WO2015053012A1 - 検出装置 - Google Patents

検出装置 Download PDF

Info

Publication number
WO2015053012A1
WO2015053012A1 PCT/JP2014/073080 JP2014073080W WO2015053012A1 WO 2015053012 A1 WO2015053012 A1 WO 2015053012A1 JP 2014073080 W JP2014073080 W JP 2014073080W WO 2015053012 A1 WO2015053012 A1 WO 2015053012A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
detection
sensor
current
signal processing
Prior art date
Application number
PCT/JP2014/073080
Other languages
English (en)
French (fr)
Inventor
稔 有山
Original Assignee
セイコーインスツル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツル株式会社 filed Critical セイコーインスツル株式会社
Priority to EP14852591.8A priority Critical patent/EP3056871B1/en
Priority to CN201480055712.1A priority patent/CN105849508B/zh
Priority to KR1020167009111A priority patent/KR102178994B1/ko
Publication of WO2015053012A1 publication Critical patent/WO2015053012A1/ja
Priority to US15/091,784 priority patent/US10006971B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/10Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for switching-in of additional or auxiliary indicators or recorders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • G08C19/02Electric signal transmission systems in which the signal transmitted is magnitude of current or voltage

Definitions

  • the present invention relates to a current output type detection device that changes a current consumption amount of the device itself according to a detection result.
  • FIG. 8 shows a block diagram of a conventional current output type detection device.
  • a conventional current output type detection device 1 includes a detection circuit unit 4 configured by a magnetic detection element and the like, and an activation function unit 5 that activates the detection circuit unit 4.
  • the anode side of the power supply source 2 is connected to the power supply terminal Vcc, and the cathode side of the power supply source 2 is connected to the ground terminal Vss via the measurement resistor R.
  • the measuring unit 3 is connected in parallel to both ends of the measuring resistor R.
  • the start function unit 5 functions as a constant current source for supplying a constant current In to the detection circuit unit 4 and causes the start current Is to flow.
  • the detection circuit unit 4 is activated by the constant current In supplied from the activation function unit 5 and outputs a detection current Ix indicating a detection result. Therefore, the consumption current I of the detection device 1 is the sum of the starting current Is and the detection current Ix. Therefore, the measurement unit 3 can recognize the detection result by measuring the current consumption I.
  • the detection device 1 is provided with the power supply circuit unit and the current stabilization circuit unit between the activation function unit 5 and the detection circuit unit 4, so that variations in the current consumption of the detection device due to power supply voltage fluctuations are obtained. It is suppressed, and a detection result can be obtained with high accuracy. Therefore, since the current values of the starting current Is and the detection current Ix can be set low, the detection device 1 can reduce the power consumption.
  • the conventional current output type detection device 1 cannot cope with further reduction in power consumption because the starting current Is of the starting function unit 5 always flows.
  • the present invention has been devised in order to solve the above-described problems, and provides a current output type detection device capable of reducing power consumption without sacrificing detection accuracy. is there.
  • a current output type detection device of the present invention includes a sensor circuit, a sensor signal processing circuit that receives a detection result signal of the sensor circuit and outputs a detection signal, a sensor circuit, and a sensor signal A control circuit that outputs a control signal to the processing circuit and inputs a detection signal from the sensor signal processing circuit, and the sensor circuit and the sensor signal processing circuit are configured to operate intermittently by the control signal from the control circuit.
  • control circuit 11 is configured to intermittently drive the sensor circuit 12 and the sensor signal processing circuit 13, so that the detection accuracy is not sacrificed as compared with the prior art.
  • the current consumption can be reduced.
  • FIG. 1 is a block diagram showing a current output type detection device 10 of the first embodiment.
  • the current output type detection device 10 of the present embodiment includes a control circuit 11, a sensor circuit 12, and a sensor signal processing circuit 13.
  • the control circuit 11 outputs a control signal to the sensor circuit 12 and the sensor signal processing circuit 13 and inputs a detection signal from the sensor signal processing circuit 13.
  • the sensor circuit 12 is activated and performs a detection operation.
  • the sensor signal processing circuit 13 is activated and outputs a detection signal according to the detection result of the sensor circuit 12.
  • FIG. 2 is a diagram illustrating the relationship between the operation of the current output type detection device 10 of this embodiment and the current consumption.
  • the control circuit 11 includes, for example, an oscillation circuit and a counter, intermittently outputs a control signal, and activates the sensor circuit 12 and the sensor signal processing circuit 13.
  • a state in which the sensor circuit 12 and the sensor signal processing circuit 13 are stopped is referred to as a sleep state tsl, and a state in which the sensor circuit 12 and the sensor signal processing circuit 13 are activated is referred to as an awake state taw. Since only the control circuit 11 is operating in the sleep state tsl, the consumption current of the detection device 10 is the sleep current Isl. Since all circuits are operating in the awake state taw, the consumption current of the detection apparatus 10 is the awake current Iaw.
  • the period T1 is a non-detection period in which the physical quantity to be detected by the sensor circuit 12 has not reached the detection level.
  • the sensor circuit 12 does not output a detection signal to the control circuit 11 via the sensor signal processing circuit 13. Therefore, the detection apparatus 10 repeats the sleep state tsl and the awake state taw.
  • the current consumption of the detection device 10 is IDDL.
  • the period T2 is a detection period in which the physical quantity to be detected by the sensor circuit 12 has reached the detection level.
  • the sensor circuit 12 outputs a detection signal to the control circuit 11 via the sensor signal processing circuit 13. While the detection signal is input, the control circuit 11 outputs the control signal to the sensor circuit 12 and the sensor signal processing circuit 13 to maintain the awake current Iaw. At this time, the sensor circuit 12 operates intermittently as in the non-detection period T1. In the detection period T2, the current consumption of the detection device 10 is IDDH.
  • the detection apparatus 10 repeats the sleep state tsl and the awake state taw again, and the current consumption becomes IDDL.
  • FIG. 6 is a block diagram showing an example of a sensor system including the current output type detection device 10 of the present invention.
  • the sensor system includes a detection device 10, a power supply source 2, a measurement unit 3, and a measurement resistor R.
  • the measurement unit 3 measures the voltage across the measurement resistor R and determines the detection result of the detection device 10. Since the detection apparatus 10 of the present embodiment shows the detection result with the consumption current as shown in FIG. 2, the measurement unit 3 detects the voltage as the detection voltage VDDH during a certain period of time, for example. It may be configured to determine.
  • the detection voltage VDDH is a voltage when the awake current Iaw flows through the measurement resistor R.
  • FIG. 7 is a block diagram showing another example of a sensor system including the current output type detection device 10 of the present invention.
  • the sensor system further includes a filter circuit 6.
  • the filter circuit 6 makes the repeated waveform of the sleep current Isl and the awake current Iaw during the non-detection period become the non-detection current IDDL. Therefore, the measuring unit 3 can determine whether the measured voltage is the detection voltage VDDH or the non-detection voltage VDDL, which is a detection signal or a non-detection signal.
  • the non-detection voltage VDDL is a voltage when the sleep current Isl and the awake current Iaw alternately flow through the measurement resistor R.
  • the current output type detection device 10 is configured such that the control circuit 11 intermittently drives the sensor circuit 12 and the sensor signal processing circuit 13, so that the detection accuracy is higher than that of the prior art. It becomes possible to reduce current consumption without sacrificing.
  • the current output type detection device 10 of the present embodiment has been described as being configured to intermittently operate in the detection period T2 similarly to the non-detection periods T1 and T3, it may be detected continuously. In this way, the non-detection state can be quickly achieved, and current consumption can be further reduced.
  • FIG. 3 is a block diagram showing the current output type detection device 10 of the second embodiment.
  • the current output type detection device 10 of the present embodiment includes a control circuit 11, a sensor circuit 12, a sensor signal processing circuit 13, and a constant current circuit 14.
  • the control circuit 11 outputs a control signal to the sensor circuit 12, the sensor signal processing circuit 13, and the constant current circuit 14, and inputs a detection signal from the sensor signal processing circuit 13.
  • the sensor circuit 12 is activated and performs a detection operation.
  • the sensor signal processing circuit 13 is activated and outputs a detection signal according to the detection result of the sensor circuit 12.
  • the constant current circuit 14 causes the constant current to flow and increases the current consumption of the detection device 10.
  • FIG. 4 is a diagram showing an example of the relationship between the operation and current consumption of the current output type detection device 10 of the present embodiment.
  • the operation of the detection apparatus 10 in the non-detection period T1 is the same as that in the first embodiment.
  • the control circuit 11 In the detection period T2, the control circuit 11 outputs the control signal to the sensor circuit 12 and the sensor signal processing circuit 13 and maintains the awake current Iaw while the detection signal is input. Further, the control circuit 11 outputs a control signal to the constant current circuit 14 while the detection signal is input.
  • the constant current circuit 14 causes the constant current to flow and increases the current consumption of the detection device 10.
  • the consumption current of the detection device 10 is a current IDDH obtained by adding the constant current of the constant current circuit 14 to the awake current Iaw.
  • the current output type detection device 10 of the present embodiment has been described as being configured to intermittently operate in the detection period T2 similarly to the non-detection periods T1 and T3, it may be detected continuously. In this way, the non-detection state can be quickly achieved, so that current consumption can be reduced.
  • FIG. 5 is a diagram showing another example of the relationship between the operation and current consumption of the current output type detection device 10 of the present embodiment.
  • the operation of the detection apparatus 10 in the non-detection period T1 is the same as that in the first embodiment.
  • the control circuit 11 In the detection period T2, for example, the control circuit 11 outputs the control signal only to the sensor circuit 12 while the detection signal is input, and allows only the current of the sensor circuit 12 to flow. Further, the control circuit 11 outputs a control signal to the constant current circuit 14 while the detection signal is input. Therefore, the consumption current of the detection device 10 is a current IDDH obtained by adding the constant current of the constant current circuit 14 to the current of the sensor circuit 12.
  • the detection current IDDH and the non-detection current IDDL can be set according to the capability of the measurement unit 3, the current consumption of the sensor system can be reduced and the reliability can be increased.
  • the current output type detection device 10 of the present invention has been described as a configuration in which the current IDDH is supplied as the detection current in the detection period T2, the detection current may be the current IDDL. In this way, current consumption can be reduced in a system with a long detection period and a short non-detection period.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

検出精度を犠牲にすることなく、消費電力量を小さくすることが出来る電流出力式の検出装置を提供すること。 検出装置は、センサ回路と、センサ回路の検出結果の信号を受けて検出信号を出力するセンサ信号処理回路と、センサ回路とセンサ信号処理回路に制御信号を出力し、センサ信号処理回路から検出信号を入力する制御回路と、を備え、センサ回路とセンサ信号処理回路は、制御回路からの制御信号によって間欠的に動作する構成とした。

Description

検出装置
 本発明は、検出結果に応じて装置自身の消費電流量を変化させる電流出力式の検出装置に関する。
 例えば磁気センサ等の検出結果に応じて装置自身の消費電流量を変化させる電流出力式の検出装置において、消費電力量の増大化を抑制しつつ、電源電圧に変動が生じても検出精度の低下を抑制することが重要である(例えば、特許文献1参照)。
 図8に、従来の電流出力式の検出装置のブロック図を示す。従来の電流出力式の検出装置1は、磁気検出素子等によって構成された検出回路部4と、検出回路部4を起動する起動機能部5とからなる。検出装置1は、電源端子Vccに電力供給源2の陽極側が接続され、接地端子Vssに測定用抵抗Rを介して電力供給源2の陰極側が接続される。測定用抵抗Rの両端には測定部3が並列接続されている。
 起動機能部5は、検出回路部4に定電流Inを供給する定電流源として機能し、自身は起動電流Isを流す。検出回路部4は、起動機能部5から供給される定電流Inにより起動し、検出結果を示す検出電流Ixを出力する。従って、検出装置1の消費電流Iは、起動電流Isと検出電流Ixの総和となる。よって、測定部3は、この消費電流Iを測定することで、検出結果を認識することが出来る。
 ここで、検出装置1は、起動機能部5と検出回路部4の間に、電力供給回路部および電流安定回路部を設けたことによって、電源電圧変動に起因する検出装置の消費電流のバラツキが抑制され、高い精度で検出結果を得ることが可能となる。従って、起動電流Isと検出電流Ixの電流値を低く設定することが出来るので、検出装置1は、消費電力量を小さくすることが出来る。
特開2007-156997号公報
 しかしながら、従来の電流出力式の検出装置1は、起動機能部5の起動電流Isが常に流れているため、さらなる低消費電力量化に対応することが出来ない。
 本発明は、以上のような課題を解決するために考案されたものであり、検出精度を犠牲にすることなく、消費電力量を小さくすることが出来る電流出力式の検出装置を提供するものである。
 従来の課題を解決するために、本発明の電流出力式の検出装置は、センサ回路と、センサ回路の検出結果の信号を受けて検出信号を出力するセンサ信号処理回路と、センサ回路とセンサ信号処理回路に制御信号を出力し、センサ信号処理回路から検出信号を入力する制御回路と、を備え、センサ回路とセンサ信号処理回路は、制御回路からの制御信号によって間欠的に動作する構成とした。
 本発明の電流出力式の検出装置によれば、制御回路11がセンサ回路12とセンサ信号処理回路13を間欠駆動するように構成したので、従来技術に比較して検出精度を犠牲にすることなく、消費電流を低減することが出来るという効果がある。
第1の実施例の電流出力式の検出装置を示すブロック図である。 第1の実施例の電流出力式の検出装置の動作と消費電流の関係を示す図である。 第2の実施例の電流出力式の検出装置を示すブロック図である。 第2の実施例の電流出力式の検出装置の動作と消費電流の関係の一例を示す図である。 第2の実施例の電流出力式の検出装置の動作と消費電流の関係の他の例を示す図である。 本発明の電流出力式の検出装置を備えたセンサシステムの一例を示すブロック図である。 本発明の電流出力式の検出装置を備えたセンサシステムの他の例を示すブロック図である。 従来の電流出力式の検出装置のブロック図である。
 以下、図面を参照して、本発明の電流出力式の検出装置について説明する。
 図1は、第1の実施例の電流出力式の検出装置10を示すブロック図である。
 本実施例の電流出力式の検出装置10は、制御回路11と、センサ回路12と、センサ信号処理回路13とを備えている。
 制御回路11は、センサ回路12とセンサ信号処理回路13に制御信号を出力し、センサ信号処理回路13から検出信号を入力する。センサ回路12は、制御回路11から制御信号を入力すると、起動して検出動作をする。センサ信号処理回路13は、制御回路11から制御信号を入力すると、起動してセンサ回路12の検出結果に応じて検出信号を出力する。
 次に、本実施例の電流出力式の検出装置の動作について説明する。図2は、本実施例の電流出力式の検出装置10の動作と消費電流の関係を示す図である。
 制御回路11は、例えば発振回路とカウンタを備えていて、間欠的に制御信号を出力し、センサ回路12とセンサ信号処理回路13を起動する。センサ回路12とセンサ信号処理回路13が停止している状態をスリープ状態tsl、起動している状態をアウェイク状態tawとする。スリープ状態tslでは制御回路11のみが動作しているので、検出装置10の消費電流はスリープ電流Islである。アウェイク状態tawでは全ての回路が動作しているので、検出装置10の消費電流はアウェイク電流Iawである。
 期間T1は、センサ回路12が検出すべき物理量が検出レベルに達してない非検出期間である。センサ回路12は、センサ信号処理回路13を介して検出信号を制御回路11に出力しない。従って、検出装置10はスリープ状態tslとアウェイク状態tawを繰り返している。この非検出期間T1では、検出装置10の消費電流はIDDLである。
 期間T2は、センサ回路12が検出すべき物理量が検出レベルに達した検出期間である。センサ回路12は、センサ信号処理回路13を介して検出信号を制御回路11に出力する。制御回路11は、検出信号を入力されている間はセンサ回路12とセンサ信号処理回路13に制御信号を出力してアウェイク電流Iawを維持する。このとき、センサ回路12は、非検出期間T1と同様に間欠動作する。この検出期間T2では、検出装置10の消費電流はIDDHである。
 センサ回路12が検出すべき物理量が検出レベルに達しなくなった非検出期間T3では、検出装置10は、再びスリープ状態tslとアウェイク状態tawを繰り返して、消費電流はIDDLになる。
 図6は、本発明の電流出力式の検出装置10を備えたセンサシステムの一例を示すブロック図である。センサシステムは、検出装置10と、電力供給源2と、測定部3、測定用抵抗Rとを備えている。測定部3は、測定用抵抗Rの両端の電圧を測定して、検出装置10の検出結果を判断する。本実施例の検出装置10は、図2に示すような消費電流で検出結果を示すので、測定部3は、例えば、一定期間の間に電圧が検出電圧VDDHであることを測定すると、検出信号と判断するように構成されても良い。検出電圧VDDHは、アウェイク電流Iawが測定用抵抗Rに流れたときの電圧である。
 図7は、本発明の電流出力式の検出装置10を備えたセンサシステムの他の例を示すブロック図である。センサシステムは、更にフィルタ回路6を更に備えている。フィルタ回路6は、非検出期間の時のスリープ電流Islとアウェイク電流Iawの繰り返しの波形が非検出電流IDDLになるようにする。従って、測定部3は、測定した電圧が検出電圧VDDHであるか非検出電圧VDDLであるかで、検出信号か非検出信号かを判断することが出来る。非検出電圧VDDLは、スリープ電流Islとアウェイク電流Iawが交互に測定用抵抗Rに流れたときの電圧である。
 以上記載したように、本実施例の電流出力式の検出装置10は、制御回路11がセンサ回路12とセンサ信号処理回路13を間欠駆動するように構成したので、従来技術に比較して検出精度を犠牲にすることなく消費電流を少なくすることが可能となった。
 なお、本実施例の電流出力式の検出装置10は、検出期間T2において、非検出期間T1、T3と同様に間欠動作する構成として説明したが、連続で検出するようにしても良い。このようにすると、早く非検出状態にすることが出来るので、更に消費電流を削減することが出来る。
 図3は、第2の実施例の電流出力式の検出装置10を示すブロック図である。
 本実施例の電流出力式の検出装置10は、制御回路11と、センサ回路12と、センサ信号処理回路13と、定電流回路14とを備えている。
 制御回路11は、センサ回路12とセンサ信号処理回路13と定電流回路14に制御信号を出力し、センサ信号処理回路13から検出信号を入力する。センサ回路12は、制御回路11から制御信号を入力すると、起動して検出動作をする。センサ信号処理回路13は、制御回路11から制御信号を入力すると、起動してセンサ回路12の検出結果に応じて検出信号を出力する。定電流回路14は、制御信号を入力すると、定電流を流して、検出装置10の消費電流を増加させる。
 次に、本実施例の電流出力式の検出装置の動作について説明する。
 図4は、本実施例の電流出力式の検出装置10の動作と消費電流の関係の一例を示す図である。
 非検出期間T1での検出装置10の動作は、実施例1と同様である。
 検出期間T2では、制御回路11は、検出信号を入力されている間はセンサ回路12とセンサ信号処理回路13に制御信号を出力してアウェイク電流Iawを維持する。更に、制御回路11は、検出信号を入力されている間は、定電流回路14に制御信号を出力する。制御信号を入力されると、定電流回路14は、定電流を流して検出装置10の消費電流を増加させる。検出装置10の消費電流は、アウェイク電流Iawに定電流回路14の定電流を加えた電流IDDHである。
 このように構成すると、測定部3による誤検出が減少するので、センサシステムの消費電流を削減し、かつ信頼性が高まる。
 なお、本実施例の電流出力式の検出装置10は、検出期間T2において、非検出期間T1、T3と同様に間欠動作する構成として説明したが、連続で検出するようにしても良い。このようにすると、早く非検出状態にすることが出来るので、消費電流を削減することが出来る。
 図5は、本実施例の電流出力式の検出装置10の動作と消費電流の関係の他の例を示す図である。
 非検出期間T1での検出装置10の動作は、実施例1と同様である。
 検出期間T2では、制御回路11は、例えば、検出信号を入力されている間はセンサ回路12のみに制御信号を出力して、センサ回路12の電流のみを流す。更に、制御回路11は、検出信号を入力されている間は、定電流回路14に制御信号を出力する。従って、検出装置10の消費電流は、センサ回路12の電流に定電流回路14の定電流を加えた電流IDDHである。
 このように構成すると、センサシステムの消費電流を更に削減することが出来る。
 以上に説明したように、本発明の電流出力式の検出装置10によれば、従来技術に比較して消費電流を少なくすることが出来る。
 更に、測定部3の能力に応じて、検出電流IDDHと非検出電流IDDLを設定することが可能であるので、センサシステムの消費電流を削減し、かつ信頼性を高めることが出来る。
 なお、本発明の電流出力式の検出装置10は、検出期間T2において、検出電流として電流IDDHを流す構成として説明したが、検出電流を電流IDDLにしても良い。このようにすると、検出期間が長く非検出期間が短いシステムの場合に、消費電流を削減することが出来る。
 2 電力供給源
 3 測定部
 6 フィルタ回路
10 検出装置
11 制御回路
12 センサ回路
13 センサ信号処理回路
14 定電流回路

Claims (4)

  1.  検出結果に応じて装置自身の消費電流量を変化させる電流出力式の検出装置であって、
     検出すべき物理量を検出するセンサ回路と、
     前記センサ回路の検出結果の信号を受けて検出信号を出力するセンサ信号処理回路と、
     前記センサ回路と前記センサ信号処理回路に制御信号を出力し、前記センサ信号処理回路から検出信号を入力する制御回路と、を備え、
     前記センサ回路と前記センサ信号処理回路は、前記制御信号によって間欠的に動作することを特徴とする検出装置。
  2.  前記検出装置は、更に、定電流回路を備え、
     前記定電流回路は、前記制御信号によって定電流を流すことを特徴とする請求項1に記載の検出装置。
  3.  前記制御回路は、前記センサ信号処理回路から検出信号が入力されている間は、少なくとも前記センサ回路と前記センサ信号処理回路のいずれかに制御信号を出力し、
     前記検出装置の消費電流を増加させることを特徴とする請求項1または2に記載の検出装置。
  4.  前記制御回路は、前記センサ信号処理回路から検出信号が入力されていない間は、少なくとも前記センサ回路と前記センサ信号処理回路のいずれかに制御信号を出力し、
     前記検出装置の消費電流を増加させることを特徴とする請求項1または2に記載の検出装置。
PCT/JP2014/073080 2013-10-09 2014-09-02 検出装置 WO2015053012A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14852591.8A EP3056871B1 (en) 2013-10-09 2014-09-02 Detection apparatus
CN201480055712.1A CN105849508B (zh) 2013-10-09 2014-09-02 检测装置
KR1020167009111A KR102178994B1 (ko) 2013-10-09 2014-09-02 검출 장치
US15/091,784 US10006971B2 (en) 2013-10-09 2016-04-06 Detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-212173 2013-10-09
JP2013212173A JP6322378B2 (ja) 2013-10-09 2013-10-09 検出装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/091,784 Continuation US10006971B2 (en) 2013-10-09 2016-04-06 Detection device

Publications (1)

Publication Number Publication Date
WO2015053012A1 true WO2015053012A1 (ja) 2015-04-16

Family

ID=52812832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073080 WO2015053012A1 (ja) 2013-10-09 2014-09-02 検出装置

Country Status (7)

Country Link
US (1) US10006971B2 (ja)
EP (1) EP3056871B1 (ja)
JP (1) JP6322378B2 (ja)
KR (1) KR102178994B1 (ja)
CN (1) CN105849508B (ja)
TW (1) TWI637150B (ja)
WO (1) WO2015053012A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106017538A (zh) * 2016-06-27 2016-10-12 国网江苏省电力公司盐城供电公司 一种变压器的检测装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007156997A (ja) 2005-12-07 2007-06-21 Tokai Rika Co Ltd 電流出力式検出装置
JP2007318352A (ja) * 2006-05-24 2007-12-06 Asahi Kasei Electronics Co Ltd 磁電変換スイッチ
JP2009038246A (ja) * 2007-08-02 2009-02-19 Rohm Co Ltd 電子機器
JP2012063211A (ja) * 2010-09-15 2012-03-29 Toshiba Corp 磁気検出装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2777372B2 (ja) * 1988-04-08 1998-07-16 シチズン時計株式会社 センサ信号処理装置
JP4925630B2 (ja) * 2005-09-06 2012-05-09 株式会社アドバンテスト 試験装置および試験方法
JP2008032424A (ja) * 2006-07-26 2008-02-14 Rohm Co Ltd センサ回路、半導体装置、電子機器
US8698505B2 (en) * 2009-08-06 2014-04-15 Yokogawa Electric Corporation Measurement apparatus detecting consumption current of a display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007156997A (ja) 2005-12-07 2007-06-21 Tokai Rika Co Ltd 電流出力式検出装置
JP2007318352A (ja) * 2006-05-24 2007-12-06 Asahi Kasei Electronics Co Ltd 磁電変換スイッチ
JP2009038246A (ja) * 2007-08-02 2009-02-19 Rohm Co Ltd 電子機器
JP2012063211A (ja) * 2010-09-15 2012-03-29 Toshiba Corp 磁気検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3056871A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106017538A (zh) * 2016-06-27 2016-10-12 国网江苏省电力公司盐城供电公司 一种变压器的检测装置

Also Published As

Publication number Publication date
KR102178994B1 (ko) 2020-11-16
TWI637150B (zh) 2018-10-01
US20160216339A1 (en) 2016-07-28
EP3056871A4 (en) 2017-08-23
EP3056871A1 (en) 2016-08-17
US10006971B2 (en) 2018-06-26
KR20160067856A (ko) 2016-06-14
JP6322378B2 (ja) 2018-05-09
JP2015075949A (ja) 2015-04-20
CN105849508A (zh) 2016-08-10
EP3056871B1 (en) 2020-10-21
TW201527718A (zh) 2015-07-16
CN105849508B (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
US9520830B2 (en) Crystal oscillator
KR101861370B1 (ko) 온도 검지 장치
KR101431973B1 (ko) 모터 구동회로의 역기전력의 영점 검출 장치 및 방법
JP6322378B2 (ja) 検出装置
JP6600471B2 (ja) 磁気センサ装置
KR102227589B1 (ko) 전원 전압 감시 회로, 및 그 전원 전압 감시 회로를 구비하는 전자 회로
JP6481430B2 (ja) 電磁流量計
JP2009128285A (ja) 電気量検出センサ
WO2012081242A1 (ja) 携帯電子機器
US9810746B2 (en) Magnetic sensor
JP5509132B2 (ja) 電磁流量計
TWI434495B (zh) 可動態校準致能其系統之致能時間的電壓產生系統及其方法
JP2016140183A5 (ja)
JP2008261663A (ja) 電子式電力量計
JP2015175759A (ja) 電流測定装置
JP2007093267A (ja) 電磁流量計
TW201642572A (zh) 馬達驅動電路
JP5466970B2 (ja) 半導体集積回路
JP2009168628A (ja) 電磁流量計
TWI608703B (zh) 振盪停止檢測電路及電子機器
JP6528491B2 (ja) 電力増幅器
WO2018159495A1 (ja) センサ回路、センサ回路の処理方法、及びセンサ回路を備えるセンサ装置
JP2015220711A (ja) スピーカ装置
JP2012163381A (ja) 電磁流量計
JP2016121909A (ja) 検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14852591

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167009111

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014852591

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014852591

Country of ref document: EP