 129), 14.
  • the thrust plate (128) according to any one of claims 10 to 13, wherein the thrust plate (128) has an outer side track (outer side thrust track 138) on an inner side surface and is prevented from rotating with respect to the piston (7b). Disc brake described.
  • the booster mechanism (126) includes a plurality of cam levers (169) arranged in the circumferential direction,
  • the inner diameter side portion of the inner side surface of each cam lever (169) is a portion that acts as a force point by abutting against the outer side surface of the equalizer member (125),
  • the outer diameter side portion of the inner side surface of each cam lever (169) is a portion that acts as a fulcrum by contacting the outer side surface of the first pressing member (thrust plate 128),
  • a portion between the portion acting as the force point and the portion acting as the fulcrum in the radially intermediate portion of the outer side surface of each cam lever (169) is for transmitting axial force in the axial direction to the piston (7b).
  • the disc brake according to any one of claims 10 to 14, which is a portion that acts as an action point.
  • the booster mechanism (126c) has an inner side surface as an inner side receiving surface that is directly or indirectly pressed to the rotor side by the equalizer member (125d). A portion other than the receiving surface is provided with an elastic member (reaction disk 172) provided in a state surrounded without a gap, The outer side surface of the elastic member (reaction disc 172) presses the piston (7b) in the axial direction based on the force with which the inner side receiving surface is pressed.
  • the disc brake of the present invention is not limited to each example of the above-described embodiment, and can be appropriately modified and improved.
  • the material, shape, dimensions, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.
  • the present application includes a Japanese patent application filed on Oct. 8, 2013 (Japanese Patent Application No. 2013-210694), a Japanese patent application filed on November 5, 2013 (Japanese Patent Application No. 2013-229023), and a September 19, 2014 application. This is based on the Japanese patent application (Japanese Patent Application No. 2014-191324), the contents of which are incorporated herein by reference.
  • the disc brake of the present invention is applied to an electric parking disc brake that operates based on the driving force of an electric motor.
  • the disc brake of the present invention is, for example, a brake lever. It can also be applied to a manual parking disc brake that operates on the basis of the driving force.
  • the disc brake of the present invention can also be applied to an electric service brake.
  • the structure of the portion where the first pressing member and the second pressing member of the thrust generating mechanism operate is not limited to the structure of each example of the above-described embodiment. That is, various structures in which the first pressing member and the second pressing member constituting the thrust generating mechanism operate in two steps belong to the technical scope of the present invention.
  • the shape of the inner elastic member constituting the reaction disk is not only a cylindrical shape whose outer diameter does not change over the entire length as in each example of the above-described embodiment, but, for example, the outer half is large in diameter.
  • the inner half can also be a stepped cylinder with a small diameter. That is, the reaction disk is arranged without a gap in a space defined by the members arranged around the reaction disk, and based on the movement in the axial direction of the member corresponding to the second pressing member in the claims, The pressing surface of a member corresponding to the input member of the claims that directly presses the reaction disk and the pressed surface pressed by the input member among the side surfaces of the inner elastic body opposite to the rotor are the same shape Various shapes can be adopted.
  • the shape of the pressing surface of the input member and the pressed surface of the inner elastic body constituting the reaction disk are not limited to the shapes of the examples of the above-described embodiments. If the pressing surface and the pressed surface have the same shape, various shapes such as an ellipse and a polygon can be employed.
  • the input member can be formed in various shapes such as a stepped columnar member as long as the pressing surface has the same shape as the pressed surface.
  • the disc brake of the present invention can be applied not only to the floating caliper type disc brake as in each of the embodiments described above, but also to the opposed piston type disc brake.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Abstract

 前記倍力機構(31)を構成するリアクションディスク(88)が、円柱状の内側弾性体(91)と、この内側弾性体(91)に、この内側弾性体(91)の外周面と隙間のない状態で外嵌された円筒状の外側弾性体(92)とにより構成される。インプットスクリュー(14a)の軸方向への移動に基づいて、前記リアクションディスク(88)を直接押圧するイコライザ部材(30)の第二押圧面(85)の外径寸法(D30)と、前記内側弾性体(91)の前記ロータと反対側面のうち、このイコライザ部材(30)により押圧される部分の外径寸法(D91)とが等しくされる。

Description

ディスクブレーキ
 本発明は、ディスクブレーキに関する。
 例えば、サービスブレーキが油圧式で行われ、パーキングブレーキが電動式で行われる、電動式パーキング機構付ディスクブレーキは、ブレーキケーブルの配設が不要になってコスト低減を図れるだけでなく、スイッチのON、OFF操作により制動及びその解除を行えて操作性が向上する、或いは発進時に自動的に解除する為の制御が容易になる等の利点がある為、近年普及し始めている。この様な電動式パーキング機構付ディスクブレーキとして、特許文献1に記載されたものが知られている。図31は、この特許文献1に記載された従来構造の第1例を示している。
 この電動式パーキング機構付ディスクブレーキも、従来から広く知られている油圧式のディスクブレーキと同様に、車輪と共に回転するロータ(図示省略)に隣接する状態で車体に支持されるサポート1には、インナ及びアウタパッド2、3が、このロータを軸方向両側から挟む状態で、軸方向の変位が可能に支持されている。尚、本明細書及び請求の範囲で、アウタとは、車体に支持した状態でこの車体の幅方向外側を言い、インナとは、同じく幅方向中央側を言い、軸方向とは、特に断らない限り、前記ロータの軸方向を言う。又、前記サポート1には、キャリパ4が、軸方向の変位が可能に支持されている。このキャリパ4は、アウタ側端部に前記アウタパッド3のアウタ側面に対向するキャリパ爪5が設けられ、インナ側端部に油圧シリンダ(シリンダ)6が設けられている。又、この油圧シリンダ6内には、ピストン7が、油密に、且つ、軸方向の変位が可能に装着されている。そして、サービスブレーキの作動時には、前記油圧シリンダ6内への圧油の導入に伴って前記ピストン7がアウタ側に押し出され、前記インナパッド2が前記ロータのインナ側面に押し付けられる。すると、前記キャリパ4が前記サポート1に対しインナ側に変位し、前記キャリパ爪5により前記アウタパッド3が、前記ロータのアウタ側面に押し付けられる。この結果、このロータが、インナ及びアウタ両側面から強く挟持されて、制動が行われる。
 又、この様な電動式パーキング機構付ディスクブレーキは、前記ピストン7が、アウタ側をピストン底部8としインナ側を開口部とした有底円筒状のものとされ、このピストン7の内側に、機械式の推力発生機構9と倍力機構10とが組み込まれている。この推力発生機構9は、前記キャリパ4の外側に固定した駆動源である電動モータ11が作動され、この電動モータ11の回転駆動力が軸方向の推力に変換され、前記ピストン7が前記ロータのインナ側面に向けて、前記インナ及びアウタパッド2、3と前記ロータの両側面との間の隙間が解消されるまで押し出される(移動される)ものである。
 この様な推力発生機構9は、アジャストナット12と、第一押圧部材に相当するアジャストスクリュー13と、第二押圧部材に相当するインプットスクリュー14と、プリセットスプリング15とを組み合わせて成る。そして、これら各部材12~15は、前記ピストン7の内径側に組み付けられている。尚、この様な各部材12~15の構造に関しては、前記特許文献1に記載されている為、詳しい説明は省略する。
 又、前記倍力機構10は、図32に示す様に、前記推力発生機構9により前記ピストン7が押し出されて、前記隙間が解消した後、前記推力発生機構9のインプットスクリュー14からの軸方向の入力が増幅されて、前記ピストン7が前記ロータのインナ側面に向けて押し出される(移動される)ものである。この様な倍力機構10は、前記アジャストスクリュー13及びインプットスクリュー14のアウタ側に、円周方向に関して離隔した状態で放射状に配置された複数個のカムレバー16と、これら各カムレバー16のアウタ側に配置された円板状のプラグ部材17とから成る。尚、これら各部材16、17の構造に関しても、前記特許文献1に記載されている為、詳しい説明は省略する。
 以下、制動時に於ける、前記推力発生機構9及び前記倍力機構10の作動状態に就いて簡単に説明する。
 制動時には、先ず、前記電動モータ11により回転駆動される駆動杆23と共に、前記アジャストスクリュー13及びインプットスクリュー14が、前記プリセットスプリング15の弾性力に基づいて同期して回転する。すると、前記アジャストスクリュー13及びインプットスクリュー14は、このアジャストスクリュー13の外周面に形成された雄ねじ部24と、前記アジャストナット12の内周面に形成された雌ねじ部25との螺合に基づき、前記ロータのインナ側面に向けて軸方向に移動する。この移動に伴い、前記アジャストスクリュー13及びインプットスクリュー14のアウタ側端面が、前記ピストン7を、前記インナ及びアウタパッド2、3と前記ロータの両側面との間の隙間が解消されるまで移動させる。尚、この時点では、前記倍力機構10は作動していない(力が増幅されていない)。
 次いで、上述の様にして前記インナ及びアウタパッド2、3と前記ロータの両側面との間の隙間が解消されると、前記アジャストスクリュー13をこのロータに向けて移動させる為に要する力(このアジャストスクリュー13の回転抵抗)が、前記プリセットスプリング15によりこのアジャストスクリュー13に付与されている弾力よりも大きくなる。この結果、このアジャストスクリュー13がそれ以上回転しなくなり停止する。この状態から更に、前記駆動杆23の回転駆動力に基づいて前記インプットスクリュー14が回転すると、このインプットスクリュー14の外周面に形成された雄ねじ部26と、前記アジャストスクリュー13の内周面に形成された雌ねじ部27との螺合に基づき、前記インプットスクリュー14のみが、前記ロータのインナ側面に向けて軸方向に移動する。
 更に、上述の様なインプットスクリュー14の軸方向の移動に伴い、このインプットスクリュー14のアウタ側端面が、前記倍力機構10を構成する各カムレバー16の径方向内端部を、アウタ方向に押圧する。すると、これら各カムレバー16が、前記インプットスクリュー14のアウタ側端面との当接部を力点とし、前記アジャストスクリュー13のアウタ側端面との当接部を支点とし、前記プラグ部材17との当接部を作用点として揺動変位する。このプラグ部材17の径方向に関して、この作用点は前記力点と支点との間に存在するので、このプラグ部材17を介して前記ピストン7をアウタ側に押圧する力は、てこの原理により増力されて、このピストン7を前記ロータに向け、大きな力で押し付ける。この結果、前記両パッド2、3が前記ロータの両側面に強く押圧される。尚、互いに螺合している前記各ねじ部24、25同士、及び、前記ねじ部26、27同士は、不可逆的に螺合しているので、前記電動モータ11への通電を停止すれば、特に保持動作をせずに、必要な制動力を保持できる。
 この様な前記特許文献1に記載された構造の場合、前記隙間を解消する過程では、前記倍力機構10が作動する必要はなく、この隙間解消の為にこの倍力機構10のストロークが消費される事はない。従って、この倍力機構10として、ストロークが短い代わりに増力比が大きな構造を採用できて、前記ピストン7が前記ロータに向けて押し付けられる力を、特に大きくできる。
 ところで、上述の様な特許文献1に記載された構造の場合、前記各カムレバー16の径方向内端部のインナ側端縁と、前記インプットスクリュー14のアウタ側端面とが直接当接されている。この為、前記各カムレバー16同士の寸法公差等に基づいて、これら各カムレバー16の径方向内端部のインナ側端縁の軸方向に関する位置にズレが生じる場合がある。この様なズレが生じると、これら各カムレバー16の径方向内端部のインナ側端縁と、前記インプットスクリュー14のアウタ側端面との間に偏当たりが生じてしまい、前記推力発生機構9及び前記倍力機構10同士の耐久性を低下させてしまう可能性がある。
 又、上述の様な偏当たりは、制動時に、前記インプットスクリュー14から伝達されるアウタ方向の押圧力の大きさが、前記各カムレバー16毎に異なり、これら各カムレバー16から前記ピストン7に伝達される押圧力の大きさが円周方向に関してバラつく原因になる可能性がある。
 又、前記特許文献1には、図33に示す様に、倍力機構10aが、ケース18と、入力部材に相当する押圧板19と、リアクションディスク20とにより構成された構造が記載されている。尚、前記倍力機構10a以外の構成は、図32に示した構造と同様である。
 このうちのケース18は、ケース円筒部21と、このケース円筒部21のアウタ側端部を塞ぐケース底部22とから成る有底円筒状であり、前記ピストン7の内側のアウタ側端部に内嵌されている。
 又、前記押圧板19は、円板状であり、前記インプットスクリュー14のアウタ側端面よりもアウタ側、且つ、前記アジャストスクリュー13のアウタ側端部の内径側に内嵌されている。
 又、前記リアクションディスク20は、弾性材製の円板状部材である。この様なリアクションディスク20の材料は、例えば樹脂、又は、ゴム、ビニルの如きエラストマー等の弾性材を採用できる。又、前記リアクションディスク20は、前記ケース18のケース円筒部21の内周面と、前記ケース底部22のインナ側面と、前記アジャストスクリュー13のアウタ側端面と、前記押圧板19のアウタ側面とにより画成された空間に、これら各部材13、18、19と隙間のない状態で配置されている。
 尚、前記ケース18は、省略する事もできる。
 以下、制動時に於ける、前記推力発生機構9、及び、リアクションディスク式の前記倍力機構10aの作動状態に就いて簡単に説明する。
 制動時には、先ず、前記電動モータ11により回転駆動される駆動杆23と共に、前記アジャストスクリュー13及びインプットスクリュー14が、前記プリセットスプリング15の弾性力に基づいて同期して回転する。すると、前記アジャストスクリュー13及びインプットスクリュー14は、このアジャストスクリュー13の外周面に形成された雄ねじ部24と、前記アジャストナット12の内周面に形成された雌ねじ部25との螺合に基づき、前記ロータのインナ側面に向けて軸方向に移動する。この移動に伴い、前記アジャストスクリュー13及びインプットスクリュー14のアウタ側端面が、前記ピストン7を、前記インナ及びアウタパッド2、3と前記ロータの両側面との間の隙間が解消されるまで移動させる。尚、この時点では、前記倍力機構10aは作動していない(力が増幅されていない)。
 次いで、上述の様にして前記インナ及びアウタパッド2、3と前記ロータの両側面との間の隙間が解消されると、前記アジャストスクリュー13をこのロータに向けて移動させる為に要する力(このアジャストスクリュー13の回転抵抗)が、前記プリセットスプリング15によりこのアジャストスクリュー13に付与されている弾力よりも大きくなる。この結果、このアジャストスクリュー13がそれ以上回転しなくなり停止する。この状態から更に、前記駆動杆23の回転駆動力に基づいて前記インプットスクリュー14が回転すると、このインプットスクリュー14の外周面に形成された雄ねじ部26と、前記アジャストスクリュー13の内周面に形成された雌ねじ部27との螺合に基づき、前記インプットスクリュー14のみが、前記ロータのインナ側面に向けて軸方向に移動する。
 更に、上述の様なインプットスクリュー14の軸方向の移動に伴い、このインプットスクリュー14のアウタ側端面が、前記倍力機構10aを構成する押圧板19を、アウタ方向に押圧する。すると、この押圧板19が、前記リアクションディスク20のインナ側面中央部をアウタ方向に強く押圧する。この結果、このリアクションディスク20が弾性変形する。このリアクションディスク20は、一種の非圧縮性流体の如き挙動により、このリアクションディスク20を囲んでいる相手面を押圧する。このリアクションディスク20がこの相手面を押圧する単位面積当たりの圧力は、前記インプットスクリュー14のアウタ側面による押圧面の単位面積当たりの圧力と同じになる。前記リアクションディスク20と相手面との当接面積を軸方向に関して見た場合、前記ケース18(ケース18を省略した場合は、ピストン7)のケース底部22(ケース18を省略した場合は、ピストン底部8)の内面との当接面積Sが、前記押圧板19のアウタ側面Sよりも十分に広い(S≫S)。従って、前記ピストン7は、前記ケース18を介して、前記インプットスクリュー14に加えられた推力よりも、前記当接面積の比分(S/S)だけ増力されて、前記ロータに向け押圧される。この結果、前記両パッド2、3が前記ロータの両側面に強く押圧される。尚、互いに螺合している前記各ねじ部24、25同士、及び、前記ねじ部26、27同士は、不可逆的に螺合しているので、前記電動モータ11への通電を停止すれば、特に保持動作をせずに、必要な制動力を保持できる。
 この様な前記特許文献1に記載された構造の場合、前記隙間を解消する過程では、前記倍力機構10aが作動する必要はなく、この隙間解消の為にこの倍力機構10aのストロークが消費される事はない。従って、この倍力機構10aとして、ストロークが短い代わりに増力比が大きな構造を採用できて、前記ピストン7を前記ロータに向けて押し付ける力を、特に大きくできる。
 但し、図33に示す構造の場合、前記倍力機構10aを構成するリアクションディスク20が、単一の円板状部材により構成されており、その外径寸法は前記押圧板19の外径寸法よりも大きい。この為、この押圧板19によりこのリアクションディスク20のインナ側面中央部が押圧される際、このリアクションディスク20のインナ側面のうち、前記押圧板19のアウタ側面の径方向外端縁に押圧される部分に、せん断力が発生する。この様なせん断力は、当該部分に亀裂等の損傷が発生する原因となる可能性があり好ましくない。
 尚、この様な問題を解決する為に、前記押圧板19のアウタ端面を部分球面状にする事も考えられる。但し、この場合には、前記リアクションディスク20の損傷は防止できるものの、前記押圧板19のアウタ側面の径方向外端寄り部分と、前記リアクションディスクのインナ側面との間に隙間が存在する分だけ、前記押圧板19の軸方向のストロークを大きくしなければ、十分な押圧力を確保し難くなる。
日本国特開2010-190348号公報
 本発明の目的は、倍力機構を構成するリアクションディスクにせん断力が作用する事を防止して、ディスクブレーキの耐久性の向上を図れる構造を実現することである。
 また、本発明の目的は、推力発生機構と倍力機構との間に寸法公差に基づく偏当たり等が生じる事を防止して、これら両機構同士の耐久性の向上を図ると共に、前記倍力機構がピストンを押し付ける力が、円周方向に関してバラつく事の防止を図れる構造を実現することである。
 本発明の上記目的は、下記構成により達成される。
(1) ディスクブレーキは、ロータと、インナパッド及びアウタパッドと、キャリパと、ピストンと、推力発生機構と、倍力機構とを備えている。
 このうちの前記ロータは、車輪と共に回転する。
 又、前記インナパッド及びアウタパッドは、前記ロータの軸方向側面に対向した状態で配置される。
 又、前記キャリパは、前記インナパッドに対向する側が開口したシリンダを有している。
 又、前記ピストンは、軸方向の変位が可能に前記シリンダ内に装着されており、前記ロータ側の端部に底部を有する有底円筒状である。
 又、前記推力発生機構は、第一押圧部材と、第二押圧部材とを有している。このうちの前記第一押圧部材は、前記ピストンの内側に配置されており、駆動源の回転駆動力に基づいて、前記インナパッド及びアウタパッドと前記ロータの両側面との間の隙間が解消されるまで、前記ピストンを前記ロータに向けて軸方向に押し出すものである。又、前記第二押圧部材は、前記隙間が解消され、前記第一押圧部材の軸方向への移動が停止した後、前記駆動源の回転駆動力に基づいて、前記ロータに向けて軸方向に移動する事により、前記ピストンを前記ロータに向けて軸方向に押し出すものである。尚、前記駆動源は、電動式のものに限定されず、手動式のものも含む。
 又、前記倍力機構は、内側弾性体と、前記内側弾性体の外周面と隙間のない状態で前記内側弾性体に外嵌された筒状の外側弾性体とを有するリアクションディスクを備えている。尚、前記外側弾性体の形状は、軸方向に貫通した中心孔を有する筒状だけでなく、前記ロータ側の端部に底部を有する有底円筒状も含む。
 又、前記第二押圧部材の軸方向への移動に基づいて、前記リアクションディスクが直接押圧される入力部材の押圧面と、前記内側弾性体における前記ロータと反対側面のうちの前記入力部材により押圧される被押圧面とが、同一形状(例えば、円形、円輪形、楕円形、矩形等であり、相似形を除く)である。尚、前記押圧面と前記被押圧面との間に、製造上許容される寸法公差、或いは、通常行われる面取り(糸面取り、R面取り、C面取り等)に基づく形状の差が存在した場合でも、同一形状に含むものとする。
 更に、前記ロータの軸方向から見た場合に、前記押圧面と前記被押圧面とが一致した状態(円周方向に関する位相を一致させた状態)で、前記入力部材が、前記内側弾性体を押圧する。
(2) 上記(1)の構成のディスクブレーキであって、前記内側弾性体が円柱状に構成される(被押圧面が円形とされる)と共に、前記外側弾性体が円筒状に構成される。
(3) 上記(1)~(2)のうちの何れか1つの構成のディスクブレーキであって、前記内側弾性体の軸方向寸法と、前記外側弾性体の軸方向寸法とが等しくされる。
(4) 上記(1)~(2)のうちの何れか1つの構成のディスクブレーキであって、前記内側弾性体の軸方向寸法と、前記外側弾性体の軸方向寸法とが異なっている。
(5) 上記(4)の構成のディスクブレーキであって、内側弾性体の軸方向寸法が、前記外側弾性体の軸方向寸法よりも大きくされる。
(6) 上記(4)の構成のディスクブレーキであって、前記外側弾性体の軸方向寸法が、前記内側弾性体の軸方向寸法よりも大きくされる。
(7) 上記(1)~(5)のうちの何れか1つの構成のディスクブレーキであって、前記内側弾性体が、外周面の外径寸法が前記ロータに近付くほど大きくなる円柱状に構成される。又、前記外側弾性体が、内周面の内径寸法が前記ロータに近付くほど大きくなる円筒状に構成される。
(8) 上記(1)~(6)のうちの何れか1つの構成のディスクブレーキであって、前記内側弾性体が、外周面の外径寸法が前記ロータに近付くほど小さくなる円柱状に構成される。又、前記外側弾性体が、内周面の内径寸法が前記ロータに近付くほど小さくなる円筒状に構成される。
(9) 上記(1)~(8)のうちの何れか1つの構成のディスクブレーキであって、前記内側弾性体と前記外側弾性体とが、互いに異なる材料により構成される。
 本発明の上記目的は、下記構成により達成される。
(10) ディスクブレーキは、キャリパと、ピストンと、推力発生機構と、倍力機構とを備えている。
 又、前記キャリパは、車輪と共に回転するロータに隣接する状態で車体に支持されるサポートに対して、軸方向の変位が可能に支持されている。又、前記キャリパは、前記ロータを軸方向両側から挟む状態で軸方向の変位が可能に前記サポートに支持されるインナパッド及びアウタパッドのうちのアウタパッドのアウタ側面に対向するキャリパ爪が、アウタ側端部に設けられ、シリンダが、インナ側端部に設けられている。
 又、前記ピストンは、軸方向の変位が可能に前記シリンダ内に装着されており、有底円筒状である。
 又、前記推力発生機構は、第一押圧部材と、第二押圧部材とを有している。
 このうちの、前記第一押圧部材は、前記ピストンの内側に配置されており、駆動源の回転駆動力に基づいて、前記インナパッド及びアウタパッドと前記ロータの両側面との間の隙間が解消されるまで、前記ピストンを前記ロータのインナ側面に向けて押し出すものである。
 又、前記第二押圧部材は、前記隙間が解消され、前記第一押圧部材の軸方向への移動が停止した後、前記駆動源の回転駆動力に基づいて、前記ロータのインナ側面に向けて軸方向に移動する事により、前記ピストンを前記ロータのインナ側面に向けて押し出すものである。
 又、前記倍力機構は、前記第二押圧部材からの入力を増幅して、前記ピストンに伝達するものである。
 そして、前記第二押圧部材と前記倍力機構との間には、揺動可能な状態で設けられたイコライザ部材が設けられている。
(11) 上記(10)の構成の電動式ディスクブレーキ装置であって、前記イコライザ部材における前記第二押圧部材と前記倍力機構を構成する部材とのうちの少なくとも一方の部材との当接部に、凸曲面部が形成される。
(12) 上記(11)の構成の電動式ディスクブレーキ装置であって、前記第二押圧部材に、凹曲面部が形成される。そして、前記凹曲面部と前記イコライザ部材の前記凸曲面部とが係合される。
(13) 上記(10)~(12)のうちの何れか1つの構成のディスクブレーキであって、前記イコライザ部材が、前記ピストンに対して回り止めを図られている。
(14) 上記(10)~(13)のうちの何れか1つの構成のディスクブレーキであって、前記第一押圧部材が、スラスト軸受を構成するスラストプレートとされる。又、前記スラストプレートは、インナ側面にインナ側軌道が形成され、前記ピストンに対する回転が阻止される。
(15) 上記(10)~(14)のうちの何れか1つの構成のディスクブレーキであって、前記倍力機構が、円周方向に配置された複数個のカムレバーにより構成される。又、これら各カムレバーのインナ側面の内径側部分が、前記イコライザ部材のアウタ側面に当接させる事により力点として作用する部分とされる。同じく各カムレバーのインナ側面の外径側部分が、前記第一押圧部材のアウタ側面に当接させる事により支点として作用する部分とされる。更に、各カムレバーのアウタ側面の径方向中間部における前記力点として作用する部分と前記支点として作用する部分との間部分が、前記ピストンに軸方向の軸力を伝達する為の作用点として作用する部分とされる。
(16) 上記(10)~(14)のうちの何れか1つの構成のディスクブレーキであって、前記倍力機構は、インナ側面(例えば、径方向中央部及び径方向中央寄り部分)が、前記イコライザ部材により直接又は間接的にロータ側に押圧されるインナ側受面とされ、その外周面のうち、前記インナ側受面以外の部分が、隙間なく囲まれた状態で設けられた弾性部材により構成される。そして、前記インナ側受面が押圧される力に基づいて、前記弾性部材のアウタ側面が、前記ピストンを軸方向に押圧する様に構成される。
(17) 上記(10)~(16)のうちの何れか1つの構成のディスクブレーキであって、前記第一押圧部材と前記第二押圧部材との間に、互いの相対回転の量を所定の範囲に規制する事により、前記第二押圧部材における前記ロータのインナ側面に向けた軸方向に関する変位量を規制する機構が設けられる。
(18) 上記(1)~(17)のうちの何れか1つの構成のディスクブレーキと、前記推力発生機構を回転駆動する駆動源としての電動モータと、を備える電動式ディスクブレーキ。
 上述の(1)~(9)の構成を有するディスクブレーキによれば、倍力機構を構成するリアクションディスクにせん断力が作用する事が防止されて、ディスクブレーキの耐久性の向上が図られる。
 即ち、上記(1)~(9)の構成のディスクブレーキの場合、リアクションディスクが内側弾性体と、外側弾性体とを組み合わせて構成されると共に、第二押圧部材の軸方向への移動に基づいて、前記リアクションディスクが直接押圧される入力部材と、前記内側弾性体におけるロータと反対側面のうちの前記入力部材により押圧される被押圧面とが、同一形状とされる。更に、ロータの軸方向から見た場合に、前記押圧面と前記被押圧面とが一致した状態で、前記入力部材が、前記内側弾性体を押圧する様に構成されている。この為、前記リアクションディスクのインナ側面のうち、前記入力部材の押圧面の径方向外端縁に押圧される部分に、せん断力が作用する事を防止できる。
 又、上述の(10)の構成を有するディスクブレーキによれば、推力発生機構と倍力機構との偏当たりが防止されて、これら両機構同士の耐久性の向上が図られると共に、前記倍力機構がピストンを押し付ける力が、円周方向に関してバラつく事の防止が図られる。
 即ち、上記(10)の構成のディスクブレーキの場合、推力発生機構を構成する第二押圧部材と前記倍力機構との間に、揺動可能なイコライザ部材が設けられている。この為、この第二押圧部材或いは前記倍力機構の寸法公差等に基づいて、この第二押圧部材とこの倍力機構とが偏当たりした状態で、直接当接する事がない。この結果、これら第二押圧部材及び倍力機構の耐久性の向上を図る事ができる。
 又、前記第二押圧部材と前記倍力機構との間で、前記イコライザ部材が揺動する事により、この第二押圧部材或いはこの倍力機構の寸法公差を吸収する事ができる。この為、この倍力機構がピストンを押圧する力が、このピストンの中心軸に対して傾いたり、この倍力機構の円周方向に関して偏ったりする事の防止を図る事ができる。
 又、上記(10)の構成のディスクブレーキの場合、制動時にキャリパが変形して、前記倍力機構の中心軸に対して、前記第二押圧部材の中心軸が傾いた場合でも、前述の様な揺動可能なイコライザ部材が設けられている為、前記倍力機構と前記第二押圧部材との間に、曲げ応力等の過大な応力が加わる事を防止して、耐久性の向上を図る事ができる。
 又、上記(11)の構成のディスクブレーキの場合、前記イコライザ部材における前記第二押圧部材と前記倍力機構を構成する部材とのうちの少なくとも一方の部材との当接部に、凸曲面部が形成されている。又、上記(12)の構成のディスクブレーキの場合、前記第二押圧部材に凹曲面部が形成されると共に、この凹曲面部と前記イコライザ部材の凸曲面部とが係合されている。この為、前記イコライザ部材を、前記第二押圧部材と前記倍力機構との間で揺動変位させ易くできる。
 又、上記(13)の構成のディスクブレーキの場合、前記イコライザ部材が、前記ピストンに対して回り止めを図られている。この為、前記イコライザ部材が回転する事なく、前記倍力機構をアウタ側に押圧する事ができる。この結果、この倍力機構の作動の安定性の向上、及び、前記イコライザ部材及びこの倍力機構の耐久性の向上を図る事ができる。
 又、上記(14)の構成のディスクブレーキの場合、前記第一押圧部材は、ピストンに対する回り止めが図られ、スラスト軸受を構成するスラストプレートとされている。この為、前記第一押圧部材により、前記ピストンをアウタ側に押圧する動作の安定性の向上、及び、この第一押圧部材、及び、この第一押圧部材によりアウタ方向に押圧される部材の耐久性の向上を図る事ができる。
 又、上記(17)の構成のディスクブレーキの場合、前記第二押圧部材の前記第一押圧部材に対する回転量が、所定の範囲内に規制される。この為、前記第二押圧部材が前記第一押圧部材に対して回転し過ぎて、その周囲に配置された構成部材が破損したり、前記倍力機構の押圧力が過大になり過ぎたりする事の防止を図る事ができる。
図1は、本発明の実施の形態に係るディスクブレーキの第1例を示す、ロータの中心軸を含む仮想平面に関する断面図である。 図2は、図1に示したピストン及びこのピストンの内側に配置された部品を取り出して示す断面図である。 図3の(a)は図2に示した内側弾性体と外側弾性体とを取り出して示す分解斜視図であり、図3の(b)はこれら内側弾性体と外側弾性体とを組み合わせた状態を示す斜視図である。 図4は、図2に示したピストン及びこのピストンの内側に配置される部品を取り出して、アウタ側から見た状態で示す分解斜視図である。 図5は、本発明の実施の形態に係るディスクブレーキの第2例を示す、図2と同様の断面図である。 図6の(a)は図5に示した内側弾性体と外側弾性体とを取り出して示す分解斜視図であり、図6の(b)はこれら内側弾性体と外側弾性体とを組み合わせた状態を示す斜視図である。 図7は、本発明の実施の形態に係るディスクブレーキの第3例を示す、図2と同様の断面図である。 図8の(a)は図7に示した内側弾性体と外側弾性体とを取り出して示す分解斜視図であり、図8の(b)はこれら内側弾性体と外側弾性体とを組み合わせた状態を示す斜視図である。 図9は、本発明の実施の形態に係るディスクブレーキの第4例を示す、リアクションディスクの断面図である。 図10は、本発明の実施の形態に係るディスクブレーキの第5例を示す、リアクションディスクの断面図である。 図11は、本発明の実施の形態に係るディスクブレーキの第6例を示す、リアクションディスクの断面図である。 図12は、本発明の実施の形態に係るディスクブレーキの第7例を示す、ロータの中心軸を含む仮想平面に関する断面図である。 図13の(a)は、図12に示したピストン及びこのピストンの内側に配置された部品を取り出して、倍力機構が作動する前の状態を示す断面図であり、図13の(b)は倍力機構が作動している状態を示す断面図である。 図14は、図12に示したピストン及びこのピストンの内側に配置される部品を取り出して、アウタ側から見た状態で示す分解斜視図である。 図15は、図12に示したピストン及びこのピストンの内側に配置される部品を取り出して、インナ側から見た状態で示す分解斜視図である。 図16の(a)は、図14に示したピストンの内側に構成部品を組み込んでアウタ側から見た状態を示す斜視図であり、図16の(b)は、図16の(a)におけるピストンのみをA-Aで切断して示す部分断面図である。 図17の(a)及び(b)は、図14に示したピストンの内側に構成部品を組み込んだ状態でインナ側及びアウタ側から見た図である。 図18は、本発明の実施の形態に係るディスクブレーキの第8例を示す、ピストン及びこのピストンの内側に配置された部品の断面図である。 図19は、本発明の実施の形態に係るディスクブレーキの第9例を示す、ロータの中心軸を含む仮想平面に関する断面図である。 図20は、図19に示したピストン及びこのピストンの内側に配置される部品を取り出して、アウタ側から見た状態で示す分解斜視図である。 図21は、本発明の実施の形態に係るディスクブレーキの第10例を示す、ロータの中心軸を含む仮想平面に関する断面図である。 図22は、図21に示したピストン及びこのピストンの内側に配置される部品を取り出して、アウタ側から見た状態で示す分解斜視図である。 図23は、図22に示したインプットスクリューと、イコライザ部材と、カムレバーとを取り出して示す、部分断面分解斜視図である。 図24は、本発明の実施の形態に係るディスクブレーキの第11例を示す、ロータの中心軸を含む仮想平面に関する断面図である。 図25は、図24に示したピストン及びこのピストンの内側に配置される部品を取り出して、アウタ側から見た状態で示す分解斜視図である。 図26は、図24に示したピストンと、インプットスクリューと、イコライザ部材と、推力発生機構の一部の構成部品と、倍力機構とを取り出して示す、部分断面斜視図である。 図27は、本発明の実施の形態に係るディスクブレーキの第12例を示す、ロータの中心軸を含む仮想平面に関する断面図である。 図28は、図27に示したピストン及びこのピストンの内側に配置された部品を示す断面図である。 図29は、図28に示したピストン及びこのピストンの内側に配置された部品を右側から見た図である。 図30は、図28に示したピストン及びこのピストンの内側に配置される部品を取り出して、インナ側から見た状態で示す分解斜視図である。 図31は、従来構造の第1例を示す、ロータの中心軸を含む仮想平面に関する断面図である。 図32は、図31に示したピストン及びこのピストンの内側に配置された部品の断面図である。 図33は、従来構造の第2例を示す、ピストン及びこのピストンの内側に配置された部品の断面図である。
 [実施の形態の第1例]
 図1~4は、本発明の実施の形態の第1例を示している。本第1例は、前述した従来構造と同様に、本発明のディスクブレーキを電動式パーキングディスクブレーキに適用したものである。尚、サービスブレーキの構造に関しては、油圧式或いは電動式の何れの構造も採用できる。
 この様な本第1例の電動式ディスクブレーキは、サポート1(図31参照)に対してキャリパ4aが、軸方向の変位が可能に組み付けられている。この部分の構造に就いては、従来から広く知られている油圧式のフローティングキャリパ型ディスクブレーキ(ガイドピン型ディスクブレーキとも云う)と同様であるから、詳しい説明は省略する。前記サポート1は、車輪と共に回転する図示しないロータに隣接する状態で車体に支持されるもので、このロータを軸方向両側から挟む状態で、インナパッド2及びアウタパッド3が、軸方向の変位を可能に支持されている。
 前記キャリパ4aのアウタ側端部にはキャリパ爪5aが設けられ、インナ側端部には油圧シリンダ(シリンダ)6aが設けられている。そして、この油圧シリンダ6a内にピストン7aが、油密に、且つ、軸方向の変位が可能に組み込まれている。サービスブレーキの作動時には、前記油圧シリンダ6a内に圧油が導入されて前記ピストン7aが、アウタ側に変位される。そして、このピストン7aにより前記インナパッド2が前記ロータのインナ側面に押し付けられると共に、前記キャリパ爪5aにより前記アウタパッド3が前記ロータのアウタ側面に押し付けられる。そして、このロータが前記インナパッド2及びアウタパッド3により、軸方向両側から強く挟持されて、制動が行われる。以上の説明は、一般的な油圧式のフローティングキャリパ型ディスクブレーキと同様である。
 上述の様な、本第1例の電動式ディスクブレーキは、前記ピストン7aが、アウタ側がピストン底部8aとされ、インナ側が開口部とされた有底円筒状のものとして構成されている。又、油圧シリンダ6aの内側に、インナ側から順番に、インナ側スラスト玉軸受28と、機械式の推力発生機構29と、請求の範囲の入力部材に相当するイコライザ部材30と、倍力機構31とが組み込まれている。尚、このうちのインナ側スラスト玉軸受28は、図示の構造では前記ピストン7aの外部に露出しているが、このピストン7aの内部に配置されても良い。
 このうちのインナ側スラスト玉軸受28は、断面円弧状のインナ側スラスト軌道32と、断面円弧状のアウタ側スラスト軌道33と、これら両軌道32、33同士の間に転動自在に設けられた複数個の玉34、34と、これら各玉34、34を転動自在に保持する保持器35とにより構成されている。
 このうちのインナ側スラスト軌道32は、円輪状のインナ側スラストプレート36のアウタ側面の全周に亙り形成されている。この様なインナ側スラストプレート36は、中心孔37に駆動杆23aの軸方向中間部が挿通されると共に、前記油圧シリンダ6aの内周面のシリンダ底部38寄り部分に内嵌されている。
 又、前記アウタ側スラスト軌道33は、後述するアジャストスクリュー13aの外向き鍔部40のインナ側面に、全周に亙り形成されている。
 又、前記推力発生機構29は、アジャストスクリュー13aと、アジャストナット12aと、パワーナット39と、請求の範囲の第一押圧部材に相当するスラストプレート41と、スラスト玉軸受42と、請求の範囲の第二押圧部材に相当するインプットスクリュー14aと、プリセットスプリング15aとを組み合わせて構成されている。
 このうちのアジャストスクリュー13aは、外周面のインナ側端部に、外向き鍔部40が形成された鍔付き円筒状の部材である。又、前記アジャストスクリュー13aの外周面のアウタ側半部には、雄ねじ部43が形成されている。一方、このアジャストスクリュー13aの内周面の少なくとも一部は、六角形状である。又、前記外向き鍔部40のインナ側面に、前述したアウタ側スラスト軌道33が形成されている。この様なアジャストスクリュー13aは、駆動杆23aの外周面に形成された六角形状部分に、このアジャストスクリュー13aの内周面のうちの六角形状部分が外嵌されている。この様にして、前記駆動杆23aと前記アジャストスクリュー13aとが、トルク伝達が可能に組み合わされている。尚、この組み合わせ部分の構造は、一般的なスプライン係合にする事もできる。
 尚、前記駆動杆23aは、軸方向中間部が、前記キャリパ4aのシリンダ底部38の中央部に形成されたシリンダ通孔44に挿通されると共に、インナ側端部が、前記キャリパ4aからインナ側に突出された状態で、このキャリパ4aに支持されている。又、前記シリンダ通孔44の内周面のうち、アウタ側端部寄り部分の全周に亙り形成された小径係止溝45と、前記駆動杆23aの外周面との間には、前記シリンダ内部の油密性を確保する為のシール部材であるOリング46が設けられている。更に、前記シリンダ通孔44の内周面のうち、前記小径係止溝45よりもアウタ側に形成された大径係止溝47と、前記駆動杆23aの外周面との間には、中央寄り部分がインナ方向に突出した断面クランク状の段付き円輪状のワッシャ48が係止されている。そして、前記駆動杆23aの軸方向中間部に形成されたフランジ部49のインナ側面と、前記ワッシャ48のアウタ側面の中央寄り部分とが当接されている。
 この様な駆動杆23aは、その基端部が歯車式の減速機50(図31参照)の出力軸51にトルク伝達が可能に結合されている。この減速機50は、前記キャリパ4aのインナ側端部に結合した減速機ケース52内に収納されており、前記電動モータ11の回転を減速しつつ(トルクを増大しつつ)、前記出力軸51に伝達する。従って、前記アジャストスクリュー13aは、前記電動モータ11により、前記駆動杆23aを介して、大きなトルクで回転駆動される。
 又、前記アジャストナット12aは、全体が円筒状であり、内周面に雌ねじ部54が形成されている。一方、このアジャストナット12aの外周面のアウタ側端部寄り部分の円周方向1箇所位置には、連結用有底孔55が形成されている。又、外周面のインナ側端部寄り部分の円周方向1箇所位置(図1、2の下方)には、この外周面から径方向外方へ突出し、軸方向に長い係合突部56が形成されている。この様なアジャストナット12aは、前記雌ねじ部54と、前記アジャストスクリュー13aの雄ねじ部43とを螺合させた状態で、このアジャストスクリュー13aの外径側に設置されている。尚、これら両ねじ部43、54同士の螺合状態は、不可逆的である。
 又、前記パワーナット39は、外周面のアウタ側端部に外向き鍔部57が形成された鍔付き円筒状の部材である。又、このパワーナット39の内周面のアウタ側半部には、雌ねじ部58が形成されている。尚、この様なパワーナット39のアウタ側半部の内径は、インナ側半部の内径よりも小さい。又、本第1例の場合、前記パワーナット39の雌ねじ部58のピッチと、前記アジャストナット12aの雌ねじ部54のピッチとが同じに形成されている。尚、これら両雌ねじ部54、58のピッチを互いに異ならせる事もできる。例えば、この雌ねじ部58のピッチが、前記雌ねじ部54のピッチよりも大きくされた場合には、後述する倍力機構31が作動する際、前記インプットスクリュー14aを所定量だけアウタ側に変位させる為の前記パワーナット39の回転量(回転角)を小さくする事ができる。この結果、後述するプリセットスプリング15aの捩じり角も小さくする事ができる為、このプリセットスプリング15aの設計が容易になる。
 又、前記外向き鍔部57の円周方向1箇所位置(図1、4の上方)には、この外向き鍔部57を軸方向に貫通した係止孔59が形成されている。又、前記パワーナット39のアウタ側面の全周に亙り、断面円弧状のインナ側スラスト軌道60が形成されている。更に、前記パワーナット39のインナ側半部の軸方向中間部の円周方向1箇所位置には、当該部分を径方向に貫通した連結孔61が形成されている。この様なパワーナット39は、インナ側半部の内径側に前記アジャストナット12aのアウタ側端部寄り部分が配置された状態で、前記パワーナット39の連結孔61と、前記アジャストナット12aの連結用有底孔55とに円柱状の連結ピン62が掛け渡されている。この様にして、前記パワーナット39は、前記アジャストナット12aに対して、同期した回転が可能な状態、且つ、同期した軸方向変位が可能な状態に組み付けられている。
 又、前記スラストプレート41は、外周面のインナ側端部に外向き鍔部63が形成された鍔付き円筒状の部材である。又、このスラストプレート41のインナ側面には、アウタ側スラスト軌道64が形成されている。一方、前記スラストプレート41のアウタ側端面が、平坦な円輪状の第一押圧面65とされている。又、前記外向き鍔部63の外周面のうち、互いに反対側(直径方向反対側)となる円周方向2箇所位置には、外径側突部66、66が形成されている。又、前記スラストプレート41の内周面のインナ側端部の互いに反対側(直径方向反対側)となる円周方向2箇所位置には、内径側突部67、67が形成されている。この様なスラストプレート41は、前記ピストン7aの内周面の互いに反対の円周方向2箇所位置に形成された、軸方向に長い係止溝68、68のアウタ側端部寄り部分に、前記各外径側突部66、66が係止されている。この様にして、前記スラストプレート41は、前記ピストン7aに対する、回転が不能な状態、且つ、軸方向の変位が可能な状態に組み付けられている。
 又、前記スラスト玉軸受42は、前記パワーナット39のインナ側スラスト軌道60と、前記スラストプレート41のアウタ側スラスト軌道64と、これら両軌道60、64同士の間に転動自在に設けられた複数個の玉69、69と、これら各玉69、69を転動自在に保持する保持器70とにより構成されている。
 又、前記インプットスクリュー14aは、請求の範囲の第二押圧部材に相当するもので、略円柱状の部材であり、外周面に雄ねじ部71が形成されている。又、このインプットスクリュー14aのアウタ側面には、このアウタ側面からインナ側に凹入した係合凹部72が形成されている。尚、この係合凹部72の奥端面は部分(半)球面状である。
 又、前記係合凹部72の内周面のアウタ側端部の円周方向2箇所位置には、回り止め切り欠き73、73が形成されている。
 この様なインプットスクリュー14aは、前記雄ねじ部71と、前記パワーナット39の雌ねじ部58とが螺合された状態で、このパワーナット39の内径側に設置されている。尚、前記インプットスクリュー14aは、後述するイコライザ部材30及び前記スラストプレート41を介して前記ピストン7aに対する回り止めが図られている。従って、前記インプットスクリュー14aは、前記雄ねじ部71と、前記パワーナット39の雌ねじ部58との螺合に基づき、このパワーナット39に対する軸方向の変位が可能である。
 又、前記プリセットスプリング15aは、捩じりコイルばねであり、前記ピストン7aに係止された位置決めプレート74と、前記パワーナット39との間に設けられている。
 この位置決めプレート74は、円輪状の部材であり、外周面の円周方向に関して反対側となる2箇所位置には、この外周面から径方向外方に突出した外径側係合突部75、75が形成されている。又、一方、前記位置決めプレート74の内周面の円周方向1箇所位置には、この内周面から径方向内方に突出した内径側係合突部76が形成されている。更に、前記位置決めプレート74の円周方向1箇所位置には、この位置決めプレート74を軸方向に貫通した係止孔77が形成されている。この様な位置決めプレート74は、前記外径側係合突部75、75が、前記ピストン7aの係止溝68、68のインナ側端部寄り部分に、それぞれ係合される事により、このピストン7aに対する回転が阻止された状態で組み付けられている。又、このピストン7aの内周面のうち前記位置決めプレート74よりもインナ側には、円周方向の一部に不連続部を有する欠円輪状の止め輪78が内嵌されている。
 そして、前記プリセットスプリング15aの両端部に形成した係止部79a、79bのうち、インナ側端部からインナ側に突出した係止部79aが、前記位置決めプレート74の係止孔77に係止されている。一方、アウタ側端部からアウタ側に突出した係止部79bは、スペーサー80を介して、前記パワーナット39の係止孔59に係止されている。尚、このスペーサー80は、円周方向1箇所に不連続部を有する部分円筒状の部材であり、アウタ側端面の円周方向に関してこの不連続部と反対位置には、径方向外方へ折れ曲がった外向き突片81が形成されている。又、この外向き突片81には、軸方向に貫通した係止孔82が形成されている。この様なスペーサー80は、この係止孔82と、前記パワーナット39の係止孔59とが整合された状態で、このパワーナット39のインナ側半部に外嵌されている。そして、前記プリセットスプリング15aの係止部79bが、前記係止孔59、82に係止されている。
 この様にして、前記プリセットスプリング15aにより、前記パワーナット39及び前記アジャストナット12aに対し、回転方向の弾力が付与されている。この弾力の方向は、前記アジャストスクリュー13aの雄ねじ部43と、前記アジャストナット12aの雌ねじ部54との螺合に基づいて、前記パワーナット39及びこのアジャストナット12aがインナ側に変位する方向とされている。
 本第1例の場合、前記倍力機構31が作動する前の状態(図1に示す状態)で、前記アジャストナット12aの係合突部56のインナ側端部と、前記位置決めプレート74の内径側係合突部76とが、円周方向に当接されている。この様にして、前記プリセットスプリング15aから前記インプットスクリュー14aに加わる円周方向に関する弾力を受けると共に、前記倍力機構31が作動する前の状態の前記インプットスクリュー14aの円周方向に関する位置決めを図っている。
 又、前記イコライザ部材30は、略円柱状の部材であり、インナ側面の中央部からインナ方向に突出した状態で設けられた、半球状の揺動突部83と、この揺動突部83の外周面のアウタ側端部の円周方向2箇所位置に、この外周面から径方向外方に突出した状態で形成された回り止め突部84、84とを有する。又、前記イコライザ部材30のアウタ側面は、円形の平坦面であり、当該部分が請求の範囲の押圧面に相当する第二押圧面85とされている。更に、前記イコライザ部材30の外周面のうち、インナ側半部の互いに反対側となる円周方向2箇所位置には、軸方向に長い回り止め係止溝86、86が形成されている。
 この様なイコライザ部材30は、前記揺動突部83と、前記インプットスクリュー14aの係合凹部72とが係合されると共に、前記各回り止め突部84、84とこのインプットスクリュー14aの回り止め切り欠き73、73が係合されている。又、前記イコライザ部材30の各回り止め係止溝86、86と、前記スラストプレート41の各内径側突部67、67とが係合されている。この様にして、前記イコライザ部材30は、前記インプットスクリュー14aと前記倍力機構31との間に組み付けられている。尚、前記各回り止め係止溝86、86と、前記スラストプレート41の各内径側突部67、67との係合状態は、前記イコライザ部材30が、前記インプットスクリュー14a及び前記倍力機構31に対して揺動が可能な程度に調整される。
 更に、前記倍力機構31は、ケース87と、リアクションディスク88とを有する。
 このうちのケース87は、ケース円筒部89と、このケース円筒部89のアウタ側端部を塞ぐ状態で設けられたケース底部90とから成る、有底円筒状の部材である。
 この様なケース87は、このケース底部90のアウタ側面が、前記ピストン7aのピストン底部8aのインナ側面に当接された状態で、前記ピストン7aの内周面のアウタ端部に内嵌されている。
 又、前記リアクションディスク88は、例えば樹脂、又は、ゴム、ビニルの如きエラストマー等の弾性材製であり、円柱状に構成された内側弾性体91と、同じく円筒状に構成された外側弾性体92とから成る。尚、本第1例の場合、この内側弾性体91とこの外側弾性体92とが、同一材料により造られている。但し、これら両部材91、92同士の材料(及びそれに伴う剛性)を、互いに異ならせる事もできる。この様な内側弾性体91及び外側弾性体92の材料は、前記リアクションディスク88の耐久性、及び、倍力機構が作動する際の押圧力の伝達特性等に合わせて、適宜決定する事ができる。
 又、前記内側弾性体91の外径寸法D91は、前記外側弾性体92の内径寸法d92と等しい(D91=d92)か、僅かに大きい。又、前記内側弾性体91の軸方向寸法L91と、前記外側弾性体92の軸方向寸法L92とは等しい(L91=L92)。そして、前記内側弾性体91は、前記外側弾性体92の内径側に、全周に亙り隙間のない状態で内嵌(圧入)されて組み合わされている。又、この様に前記両部材91、92同士が組み合された状態で、これら両部材91、92は互いに同心に配置されると共に、請求の範囲の被押圧面に相当する前記内側弾性体91のインナ側面(被押圧面93)の外径寸法D91と、前記イコライザ部材30のアウタ側面(第二押圧面85)の外径寸法D30とが等しくされている(D91=D30)。即ち、本第1例の場合、前記内側弾性体91のインナ側面(被押圧面93)と、前記イコライザ部材30のアウタ側面(第二押圧面85)とが、互いに円形の同一形状に構成されている。又、本第1例の場合には、前記外側弾性体92のインナ側面と、前記スラストプレート41のアウタ側面(第一押圧面65)とに就いても、互いに同一形状(円輪状)とされている。尚、前記被押圧面93と前記第二押圧面85との間、及び、前記外側弾性体92のインナ側面と前記第一押圧面65との間に、製造上許容される寸法公差、或いは、通常行われる面取り(糸面取り、R面取り、C面取り等)に基づく形状の差が存在した場合でも、同一形状に含むものとする。
 この様なリアクションディスク88は、前記ケース87の内径側のアウタ側端部に内嵌された状態で、前記外側弾性体92のインナ側面が、前記スラストプレート41のアウタ側面(第一押圧面65)に当接され、前記内側弾性体91のインナ側面(被押圧面93)が前記イコライザ部材30のアウタ側面(第二押圧面85)に当接された状態で、配置されている。即ち、前記リアクションディスク88は、前記ケース87の内周面と、前記スラストプレート41のアウタ側面と、前記イコライザ部材30のアウタ側面とにより画成された空間内に、これら各部材30、41、87と隙間のない状態で配置されている。
 上述の様に構成された本第1例の電動式ディスクブレーキにおけるパーキングブレーキ作動時の作用は、次の通りである。
 パーキングブレーキ作動時には、電動モータ11により前記アジャストスクリュー13aが、前記駆動杆23aを介して回転駆動される。作動開始直後の初期段階では、前記インナパッド2及びアウタパッド3と前記ロータの両側面との間には隙間が存在し、これら両パッド2、3をこのロータに向けて移動させる為に要する力は小さくて済む。前記初期段階では、前記アジャストスクリュー13aが回転した際、前記アジャストナット12aと前記パワーナット39とは、前記プリセットスプリング15aの弾力により、前記ピストン7aに対して回転する事はない。この為、前記アジャストスクリュー13aの雄ねじ部43と、前記アジャストナット12aの雌ねじ部54との螺合に基づいて、このアジャストナット12a及び前記パワーナット39がロータに向けてアウタ側に変位する。又、この変位に伴って、このパワーナット39の内径側に設けられた前記インプットスクリュー14aも同期してアウタ側に変位する。この様な各変位に基づく押圧力は、パワーナット39 → スラスト玉軸受42 → スラストプレート41 → リアクションディスク88の径方向外半部(外側弾性体92) → ケース87の経路、及び、インプットスクリュー14a → イコライザ部材30 → リアクションディスク88の中央寄り部分(内側弾性体91) → ケース87の経路により伝達されて、最終的に前記ピストン7aを押圧して、このピストン7aを、前記両パッド2、3と前記ロータの両側面との間の隙間が解消されるまで変位させる。尚、この様に変位する際に、前記スラストプレート41のアウタ側面(第一押圧面65)と、前記イコライザ部材30のアウタ側面(第二押圧面85)とは、互いに同一仮想平面上に位置する。
 この様にして前記両パッド2、3と前記ロータの両側面との間の隙間が解消されると、前記アジャストナット12a及びパワーナット39に加わる軸方向の反力に基づいて、前記アジャストスクリュー13aの雄ねじ部43と、前記アジャストナット12aの雌ねじ部54との螺合部の回転抵抗が大きくなる。そして、この回転抵抗が、前記プリセットスプリング15aにより、前記アジャストナット12a及びパワーナット39に付与されている弾力よりも大きくなると、この弾力に抗して、これらアジャストナット12a及びパワーナット39が、前記アジャストスクリュー13aと同期して回転する。すると、前記インプットスクリュー14aは、前記イコライザ部材30及びスラストプレート41を介して前記ピストン7aに対して回り止めされている為、前記パワーナット39の雌ねじ部58と、前記インプットスクリュー14aの雄ねじ部71との螺合に基づき、このインプットスクリュー14aのみが、前記ロータに向けてアウタ側に変位する。
 この様なインプットスクリュー14aの変位に基づいて、前記イコライザ部材30がアウタ側に変位すると、このイコライザ部材30のアウタ側面(第二押圧面85)が、前記スラストプレート41のアウタ側面(第一押圧面65)よりもアウタ側に変位し、前記リアクションディスク88を構成する内側弾性体91のインナ側面(被押圧面93)を押圧する。この際、前述した様に、前記イコライザ部材30のアウタ側面(第二押圧面85)と、前記内側弾性体91のインナ側面(被押圧面93)とが同一形状である為、前記イコライザ部材30は、前記リアクションディスク88のうち、前記内側弾性体91部分のみをアウタ側に押圧する。この際、前記外側弾性体92のインナ側面は、前記スラストプレート41のアウタ側面に、前面に亙り当接したままの状態になる。尚、本第1例の場合、前記イコライザ部材30は、前記ピストン7aに対する回り止めが図られている。この為、前記イコライザ部材30のアウタ側面(第二押圧面85)、及び、前記内側弾性体91のインナ側面(被押圧面93)の形状が、例えば矩形状に構成された場合でも、組み付け状態に於いて、ロータの軸方向から見た場合のこれら両面85、93同士を一致させておけば、前記イコライザ部材30は、前記内側弾性体91部分のみを押圧できる。
 この結果、前記リアクションディスク88を構成する内側弾性体91と前記外側弾性体92とが、一体的に弾性変形する。このリアクションディスク88(内側弾性体91及び外側弾性体92)は、一種の非圧縮性流体の如き挙動により、このリアクションディスク88(内側弾性体91及び外側弾性体92)を囲んでいる相手面を押圧する。具体的には、この内側弾性体91が軸方向に弾性変形させられた分だけ、この内側弾性体91が弾性的に拡径する。そして、この内側弾性体91の拡径に伴い、前記外側弾性体92が径方向に圧縮された分だけ軸方向の押圧力を発揮する。このリアクションディスク88(内側弾性体91及び外側弾性体92)が、この相手面を押圧する単位面積当たりの圧力は、前記イコライザ部材30のアウタ側面(第二押圧面85)による押圧面の単位面積当たりの圧力と同じになる。前記リアクションディスク88(内側弾性体91及び外側弾性体92)と相手面との当接面積を軸方向に関して見た場合、前記ケース87のケース底部90の内面との当接面積Sが、前記イコライザ部材30のアウタ側面(第二押圧面85)の面積Sよりも十分に広い(S≫S)。従って、前記ピストン7aは、前記ケース87を介して、前記インプットスクリュー14aに加えられた推力よりも、前記当接面積の比分(S/S)だけ増力されて、前記ロータに向け押圧される。この結果、前記両パッド2、3が前記ロータの両側面に強く押圧される。尚、互いに螺合している前記各ねじ部43、54同士、及び、前記ねじ部54、71同士は、不可逆的に螺合しているので、前記電動モータ11への通電を停止すれば、特に保持動作をせずに、必要な制動力を保持できる。
 制動解除の際には、前記電動モータ11が逆方向に回転されて、前記ピストン7aが前記ロータから退避される。この際、前記両パッド2、3が前記ロータの両側面から離隔する瞬間の後、前記電動モータ11が所定角度だけ逆方向に回転されて、前記両パッド2、3と前記ロータの両側面との間に適正厚さの隙間が確保される。この適正隙間の確保は、前記アジャストナット12aが前記アジャストスクリュー13aに対して、前記両ねじ部43、54の螺合により、インナ側に適正量変位される事により行われる。この様にして、前記両パッド2、3の摩耗に拘らず、前記隙間が常に適正厚さに保たれる様にされている。
 前述した様な本第1例の電動式ディスクブレーキによれば、前記倍力機構31を構成するリアクションディスク88にせん断力が作用する事を防止して、電動式ディスクブレーキの耐久性の向上を図れる。
 即ち、本第1例の場合、前記リアクションディスク88が、前記内側弾性体91と、前記外側弾性体92とを組み合わせて構成されると共に、前記インプットスクリュー14aの軸方向への移動に基づいて、前記リアクションディスク88を直接押圧する前記イコライザ部材30のアウタ側面(第二押圧面85)と、前記内側弾性体91のインナ側面(被押圧面93)とが同一形状に構成され、且つ、前記ロータの軸方向から見た場合に、前記イコライザ部材30のアウタ側面(第二押圧面85)と前記内側弾性体91のインナ側面(被押圧面93)とが一致した状態で、前記イコライザ部材30が、前記内側弾性体91を押圧する様に構成されている。この為、前記リアクションディスク88のインナ側面のうち、前記イコライザ部材30のアウタ側面(第二押圧面85)の径方向外端縁に押圧される部分には、せん断力が作用する事を防止できる。この結果、前記リアクションディスク88の耐久性、延いては、電動式ディスクブレーキの耐久性の向上を図れる。
 又、前記内側弾性体91は、前記外側弾性体92の内径側に、隙間のない状態で内嵌されて組み合わされている。この為、前記イコライザ部材30が前記内側弾性体91を押圧した際、この内側弾性体91の変形を、前記外側弾性体92に遅れる事なく直接伝達する事ができる。この結果、前記インプットスクリュー14aの軸方向への変位に基づいて、前記イコライザ部材30から前記内側弾性体91に加わる押圧力(入力)に対する、前記倍力機構31の出力の特性を滑らかにできる。
 [実施の形態の第2例]
 図5~6は、本発明の実施の形態の第2例を示している。本第2例の電動式ディスクブレーキの場合、リアクションディスク88aを構成する内側弾性体91aの軸方向寸法L91aと、同じく外側弾性体92aの軸方向寸法L92aとが異なっている(L91a≠L92a)。具体的には、本第2例の場合、前記内側弾性体91aの軸方向寸法L91aが、前記外側弾性体92aの軸方向寸法L92aよりも大きくされている(L91a>L92a)。尚、本第2例の場合、前記内側弾性体91aの軸方向寸法L91aが、前述した実施の形態の第1例の内側弾性体91の軸方向寸法L91(図2参照)よりも大きくされている(L91a>L91)。一方、前記外側弾性体92aの軸方向寸法L92aが、実施の形態の第1例の外側弾性体92の軸方向寸法L92と同じとされている(L92a=L92)。この為に、イコライザ部材30aの軸方向に関する寸法L30aが、実施の形態の第1例のイコライザ部材30の軸方向寸法L30よりも小さくされている(L30a<L30)。
 又、本第2例の場合も、前記内側弾性体91aの外径寸法D91aは、前記外側弾性体92aの内径寸法d92aと等しいか、僅かに大きい。
 そして、前記内側弾性体91aは、前記外側弾性体92aの内径側に、隙間のない状態で内嵌されて組み合わされている。
 更に、この様に前記内側弾性体91aと前記外側弾性体92aとが組み合された状態で、この内側弾性体91aの外径寸法D91aと、イコライザ部材30aのアウタ側面(第二押圧面85)の外径寸法D30とが等しくされている(D91a=D30)。即ち、本第2例の場合も、前記内側弾性体91aのインナ側面(被押圧面93)と、前記イコライザ部材30aのアウタ側面(第二押圧面85)とが同一形状に構成されている。
 上述の様なリアクションディスク88aは、ケース87の内径側のアウタ端部に内嵌された状態で、前記外側弾性体92aのインナ側面がスラストプレート41のアウタ側面(第一押圧面65)に当接され、前記内側弾性体91aのインナ側面(被押圧面93)が前記イコライザ部材30のアウタ側面(第二押圧面85)に当接された状態で配置されている。尚、本第2例の場合、前記内側弾性体91aのインナ側端部寄り部分が、前記スラストプレート41のアウタ端部の内径側にまで配置されている。
 即ち、本第2例の場合、前記リアクションディスク88aは、前記ケース87の内周面と、前記スラストプレート41のアウタ側面と、このスラストプレート41の内周面のアウタ側端部寄り部分と、前記イコライザ部材30aのアウタ側面とにより画成される空間内に、前記各部材30a、41、87と隙間のない状態で配置されている。
 この様な本第2例の電動式ディスクブレーキの場合、前記内側弾性体91aの軸方向寸法L91aが、前記外側弾性体92aの軸方向寸法L92aよりも大きくされている。この為、インプットスクリュー14a及びイコライザ部材30aの軸方向の変位に対する、前記内側弾性体91aの変形量を大きく確保できる。この結果、制動時に、前記外側弾性体92aの軸方向寸法L92aの増加を抑えつつ、大きな押圧力で、ピストン7aを押圧する事ができる。
 その他の部分の構成及び作用・効果は、前述した実施の形態の第1例と同様であるから、同等部分に関する説明は省略する。
 [実施の形態の第3例]
 図7~8は、本発明の実施の形態の第3例を示している。本第3例の電動式ディスクブレーキの場合、リアクションディスク88bを構成する内側弾性体91bの軸方向寸法L91bと、同じく外側弾性体92bの軸方向寸法L92bとが異なっている(L91b≠L92b)。具体的には、本第3例の場合、前記外側弾性体92bの軸方向寸法L92bが、前記内側弾性体91bの軸方向寸法L91bよりも大きくされている(L92b>L91b)。尚、本第3例の場合、前記内側弾性体91bの軸方向寸法L91bが、前述した実施の形態の第1例の内側弾性体91の軸方向寸法L91(図2参照)よりも小さくされている(L91b<L91)。一方、前記外側弾性体92bの軸方向寸法L92bが、実施の形態の第1例の外側弾性体92の軸方向寸法L92と同じとされている(L92b=L92)。この為に、イコライザ部材30bの軸方向に関する寸法L30bが、実施の形態の第1例のイコライザ部材30の軸方向寸法L30よりも大きくされている(L30b>L30)。
 又、本第3例の場合も、前記内側弾性体91bの外径寸法D91bは、前記外側弾性体92bの内径寸法d92bと等しいか、僅かに大きい。
 そして、前記内側弾性体91bは、前記外側弾性体92bの内径側に、隙間のない状態で内嵌されて組み合わされている。
 この様に前記内側弾性体91bと前記外側弾性体92bとが組み合された状態で、この内側弾性体91bの外径寸法D91bと、イコライザ部材30bのアウタ側面(第二押圧面85)の外径寸法D30とが等しくされている(D91b=D30)。即ち、本第3例の場合も、前記内側弾性体91bのインナ側面(被押圧面93)と、前記イコライザ部材30bのアウタ側面(第二押圧面85)とが同形状に構成されている。
 上述の様なリアクションディスク88bは、ケース87の内径側のアウタ側端部に内嵌された状態で、前記外側弾性体92bのインナ側面がスラストプレート41のアウタ側面(第一押圧面65)に当接され、前記内側弾性体91bのインナ側面(被押圧面93)が前記イコライザ部材30bのアウタ側面(第二押圧面85)に当接された状態で配置されている。尚、本第3例の場合、前記外側弾性体92bのインナ側端部の内径部分に、前記イコライザ部材30bのアウタ側端部が配置されている。
 即ち、本第3例の場合、前記リアクションディスク88bは、前記ケース87の内周面と、前記スラストプレート41のアウタ側面と、前記イコライザ部材30bの外周面のアウタ側端部と、前記イコライザ部材30bのアウタ側面とにより画成される空間内に、前記各部材30b、41、87と隙間のない状態で配置されている。
 その他の部分の構成及び作用・効果は、前述した実施の形態の第1例と同様であるから、同等部分に関する説明は省略する。
 [実施の形態の第4例]
 図9は、本発明の実施の形態の第4例を示している。本第4例の電動式ディスクブレーキの場合、リアクションディスク88cを構成する内側弾性体91cは、外周面の外径寸法D91cが、ロータに近付くほど(図9の左側ほど)大きくなる円柱状に構成されている。又、外側弾性体92cは、内周面の内径寸法d92cが、前記ロータに近付くほど大きくなる円筒状に構成されている。尚、前記内側弾性体91cの外径寸法D91cは、前記外側弾性体92cにおける軸方向に関してこの内側弾性体91cと整合する部分に於ける内径寸法d92cと等しい(D91c=d92c)か、僅かに大きい。又、前記内側弾性体91cの最も厚い部分の軸方向寸法L91cと、前記外側弾性体92cの最も厚い部分の軸方向寸法L92cとは等しい(L91c=L92c)。そして、前記内側弾性体91cは、前記外側弾性体92cの内径側に、全周に亙り隙間のない状態で内嵌(圧入)されて組み合わされている。
 又、この様に前記両部材91c、92c同士が組み合された状態で、これら両部材91c、92cは互いに同心に配置されると共に、請求の範囲の被押圧面に相当する、前記内側弾性体91cのインナ側面(被押圧面93a)の外径寸法D93aと、イコライザ部材30(図2参照)のアウタ側面(第二押圧面85)の外径寸法D30とが等しくされている(D93a=D30)。即ち、本第4例の場合も、前記内側弾性体91cのインナ側面(被押圧面93a)と、前記イコライザ部材30のアウタ側面(第二押圧面85)とが、互いに円形の同一形状に構成されている。又、前記外側弾性体92cのインナ側面と、スラストプレート41(図2参照)のアウタ側面(第一押圧面65)とに就いても、互いに同一形状(円輪状)とされている。
 その他の部分の構成及び作用・効果は、前述した実施の形態の第1例と同様であるから、同等部分に関する説明は省略する。
 [実施の形態の第5例]
 図10は、本発明の実施の形態の第5例を示している。本第5例の電動式ディスクブレーキの場合、リアクションディスク88dを構成する内側弾性体91dが、外周面の外径寸法D91dが、ロータに近付くほど(図10の左側ほど)小さくなる円柱状に構成されている。又、外側弾性体92dが、内周面の内径寸法d92dが、アウタ側に向かうほど小さくなる円筒状に構成されている。尚、前記内側弾性体91dの外径寸法D91dは、前記外側弾性体92dにおける軸方向に関してこの内側弾性体91dと整合する部分に於ける内径寸法d92dと等しい(D91d=d92d)か、僅かに大きい。又、前記内側弾性体91dの最も厚い部分の軸方向寸法L91dと、前記外側弾性体92dの最も厚い部分の軸方向寸法L92dとは等しい(L91d=L92d)。そして、前記内側弾性体91dは、前記外側弾性体92dの内径側に、全周に亙り隙間のない状態で内嵌(圧入)されて組み合わされている。
 又、この様に前記両部材91d、92d同士が組み合された状態で、これら両部材91d、92dは互いに同心に配置されると共に、請求の範囲の被押圧面に相当する、前記内側弾性体91dのインナ側面(被押圧面93b)の外径寸法D93bと、イコライザ部材30(図2参照)のアウタ側面(第二押圧面85)の外径寸法D30とが等しくされている(D93b=D30)。即ち、本第5例の場合も、前記内側弾性体91dのインナ側面(被押圧面93b)と、前記イコライザ部材30のアウタ側面(第二押圧面85)とが、互いに円形の同一形状に構成されている。又、前記外側弾性体92dのインナ側面と、スラストプレート41(図2参照)のアウタ側面(第一押圧面65)とに就いても、互いに同一形状(円輪状)とされている。
 その他の部分の構成及び作用・効果は、前述した実施の形態の第1例と同様であるから、同等部分に関する説明は省略する。
 [実施の形態の第6例]
 図11は、本発明の実施の形態の第6例を示している。本第6例の電動式ディスクブレーキの場合、リアクションディスク88eを構成する内側弾性体91eは、外周面の外径寸法D91eが、ロータに近付くほど(図11の左側ほど)小さくなる円柱状に構成されている。又、外側弾性体92eは、インナ端面が開口し、アウタ端面に底部94を有する有底円筒状に形成されている。この様な外側弾性体92eの内周面の内径寸法d92eは、アウタ側に向かうほど小さくなる。尚、前記内側弾性体91eの外径寸法D91eは、前記外側弾性体92eの内周面のうち、軸方向に関してこの内側弾性体91eと整合する部分に於ける内径寸法d92eと等しい(D91e=d92e)か、僅かに大きい。又、前記内側弾性体91eの最も厚い部分の軸方向寸法L91eは、前記外側弾性体92eの最も厚い部分の軸方向寸法L92eよりも小さい(L91e<L92e)。そして、前記内側弾性体91eは、前記外側弾性体92eの内径側に、この外側弾性体92eの内周面及び前記底部94のインナ側面との間に隙間のない状態で内嵌(圧入)されて組み合わされている。
 又、この様に前記両部材91e、92e同士が組み合された状態で、これら両部材91e、92eは互いに同心に配置されると共に、請求の範囲の被押圧面に相当する、前記内側弾性体91eのインナ側面(被押圧面93c)の外径寸法D93cと、イコライザ部材30(図2参照)のアウタ側面(第二押圧面85)の外径寸法D30とが等しくされている(D93c=D30)。即ち、本第6例の場合も、前記内側弾性体91eのインナ側面(被押圧面93c)と、前記イコライザ部材30のアウタ側面(第二押圧面85)とが、互いに円形の同一形状に構成されている。又、前記外側弾性体92eのインナ側面と、スラストプレート41(図2参照)のアウタ側面(第一押圧面65)とに就いても、互いに同一形状(円輪状)とされている。
 その他の部分の構成及び作用・効果は、前述した実施の形態の第1例と同様であるから、同等部分に関する説明は省略する。
 [実施の形態の第7例]
 図12~17は、本発明の実施の形態の第7例を示している。本第7例は、前述した従来構造と同様に、本発明のディスクブレーキを電動式パーキングディスクブレーキに適用したものである。尚、サービスブレーキの構造に関しては、油圧式或いは電動式の何れの構造も採用できる。
 この様な本第7例の電動式ディスクブレーキは、サポート1(図31参照)に対してキャリパ4bが、軸方向の変位が可能に組み付けられている。この部分の構造に就いては、従来から広く知られている油圧式のフローティングキャリパ型ディスクブレーキ(ガイドピン型ディスクブレーキとも云う)と同様であるから、詳しい説明は省略する。前記サポート1は、車輪と共に回転する図示しないロータに隣接する状態で車体に支持されるもので、このロータを軸方向両側から挟む状態で、インナパッド2a及びアウタパッド3aが、軸方向の変位を可能に支持されている。
 前記キャリパ4bのアウタ側端部にはキャリパ爪5bが設けられ、インナ側端部には油圧シリンダ6bが設けられている。そして、この油圧シリンダ6b内にピストン7bが、油密に、且つ、軸方向の変位が可能に組み込まれている。サービスブレーキの作動時には、前記油圧シリンダ6b内に油圧が導入されて前記ピストン7bが、アウタ側に変位される。そして、このピストン7bにより前記インナパッド2aが前記ロータのインナ側面に押し付けられると共に、前記キャリパ爪5bにより前記アウタパッド3aが前記ロータのアウタ側面に押し付けられる。そして、このロータが前記インナパッド2a及びアウタパッド3aにより、軸方向両側から強く挟持されて、制動が行われる。以上の説明は、一般的な油圧式のフローティングキャリパ型ディスクブレーキと同様である。
 上述の様な、本第7例の電動式ディスクブレーキは、前記ピストン7bが、アウタ側がピストン底部123とされ、インナ側が開口部とされた有底円筒状のものとして構成されている。また、このピストン7bの内側に、機械式の推力発生機構124と、イコライザ部材125と、倍力機構126とが組み込まれている。
 このうちの推力発生機構124は、前記キャリパ4bの外側に固定された駆動源である電動モータ11(図31参照)が作動され、回転方向の動力が軸方向の推力に変換される事により、前記ピストン7bがアウタ側に変位される。即ち、前記推力発生機構124は、このピストン7bのピストン底部123と、前記油圧シリンダ6bのインナ側奥部であるシリンダ底部127との間に設けられ、前記電動モータ11の回転駆動力に基づいて軸方向に伸長する事により、前記ピストン7bが前記ロータのインナ側面に向けて移動される。
 上述の様な推力発生機構124は、アジャストナット12bと、アジャストスクリュー13bと、請求の範囲の第一押圧部材に相当するスラストプレート128と、請求の範囲のスラスト軸受に相当するスラスト玉軸受129と、請求の範囲の第二押圧部材に相当するインプットスクリュー14bと、プリセットスプリング15bとを組み合わせて構成されている。
 このうちのアジャストナット12bは、円筒状の部材であり、内周面のアウタ側端部寄り部分に、雌ねじ部130が形成されている。一方、このアジャストナット12bの外周面の円周方向等間隔3箇所位置には、全長に亙りこの外周面から径方向外方に突出し、軸方向に長い係合凸部131、131が形成されている。この様なアジャストナット12bは、これら各係合凸部131、131が、前記ピストン7bの内周面の円周方向等間隔3箇所位置に形成された係止溝132、132に係合される事により、前記ピストン7bに対する軸方向の変位が可能な状態、且つ、回転が阻止された状態で組み付けられている。
 又、前記アジャストスクリュー13bは、断面略クランク形で全体が円筒状であり、外周面の全長に亙り雄ねじ部133が形成されている。一方、このアジャストスクリュー13bの内周面のうちのアウタ側端部寄り部分には、雌ねじ部134が形成されている。尚、前記アジャストスクリュー13bの内周面のうちのインナ側半部の内径が、前記雌ねじ部134が形成された部分の内径より大きくされる事により、このインナ側半部の内径側に、前記プリセットスプリング15bを配置する為の空間が設けられている。又、前記アジャストスクリュー13bのアウタ側面の径方向外端寄り部分の全周に亙り、断面円弧状のインナ側スラスト軌道135が形成されている。更に、前記アジャストスクリュー13bのインナ側端部の円周方向等間隔4箇所位置には、切り欠き136、136が形成されている。この様なアジャストスクリュー13bは、前記雄ねじ部133と前記アジャストナット12bの雌ねじ部130とが螺合された状態で、このアジャストナット12bの内径側に設置されている。尚、これら両ねじ部133、130同士の螺合状態は、不可逆的である。
 又、前記スラストプレート128は、略円輪状の部材であり、外周面の円周方向等間隔3箇所位置には、この外周面から径方向外方に突出し軸方向に長い、係合凸部137、137が形成されている。又、前記スラストプレート128のインナ側面には、全周に亙り断面円弧状のアウタ側スラスト軌道(アウタ側軌道)138が形成されている。一方、前記スラストプレート128のアウタ側面は平坦面であり、当該部分が第一押圧面139とされている。この様なスラストプレート128は、前記各係合凸部137、137が、前記ピストン7bの各係止溝132、132のうちの、前記アジャストナット12bの係合凸部131、131が係合された部分よりもアウタ側部分に係合される事により、前記ピストン7bに対する軸方向への変位が可能な状態、且つ、回転が阻止された状態で組み付けられている。
 又、前記スラスト玉軸受129は、前記アジャストスクリュー13bのインナ側スラスト軌道135と、前記スラストプレート128のアウタ側スラスト軌道138と、これら両軌道135、138同士の間に転動自在に設けられた複数個の玉140、140と、これら各玉140、140を転動自在に保持する保持器141とにより構成されている。
 又、前記インプットスクリュー14bは、円筒状の部材であり、内周面のインナ側端部寄り部分が六角形状とされている。一方、このインプットスクリュー14bの外周面のアウタ側半部には、雄ねじ部142が形成されている。又、この外周面のインナ側端部寄り部分の円周方向1箇所位置(図12、13の下方)には、径方向外方へ突出され、軸方向に長い係合凸部143が形成されている。尚、この係合凸部143のインナ側端部は、前記インプットスクリュー14bのインナ側端面のうちの残部よりもインナ方向へ突出されている。更に、前記インプットスクリュー14bのアウタ側端面は、全周に亙り部分凹曲面状に形成されている。この様にして、後述するイコライザ部材125のインナ側球面部167との当接面積が確保されると共に、エッジ当たりが防止されている。
 この様なインプットスクリュー14bは、駆動杆23bの外周面に形成された六角形状部分に、このインプットスクリュー14bの内周面のうちの六角形状部分が外嵌された状態で組み付けられている。この様にして、前記駆動杆23bと前記インプットスクリュー14bとが、トルク伝達が可能に、且つ、軸方向の相対変位が可能に組み合わされている。尚、この組み合わせ部分の構造は、一般的なスプライン係合にする事もできる。
 又、前記インプットスクリュー14bは、前記雄ねじ部142と、前記アジャストスクリュー13bの雌ねじ部134とが螺合された状態で、このアジャストスクリュー13bの内径側に設置されている。これら両ねじ部142、134同士の螺合状態も、不可逆的である。
 尚、前記駆動杆23bは、軸方向中間部が、前記キャリパ4bのシリンダ底部127の中央部に形成されたシリンダ通孔144に挿通されると共に、インナ側端部が、前記キャリパ4bからインナ側に突出された状態で、このキャリパ4bに支持されている。又、前記駆動杆23bの外周面のうち、前記キャリパ4bからインナ側に突出した部分のアウタ側端部には、止め輪145が外嵌固定されている。又、前記シリンダ通孔144の内周面のうち、アウタ側端部寄り部分の全周に亙り形成された小径係止溝146と、前記駆動杆23bの外周面との間には、前記シリンダ内部の油密性を確保する為のシール部材であるOリング147が設けられている。更に、前記シリンダ通孔144の内周面のうち、前記小径係止溝146よりもアウタ側に形成された大径係止溝148と、前記駆動杆23bの外周面との間には、円輪状のワッシャ149が設けられている。そして、この駆動杆23bの軸方向中間部に形成されたフランジ部150のインナ側面と、前記ワッシャ149のアウタ側面とが当接されている。
 この様な駆動杆23bは、その基端部が歯車式の減速機50(図31参照)の出力軸51にトルク伝達が可能に結合されている。この減速機50は、前記キャリパ4bのインナ側端部に結合した減速機ケース52内に収納されており、前記電動モータ11の回転を減速しつつ(トルクを増大しつつ)、前記出力軸51に伝達する。従って前記インプットスクリュー14bは、前記電動モータ11により、前記駆動杆23bを介して、大きなトルクで回転駆動される。
 又、前記プリセットスプリング15bは、捩りコイルばねであり、前記インプットスクリュー14bと前記アジャストスクリュー13bとの間に、スプリングガイド154及び位置決めプレート155を介して設けられている。
 前記スプリングガイド154は、円筒部156と、この円筒部156のアウタ側端部に設けられた外向き鍔部157と、インナ側端部に設けられた内向き鍔部158とを備えている。このうちの外向き鍔部157の円周方向1箇所位置(図12~14の上方)には、この外向き鍔部157を軸方向に貫通した係止孔59が形成されている。又、前記スプリングガイド154は、円周方向1箇所(図12~14の下方)に、全長に亙るスリット160が形成されている。即ち、前記スプリングガイド154は、このスリット160部分が不連続部とされた鍔付き部分円筒状の部材である。この様なスプリングガイド154は、前記内向き鍔部158のアウタ側面が前記インプットスクリュー14bのインナ側端面に当接されると共に、このインプットスクリュー14bに外嵌される事により、このインプットスクリュー14bに対する軸方向の変位が阻止されている。又、前記スプリングガイド154は、前記スリット160の間に前記インプットスクリュー14bの係合凸部143が配置される(係合される)事により、このインプットスクリュー14bに対する回転が阻止されている。
 又、前記位置決めプレート155は、円輪状の部材であり、外周面の径方向に関して反対側となる2箇所位置に、この外周面から径方向外方に突出した外径側係合突片161、161が形成されている。一方、前記位置決めプレート155の内周面の円周方向1箇所位置(図12~14の下方)には、この内周面から径方向内方に突出した内径側係合突片162が形成されている。更に、前記位置決めプレート155の側面の円周方向1箇所位置(図12~14の上方)には、この位置決めプレート155を軸方向に貫通した係止孔163が形成されている。この様な位置決めプレート155は、前記外径側係合突片161、161が、前記アジャストスクリュー13bの各切り欠き136、136のうち、径方向に関して互いに反対位置に形成された切り欠き136、136に、それぞれ係合される事により、このアジャストスクリュー13bに対する回転が阻止された状態で組み付けられている。又、このアジャストスクリュー13bの内周面のうち前記位置決めプレート155よりもインナ側には、円周方向の一部に不連続部を有する欠円輪状の止め輪213が内嵌されている。
 そして、前記プリセットスプリング15bの両端部に形成された係止部164a、164bのうち、インナ側端部からインナ方向に突出した係止部164aが、前記位置決めプレート155の係止孔163に係止されると共に、アウタ側端部からアウタ方向に突出した係止部164bが、前記スプリングガイド154の係止孔159に係止されている。この様にして、前記プリセットスプリング15bにより、前記インプットスクリュー14bに対し、回転方向の弾力が付与されている。この弾力は、このインプットスクリュー14bの軸方向変位に拘らず、前記プリセットスプリング15bの弾力が、前記スプリングガイド154を介して前記インプットスクリュー14bに加わり続ける。又、前記弾力の方向は、このインプットスクリュー14bの雄ねじ部142と前記アジャストスクリュー13bの雌ねじ部134との螺合に基づいて、このインプットスクリュー14bがインナ側に変位する方向とされている。
 又、本第7例の場合、前記倍力機構126が作動する前の状態(図13の(a)に示す状態}で、前記インプットスクリュー14bの係合凸部143のインナ側端部と、この位置決めプレート155の内径側係合突片162とが、円周方向に当接されている。この様にして、前記プリセットスプリング15bから前記インプットスクリュー14bに加わる円周方向に関する弾力を受けると共に、前記倍力機構126が作動する前の状態の前記インプットスクリュー14bの円周方向に関する位置決めを図っている。尚、前記インプットスクリュー14bの代わりに、このインプットスクリュー14bに回り止めされた前記スプリングガイド154の一部が、前記位置決めプレート155の内径側係合突片162に対して円周方向に当接する事もできる。
 又、前記イコライザ部材125は、円板部165と、この円板部165のアウタ側面の中央からアウタ側に突出した軸部166とを有する。このうちの円板部165は、インナ側面に、請求の範囲の凸曲面部に相当するインナ側球面部167が形成されている。一方、この円板部165のアウタ側面の前記軸部166以外の部分には、請求の範囲の凸曲面部に相当するアウタ側球面部168が形成されている。尚、前記インナ側球面部167の曲率は、このアウタ側球面部168の曲率よりも大きい。この様なイコライザ部材125は、前記インナ側球面部167の径方向外端寄り部分が、前記インプットスクリュー14bのアウタ側端面に当接されると共に、前記アウタ側球面部168が、後述する倍力機構126を構成する各カムレバー169、169のインナ側面の径方向内端部に当接されている。又、前記軸部166は、これら各カムレバー169、169の内径側に配置されている。この様に組み付けた状態で、前記イコライザ部材125は、前記インプットスクリュー14bと前記各カムレバー169、169との間で、揺動可能である。
 更に、前記倍力機構126は、所謂てこ式のものであり、円周方向に離隔した状態で、放射状に配置された3個のカムレバー169、169と、前記ピストン底部123のインナ側面に突き当てた円板状のプラグ部材17bとを備える。
 前記各カムレバー169、169は、前記スラストプレート128のアウタ側面及び前記イコライザ部材125のアウタ側球面部168と、前記プラグ部材17bのインナ側面との間に設けられている。又、前記各カムレバー169、169のインナ側面のうち、前記ピストン7bの径方向に関して内外両端部、及び、これら各カムレバー169、169のアウタ側面のうち、前記ピストン7bの径方向に関して中間部は、それぞれ部分円筒状の凸曲面とされている。そして、前記各カムレバー169、169のインナ側面の径方向内端寄り部分が、前記イコライザ部材125のアウタ側球面部168に、同じくインナ側面の径方向外端寄り部分が前記スラストプレート128のアウタ側面に、それぞれ揺動変位が可能に突き当てられている。一方、前記各カムレバー169、169のアウタ側面の径方向中間部は、前記プラグ部材17bのインナ側面に、揺動変位が可能に突き当てられている。特に、このプラグ部材17bのインナ側面に関しては、円周方向複数箇所に断面円弧状の凹部170、170が形成され、これら各凹部170、170と前記各カムレバー169、169のアウタ側面の径方向中間部とが、十分な面積で当接されている。又、前記プラグ部材17bのアウタ側面には、このアウタ側面からアウタ方向に突出した2個の係合突部171、171が形成されている。そして、これら各係合突部171、171が前記ピストン7bのピストン底部123のインナ側面に形成された2個の係合凹部(図示省略)と係合されている。この様にして、前記プラグ部材17bの前記ピストン7bに対する回り止めが図られている。又、前記各カムレバー169、169の径方向外端部は、前記ピストン7bの係止溝132、132に係合されている。この様にして、前記各カムレバー169、169は、このピストン7bに対する軸方向の変位が可能な状態、且つ、回転が阻止された状態で組み付けられている。
 上述の様に構成された本第7例の電動式ディスクブレーキにおけるパーキングブレーキ作動時の作用は、次の通りである。
 パーキングブレーキ作動時には、前記電動モータ11により前記インプットスクリュー14bを、前記駆動杆23bを介して回転駆動される。作動開始直後の初期段階では、前記インナパッド2a及びアウタパッド3aと前記ロータの両側面との間には隙間が存在し、これら両パッド2a、3aをこのロータに向けて移動させる為に要する力は小さくて済む。この為、前記初期段階では、前記インプットスクリュー14bの回転に伴って前記アジャストスクリュー13bも、前記プリセットスプリング15bに引っ張られる様にして、前記インプットスクリュー14bと同期して回転する。そして、前記アジャストナット12bの雌ねじ部130と前記アジャストスクリュー13bの雄ねじ部133との螺合に基づいて、このアジャストスクリュー13b及び前記インプットスクリュー14bが、前記ロータに向けてアウタ側に変位する。この変位に基づくアウタ方向の押圧力は、アジャストスクリュー13b → スラスト玉軸受129 → スラストプレート128 → 各カムレバー169、169の径方向外端寄り部分 → プラグ部材17bの経路、及び、インプットスクリュー14b → イコライザ部材125 → 各カムレバー169、169の径方向内端寄り部分 → プラグ部材17bの経路で伝達されて、最終的に前記ピストン7bをアウタ方向に押圧して、このピストン7bを、前記両パッド2a、3aと前記ロータの両側面との間の隙間が解消されるまで変位させる。
 この様にして前記両パッド2a、3aと前記ロータの両側面との間の隙間が解消されると、前記アジャストスクリュー13bが受けるインナ方向への反力に基づいて、このアジャストスクリュー13bの回転抵抗(前記アジャストナット12bの雌ねじ部130と前記アジャストスクリュー13bの雄ねじ部133との螺合部の摩擦力)が、前記プリセットスプリング15bによりこのアジャストスクリュー13bに付与されている弾力よりも大きくなる。この結果、このアジャストスクリュー13bがそれ以上回転しなくなり、このアジャストスクリュー13bが停止する。この状態から更に前記インプットスクリュー14bが、前記プリセットスプリング15bの弾力に抗して回転されると、前記アジャストスクリュー13bの雌ねじ部134と前記インプットスクリュー14bの雄ねじ部142との螺合に基づき、このインプットスクリュー14bのみが、前記ロータに向け、アウタ側に変位する。
 この様なインプットスクリュー14bの変位に基づいて、前記イコライザ部材125がアウタ側に変位すると、前記各カムレバー169、169が、このイコライザ部材125のアウタ側球面部168との当接部を力点とし、前記スラストプレート128のアウタ側面との当接部を支点とし、前記プラグ部材17bとの当接部を作用点として揺動変位する。このプラグ部材17bの径方向に関して、この作用点は前記力点と前記支点との間に存在するので、このプラグ部材17bを介して前記ピストン7bを変位させる力は増力されて、このピストン7bを前記ロータに向け、大きな力で押し付ける。この結果、前記両パッド2a、3aが前記ロータの両側面に強く押圧される。前記各ねじ部130、133同士、及び、前記各ねじ部134、142同士は、不可逆的に螺合しているので、前記電動モータ11への通電を停止すれば、特に保持動作をせずに必要な制動力を保持できる。
 本第7例の場合、前記隙間を解消する過程では、前記倍力機構126が作動する必要はなく、この隙間解消の為にこの倍力機構126のストロークが消費される事はない。従って、この倍力機構126として、ストロークが短い代わりに増力比が大きな構造を採用できて、前記ピストン7bを前記ロータに向けて押し付ける力を、特に大きくできる。
 制動解除の際には、従来から提案されている電動式ディスクブレーキと同様に、前記電動モータ11が逆方向に回転されて、前記ピストン7bが前記ロータから退避される。この際、前記両パッド2a、3aが前記ロータの両側面から離隔する瞬間の後、前記電動モータ11が所定角度だけ逆方向に回転されて、前記両パッド2a、3aと前記ロータの両側面との間に適正厚さの隙間が確保される。この適正隙間の確保は、前記アジャストスクリュー13bが前記アジャストナット12bに対して、前記両ねじ部130、133の螺合により、インナ側に適正量変位される事により行われる。即ち、本第7例の場合には、前記アジャストナット12bが設けられる事により、前記両パッド2a、3aの摩耗に拘らず、前記隙間が常に適正厚さに保たれる様にされている。
 上述の様な本第7例の電動式ディスクブレーキによれば、前記推力発生機構124を構成するインプットスクリュー14bと、前記倍力機構126を構成する各カムレバー169、169との偏当たりが防止されて、これら両機構124、126同士の耐久性の向上が図られると共に、前記各カムレバー169、169が前記プラグ部材17bを介して前記ピストン7bを押し付ける力が、円周方向に関してバラつく事の防止が図られる。
 即ち、本第7例の場合、前記推力発生機構124を構成するインプットスクリュー14bと前記倍力機構126を構成する各カムレバー169、169との間には、揺動可能な前記イコライザ部材125が設けられている。この為、前記インプットスクリュー14b或いは各カムレバー169、169の寸法公差に基づいて、これら両部材14b、169同士が偏当たりした状態で、直接当接する事がない。又、前記イコライザ部材125は、前記インプットスクリュー14bの回転の影響を吸収しつつ、前記各カムレバー169、169に押圧力を伝達する事ができる。この結果、前記推力発生機構124及び倍力機構126の耐久性の向上を図る事ができる。
 又、前記インプットスクリュー14bと前記各カムレバー169、169との間で、前記イコライザ部材125が揺動する事により、これら両部材14b、169の寸法公差を吸収する事ができる。特に本第7例の場合、前記イコライザ部材125のインナ及びアウタ両側面に、前記インナ側球面部167及びアウタ側球面部168が形成されて、揺動し易くされている。この為、前記イコライザ部材125から前記各カムレバー169、169に伝達するアウタ方向の押圧力が、これら各カムレバー169、169に均等に伝達されて、これら各カムレバー169、169が前記ピストン7bを押圧する力が、円周方向に関して偏る事の防止が図られる。
 又、制動時に前記キャリパ4bが変形すると、前記倍力機構126を構成する各カムレバー169、169の中心軸に対して、前記推力発生機構124を構成するインプットスクリュー14bの中心軸が傾く事がある。この様な場合でも、前記イコライザ部材125が揺動する事により、前記推力発生機構124と倍力機構126との間に曲げ応力等の過大な応力が加わる事が防止されて、これら両機構124、126の耐久性の向上が図られる。
 又、本第7例の場合、前記倍力機構126を構成する各カムレバー169、169の径方向外端部が、前記ピストン7bの係止溝132、132に係合される事により、これら各カムレバー169、169の円周方向に関する位置決めが図られている。この為、前記倍力機構126の作動の安定性の向上を図ることができる。
 又、本第7例によれば、組み立て性の向上を図る事もできる。即ち、前記推力発生機構124を構成するアジャストナット12bは、その内側に前記インプットスクリュー14b等の構成部品を組み込んでユニット化する事ができる。更に、前記ピストン7bの内側に、前記倍力機構126及び前記イコライザ部材125等の構成部材と、上述のユニット化したアジャストナット12bとを組み込んでユニット化する事ができる。この様にユニット化した部材は、前記油圧シリンダ6b内に容易に組み込む事ができる為、組み立て性の向上を図れる。
 又、本第7例の場合、前記推力発生機構124が作動する前の状態{図13の(a)に示す状態}では、前記インプットスクリュー14bの係合凸部143のインナ側端部と、前記位置決めプレート155の内径側係合突片162とが円周方向に当接されている。この為、制動解除時に、このインプットスクリュー14bの戻し過ぎを防止できる。この様な構成を採用する結果、このインプットスクリュー14bの雄ねじ部142と前記アジャストスクリュー13bの雌ねじ部134との螺合部分に作用する軸方向の締結力が大きくなり過ぎる事の防止を図れる。
 [実施の形態の第8例]
 図18は、本発明の実施の形態の第8例を示している。
 本第8例の電動式ディスクブレーキの場合、イコライザ部材125aが、前述した実施の形態の第7例のイコライザ部材125の軸部166が省略された如き構造とされている。前記イコライザ部材125aは、インナ側面に、インナ側球面部167aが形成されている。一方、このイコライザ部材125aのアウタ側面には、アウタ側球面部168aが形成されている。そして、前記インナ側球面部167aの曲率が、このアウタ側球面部168aの曲率よりも大きくされている。
 又、本第8例の場合、倍力機構126aが、プラグ部材17cと、請求の範囲の弾性部材に相当するリアクションディスク172とにより構成されている。このうちのプラグ部材17cは、円柱状の部材であり、アウタ側面が平坦面である。一方、このプラグ部材17cインナ側面の中央部には、このインナ側面からアウタ側に凹入した状態で凹部173が形成されている。又、この凹部173の底面は、中央に向かう程アウタ側に凹入した曲面(部分球面)状である。この様なプラグ部材17cは、前記凹部173の内側に、前記イコライザ部材125aのアウタ側半部が配置されると共に、この凹部173の底面とこのイコライザ部材125aのアウタ側球面部68aとが当接された状態で、スラストプレート128aの内周面に内嵌されている。この様にして、前記プラグ部材17cが、このスラストプレート128aに対する軸方向の変位が可能な状態に組み付けられている。
 又、前記リアクションディスク172は、ゴム、ビニルの如きエラストマー等の、耐油性を有する弾性材製であり、ピストン7bのピストン底部123の内面と、このピストン7bのピストン円筒部174の内周面のアウタ側端部寄り部分と、前記スラストプレート128aのアウタ側面とに囲まれる空間に、実質的に隙間がない状態で配置されている。又、前記リアクションディスク172のインナ側面の中央部がインナ側受面175とされて、このインナ側受面175に、前記プラグ部材17cのアウタ側面が突き当てられている。従って、前記イコライザ部材125aがアウタ方向に変位した場合には、前記プラグ部材17cを介して、前記リアクションディスク172をアウタ方向に押圧する事ができる。尚、前記プラグ部材17cを省略して、前記リアクションディスク172のインナ側受面175に直接、前記イコライザ部材125aのアウタ側面を突き当てる様に構成する事もできる。この場合には、このイコライザ部材125aのアウタ側面が平坦面にされる。
 パーキングブレーキの作動時には、前述した実施の形態の第7例と同様に、先ず、推力発生機構124が作動して、ピストン7bが、両パッド2a、3a(図12参照)とロータの両側面との間の隙間が解消するまで変位される。その後、インプットスクリュー14bのみが、前記ロータに向け、アウタ側に変位すると、このインプットスクリュー14bのアウタ側面が前記イコライザ部材125aをアウタ側に変位させる。すると、このイコライザ部材125aのアウタ側球面部168aが、前記プラグ部材17cを介して前記リアクションディスク172のインナ側面中央部を強く押圧する。この結果、このリアクションディスク172が弾性変形する。このリアクションディスク172は、一種の非圧縮性流体の如き挙動により、このリアクションディスク172を囲んでいる相手面を押圧する。このリアクションディスク172がこの相手面を押圧する単位面積当たりの圧力は、前記インプットスクリュー14bのアウタ側面による押圧部の単位面積当たりの圧力と同じになる。前記リアクションディスク172と相手面との当接面積を軸方向に関して見た場合、前記ピストン7bのピストン底部123の内面との当接面積Sが、前記プラグ部材17cのアウタ側面Sよりも十分に広い(S≫S)。従って、前記ピストン7bは、前記インプットスクリュー14bに加えられた推力よりも、前記当接面積の比分(S/S)だけ増力されて、ロータに向け押圧される。
 その他の部分の構成及び作用・効果は、前述した実施の形態の第7例と同様であるから、同等部分に関する説明は省略する。
 [実施の形態の第9例]
 図19~20は、本発明の実施の形態の第9例を示している。本第9例の電動式ディスクブレーキの場合、前記油圧シリンダ6bの内側に、インナ側から順番に、インナ側スラスト玉軸受176と、推力発生機構124aと、イコライザ部材125bと、倍力機構126bとが組み込まれている。
 このうちのインナ側スラスト玉軸受176は、断面円弧状のインナ側スラスト軌道177と、断面円弧状のアウタ側スラスト軌道178と、これら両軌道177、178同士の間に転動自在に設けられた複数個の玉179、179と、これら各玉179、179を転動自在に保持する保持器180とにより構成されている。
 このうちのインナ側スラスト軌道177は、円輪状のインナ側スラストプレート181のアウタ側面の全周に亙り形成されている。この様なインナ側スラストプレート181は、中心孔182に駆動杆23bの軸方向中間部が挿通されると共に、前記油圧シリンダ6bの内周面のシリンダ底部127寄り部分に内嵌されている。
 又、前記アウタ側スラスト軌道178は、後述するアジャストスクリュー13cの外向き鍔部183のインナ側面に、全周に亙り形成されている。
 又、前記推力発生機構124aは、アジャストスクリュー13cと、アジャストナット12cと、パワーナット184と、請求の範囲の第一押圧部材に相当するスラストプレート128bと、スラスト玉軸受129aと、請求の範囲の第二押圧部材に相当するインプットスクリュー14cと、プリセットスプリング15bとが組み合わされて構成されている。
 このうちのアジャストスクリュー13cは、外周面のインナ側端部に、外向き鍔部183が形成された鍔付き円筒状の部材である。又、前記アジャストスクリュー13cの外周面のアウタ側半部には、雄ねじ部133aが形成されている。一方、このアジャストスクリュー13cの内周面の少なくとも一部は、六角形状である。又、前記外向き鍔部183のインナ側面には、前述したアウタ側スラスト軌道178が形成されている。この様なアジャストスクリュー13cは、駆動杆23bの外周面に形成された六角形状部分に、このアジャストスクリュー13cの内周面のうちの六角形状部分が外嵌されている。この様にして、前記駆動杆23bと前記アジャストスクリュー13cとが、トルク伝達が可能に組み合わされている。尚、この組み合わせ部分の構造は、一般的なスプライン係合にする事もできる。
 又、前記アジャストナット12cは、全体が円筒状の部材であり、内周面に雌ねじ部130aが形成されている。一方、このアジャストナット12cの外周面のアウタ側端部寄り部分の円周方向1箇所位置には、連結用有底孔185が形成されている。又、外周面のインナ側端部寄り部分の円周方向1箇所位置(図19、20の下方)には、この外周面から径方向外方へ突出し、軸方向に長い係合凸部186が形成されている。この様なアジャストナット12cは、前記雌ねじ部130aと、前記アジャストスクリュー13cの雄ねじ部133aとが螺合された状態で、このアジャストスクリュー13cの外径側に設置されている。尚、これら両ねじ部130a、133a同士の螺合状態は、不可逆的である。
 又、前記パワーナット184は、外周面のアウタ側端部に外向き鍔部187が形成された鍔付き円筒状の部材である。又、このパワーナット184の内周面のアウタ側半部には、雌ねじ部188が形成されている。尚、この様なパワーナット184のアウタ側半部の内径は、インナ側半部の内径よりも小さい。又、本第9例の場合、前記パワーナット184の雌ねじ部188のピッチが、前記アジャストナット12cの雌ねじ部130aのピッチよりも大きくされている。
 又、前記外向き鍔部187の側面の円周方向1箇所位置(図19、20の上方)には、この外向き鍔部187を軸方向に貫通した係止孔189が形成されている。又、前記外向き鍔部187のアウタ側面の全周に亙り、断面円弧状のインナ側スラスト軌道135aが形成されている。更に、前記パワーナット184のインナ側半部の軸方向中間部の円周方向1箇所位置には、当該部分を径方向に貫通した連結孔190が形成されている。この様なパワーナット184は、インナ側半部の内径側に前記アジャストナット12cのアウタ側端部寄り部分が配置された状態で、前記パワーナット184の連結孔190と、前記アジャストナット12cの連結用有底孔185とに円柱状の連結ピン191が掛け渡されている。この様にして、前記パワーナット184は、前記アジャストナット12cに対して、同期した回転が可能な状態、且つ、同期した軸方向変位が可能な状態に組み付けられている。
 又、前記スラストプレート128bは、円輪状部材の部材であり、インナ側面の全周に亙り、断面円弧状のアウタ側スラスト軌道138aが形成されている。一方、前記スラストプレート128bのアウタ側面が、平坦な第一押圧面139aとされている。この様なスラストプレート128bは、前記パワーナット184よりもアウタ側に、このスラストプレート128bと軸方向に離隔した状態で設置されている。
 又、前記スラスト玉軸受129aは、前記パワーナット184のインナ側スラスト軌道135aと、前記スラストプレート128bのアウタ側スラスト軌道138aと、これら両軌道135a、138a同士の間に転動自在に設けられた複数個の玉140、140と、これら各玉140、140を転動自在に保持する保持器141aとにより構成されている。
 又、前記インプットスクリュー14cは、略円柱状のスクリュー本体192と、このスクリュー本体192のアウタ側面の径方向外端寄り部分の円周方向3箇所位置に、このアウタ側面からアウタ方向に突出した状態で形成された回り止め腕部193、193とを備える。
 又、前記スクリュー本体192の外周面には、雄ねじ部142aが形成されている。又、このスクリュー本体192のアウタ側面の中央部で、且つ前記各回り止め腕部193、193よりも径方向内側位置には、このアウタ側面から凹入した、請求の範囲の凹曲面部に相当する係合凹部194が形成されている。尚、この係合凹部194の奥端面は、球状凹面である。この様なインプットスクリュー14cは、前記雄ねじ部142aと、前記パワーナット184の雌ねじ部188とが螺合された状態で、このパワーナット184の内径側に設置されている。又、前記インプットスクリュー14cは、後述するプラグ部材17dを介して前記ピストン7bに対する回り止めが図られている。従って、前記インプットスクリュー14cは、前記雄ねじ部142aと、前記パワーナット184の雌ねじ部188との螺合に基づき、軸方向に変位する事ができる。
 又、前記プリセットスプリング15bは、前記ピストン7bに係止された位置決めプレート155aと、前記パワーナット184との間に設けられている。尚、この位置決めプレート155aは、前述した実施の形態の第7例の位置決めプレート155とほぼ同様の構造を有している。但し、本第9例の場合、この様な位置決めプレート155aは、前記アジャストナット12cのインナ側端部寄りの外径側に、外径側係合突部161a、161aが前記ピストン7bの係止溝132a、132aに係止される事により、このピストン7bに対する回り止めが図られた状態で設置されている。
 又、本第9例の場合、前記プリセットスプリング15bの両端部に形成した係止部164a、164bのうち、インナ側端部からインナ側に突出した係止部164aが、前記位置決めプレート155aの係止孔163に係止されている。一方、アウタ側端部からアウタ側に突出した係止部164bは、スペーサー195を介して、前記パワーナット184の係止孔189に係止されている。尚、このスペーサー195は、円周方向1箇所に不連続部を有する部分円筒状の部材であり、アウタ側端面の径方向に関してこの不連続部と反対位置に、径方向外方へ折れ曲がった外向き突片196が、形成されている。又、この外向き突片196には、軸方向に貫通した係止孔197が形成されている。この様なスペーサー195は、この係止孔197と、前記パワーナット184の係止孔189とが整合された状態で、前記パワーナット184のインナ側半部に外嵌されている。そして、前記プリセットスプリング15bの係止部164bが、前記係止孔197、189に係止されている。
 この様にして、前記プリセットスプリング15bにより、前記パワーナット184及び前記アジャストナット12cに対し、回転方向の弾力が付与されている。この弾力の方向は、前記アジャストスクリュー13cの雄ねじ部133aと、前記アジャストナット12cの雌ねじ部130aとの螺合に基づいて、前記パワーナット184及びこのアジャストナット12cがインナ側に変位する方向とされている。
 尚、本第9例の場合も、前述した実施の形態の第7例と同様に、前記倍力機構126bが作動する前の状態(図19に示す状態)で、前記アジャストナット12cの係合凸部186と、前記位置決めプレート155aの内径側係合突部162aとが円周方向に当接されている。この様にして、前記プリセットスプリング15bから前記パワーナット184及びアジャストナット12cに加わる円周方向に関する弾力を受けると共に、前記倍力機構126bが作動する前の状態の前記パワーナット184及びアジャストナット12cの円周方向に関する位置決めが図られている。
 又、前記イコライザ部材125bは、略円柱状の部材であり、インナ側面にインナ側球面部167bが形成されている。一方、このイコライザ部材125bのアウタ側面には、アウタ側球面部168bが形成されている。この様なイコライザ部材125bは、インナ側半部が、前記インプットスクリュー14cの係合凹部194の内側に配置された状態で、このイコライザ部材125bのインナ側球面部167bと、前記インプットスクリュー14cの係合凹部194の奥端面とが係合されている。この様に組み付けた状態で、前記イコライザ部材125bは、前記インプットスクリュー14cと前記各カムレバー169、169との間で、揺動可能である。
 更に、前記倍力機構126bは、前述した実施の形態の第7例と同様に、てこ式のものであり、円周方向に離隔した状態で、放射状に配置された3個のカムレバー169、169と、プラグ部材17dとを備えている。
 このうちのカムレバー169、169の構造は、前述した実施の形態の第7例の構造と同様である。
 又、前記プラグ部材17dは、前記各カムレバー169、169の径方向内端同士を連続させた如き形状を有している。即ち、前記プラグ部材17dは、互いに離隔した円周方向3箇所位置に放射状に配置された3個の腕部198、198と、これら各腕部198、198の径方向内端同士が連結される中央連結部199とから成る。又、これら各腕部198、198のインナ側面には、断面円弧状の凹部170a、170aが形成されている。又、前記各腕部198、198のうちの1個の腕部98(図20の上方の腕部198)のアウタ側面には、このアウタ側面からアウタ方向に突出した係合凸部200が形成されている。更に、前記各腕部198、198の円周方向側面の径方向内端同士が連続する部分には、前記インプットスクリュー14cの回り止め腕部193、193のアウタ側端部と係合可能な係合溝201、201が形成されている。この様なプラグ部材17dは、前記係合凸部200が前記ピストン7bのピストン底部123に形成された係合凹部202に係合されると共に、前記ピストン底部123のインナ側面に突き当てられた状態で組み付けられている。この様にして、前記プラグ部材17dの前記ピストン7bに対する回り止めが図られている。
 又、前記各カムレバー169、169は、軸方向に関して、前記スラストプレート128bのアウタ側面及び前記イコライザ部材125bのアウタ側球面部168bと、前記プラグ部材17dのインナ側面との間に配置されている。又、前記各カムレバー169、169は、円周方向に関して、前記インプットスクリュー14cの各回り止め腕部193、193同士の間部分に配置されている。尚、この状態で、これら各回り止め腕部193、193のアウタ側端部は、前記プラグ部材17dの係合溝201、201と係合されている。
 そして、前記各カムレバー169、169のインナ側面の内径側部分が、前記イコライザ部材125bのアウタ側球面部168bに揺動変位を可能に突き当てられると共に、インナ側面の外径側部分が、前記スラストプレート128bの第一押圧面139aに揺動変位が可能に突き当てられている。又、前記各カムレバー169、169のアウタ側面の径方向中間部が、前記プラグ部材17dの各凹部170、170に、それぞれ揺動変位が可能にして突き当てられている。
 上述の様に構成された本第9例の電動式ディスクブレーキにおけるパーキングブレーキ作動時の作用は、次の通りである。
 パーキングブレーキ作動時には、前記電動モータ11により前記アジャストスクリュー13cが、駆動杆23bを介して回転駆動される。作動開始直後の初期段階では、前記インナパッド2a及びアウタパッド3aと前記ロータの両側面との間には隙間が存在し、これら両パッド2a、3aをこのロータに向けて移動させる為に要する力は小さくて済む。前記初期段階では、前記アジャストスクリュー13cが回転した際、アジャストナット12cとパワーナット184とは、前記プリセットスプリング15bの弾力により、前記ピストン7bに対して回転する事はない。この為、前記アジャストスクリュー13cの雄ねじ部133aと、前記アジャストナット12cの雌ねじ部130aの螺合に基づいて、前記アジャストナット12c及び前記パワーナット184がロータに向けてアウタ側に変位する。又、この変位に伴って、このパワーナット184の内径側に設けられた前記インプットスクリュー14cも同期してアウタ側に変位する。この様な各変位に基づく押圧力は、パワーナット184 → スラスト玉軸受129a → スラストプレート128b → 各カムレバー169、169の径方向外端寄り部分 → プラグ部材17dの経路、及び、インプットスクリュー14c → イコライザ部材125b → 各カムレバー169、169の径方向内端寄り部分 → プラグ部材17dの経路により伝達されて、最終的に前記ピストン7bを押圧して、このピストン7bが、前記両パッド2a、3aと前記ロータの両側面との間の隙間が解消されるまで変位される。
 この様にして前記両パッド2a、3aと前記ロータの両側面との間の隙間が解消されると、前記アジャストナット12c及びパワーナット184に加わる軸方向の反力に基づいて、前記アジャストスクリュー13cの雄ねじ部133aと、前記アジャストナット12cの雌ねじ部130aの螺合部の回転抵抗が大きくなる。そして、この回転抵抗が、前記プリセットスプリング15bにより、前記アジャストナット12c及びパワーナット184に付与されている弾力よりも大きくなると、この弾力に抗して、これらアジャストナット12c及びパワーナット184が、前記アジャストスクリュー13cと同期して回転する。すると、前記インプットスクリュー14cは、前記プラグ部材17dを介して前記ピストン7bに対して回り止めされている為、前記パワーナット184の雌ねじ部188と、前記インプットスクリュー14cの雄ねじ部142aとの螺合に基づき、このインプットスクリュー14cのみが、前記ロータに向けてアウタ側に変位する。
 この様なインプットスクリュー14cの変位に基づいて、前記イコライザ部材125bがアウタ側に変位すると、前記各カムレバー169、169が、このイコライザ部材125bのアウタ側球面部168bとの当接部を力点とし、前記スラストプレート128bのアウタ側面との当接部を支点とし、前記プラグ部材17dとの当接部を作用点として揺動変位する。この様にして、前記両パッド2a、3aが前記ロータの両側面に強く押圧される。
 上述の様に本第9例の電動式ディスクブレーキの場合、前記アジャストナット12cとパワーナット184とが、軸方向に関して直列に連結されている。この為、推力発生機構124aの構造を簡素化する事ができる。
 又、この推力発生機構124aが作動する際、最初に作動する部分である、前記アジャストスクリュー13cの雄ねじ部133aと、前記アジャストナット12cの雌ねじ部130aとの螺合部が、径方向に関して前記駆動杆23bに近い部分に配置される。この為、作動の際の慣性モーメントを小さくして、前記電動モータ11の負担を軽減すると共に、ブレーキの応答性を良好にする事ができる。
 又、本第9例の場合、前記パワーナット184の雌ねじ部188のピッチが、前記アジャストナット12cの雌ねじ部130aのピッチよりも大きくされている。この為、前記倍力機構126bが作動する際、前記インプットスクリュー14cを所定量だけアウタ側に変位させる為の前記パワーナット184の回転量(回転角)を小さくする事ができる。この結果、前記プリセットスプリング15bの捩じり角も小さくする事ができる為、このプリセットスプリング15bの設計が容易になる。
 又、本第9例の場合、前記インプットスクリュー14cは、前記プラグ部材17dを介して前記ピストン7bに対する回り止めが図られている。この為、前記倍力機構126bが作動する際、前記インプットスクリュー14c及び前記イコライザ部材125bは、回転する事なく、前記各カムレバー169、169をアウタ方向に押圧する。この結果、前記倍力機構126bを安定して作動できると共に、前記推力発生機構124a及び倍力機構126bの耐久性の向上を図る事ができる。
 [実施の形態の第10例]
 図21~23は、本発明の実施の形態の第10例を示している。本第10例の電動式ディスクブレーキの場合、インプットスクリュー14d及びイコライザ部材125cの構造が、前述した実施の形態の第9例の構造と異なる。その他の部分の構造はこの第9例の場合と同様であるから、以下、本第10例の特徴部分を中心に説明する。
 本第10例の場合、前記インプットスクリュー14dは、略円柱状の部材であり、外周面に雄ねじ部142bが形成されている。又、このインプットスクリュー14dのアウタ側面には、請求の範囲の凹曲面部に相当し、このアウタ側面からインナ側に凹入した係合凹部194aが形成されている。尚、この係合凹部194aの奥端面は部分(半)球面状である。
 又、この係合凹部194aの内周面のアウタ側端部の円周方向2箇所位置には、回り止め切り欠き203、203が形成されている。
 この様なインプットスクリュー14dは、前記雄ねじ部142bと、パワーナット184の雌ねじ部188とが螺合された状態で、このパワーナット184の内径側に設置されている。尚、前記インプットスクリュー14dは、後述するイコライザ部材125c及びプラグ部材17dを介してピストン7bに対する回り止めが図られている。従って、前記インプットスクリュー14dは、前記雄ねじ部142bと、前記パワーナット184の雌ねじ部188との螺合に基づき、このパワーナット184に対する軸方向の変位が可能である。
 又、前記イコライザ部材125cは、円板部204と、この円板部204のインナ側面に形成された揺動凸部205と、この円板部204のアウタ側面に形成された複数個(本例の場合3個)の回り止め腕部206、206とを備えている。
 このうちの円板部204は、アウタ側面の中央寄り部分に、請求の範囲の凸曲面部に相当するアウタ側球面部168cが形成されている。
 又、前記揺動凸部205は、前記円板部204のインナ側面の中央部からインナ方向に突出した状態で設けられており、インナ側端部には、請求の範囲の凸曲面部に相当するインナ側球面部167cが形成されている。又、前記揺動凸部205の外周面のアウタ側端部の円周方向2箇所位置には、この外周面から径方向外方に突出した回り止め凸部207、207が形成されている。
 又、前記各回り止め腕部206、206は、前記円板部204のアウタ側面の径方向外端寄り部分において、前記アウタ側球面部168cの周囲の円周方向3箇所からアウタ方向に突出した状態で設けられている。
 この様なイコライザ部材125cは、前記揺動凸部205のインナ側球面部167cと、前記インプットスクリュー14cの係合凹部194aの奥端面とが係合されると共に、前記各回り止め凸部207、207と、このインプットスクリュー14cの各回り止め切り欠き203、203とが係合される事により、このインプットスクリュー14cに対する回転が阻止された状態で組み付けられている。
 又、前記イコライザ部材125cの回り止め腕部206、206のアウタ側端部は、プラグ部材17dの係合溝201、201と係合している。この様にして、前記イコライザ部材125cの前記ピストン7bに対する回り止めが図られている。尚、このプラグ部材17dは、前述した実施の形態の第9例と同様に、このプラグ部材17dの係合凸部200が前記ピストン7bのピストン底部123に形成された係合凹部202に係合される事により、このピストン7bに対する回り止めが図られている。
 この様に組み付けた状態で、前記イコライザ部材125cは、前記インプットスクリュー14cと前記各カムレバー169、169との間で、揺動可能である。
 上述の様な本第10例の場合、前記インプットスクリュー14cと軸方向に直列に配置された前記イコライザ部材125cに、前記回り止め腕部206、206が設けられる事により、このイコライザ部材125cの回り止めが図られている。この為、前述した実施の形態の第9例の様に、インプットスクリュー14cに回り止め腕部193、193が設けられると共に、これら各回り止め腕部193、193の内径側にイコライザ部材125bが配置される構造と比べて、本第10例の場合は、前記イコライザ部材125cの各回り止め腕部206、206の剛性を確保し易い。
 又、前記インプットスクリュー14cの回り止めも、前記イコライザ部材125cを介して図っている為、このインプットスクリュー14cの設計の自由度を高くできる。
 その他の部分の構成及び作用・効果は、前述した実施の形態の第9例と同様であるから、同等部分に関する説明は省略する。
 [実施の形態の第11例]
 図24~26は、本発明の実施の形態の第11例を示している。本第11例の電動式ディスクブレーキの場合、スラストプレート128cと、イコライザ部材125dの構造が前述した実施の形態の第10例の構造と異なる。その他の部分の構造はこの第10例の場合と同様であるから、以下、本第11例の特徴部分を中心に説明する。
 本第11例の場合、スラストプレート128cは、外周面のインナ側端部に外向き鍔部208が形成された鍔付き円筒状の部材である。又、この外向き鍔部208の外周面のうち、互いに反対側となる円周方向2箇所位置には、外径側突部209、209が形成されている。又、前記スラストプレート128cの内周面のインナ側端部のうち、径方向に関して互いに反対側となる円周方向2箇所位置には、内径側突部210、210が形成されている。この様なスラストプレート128cは、ピストン7bの係止溝132a、132aのアウタ側端部寄り部分に、前記各外径側突部209、209が係止されている。この様にして、前記スラストプレート128cは、前記ピストン7bに対する、回転が不能な状態、且つ、軸方向の変位が可能な状態に組み付けられている。
 又、前記イコライザ部材125dは、略円柱状の部材であり、インナ側面に、前述した実施の形態の第10例のイコライザ部材が備える揺動凸部205、及び、回り止め凸部207、207が形成されている。一方、前記イコライザ部材125dのアウタ側面は、平坦面である。又、前記イコライザ部材125dの外周面のうち、インナ側半部の互いに反対側となる円周方向2箇所位置には、軸方向に長い回り止め係止溝211、211が形成されている。
 この様なイコライザ部材125dは、前記揺動凸部205のインナ側球面部167cと、前記インプットスクリュー14dの係合凹部194aの奥端面とが係合されると共に、前記各回り止め係止溝211、211と、前記スラストプレート128cの各内径側突部210、210とが係合された状態で、前記インプットスクリュー14dとリアクションディスク172との間に組み付けられている。尚、前記各回り止め係止溝211、211と、前記スラストプレート128cの各内径側突部210、210との係止状態は、前記イコライザ部材125dにおける前記インプットスクリュー14d及び前記リアクションディスク172に対する揺動が可能な程度に調整される。又、本第11例の場合、ピストン7bのピストン底部123と前記リアクションディスク172との間には、アウタ側端部に底部を有し、インナ側が開口した有底円筒状のケース212が設けられている。尚、本第11例の場合、倍力機構126cがリアクションディスク172により構成されているが、例えば、前述した実施の形態の第7例の様に、カムレバー169を用いた倍力機構126の構造を採用する事もできる。
 上述の様な本第11例の場合、前述した実施の形態の第10例と同様に前記インプットスクリュー14dと軸方向に直列に配置された前記イコライザ部材125dに、前記回り止め係止溝211、211が形成されて、このイコライザ部材125dと前記スラストプレート128cの各内径側突部210、210との係合により、このイコライザ部材125d及び前記インプットスクリュー14dの回り止めが図られている。この為、このインプットスクリュー14dの設計の自由度を高くできる。
 又、本第11例の場合、前記イコライザ部材125dには、前述した実施の形態の第10例の様な回り止め腕部206、206が設けられていない。この為、前記イコライザ部材125dのアウタ側部分の剛性を確保し易い。
 その他の部分の構成及び作用・効果は、前述した実施の形態の第10例と同様であるから、同等部分に関する説明は省略する。
 [実施の形態の第12例]
 図27~30は、本発明の実施の形態の第12例を示している。本第12例の電動式ディスクブレーキは、ピストン7bの内側に、機械式の推力発生機構124bと、イコライザ部材125と、倍力機構126eとが組み込まれている。
 このうちの推力発生機構124bは、アジャストナット12bと、アジャストスクリュー13dと、請求の範囲の第二押圧部材に相当するインプットスクリュー14eと、被回り止めプレート214と、プリセットスプリング15cとを組み合わせて構成されている。
 このうちのアジャストナット12bは、前述した実施の形態の第7例の場合とほぼ同様の構造である。又、本第12例の場合、前述した実施の形態の第7例のスラストプレート128(図12、13参照)及びスラスト玉軸受129に相当する部材が省略されている。この為に、本第12例の場合、前記アジャストスクリュー13dが、請求の範囲の第一押圧部材に相当する部材である。
 又、前記アジャストスクリュー13dは、前述した実施の形態の第7例のアジャストスクリュー13b(図12、13参照)と、スラストプレート128とが一体に形成された如き構造を有している。具体的には、前記アジャストスクリュー13dは、円筒状部分215と、フランジ部216と、回り止め凸部217とを有している。このうちの円筒状部分215は、外周面の軸方向中間部のアウタ側端部寄り部分からインナ側端部に掛けて雄ねじ部133bが形成されている。一方、前記円筒状部分215の内周面のうちのアウタ側端部寄り部分には、雌ねじ部134aが形成されている。
 尚、前記円筒状部分215の内周面のうち、インナ側半部(インナ側端部から円筒状部分215の全長の約2/3部分)の内径が、アウタ側半部(アウタ側端部から円筒状部分215の全長の約1/3部分)の内径より大きくされる事により、前記インナ側半部の内径側に、前記プリセットスプリング15cを配置する為の空間が設けられている。
 又、前記フランジ部216は、前記円筒状部分215のアウタ側端部外周面に、全周に亙り径方向外方に突出した状態で形成されている。尚、前記フランジ部216は、アウタ側半部がインナ側半部よりも大径の段付状に形成されている。
 又、前記フランジ部216のアウタ側面は平坦面であり、当該部分が第一押圧面139bとされている。又、前記円筒状部分215の内周面の軸方向中間部には、アウタ側半部(アウタ側端部から円筒状部分215の全長の約1/3部分)内周面と、インナ側半部(インナ側端部から円筒状部分215の全長の約2/3部分)内周面とが連続される段部218が設けられている。そして、前記円筒状部分215のアウタ側半部には、インナ側端部が前記段部218に開口すると共に、アウタ側端部が前記円筒状部分215のアウタ側端面に開口した貫通孔219が形成されている。
 又、前記回り止め凸部217は、部分円筒状の部材であり、前記円筒状部分215のインナ側端面の円周方向1箇所位置(本例の場合、図27、28の上方)から、インナ側に延出した状態で形成されている。尚、前記回り止め凸部217の円周方向に関する長さ寸法は、前記アジャストスクリュー13dに対して許容する前記インプットスクリュー14e及び前記被回り止めプレート214の回転量に基づいて適宜設定されるものである。
 又、前記インプットスクリュー14eは、円筒状の部材であり、内周面のインナ側端部寄り部分が六角形状とされている。一方、このインプットスクリュー14eの外周面のアウタ側半部には、雄ねじ部142cが形成されている。又、このインプットスクリュー14eの外周面のインナ側端部寄り部分には、全周に亙り径方向外方に突出すると共に、外周面が円筒面状の円筒フランジ部220が設けられている。又、前記インプットスクリュー14eの外周面のうち、この円筒フランジ部220のインナ側に隣接した位置には、全周に亙り径方向外方に突出すると共に、外周面が六角形状の六角フランジ部221が形成されている。又、前記インプットスクリュー14eの外周面の軸方向中間部において、前記円筒フランジ部220よりもアウタ側部分の径方向に関して反対となる円周方向4箇所位置には、径方向に貫通した一対の貫通孔222a、222bが形成されている。
 更に、前記インプットスクリュー14eのアウタ側端面の内径側半部は、全周に亙り部分凹曲面状に形成されている。この様にして、後述するイコライザ部材125のインナ側球面部167との当接面積が確保されると共に、エッジ当たりが防止されている。
 この様なインプットスクリュー14eは、駆動杆23bの外周面に形成された六角形状部分に、このインプットスクリュー14eの内周面のうちの六角形状部分が外嵌された状態で組み付けられている。この様にして、前記駆動杆23bと前記インプットスクリュー14eとが、トルク伝達が可能に、且つ、軸方向の相対変位が可能に組み合わされている。尚、この組み合わせ部分の構造は、一般的なスプライン係合にする事もできる。
 又、前記インプットスクリュー14eは、前記雄ねじ部142cと、前記アジャストスクリュー13dの雌ねじ部134aとが螺合された状態で、このアジャストスクリュー13dの内径側に設置されている。これら両ねじ部142c、134a同士の螺合状態も、不可逆的である。
 尚、前記駆動杆23bは、軸方向中間部が、前記キャリパ4bのシリンダ底部127の中央部に形成されたシリンダ通孔144に挿通されると共に、インナ側端部が、前記キャリパ4bからインナ側に突出した状態で、このキャリパ4bに支持されている。又、前記駆動杆23bの外周面のうち、前記キャリパ4bからインナ側に突出した部分のアウタ側端部には、止め輪145(図12参照)が外嵌固定されている。又、前記シリンダ通孔144の内周面のうち、アウタ側端部の全周に亙り形成された係止溝223と、前記駆動杆23bの外周面との間には、前記シリンダ内部の油密性を確保する為のインナ側シール部材224が設けられている。
 更に、前記キャリパ4bの油圧シリンダ6bのインナ側端部内周面と、前記駆動杆23bの外周面のうち、このインナ側端部内周面と径方向に対向する部分との間には筒状部材225が設けられている。この筒状部材225は、アウタ側から順に、外径が大径である大径筒部226と、外径が中径である中径筒部227と、外径が小径である小径筒部228とを有する。又、この中径筒部227の内周面には全周に亙り係止溝229が形成されている。この様な構成を有する筒状部材225は、前記キャリパ4bの油圧シリンダ6bのインナ側端部内周面に隙間のない状態で内嵌されると共に、前記駆動杆23bの外周面のうち、このインナ側端部内周面と径方向に対向する部分に、この駆動杆23bが回転可能な状態で外嵌されている。又、この状態で、前記筒状部材225の係止溝229にはアウタ側シール部材230が係止されており、このアウタ側シール部材230の内周面は、前記駆動杆23bの外周面に隙間なく当接している。更に、このアウタ側シール部材230のアウタ側面の径方向内半部には、前記駆動杆23bのフランジ部150のインナ側面が当接している。この様にして、前記シリンダ内部の油密性が確保されている。
 又、前記被回り止めプレート214は、全体が略円輪状の部材であり、外周面のうちの径方向に関して反対側となる円周方向2箇所位置に一対の直線部231a、231bが形成されている。又、径方向中間部の円周方向1箇所位置には、軸方向に貫通した状態で係止孔232が形成されている。又、外周面のうちの円周方向に関して前記両直線部231a、231b同士の間部分である円周方向1箇所位置(本例の場合、図27~29の上方であって、円周方向に関して前記係止孔232と位相が一致する位置)に、外径側に突出した状態で被回り止め凸部233が形成されている。この被回り止め凸部233の円周方向両側面は、互いに平行な直線状である。又、前記被回り止めプレート214の中心から、前記被回り止め凸部233の径方向外端までの距離(被回り止め凸部233の外径寸法)は、前記アジャストスクリュー13dの中心からこのアジャストスクリュー13dの回り止め凸部217の外周面までの距離(回り止め凸部217の外径寸法)とほぼ同じである。尚、前記被回り止め凸部233の外径寸法は、前記アジャストスクリュー13dの回り止め凸部217の内径寸法よりも大きく、この回り止め凸部217の外径寸法よりも小さい範囲で適宜設定される。即ち、前記被回り止め凸部233の外径寸法は、組み付け状態に於いて、この被回り止め凸部233の円周方向側面が、前記アジャストスクリュー13dの回り止め凸部217の円周方向側面と、円周方向に関して対向可能な範囲で設定される。又、前記被回り止めプレート214の内周面は六角形状である。以上の様な構成を有する被回り止めプレート214は、内周面が前記インプットスクリュー14eの六角フランジ部221の外周面に隙間なく外嵌される事により、このインプットスクリュー14eに対する回転が阻止された状態で組み付けられている。
 又、前記インプットスクリュー14eの外周面で、前記六角フランジ部221のインナ側端面に隣接した位置には、欠円輪状の止め輪243が外嵌されている。この様にして、前記被回り止めプレート214のインナ側への抜け止めが図られている。
 又、前記プリセットスプリング15cは、捩りコイルばねである。この様なプリセットスプリング15cは、両端部に形成した係止部164c、164dのうち、インナ側端部からインナ方向に突出した係止部164cが、前記被回り止めプレート214の係止孔232にアウタ側から挿通された状態で係止されると共に、アウタ側端部からアウタ方向に突出した係止部164dが、前記アジャストスクリュー13dの貫通孔219にインナ側から挿入された状態で係止されている。この様にして、前記プリセットスプリング15cにより、前記被回り止めプレート214を介して前記インプットスクリュー14eに回転方向の弾力が付与されている。この弾力は、このインプットスクリュー14eの軸方向変位に拘らず、前記プリセットスプリング15cの弾力が、前記被回り止めプレート214を介して前記インプットスクリュー14eに加わり続ける。又、前記弾力の方向は、このインプットスクリュー14eの雄ねじ部142cと前記アジャストスクリュー13dの雌ねじ部134aとの螺合に基づいて、前記インプットスクリュー14eがインナ側に変位する方向とされている。尚、本第12例の場合、前記倍力機構126eが作動する前の状態(図27、28に示す状態)で、前記被回り止めプレート214の被回り止め凸部233の円周方向一側面(図29の右側面で、αで示す部分)と、前記アジャストスクリュー13dの回り止め凸部217の円周方向他側面(図29の左側面で、βで示す部分)とが円周方向に当接又は近接対向されている。
 又、本第12例の場合、前記倍力機構126eは、所謂てこ式のものであり、円周方向に離隔した状態で、放射状に配置された3個のカムレバー169、169と、プラグ部材17eと、保持クリップ234とを備える。
 このうちの前記各カムレバー169、169の構造は、前述した実施の形態の第7例と同様である。
 又、前記プラグ部材17eは、筒状のプレート基部235と、このプレート基部235の円周方向等間隔の3箇所位置から外径側に突出した状態で設けられたプレート腕部236、236とを有する。前記プレート基部235及びこれら各プレート腕部236、236のアウタ側面は平坦面状であり、同一平面上に存在している。一方、前記前記プレート基部235のインナ側面の中央部には、アウタ側に凹んだプレート凹部237が形成されている。又、前記各プレート腕部236、236のインナ側面には、アウタ側に凹んだ断面円弧状の凹部170b、170bが形成されている。
 本第12例の場合、前記各カムレバー169、169は、前記アジャストスクリュー13dのアウタ側端面及び前記イコライザ部材125のアウタ側球面部168と、前記プラグ部材17eのインナ側面との間に設けられている。又、前記各カムレバー169、169のインナ側面のうち、径方向内外両端部、及び、これら各カムレバー169、169のアウタ側面のうち、径方向中間部は、それぞれ部分円筒状の凸曲面とされている。そして、前記各カムレバー169、169のインナ側面の内径側部分が、前記イコライザ部材125のアウタ側球面部168に対して揺動変位が可能に、同じくインナ側面の外径側部分が前記アジャストスクリュー13dのアウタ側端面に対して揺動変位が可能に、それぞれ突き当てられている。一方、前記各カムレバー169、169のアウタ側面の径方向中間部が、前記各プレート腕部236、236の凹部170b、170bに、揺動変位が可能に十分な面積で当接されている。
 又、本第12例の場合、前記各カムレバー169、169と前記プラグ部材17eとが上述の様に組み付けられた状態で、これら各部材169、17e同士が、前記保持クリップ234により保持されている。具体的には、この様な保持クリップ234は、アウタ側に設けられた略円板状の基板部238と、この基板部238の外周縁の円周方向等間隔の3箇所位置からインナ側に延出した状態で設けられた保持腕部239、239とを有している。このうちの各保持腕部239、239は、円周方向中央部に設けられた平板部240と、この平板部240の円周方向両端部から内径側に折れ曲がった状態で形成された一対の折れ曲がり部241、241とを有している。又、前記各保持腕部239、239のうちの1個の保持腕部239(本例の場合、図27、28、29の下方の保持腕部239)に、前記平板部240のインナ側端縁からインナ側に延出した状態で係止腕部242が設けられている。
 この様な構成を有する保持クリップ234は、前記ピストン7bのピストン底部123のインナ側面と前記プラグ部材17eのアウタ側面との間に、前記基板部238が隙間のない状態で配置されると共に、前記各保持腕部239、239の平板部240の内径側に、前記プラグ部材17eのプレート腕部236、236及び前記各カムレバー169、169が配置された状態で組み付けられている。又、この状態で、前記各プレート腕部236、236及び前記各カムレバー169、169の円周方向両側面は、前記保持クリップ234の保持腕部239、239の両折れ曲がり部241、241同士に挟持されている。更に、前記保持クリップ234の係止腕部242は、前記アジャストスクリュー13dのフランジ部216の外周面の円周方向1箇所位置に係止されている。
 上述の様に構成する本第12例の電動式ディスクブレーキにおけるパーキングブレーキ作動時の作用は、次の通りである。
 パーキングブレーキ作動時には、前記電動モータ11により前記インプットスクリュー14eが、前記駆動杆23bを介して回転駆動される。作動開始直後の初期段階では、インナパッド2a及びアウタパッド3a(図12参照)とロータの両側面との間には隙間が存在し、これら両パッド2a、3aをこのロータに向けて移動させる為に要する力は小さくて済む。この為、前記初期段階では、前記インプットスクリュー14eの回転に伴って前記アジャストスクリュー13dも、前記プリセットスプリング15cに引っ張られる様にして、前記インプットスクリュー14eと同期して回転する。そして、前記アジャストナット12bの雌ねじ部130と前記アジャストスクリュー13dの雄ねじ部133bとの螺合に基づいて、このアジャストスクリュー13d及び前記インプットスクリュー14eが、前記ロータに向けてアウタ側に変位する。この変位に基づくアウタ方向の押圧力は、アジャストスクリュー13d → 各カムレバー169、169の径方向外端寄り部分 → プラグ部材17eの経路、及び、インプットスクリュー14e → イコライザ部材125 → 各カムレバー169、169の径方向内端寄り部分 → プラグ部材17eの経路で伝達されて、最終的に前記ピストン7bがアウタ方向に押圧されて、このピストン7bが、前記両パッド2a、3aと前記ロータの両側面との間の隙間が解消されるまで変位される。
 この様にして前記両パッド2a、3aと前記ロータの両側面との間の隙間が解消されると、前記アジャストスクリュー13dが受けるインナ方向への反力に基づいて、このアジャストスクリュー13dの回転抵抗(アジャストナット12bの雌ねじ部130とアジャストスクリュー13dの雄ねじ部133bとの螺合部の摩擦力)が、前記プリセットスプリング15cにより前記アジャストスクリュー13dに付与されている弾力よりも大きくなる。この結果、このアジャストスクリュー13dがそれ以上回転しなくなり、このアジャストスクリュー13dが停止する。この状態から更に前記インプットスクリュー14eが、前記プリセットスプリング15cの弾力に抗して回転されると、前記アジャストスクリュー13dの雌ねじ部134aと前記インプットスクリュー14eの雄ねじ部142cとの螺合に基づき、このインプットスクリュー14eのみが、前記ロータに向け、アウタ側に変位する。
 この様なインプットスクリュー14eの変位に基づいて、前記イコライザ部材125がアウタ側に変位すると、前記各カムレバー169、169が、このイコライザ部材125のアウタ側球面部168との当接部を力点とし、前記アジャストスクリュー13dのアウタ端面との当接部を支点とし、前記プラグ部材17eとの当接部を作用点として揺動変位する。このプラグ部材17eの径方向に関して、この作用点は前記力点と前記支点との間に存在するので、このプラグ部材17eを介して前記ピストン7bを変位させる力は増力されて、このピストン7bが前記ロータに向け、大きな力で押し付けられる。この結果、前記両パッド2a、3aが前記ロータの両側面に強く押圧される。前記各ねじ部130、133b同士、及び、前記各ねじ部134a、142c同士は、不可逆的に螺合しているので、前記電動モータ11への通電を停止すれば、特に保持動作をせずに必要な制動力を保持できる。
 尚、本第12例の場合、前記アジャストスクリュー13dの回転が停止して、前記インプットスクリュー14eのみが回転する状態(倍力機構126eが作動した状態)で、このインプットスクリュー14eの前記アジャストスクリュー13dに対する回転量を所定の範囲内に規制する為の規制機構が、このアジャストスクリュー13dの回り止め凸部217と、前記インプットスクリュー14eと共に回転する前記被回り止めプレート214の被回り止め凸部233との係合により構成されている。即ち、前記インプットスクリュー14eは、図29に示す状態から、反時計回り方向に、前記被回り止めプレート214の被回り止め凸部233の円周方向他側面(図29の左側面で、αで示す部分)が、前記アジャストスクリュー13dの回り止め凸部217の円周方向一側面(図29の右側面で、βで示す部分)に当接するまで回転する事ができる。
 別の言い方をすれば、前記アジャストスクリュー13dの回り止め凸部217と、前記インプットスクリュー14eと共に回転する前記被回り止めプレート214の被回り止め凸部233との係合により、前記インプットスクリュー14eの前記アジャストスクリュー13dに対するインナ側への変位量が、所定の範囲内に規制されている。即ち、アジャストスクリュー13dとインプットスクリュー14eとの間に、互いの相対回転の量を所定の範囲に規制する事により、インプットスクリュー14eにおけるロータのインナ側面に向けた軸方向に関する変位量を規制する機構が設けられている。この結果、前記インプットスクリュー14eが前記アジャストスクリュー13dに対して回転し過ぎて(インナ側に変位し過ぎて)、その周囲に配置された構成部材(例えば、プリセットスプリング15c等)が破損されたり、前記倍力機構126eの押圧力が過大になり過ぎたりする事の防止が図られている。又、前記アジャストスクリュー13dと前記インプットスクリュー14eとが共に回転すべき状態(倍力機構126eが作動する前の状態)で、何らかの原因により前記アジャストスクリュー13dが回転しなかった場合でも、このアジャストスクリュー13dに対して前記インプットスクリュー14eが過剰に回転してしまう事を防止する事ができる。その他の部分の構成及び作用・効果は、前述した実施の形態の第7例と同様である。
 ここで、上述した本発明に係るディスクブレーキの実施の形態の特徴をそれぞれ以下に簡潔に纏めて列記する。
 [1] 車輪と共に回転するロータと、
 前記ロータの軸方向側面に対向する状態で配置されたインナパッド(2)及びアウタパッド(3)と、
 前記インナパッド(2)に対向する側が開口したシリンダ(油圧シリンダ6a)を有するキャリパ(4a)と、
 軸方向の変位が可能に前記シリンダ(油圧シリンダ6a)内に装着されており、前記ロータ側端部に底部(ピストン底部8a)を有する有底円筒状のピストン(7a)と、
 前記ピストン(7a)の内側に配置されており、駆動源(電動モータ11)の回転駆動力に基づいて、前記インナパッド(2)及びアウタパッド(3)と前記ロータの両側面との間の隙間が解消されるまで、前記ピストン(7a)を前記ロータに向けて軸方向に押し出す第一押圧部材(スラストプレート41)と、前記隙間が解消され、前記第一押圧部材(スラストプレート41)の軸方向への移動が停止した後、前記駆動源(電動モータ11)の回転駆動力に基づいて、前記ロータに向けて軸方向に移動する事により、前記ピストン(7a)を前記ロータに向けて軸方向に押し出す第二押圧部材(インプットスクリュー14a)とを有する推力発生機構(29)と、
 前記第二押圧部材(インプットスクリュー14a)からの入力を増幅して、前記ピストン(7a)に伝達する倍力機構(10a)と、を備えており、
 前記倍力機構(10a)が、内側弾性体(91)と、前記内側弾性体(91)の外周面と隙間のない状態で前記内側弾性体(91)に外嵌された筒状の外側弾性体(92)とを有するリアクションディスク(88)を備えており、
 前記第二押圧部材(インプットスクリュー14a)の軸方向への移動に基づいて、前記リアクションディスク(88)が直接押圧される入力部材(イコライザ部材30)の押圧面(第二押圧面85)と、前記内側弾性体(91)における前記ロータと反対側面のうちの前記入力部材(インプットスクリュー14a)により押圧される被押圧面(93)とが、同一形状であり、
 前記ロータの軸方向から見た場合に、前記押圧面(第二押圧面85)と前記被押圧面(93)とが一致した状態で、前記入力部材(インプットスクリュー14a)が、前記内側弾性体(91)を押圧するディスクブレーキ。
 [2] 前記内側弾性体(91)が円柱状に構成され、前記外側弾性体(92)が円筒状に構成される上記[1]に記載したディスクブレーキ。
 [3] 前記内側弾性体(91)の軸方向寸法と、前記外側弾性体(92)の軸方向寸法とが等しい上記[1]~[2]のうちの何れか1つに記載したディスクブレーキ。
 [4] 前記内側弾性体(91a,91b)の軸方向寸法と、前記外側弾性体(92a,92b)の軸方向寸法とが異なっている[1]~[2]のうちの何れか1つに記載したディスクブレーキ。
 [5] 前記内側弾性体(91a)の軸方向寸法が、前記外側弾性体(92a)の軸方向寸法よりも大きい上記[4]に記載したディスクブレーキ。
 [6] 前記外側弾性体(92b)の軸方向寸法が、前記内側弾性体(91b)の軸方向寸法よりも大きい請求項4に記載したディスクブレーキ。
 [7] 前記内側弾性体(91c)は、外周面の外径寸法が前記ロータに近付くほど大きくなる円柱状に構成され、
 前記外側弾性体(92c)は、内周面の内径寸法が前記ロータに近付くほど大きくなる円筒状に構成された請求項1~5のうちの何れか1項に記載したディスクブレーキ。
 [8] 前記内側弾性体(91d)は、外周面の外径寸法が前記ロータに近付くほど小さくなる円柱状に構成され、
 前記外側弾性体(92d)は、内周面の内径寸法が前記ロータに近付くほど小さくなる円筒状に構成された請求項1~6のうちの何れか1項に記載したディスクブレーキ。
 [9] 前記内側弾性体(91)と前記外側弾性体(92)とが、互いに異なる材料により構成されている請求項1~8のうちの何れか1項に記載したディスクブレーキ。
 [10] 車輪と共に回転するロータに隣接する状態で車体に支持されるサポート(1)に対して、軸方向の変位が可能に支持されており、前記ロータを軸方向両側から挟む状態で軸方向の変位が可能に前記サポート(1)に支持されるインナパッド(2a)及びアウタパッド(3a)のうちのアウタパッド(3a)のアウタ側面に対向するキャリパ爪(5b)が、アウタ側端部に設けられ、シリンダ(油圧シリンダ6b)が、インナ側端部に設けられたキャリパ(4b)と、
 軸方向の変位が可能に前記シリンダ(油圧シリンダ6b)内に装着された有底円筒状のピストン(7b)と、
 前記ピストン(7b)の内側に配置されており、駆動源(電動モータ11)の回転駆動力に基づいて、前記インナパッド(2a)及びアウタパッド(3a)と前記ロータの両側面との間の隙間が解消されるまで、前記ピストン(7b)を前記ロータのインナ側面に向けて押し出す第一押圧部材(スラストプレート128)と、前記隙間が解消され、前記第一押圧部材(スラストプレート128)の軸方向への移動が停止した後、前記駆動源(電動モータ11)の回転駆動力に基づいて、前記ロータのインナ側面に向けて軸方向に移動する事により、前記ピストン(7b)を前記ロータのインナ側面に向けて押し出す第二押圧部材(インプットスクリュー14b)とを有する推力発生機構(124)と、
 前記第二押圧部材(インプットスクリュー14b)からの入力を増幅して、前記ピストン(7b)に伝達する倍力機構(126)と、を備えており、
 前記第二押圧部材(インプットスクリュー14b)と前記倍力機構(126)との間に、揺動可能な状態で設けられたイコライザ部材(125)を備えているディスクブレーキ。
 [11] 前記イコライザ部材(125)における前記第二押圧部材(インプットスクリュー14b)と前記倍力機構(126)を構成する部材とのうちの少なくとも一方の部材との当接部に、凸曲面部(アウタ側球面部168)が形成されている請求項10に記載したディスクブレーキ。
 [12] 前記第二押圧部材(インプットスクリュー14b)が凹曲面部(係合凹部194)を有しており、前記凹曲面部(係合凹部194)と前記イコライザ部材(125)の前記凸曲面部(アウタ側球面部168)とが係合されている請求項11に記載したディスクブレーキ。
 [13] 前記イコライザ部材(125b)が、前記ピストン(7b)に対して回り止めを図られている請求項10~12のうちの何れか1項に記載したディスクブレーキ。
 [14] 前記第一押圧部材が、スラスト軸受(スラスト玉軸受129)を構成するスラストプレート(128)であり、
 前記スラストプレート(128)は、インナ側面にアウタ側軌道(アウタ側スラスト軌道138)を有し、前記ピストン(7b)に対する回転を阻止されている請求項10~13のうちの何れか1項に記載したディスクブレーキ。
 [15] 前記倍力機構(126)が、円周方向に配置された複数個のカムレバー(169)を備えており、
 これら各カムレバー(169)のインナ側面の内径側部分は、前記イコライザ部材(125)のアウタ側面に当接させる事により力点として作用する部分であり、
 前記各カムレバー(169)のインナ側面の外径側部分は、前記第一押圧部材(スラストプレート128)のアウタ側面に当接させる事により支点として作用する部分であり、
 前記各カムレバー(169)のアウタ側面の径方向中間部における前記力点として作用する部分と前記支点として作用する部分との間部分は、前記ピストン(7b)に軸方向の軸力を伝達する為の作用点として作用する部分である請求項10~14のうちの何れか1項に記載したディスクブレーキ。
 [16] 前記倍力機構(126c)は、インナ側面が、前記イコライザ部材(125d)により直接又は間接的にロータ側に押圧されるインナ側受面とされ、その外周面のうち、前記インナ側受面以外の部分が、隙間なく囲まれた状態で設けられた弾性部材(リアクションディスク172)を備えており、
 前記インナ側受面が押圧される力に基づいて、前記弾性部材(リアクションディスク172)のアウタ側面が、前記ピストン(7b)を軸方向に押圧する請求項10~14のうちの何れか1項に記載したディスクブレーキ。
 [17] 前記第一押圧部材(アジャストスクリュー13d)と前記第二押圧部材(インプットスクリュー14e)との間に、互いの相対回転の量を所定の範囲に規制する事により、前記第二押圧部材(インプットスクリュー14e)における前記ロータのインナ側面に向けた軸方向に関する変位量を規制する機構が設けられている請求項10~16のうちの何れか1項に記載したディスクブレーキ。
 [18] 請求項1~17の何れか1項に記載したディスクブレーキと、前記推力発生機構(29)を回転駆動する駆動源としての電動モータ(11)と、を備える電動式ディスクブレーキ。
 なお、本発明のディスクブレーキは、上述した実施の形態の各例に限定されるものではなく、適宜、変形、改良等が可能である。その他、上述した実施の形態における各構成要素の材質、形状、寸法、数、配置箇所等は本発明を達成できるものであれば任意であり、限定されない。
 また、本出願は、2013年10月8日出願の日本特許出願(特願2013-210694)、2013年11月5日出願の日本特許出願(特願2013-229023)及び2014年9月19日出願の日本特許出願(特願2014-191324)に基づくものであり、その内容はここに参照として取り込まれる。
 前述した実施の形態の各例では、本発明のディスクブレーキが、電動モータの駆動力に基づいて作動する電動式パーキングディスクブレーキに適用されているが、本発明のディスクブレーキは、例えば、ブレーキレバーの駆動力に基づいて作動する手動式パーキングディスクブレーキに適用する事もできる。又、本発明のディスクブレーキは、電動式サービスブレーキに適用する事もできる。
 又、推力発生機構の前記第一押圧部材及び第二押圧部材が作動する部分の構造は、前述した実施の形態の各例の構造に限定されるものではない。即ち、推力発生機構を構成する第一押圧部材と第二押圧部材とが、二段階的に作動する各種構造が、本発明の技術的範囲に属する。
 又、リアクションディスクを構成する内側弾性部材の形状は、前述した実施の形態の各例の様な、全長に亙り外径が変化しない円柱状だけでなく、例えば、アウタ側半部が大径で、インナ側半部が小径である段付き円柱状にする事もできる。即ち、前記リアクションディスクが、その周囲に配置された部材により画成される空間に隙間なく配置されると共に、請求の範囲の第二押圧部材に相当する部材の軸方向への移動に基づいて、前記リアクションディスクを直接押圧する、請求の範囲の入力部材に相当する部材の押圧面と、前記内側弾性体の前記ロータと反対側面のうち、この入力部材により押圧される被押圧面とが同一形状である各種形状を採用できる。
 又、入力部材の押圧面、及び、リアクションディスクを構成する内側弾性体の被押圧面の形状も、前述した実施の形態の各例の形状に限定されるものではない。前記押圧面と前記被押圧面とが同形状であれば、楕円形、多角形等の各種形状を採用する事ができる。
 又、入力部材の形状も、前記押圧面が前記被押圧面と同形状であれば、例えば、段付きの円柱状部材等の各種形状を採用する事ができる。
 更に、本発明のディスクブレーキは、前述した各実施の形態の様なフローティングキャリパ型のディスクブレーキだけでなく、対向ピストン型のディスクブレーキに適用する事もできる。
 1 サポート
 2 インナパッド
 3 アウタパッド
 4、4a キャリパ
 5、5a キャリパ爪
 6、6a 油圧シリンダ(シリンダ)
 7、7a ピストン
 8、8a ピストン底部(底部)
 9 推力発生機構
 10、10a 倍力機構
 11 電動モータ
 12、12a アジャストナット
 13、13a  アジャストスクリュー(第一押圧部材)
 14、14a  インプットスクリュー(第二押圧部材)
 15、15a  プリセットスプリング
 16 カムレバー
 17 プラグ部材
 18 ケース
 19 押圧板
 20 リアクションディスク
 21 ケース円筒部
 22 ケース底部
 23、23a 駆動杆
 24 雄ねじ部
 25 雌ねじ部
 26 雄ねじ部
 27 雌ねじ部
 28 インナ側スラスト軸受
 29 推力発生機構
 30、30a、30b イコライザ部材(入力部材)
 31 倍力機構
 32 インナ側スラスト軌道
 33 アウタ側スラスト軌道
 34 玉
 35 保持器
 36 インナ側スラストプレート
 37 中心孔
 38 シリンダ底部
 39 パワーナット
 40 外向き鍔部
 41 スラストプレート(第一押圧部材)
 42 スラスト玉軸受
 43 雄ねじ部
 44 シリンダ通孔
 45 小径係止溝
 46 Oリング
 47 大径係止溝
 48 ワッシャ
 49 フランジ部
 50 減速機
 51 出力軸
 52 減速機ケース
 54 雌ねじ部
 55 連結用有底孔
 56 係合突部
 57 外向き鍔部
 58 雌ねじ部
 59 係止孔
 60 インナ側スラスト軌道
 61 連結孔
 62 連結ピン
 63 外向き鍔部
 64 アウタ側スラスト軌道
 65 第一押圧面
 66 外径側突部
 67 内径側突部
 68 係止溝
 69 玉
 70 保持器
 71 雄ねじ部
 72 係合凹部
 73 回り止め切り欠き
 74 位置決めプレート
 75 外径側係合突部
 76 内径側係合突部
 77 係止孔
 78 止め輪
 79a、79b 係止部
 80 スペーサー
 81 外向き突片
 82 係止孔
 83 揺動突部
 84 回り止め突部
 85 第二押圧面(押圧面)
 86 回り止め係止溝
 87 ケース
 88、88a、88b、88c、88d、88e リアクションディスク
 89 ケース円筒部
 90 ケース底部
 91、91a、91b、91c、91d、91e 内側弾性体
 92、92a、92b、92c、92d、92e 外側弾性体
 93、93a、93b、93c 被押圧面
 94 底部

Claims (18)

  1.  車輪と共に回転するロータと、
     前記ロータの軸方向側面に対向する状態で配置されたインナパッド及びアウタパッドと、
     前記インナパッドに対向する側が開口したシリンダを有するキャリパと、
     軸方向の変位が可能に前記シリンダ内に装着されており、前記ロータ側端部に底部を有する有底円筒状のピストンと、
     前記ピストンの内側に配置されており、駆動源の回転駆動力に基づいて、前記インナパッド及びアウタパッドと前記ロータの両側面との間の隙間が解消されるまで、前記ピストンを前記ロータに向けて軸方向に押し出す第一押圧部材と、前記隙間が解消され、前記第一押圧部材の軸方向への移動が停止した後、前記駆動源の回転駆動力に基づいて、前記ロータに向けて軸方向に移動する事により、前記ピストンを前記ロータに向けて軸方向に押し出す第二押圧部材とを有する推力発生機構と、
     前記第二押圧部材からの入力を増幅して、前記ピストンに伝達する倍力機構と、を備えており、
     前記倍力機構が、内側弾性体と、前記内側弾性体の外周面と隙間のない状態で前記内側弾性体に外嵌された筒状の外側弾性体とを有するリアクションディスクを備えており、
     前記第二押圧部材の軸方向への移動に基づいて、前記リアクションディスクが直接押圧される入力部材の押圧面と、前記内側弾性体における前記ロータと反対側面のうちの前記入力部材により押圧される被押圧面とが、同一形状であり、
     前記ロータの軸方向から見た場合に、前記押圧面と前記被押圧面とが一致した状態で、前記入力部材が、前記内側弾性体を押圧するディスクブレーキ。
  2.  前記内側弾性体が円柱状に構成され、前記外側弾性体が円筒状に構成される請求項1に記載したディスクブレーキ。
  3.  前記内側弾性体の軸方向寸法と、前記外側弾性体の軸方向寸法とが等しい請求項1~2のうちの何れか1項に記載したディスクブレーキ。
  4.  前記内側弾性体の軸方向寸法と、前記外側弾性体の軸方向寸法とが異なっている請求項1~2のうちの何れか1項に記載したディスクブレーキ。
  5.  前記内側弾性体の軸方向寸法が、前記外側弾性体の軸方向寸法よりも大きい請求項4に記載したディスクブレーキ。
  6.  前記外側弾性体の軸方向寸法が、前記内側弾性体の軸方向寸法よりも大きい請求項4に記載したディスクブレーキ。
  7.  前記内側弾性体は、外周面の外径寸法が前記ロータに近付くほど大きくなる円柱状に構成され、
     前記外側弾性体は、内周面の内径寸法が前記ロータに近付くほど大きくなる円筒状に構成された請求項3に記載したディスクブレーキ。
  8.  前記内側弾性体は、外周面の外径寸法が前記ロータに近付くほど小さくなる円柱状に構成され、
     前記外側弾性体は、内周面の内径寸法が前記ロータに近付くほど小さくなる円筒状に構成された請求項3に記載したディスクブレーキ。
  9.  前記内側弾性体と前記外側弾性体とが、互いに異なる材料により構成されている請求項3に記載したディスクブレーキ。
  10.  車輪と共に回転するロータに隣接する状態で車体に支持されるサポートに対して、軸方向の変位が可能に支持されており、前記ロータを軸方向両側から挟む状態で軸方向の変位が可能に前記サポートに支持されるインナパッド及びアウタパッドのうちのアウタパッドのアウタ側面に対向するキャリパ爪が、アウタ側端部に設けられ、シリンダが、インナ側端部に設けられたキャリパと、
     軸方向の変位が可能に前記シリンダ内に装着された有底円筒状のピストンと、
     前記ピストンの内側に配置されており、駆動源の回転駆動力に基づいて、前記インナパッド及びアウタパッドと前記ロータの両側面との間の隙間が解消されるまで、前記ピストンを前記ロータのインナ側面に向けて押し出す第一押圧部材と、前記隙間が解消され、前記第一押圧部材の軸方向への移動が停止した後、前記駆動源の回転駆動力に基づいて、前記ロータのインナ側面に向けて軸方向に移動する事により、前記ピストンを前記ロータのインナ側面に向けて押し出す第二押圧部材とを有する推力発生機構と、
     前記第二押圧部材からの入力を増幅して、前記ピストンに伝達する倍力機構と、を備えており、
     前記第二押圧部材と前記倍力機構との間に、揺動可能な状態で設けられたイコライザ部材を備えているディスクブレーキ。
  11.  前記イコライザ部材における前記第二押圧部材と前記倍力機構を構成する部材とのうちの少なくとも一方の部材との当接部に、凸曲面部が形成されている請求項10に記載したディスクブレーキ。
  12.  前記第二押圧部材が凹曲面部を有しており、前記凹曲面部と前記イコライザ部材の前記凸曲面部とが係合されている請求項11に記載したディスクブレーキ。
  13.  前記イコライザ部材が、前記ピストンに対して回り止めを図られている請求項10に記載したディスクブレーキ。
  14.  前記第一押圧部材が、スラスト軸受を構成するスラストプレートであり、
     前記スラストプレートは、インナ側面にアウタ側軌道を有し、前記ピストンに対する回転を阻止されている請求項10又は13に記載したディスクブレーキ。
  15.  前記倍力機構が、円周方向に配置された複数個のカムレバーを備えており、
     これら各カムレバーのインナ側面の内径側部分は、前記イコライザ部材のアウタ側面に当接させる事により力点として作用する部分であり、
     前記各カムレバーのインナ側面の外径側部分は、前記第一押圧部材のアウタ側面に当接させる事により支点として作用する部分であり、
     前記各カムレバーのアウタ側面の径方向中間部における前記力点として作用する部分と前記支点として作用する部分との間部分は、前記ピストンに軸方向の軸力を伝達する為の作用点として作用する部分である請求項10又は13に記載したディスクブレーキ。
  16.  前記倍力機構は、インナ側面が、前記イコライザ部材により直接又は間接的にロータ側に押圧されるインナ側受面とされ、その外周面のうち、前記インナ側受面以外の部分が、隙間なく囲まれた状態で設けられた弾性部材を備えており、
     前記インナ側受面が押圧される力に基づいて、前記弾性部材のアウタ側面が、前記ピストンを軸方向に押圧する請求項10又は13に記載したディスクブレーキ。
  17.  前記第一押圧部材と前記第二押圧部材との間に、互いの相対回転の量を所定の範囲に規制する事により、前記第二押圧部材における前記ロータのインナ側面に向けた軸方向に関する変位量を規制する機構が設けられている請求項10又は13に記載したディスクブレーキ。
  18.  請求項1又は10に記載したディスクブレーキと、前記推力発生機構を回転駆動する駆動源としての電動モータと、を備える電動式ディスクブレーキ。
PCT/JP2014/076983 2013-10-08 2014-10-08 ディスクブレーキ WO2015053333A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-210694 2013-10-08
JP2013210694 2013-10-08
JP2013-229023 2013-11-05
JP2013229023A JP2015090157A (ja) 2013-11-05 2013-11-05 ディスクブレーキ
JP2014191324A JP2015096767A (ja) 2013-10-08 2014-09-19 電動式ディスクブレーキ
JP2014-191324 2014-09-19

Publications (1)

Publication Number Publication Date
WO2015053333A1 true WO2015053333A1 (ja) 2015-04-16

Family

ID=52813148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076983 WO2015053333A1 (ja) 2013-10-08 2014-10-08 ディスクブレーキ

Country Status (1)

Country Link
WO (1) WO2015053333A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017069234A1 (ja) * 2015-10-23 2017-04-27 株式会社アドヴィックス 車両用ブレーキ
JP2017083010A (ja) * 2015-10-23 2017-05-18 株式会社アドヴィックス 車両用ブレーキ
CN113719562A (zh) * 2020-05-26 2021-11-30 纳博特斯克有限公司 制动钳装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261543A (ja) * 1990-03-12 1991-11-21 Nabco Ltd 気圧式倍力装置用リアクションディスク製造方法
JPH11208456A (ja) * 1998-01-27 1999-08-03 Nabco Ltd 気圧式倍力装置
JP2010266005A (ja) * 2009-05-15 2010-11-25 Akebono Brake Ind Co Ltd 電動式ディスクブレーキ
JP2011202696A (ja) * 2010-03-24 2011-10-13 Akebono Brake Ind Co Ltd 電動式パーキング機構付ブレーキ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261543A (ja) * 1990-03-12 1991-11-21 Nabco Ltd 気圧式倍力装置用リアクションディスク製造方法
JPH11208456A (ja) * 1998-01-27 1999-08-03 Nabco Ltd 気圧式倍力装置
JP2010266005A (ja) * 2009-05-15 2010-11-25 Akebono Brake Ind Co Ltd 電動式ディスクブレーキ
JP2011202696A (ja) * 2010-03-24 2011-10-13 Akebono Brake Ind Co Ltd 電動式パーキング機構付ブレーキ装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017069234A1 (ja) * 2015-10-23 2017-04-27 株式会社アドヴィックス 車両用ブレーキ
JP2017083010A (ja) * 2015-10-23 2017-05-18 株式会社アドヴィックス 車両用ブレーキ
JP2017171299A (ja) * 2015-10-23 2017-09-28 株式会社アドヴィックス 車両用ブレーキ
JP2017172809A (ja) * 2015-10-23 2017-09-28 株式会社アドヴィックス 車両用ブレーキ
CN108138880A (zh) * 2015-10-23 2018-06-08 株式会社爱德克斯 车辆用制动器
CN108138880B (zh) * 2015-10-23 2020-04-24 株式会社爱德克斯 车辆用制动器
CN113719562A (zh) * 2020-05-26 2021-11-30 纳博特斯克有限公司 制动钳装置

Similar Documents

Publication Publication Date Title
US10626941B2 (en) Disc brake
US20130075205A1 (en) Disk brake apparatus
US9863514B2 (en) Ball screw apparatus
WO2014017609A1 (ja) 電動式ディスクブレーキ装置
WO2015190495A1 (ja) ディスクブレーキ用パッド組立体
JP2014070670A (ja) ディスクブレーキ
EP3969777B1 (en) Automatic slack adjuster
WO2015053333A1 (ja) ディスクブレーキ
CN111133217A (zh) 电动盘式制动器
JP7095402B2 (ja) 逆入力ブレーキ機構および電動式ブレーキ装置
WO2012124811A1 (ja) パーキング機構付電動式ブレーキ装置
US20020166744A1 (en) Power transmission device
JP5466259B2 (ja) ディスクブレーキ倍力機構
WO2021172558A1 (ja) 逆入力遮断クラッチ
CN109477528B (zh) 旋转装置和待执行系统
JP4438676B2 (ja) ノーバック装置
JP5899850B2 (ja) 摩擦ローラ式減速機
JP2015096767A (ja) 電動式ディスクブレーキ
JP2015090157A (ja) ディスクブレーキ
JP2016109251A (ja) 回転伝達装置
JP2014101973A (ja) 電動パーキングブレーキ装置
US20170358975A1 (en) Adjustment Unit
JP6837261B2 (ja) ブレーキ装置
WO2018003191A1 (ja) ディスクブレーキ
JP7201544B2 (ja) ディスクブレーキ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14851548

Country of ref document: EP

Kind code of ref document: A1