WO2015052925A1 - Method for producing epoxy resin, epoxy resin, curable resin composition, and cured product - Google Patents

Method for producing epoxy resin, epoxy resin, curable resin composition, and cured product Download PDF

Info

Publication number
WO2015052925A1
WO2015052925A1 PCT/JP2014/005115 JP2014005115W WO2015052925A1 WO 2015052925 A1 WO2015052925 A1 WO 2015052925A1 JP 2014005115 W JP2014005115 W JP 2014005115W WO 2015052925 A1 WO2015052925 A1 WO 2015052925A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
formula
aep
epoxy
resin
Prior art date
Application number
PCT/JP2014/005115
Other languages
French (fr)
Japanese (ja)
Inventor
政隆 中西
知樹 藤田
喜裕 今
佐藤 一彦
Original Assignee
日本化薬株式会社
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社, 独立行政法人産業技術総合研究所 filed Critical 日本化薬株式会社
Priority to JP2015541440A priority Critical patent/JP6440207B2/en
Publication of WO2015052925A1 publication Critical patent/WO2015052925A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/027Polycondensates containing more than one epoxy group per molecule obtained by epoxidation of unsaturated precursor, e.g. polymer or monomer

Definitions

  • the present invention relates to an epoxy resin production method, an epoxy resin, a curable resin composition, and a cured product.
  • Epoxy resins are used in various fields such as electrical / electronic parts, structural materials, adhesives, paints, etc. Especially, epoxy resins having a repeating unit of the following formula (II) have recently been excellent in their difficulty. Widely used due to its flame resistance, adhesion, water resistance, etc.
  • the present invention has been made in view of the above situation, and can efficiently convert the carbon-carbon double bond of the allyl group of a specific allyl ether compound into an epoxy group, that is, an epoxy group.
  • An object of the present invention is to provide a method for producing an epoxy resin having a high production rate.
  • Another object of the present invention is to provide a novel epoxy resin.
  • an object of this invention is to provide the curable resin composition using the said epoxy resin, and the hardened
  • the gist configuration of the present invention for achieving the above object is as follows.
  • n represents an average value of the number of repetitions of 1 to 20
  • a process for producing an epoxy resin comprising a step of reacting a compound represented by formula (II) with hydrogen peroxide.
  • a curable resin composition comprising the epoxy resin according to the above [4] and a curing agent.
  • the carbon-carbon double bond of the allyl group of a specific allyl ether compound can be efficiently converted into an epoxy group, that is, a method for producing an epoxy resin with a high epoxy group production rate is provided. can do.
  • a novel epoxy resin can be provided.
  • curing the curable resin composition using the said epoxy resin and the said curable resin composition can be provided.
  • the conversion rate means the ratio (%) of the allyl group lost from the compound represented by the formula (I) by the epoxidation reaction
  • the selectivity means the formula (I ) Is the ratio (%) of the allyl group carbon-carbon double bond that has disappeared from the compound represented by the formula (I), which is selectively converted to an epoxy group.
  • the method for producing an epoxy resin of the present invention comprises the following formula (I): in the presence of a tungstic acid compound, a quaternary ammonium salt, a cation exchange resin, and a phosphoric acid compound.
  • n represents an average value of the number of repetitions of 1 to 20
  • n is preferably 1 to 10, more preferably 2 to 8, and particularly preferably 2 to 4.
  • the compound represented by formula (I) (allyl ether resin, hereinafter referred to as AEP as appropriate) used as a raw material in the method for producing an epoxy resin of the present invention is a corresponding phenol resin (phenol-biphenylene novolak). Resin) and allyl halide are reacted in a solvent in the presence of a base.
  • the allyl halide used for the production of AEP is preferably allyl chloride from the viewpoint of reactivity with the phenol resin.
  • allyl chloride tends to polymerize and form a polymer (polyallyl chloride)
  • allyl chloride used for the production of AEP is preferably one having a low polyallyl chloride content. .
  • the content ratio of these polyallyl chlorides can be easily confirmed by gas chromatography or the like.
  • the specific content ratio of polyallyl chloride is the area ratio when measured by gas chromatography. On the other hand, it is preferably 1 area% or less, more preferably 0.5 area% or less, and particularly preferably 0.2 area% or less.
  • the amount of allyl halide such as allyl chloride used is usually 1.0 to 1.15 molar equivalents, preferably 1.0 to 1.10 molar equivalents, based on 1 molar equivalent of the hydroxyl group of the phenol resin. More preferably, it is 1.0 to 1.05 molar equivalent.
  • the base used for the production of AEP is preferably an alkali metal hydroxide, and specific examples thereof include sodium hydroxide and potassium hydroxide.
  • Such an alkali metal hydroxide may be used in the form of a solid or in the form of an aqueous solution thereof.
  • the alkali metal hydroxide was formed into a flake shape from the viewpoint of solubility in a solvent and handling. It is preferable to use it in a solid state.
  • the use amount of a base such as an alkali metal hydroxide is usually 1.0 to 1.15 mole equivalent, preferably 1.0 to 1.10, relative to 1 mole equivalent of the hydroxyl group of the phenol resin.
  • the molar equivalent more preferably 1.0 to 1.05 molar equivalent.
  • the solvent used for the production of AEP preferably contains an aprotic polar solvent, and more preferably contains water and an aprotic polar solvent.
  • the solvent used for the production of AEP contains an aprotic polar solvent, the solubility of the phenol resin in the solvent can be improved.
  • aprotic polar solvents include dimethyl sulfoxide, N-methylpyrrolidone, dimethylacetamide, dioxane and the like, and dimethyl sulfoxide is particularly preferable.
  • the amount of an aprotic polar solvent such as dimethyl sulfoxide used is preferably 20 to 300% by mass, more preferably 25 to 250% by mass, particularly preferably 25 to 200%, based on the total mass of the phenol resin. % By mass.
  • Aprotic polar solvents such as dimethyl sulfoxide are not useful for purification such as washing with water, and have a high boiling point and are difficult to remove. Therefore, the amount used is more than 300% by mass with respect to the total mass of the phenol resin. It is not preferable.
  • the solvent used for the production of AEP may contain an alcohol having 1 to 5 carbon atoms in addition to the water and the aprotic polar solvent described above.
  • the solvent used for the production of AEP may contain an organic solvent other than the above-mentioned aprotic polar solvent and an alcohol having 1 to 5 carbon atoms (other organic solvents) such as methyl ethyl ketone, methyl isobutyl ketone and toluene.
  • the amount of other organic solvent used is preferably 100% by mass or less, more preferably 0.5 to 50% by mass, based on the amount of aprotic polar solvent used. Excessive use of methyl ethyl ketone, methyl isobutyl ketone, toluene, etc.
  • reaction temperature of the allyl etherification reaction of the phenol resin is usually 30 to 90 ° C., preferably 35 to 80 ° C. In order to obtain AEP with higher purity, it is preferable to increase the reaction temperature in two or more stages. For example, the first stage is 35 to 50 ° C., and the second stage is 45 to 70 ° C. It is particularly preferred.
  • the reaction time for the allyl etherification reaction of the phenol resin is usually 0.5 to 10 hours, preferably 1 to 8 hours, particularly preferably 1 to 5 hours. When the reaction time is 0.5 hours or longer, the reaction proceeds sufficiently, and when it is 10 hours or shorter, the amount of by-products generated can be kept low.
  • the solvent is distilled off under reduced pressure by heating to obtain the product.
  • the recovered product is dissolved in a ketone compound having 4 to 7 carbon atoms (for example, methyl isobutyl ketone, methyl ethyl ketone, cyclopentanone, cyclohexanone, etc.) and 40 ° C to 90 ° C, more preferably 50 to 80 ° C. Wash with water until the water layer has a pH of 5-8. By washing with water until the pH of the aqueous layer is less than 8, it is possible to prevent the balance of the catalyst system from being lost and the progress of the reaction from being suppressed during the subsequent epoxidation reaction.
  • a ketone compound having 4 to 7 carbon atoms for example, methyl isobutyl ketone, methyl ethyl ketone, cyclopentanone, cyclohexanone, etc.
  • the allyl etherification reaction of the phenol resin is usually carried out while blowing an inert gas such as nitrogen into the system (in the air or in the liquid).
  • an inert gas such as nitrogen
  • the amount of inert gas blown per unit time depends on the volume of the kettle used for the reaction. For example, the amount of inert gas blown per unit time so that the volume of the kettle can be replaced in 0.5 to 20 hours. Is preferably adjusted.
  • FIG. 1 and 2 show the HPLC data of the product containing AEP.
  • an impurity peak is observed in the vicinity of 32 to 34 minutes therebetween. The presence of this peak is undesirable because it adversely affects the subsequent epoxidation of AEP.
  • FIG. 2 a large peak is not observed in this range, which is preferable.
  • the AEP used in the method for producing an epoxy resin of the present invention preferably has a softening point of 120 ° C. or lower. If the softening point of AEP exceeds 120 ° C, it will be very difficult to dissolve in a solvent, and it will be difficult to remove the salt contained in AEP by washing, etc., especially in fields where electrical reliability is required. Not preferred due to concerns.
  • the method for producing an epoxy resin of the present invention is performed in the presence of a tungstic acid compound.
  • the tungstic acid compound is not particularly limited as long as it is a compound that generates tungstate ion (WO 4 2 ⁇ ) in water.
  • tungstic acid, tungsten trioxide, phosphotungstic acid, ammonium tungstate, tungstic acid Examples include potassium dihydrate and sodium tungstate dihydrate.
  • tungstic acid, tungsten trioxide, phosphotungstic acid, and sodium tungstate dihydrate are preferable from the viewpoint of improving the production rate of epoxy groups.
  • These tungstic acid compounds may be used alone or in combination of two or more.
  • the amount of the tungstic acid compound used is preferably 1 ⁇ 10 ⁇ 6 to 0.2 mol per mol of the compound represented by the formula (I) from the viewpoint of improving the production rate of the epoxy group, and is 0.0001 to 0 More preferred is 2 moles.
  • the method for producing the epoxy resin of the present invention is carried out in the presence of a quaternary ammonium salt.
  • the quaternary ammonium salt is not particularly limited as long as it functions as a phase transfer catalyst.
  • the quaternary ammonium salt is composed of a quaternary ammonium cation and an anion.
  • the quaternary ammonium cation constituting the quaternary ammonium salt is not particularly limited, but is tridecanylmethylammonium cation, dilauryldimethylammonium cation, trioctylmethylammonium cation, dioctyldecanylmethylammonium cation, didecanyloctylmethyl.
  • Ammonium cation trihexadecylmethylammonium cation, trimethylstearylammonium cation, tetrapentylammonium cation, cetyltrimethylammonium cation, benzyltributylammonium cation, dicetyldimethylammonium cation, tricetylmethylammonium cation, di-cured tallow alkyldimethylammonium cation, etc. Is mentioned.
  • those having 16 to 100 carbon atoms in the quaternary ammonium cation are preferable, and those having 25 to 100 are more preferable.
  • bonded with the nitrogen atom of this cation is an aliphatic chain.
  • Examples of the quaternary ammonium cation having 25 to 100 carbon atoms in the quaternary ammonium cation and the carbon chain bonded to the nitrogen atom being an aliphatic chain include tridecanylmethylammonium cation, dilauryldimethylammonium cation, Examples include trioctylmethylammonium cation, dioctyldecanylmethylammonium cation, didecanyloctylmethylammonium cation, trihexadecylmethylammonium cation, dicetyldimethylammonium cation, and tricetylmethylammonium cation.
  • the carbon chain bonded to the nitrogen atom is preferably a straight aliphatic chain.
  • the anion constituting the quaternary ammonium salt is not particularly limited, but halide ion (chloride ion, bromide ion, iodide ion, etc.), nitrate ion, sulfate ion, methyl sulfate ion, hydrogen sulfate ion, acetate ion, Examples include anions such as formate ion and carbonate ion, and among these, sulfate ion, methyl sulfate ion, hydrogen sulfate ion, acetate ion, formate ion and carbonate ion are preferable from the viewpoint of improving the production rate of epoxy group. Particularly preferred are acetate ion, formate ion, carbonate ion, methyl sulfate ion, and hydrogen sulfate ion.
  • the quaternary ammonium salt used in the present invention is preferably, for example, trioctylmethylammonium acetate (TOMAA), trioctylmethylammonium hydrogensulfate, or trioctylmethylammonium sulfate methyl salt from the above-mentioned viewpoint.
  • TOMAA trioctylmethylammonium acetate
  • HMAA trioctylmethylammonium hydrogensulfate
  • trioctylmethylammonium sulfate methyl salt from the above-mentioned viewpoint.
  • the amount of the quaternary ammonium salt used is preferably from 0.01 to 0.5 mol, preferably from 0.05 to 0.001 mol per mol of the compound represented by the formula (I), from the viewpoint of improving the production rate of the epoxy group. 3 moles is more preferred.
  • the method for producing an epoxy resin of the present invention is performed in the presence of a cation exchange resin.
  • the production rate of epoxy groups can be greatly improved. This is presumably because the pH is locally lowered around the cation exchange resin, and the reactivity of the reaction from a carbon-carbon double bond to an epoxy group, which exhibits high efficiency in strong acidity, is particularly increased.
  • the production method of the present invention using a cation exchange resin can locally create a low pH environment around the resin, reducing the high molecular weight due to decomposition of the generated epoxy groups by water addition and polymerization of the epoxy groups due to too low pH as described above It is inferred that it is advantageous in that it can be done.
  • the cation exchange resin may be a strong acid cation exchange resin or a weak acid cation exchange resin. From the viewpoint of improving the production rate of epoxy groups, a strong acid cation exchange resin may be used. Resins are preferred.
  • a strongly acidic cation exchange resin a small amount of divinylbenzene is copolymerized with a polymerized styrene to form a three-dimensional network structure, and a strongly acidic group such as a sulfonic acid group (—SO 3 H) is introduced into this.
  • a porous type (MR type) cation exchange resin may be mentioned.
  • Examples of commercially available cation exchange resins that can be used in the present invention include strongly acidic ion exchanges such as Amberlyst (registered trademark) 15DRY, 15JWET, 16WET, 31WET, 35WET, and A21 sold by Organo in Japan.
  • strongly acidic ion exchanges such as Amberlyst (registered trademark) 15DRY, 15JWET, 16WET, 31WET, 35WET, and A21 sold by Organo in Japan.
  • DUOLITE registered trademark
  • C20J Resin
  • C20LF Resin
  • C255LFH Resin
  • C26A Resin
  • C26TRH other strongly acidic ion exchange resins sold by Sumika Chemtex in Japan
  • weakly acidic ion exchange resins such as DUOLITE C433LF and C476, Mitsubishi Diaion (registered trademark) SK series (gel type), UBK series (gel type uniform particle size), PK series (porous type), HPK25 / RCP series (high porous type), and UBK500 series for chromatographic separation , Etc.
  • the step of reacting the compound represented by the formula (I) with hydrogen peroxide includes an organic phase, an aqueous phase, It is performed in a three-phase system of a solid phase (cation exchange resin).
  • the amount of the cation exchange resin used is preferably 1 to 10 parts by mass and preferably 2 to 5 parts by mass per 100 parts by mass of the compound represented by the formula (I) from the viewpoint of improving the production rate of the epoxy group.
  • the manufacturing method of the epoxy resin of this invention is performed in presence of a phosphoric acid compound.
  • the phosphate compound is not particularly limited as long as it is a compound that generates phosphate ions (PO 4 3 ⁇ ) in water.
  • phosphoric acid alkali metal dihydrogen phosphate, alkaline earth metal dihydrogen phosphate Salt, hydrogen phosphate di-alkaline metal salt, hydrogen phosphate di-alkaline earth metal salt, alkali phosphate metal phosphate, alkaline earth metal phosphate, polyphosphoric acid, alkali metal polyphosphate, alkaline earth metal polyphosphate , Tripolyphosphoric acid, alkali metal tripolyphosphate, alkaline earth metal tripolyphosphate, etc.
  • salts such as phosphoric acid, disodium hydrogen phosphate, sodium dihydrogen phosphate, sodium phosphate are included.
  • the product to be obtained is preferable because it is easy to obtain.
  • the amount of the phosphoric acid compound used is preferably 0.01 to 1.0 mol per mol of the compound represented by the formula (I) from the viewpoint of improving the production rate of the epoxy group, preferably 0.05 to 0.5 Mole is more preferred.
  • the hydrogen peroxide to be reacted with the compound represented by the formula (I) is not particularly limited, but it is usually dissolved in water and added as a hydrogen peroxide solution.
  • the concentration of hydrogen peroxide in the hydrogen peroxide water is not particularly limited, but the hydrogen peroxide concentration is preferably 10 to 40% by mass for ease of handling.
  • the amount of aqueous hydrogen peroxide used is not particularly limited, but the amount of hydrogen peroxide is preferably 0.3 to 10 molar equivalents relative to 1 molar equivalent of the allyl group of the compound represented by formula (I). More preferred is 1 to 5 molar equivalents.
  • the amount of hydrogen peroxide solution is 0.3 molar equivalent or more with respect to 1 molar equivalent of the allyl group of the compound represented by the formula (I), so that epoxidation can be advanced efficiently and 10 molar equivalent.
  • generate can be suppressed.
  • the production method of the epoxy resin of the present invention is not particularly limited, but toluene, xylene, mesitylene, 1,2-dichlorobenzene, trichloromethane, ethyl acetate, dichloroethane and the like in which the compound represented by the formula (I) can be dissolved.
  • a compound represented by the above formula (I) a tungstic acid compound, a quaternary ammonium ion salt, a cation exchange resin, and a phosphoric acid compound is added, followed by epoxy. It is preferable to initiate the reaction.
  • the production method of the present invention is not limited to this addition order, and in the presence of a tungstic acid compound, a quaternary ammonium salt, a cation exchange resin, and a phosphoric acid compound, the formula ( Conversion of the carbon-carbon double bond in the allyl group of the compound represented by I) to an epoxy group can be performed efficiently.
  • the reaction temperature during epoxidation is not particularly limited, but is preferably 10 to 120 ° C, and more preferably 25 to 100 ° C.
  • reaction rate can be made suitable, and the hydrolysis reaction of the produced
  • the reaction time depends on the amount of the reaction temperature catalyst and the like, but in order to ensure a sufficient time for epoxidation to proceed and to produce industrially efficiently, After adding a fixed amount of hydrogen peroxide solution, it is preferably 1 to 48 hours, more preferably 3 to 36 hours, and particularly preferably 4 to 24 hours.
  • Examples of the method for quenching hydrogen peroxide include a method using a reducing agent and a method using a basic compound. In the present invention, it is preferable to perform both of them. Specifically, it is preferable to quench the hydrogen peroxide by adding a reducing agent after adjusting the pH of the aqueous phase to 6 to 11 with a basic compound. By setting the pH to 6 or more, it is possible to prevent the generated epoxy group from being hydrolyzed by suppressing heat generation during the reduction, and even to set the pH to 11 or less can prevent hydrolysis of the generated epoxy group. it can. About the kind and quantity of a reducing agent and a basic compound, the thing similar to what is described in Unexamined-Japanese-Patent No. 2011-225711 can be used in the same range, respectively.
  • the organic phase is separated from the aqueous phase and solid phase (cation exchange resin).
  • the organic solvent used for the reaction is further added, and the reaction product is extracted from the aqueous phase.
  • solid content is isolate
  • the separated organic phase is purified by washing with water as necessary. The separation operation may be performed before the hydrogen peroxide quenching process.
  • impurities for example, residual quaternary ammonium salt
  • a known treating agent such as composite metal salt, activated carbon, clay mineral, phenol-formaldehyde resin, metal oxide, and the like.
  • the target epoxy resin is obtained by distilling off the solvent.
  • the composite metal salt activated carbon, clay mineral, and phenol-formaldehyde resin, for example, those described in JP-A-2011-225711 can be used.
  • the carbon-carbon double bond of the allyl group of the compound represented by the formula (I) can be efficiently converted into an epoxy group.
  • the carbon-carbon double bond of the allyl group in the compound represented by the formula (I) can be reacted at a high conversion rate.
  • the selectivity is high, that is, an epoxy group can be obtained with a high production rate.
  • the epoxy resin of the present invention can be obtained by the method for producing the epoxy resin of the present invention, and has the following formula (II):
  • Containing repeating units of It is an epoxy resin in which the average value L of the number of allyl groups in one molecule and the average value M of the number of epoxy groups in one molecule satisfy the relationship of 0 ⁇ L / M ⁇ 0.1.
  • the average value L of the number of allyl groups in one molecule and the average value M of the number of epoxy groups in one molecule can be determined by 1 H-NMR measurement.
  • L, M, and L / M have the following relationship with the conversion rate (%) and the generation rate (%) used in the evaluation of the above-described method for producing the epoxy resin of the present invention.
  • n is an average value of the number of repetitions of the compound represented by formula (I) used as a raw material in the above-described method for producing an epoxy resin of the present invention.
  • the average value (n) of the number of all repeating units in one molecule is 1 to 20, It is preferably 10, more preferably 2 to 8, and particularly preferably 2 to 4.
  • the value obtained by adding the average value (o) of the number of repeating units of formula (II) in one molecule and the average value (p) of the number of repeating units of formula (III) in one molecule is n. Is preferred.
  • the repeating unit of the epoxy resin of the present invention is composed only of the repeating unit of the above formula (II) and the repeating unit of the above formula (III).
  • the average value (o) of the number of repeating units of the formula (II) in one molecule is 80% or more and less than 100% with respect to the average value (n) of the number of all repeating units in one molecule.
  • the average value (p) of the number of repeating units of formula (III) in one molecule is more than 0% and less than 20% with respect to the average value (n) of all repeating units in one molecule. It is preferable.
  • the terminal of the epoxy resin of the present invention preferably has a hydrogen atom, the structure of the following formula (IV) or formula (V), and the epoxy resin is adjacent to the repeating unit of formula (II) or formula (III).
  • the benzene ring side terminal is preferably a hydrogen atom
  • the methylene group (—CH 2 —) side terminal has a structure of the following formula (IV) or formula (V): It is preferable.
  • the epoxy resin of the present invention is excellent in flame retardancy, it can produce a composition that can exhibit flame retardancy without adding halogen as a flame retardant, and has little addition to the environment. In addition, due to its high hydrophobicity, even if ions such as chlorine are contained, their movement can be suppressed, and it has high electrical reliability and is useful as an electrical / electronic component material.
  • the curable resin composition of the present invention contains the epoxy resin and a curing agent.
  • a curing agent for example, known curing agents such as amine compounds, acid anhydride compounds, amide compounds, and phenol compounds can be used. Examples thereof include those described in International Publication No. 2006/090662.
  • the amount of the curing agent used is preferably 0.5 to 1.5 molar equivalents relative to 1 molar equivalent of the epoxy group of the epoxy resin of the present invention, and preferably 0.6 to 1.2. A molar equivalent is particularly preferred. Good hardened
  • the curable resin composition of the present invention includes, for example, various blends of known curing accelerators, inorganic fillers, silane coupling agents, release agents, pigments and the like described in International Publication No. 2006/090662.
  • An agent, various thermosetting resins, and other additives may be appropriately contained.
  • the curable resin composition of the present invention can be obtained by uniformly mixing the above components.
  • the curable resin composition of this invention can be used for various uses, such as an adhesive agent, a coating material, and a coating agent, for example.
  • the cured product of the present invention is obtained by curing the curable resin composition of the present invention.
  • a curing method a known method can be used, and the cured product of the present invention obtained by curing can be used for various applications such as an insulating material for printed circuit boards and a semiconductor sealant. it can.
  • Example 1 To a flask equipped with a stirrer, a reflux condenser, and a stirrer, while purging with nitrogen, the toluene solution containing the synthesized AEP (concentration of AEP: 15% by mass) was charged, and tungstic acid per mol of AEP.
  • the mixture was stirred at 90 ° C. for 2 hours. Subsequently, it was quenched with an aqueous sodium thiosulfate solution, and the aqueous phase was separated to obtain a solution containing an epoxy resin. As confirmed by 1 H-NMR, the conversion was 94%, the selectivity was 98%, and the production rate was 92%.
  • Example 2 An epoxy resin was obtained in the same manner as in Example 1 except that the reaction time after the addition of hydrogen peroxide solution was 2.5 hours. The conversion was 96%, the selectivity was 96%, and the production rate was 92%.
  • Example 3 An epoxy resin was obtained in the same manner as in Example 1 except that the amount of Amberlyst 35 WET as the cation exchange resin was changed to 3.0 parts by mass per 100 parts by mass of AEP. The conversion was 97%, the selectivity was 86%, and the production rate was 83%.
  • Example 4 An epoxy resin was obtained in the same manner as in Example 1 except that the amount of Amberlyst 35 WET as the cation exchange resin was 3.5 parts by mass per 100 parts by mass of AEP. The conversion was 100%, the selectivity was 71%, and the production rate was 71%.
  • Examples 1 to 4 had an epoxy group production rate of 70% or more, which was higher than that of Comparative Examples 1 to 10.
  • the production rate was 80% or more, which was a particularly high value.
  • Comparative Examples 1 to 10 did not use a cation exchange resin, and the conversion and production rate were particularly low.
  • the epoxy resins obtained in Examples 1 to 3 have an L / M value exceeding 0 and 0.1 or less, containing both an epoxy group and an allyl group, and the epoxy group is compared to the allyl group. As a result, it is found that it is more than 10 times more useful as an epoxy resin.
  • the epoxy resins obtained in Comparative Examples 1 to 10 have an L / M value significantly exceeding 0.1 and contain both an epoxy group and an allyl group, but the ratio of the epoxy group is not sufficient. I understand that.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The objective of the present invention is to provide a method for producing an epoxy resin, the method being capable of efficiently converting a carbon-carbon double bond of an allyl group of a specific allyl ether compound to an epoxy group, in other words, the method having a high yield of epoxy groups. This method for producing an epoxy resin comprises a step of reacting a compound represented by formula (I) (In the formula, n is an average value of the number of repetitions of 1 to 20) and a hydrogen peroxide in the presence of a tungstic acid compound, a quarternary ammonium salt, a cation exchange resin and a phosphate compound.

Description

エポキシ樹脂の製造方法、エポキシ樹脂、硬化性樹脂組成物、及び、硬化物Epoxy resin production method, epoxy resin, curable resin composition, and cured product
 本発明は、エポキシ樹脂の製造方法、エポキシ樹脂、硬化性樹脂組成物、及び、硬化物に関する。 The present invention relates to an epoxy resin production method, an epoxy resin, a curable resin composition, and a cured product.
 エポキシ樹脂は電気・電子部品、構造用材料、接着剤、塗料等の様々な分野で使用されており、特に、以下の式(II)の繰り返し単位を有するエポキシ樹脂は、近年、その優れた難燃性、密着性、耐水性などにより広く使用されている。 Epoxy resins are used in various fields such as electrical / electronic parts, structural materials, adhesives, paints, etc. Especially, epoxy resins having a repeating unit of the following formula (II) have recently been excellent in their difficulty. Widely used due to its flame resistance, adhesion, water resistance, etc.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 このような繰り返し単位を含むエポキシ樹脂の製造方法として、例えば、特許文献1に記載されているように、ビフェニル骨格とフェノール性水酸基を有する繰り返し単位を含む化合物にエピクロロヒドリンを反応させ、水酸基をグリシジルエーテル基に変換することにより製造する手法が従来から使用されている。 As a method for producing an epoxy resin containing such a repeating unit, for example, as described in Patent Document 1, epichlorohydrin is reacted with a compound containing a repeating unit having a biphenyl skeleton and a phenolic hydroxyl group, to form a hydroxyl group. Conventionally, a method for producing a glycidyl ether group is used.
 一方、近年電気・電子部品の分野においては、ICチップとリードフレームやプリント基板とを接続するワイヤーボンディングに使用する金線を、コスト削減の観点から、銅線に変換する動きが急ピッチで進んでいる。ここで、銅線を使用した半導体の封止材として、上記のような塩素含有化合物(エピクロロヒドリン)を用いる手法で製造されたエポキシ樹脂を使用すると、該エポキシ樹脂に残存する塩素により銅ワイヤーが腐食されてしまうという問題があった。このような塩素による腐食を防止するためには、塩素含有化合物を使用しない手法により得られたエポキシ樹脂を用いるのが効果的である。塩素含有化合物を用いずにエポキシ樹脂を製造する技術としては、例えば特許文献2に、炭素-炭素二重結合を有する化合物に過酸化水素を反応させ、二官能性エポキシ樹脂を製造する手法が報告されている。 On the other hand, in recent years, in the field of electrical and electronic parts, gold wires used for wire bonding that connects IC chips to lead frames and printed circuit boards are rapidly changing from the viewpoint of cost reduction. It is out. Here, when an epoxy resin manufactured by a technique using a chlorine-containing compound (epichlorohydrin) as described above is used as a semiconductor sealing material using a copper wire, copper remaining due to chlorine remaining in the epoxy resin. There was a problem that the wire was corroded. In order to prevent such corrosion due to chlorine, it is effective to use an epoxy resin obtained by a technique not using a chlorine-containing compound. As a technique for producing an epoxy resin without using a chlorine-containing compound, for example, Patent Document 2 reports a method of producing a bifunctional epoxy resin by reacting hydrogen peroxide with a compound having a carbon-carbon double bond. Has been.
特開平8-208802号公報JP-A-8-208802 特開2011-225711号公報JP 2011-225711 A
 そこで、本発明者らは独自に、下記式(I):
Figure JPOXMLDOC01-appb-C000002
で表される化合物を原料として、特許文献2等に記載の従来の炭素-炭素二重結合の過酸化水素によるエポキシ化により、上記式(II)の繰り返し単位を有するエポキシ樹脂の製造を試みたところ、エポキシ基の生成率が十分に満足いくものとはならないことがわかった。
Therefore, the present inventors independently have the following formula (I):
Figure JPOXMLDOC01-appb-C000002
An attempt was made to produce an epoxy resin having a repeating unit of the above formula (II) by epoxidation of the conventional carbon-carbon double bond described in Patent Document 2 with hydrogen peroxide using the compound represented by However, it was found that the generation rate of epoxy groups is not sufficiently satisfactory.
 本発明は、上記のような状況を鑑みてなされたものであり、特定のアリルエーテル化合物のアリル基の炭素-炭素二重結合を、効率的にエポキシ基に変換することができる、即ちエポキシ基の生成率の高いエポキシ樹脂の製造方法を提供することを目的とする。
 また、本発明は、新規なエポキシ樹脂を提供することを目的とする。
 さらに、本発明は、上記エポキシ樹脂を用いた硬化性樹脂組成物、および当該硬化性樹脂組成物を硬化してなる硬化物を提供することを目的とする。
The present invention has been made in view of the above situation, and can efficiently convert the carbon-carbon double bond of the allyl group of a specific allyl ether compound into an epoxy group, that is, an epoxy group. An object of the present invention is to provide a method for producing an epoxy resin having a high production rate.
Another object of the present invention is to provide a novel epoxy resin.
Furthermore, an object of this invention is to provide the curable resin composition using the said epoxy resin, and the hardened | cured material formed by hardening | curing the said curable resin composition.
 上記目的を達成するための本発明の要旨構成は、以下の通りである。 The gist configuration of the present invention for achieving the above object is as follows.
[1]タングステン酸化合物と、4級アンモニウム塩と、陽イオン交換樹脂と、リン酸化合物との存在下、下記式(I): [1] In the presence of a tungstic acid compound, a quaternary ammonium salt, a cation exchange resin, and a phosphoric acid compound, the following formula (I):
Figure JPOXMLDOC01-appb-C000003
(式中、nは1~20の繰り返し数の平均値を表す)
で表される化合物と過酸化水素とを反応させる工程を備えることを特徴とするエポキシ樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000003
(In the formula, n represents an average value of the number of repetitions of 1 to 20)
A process for producing an epoxy resin, comprising a step of reacting a compound represented by formula (II) with hydrogen peroxide.
[2]陽イオン交換樹脂の使用量が、前記式(I)で表される化合物100質量部当たり、1~10質量部であることを特徴とする前記[1]に記載のエポキシ樹脂の製造方法。 [2] The production of the epoxy resin according to [1], wherein the amount of the cation exchange resin used is 1 to 10 parts by mass per 100 parts by mass of the compound represented by the formula (I). Method.
[3]前記式(I)で表される化合物と過酸化水素とを反応させる工程が、有機相、水相、固相の三相系で行われることを特徴とする前記[1]又は[2]に記載のエポキシ樹脂の製造方法。 [3] The step [1] or [3], wherein the step of reacting the compound represented by the formula (I) with hydrogen peroxide is performed in a three-phase system of an organic phase, an aqueous phase, and a solid phase. 2] The manufacturing method of the epoxy resin of description.
[4]下記式(II): [4] Formula (II) below:
Figure JPOXMLDOC01-appb-C000004
及び、下記式(III):
Figure JPOXMLDOC01-appb-C000004
And the following formula (III):
Figure JPOXMLDOC01-appb-C000005
の繰り返し単位を含み、
1分子内のアリル基の数の平均値Lと、1分子内のエポキシ基の数の平均値Mが0<L/M≦0.1の関係を満たすエポキシ樹脂。
Figure JPOXMLDOC01-appb-C000005
Containing repeating units of
An epoxy resin in which the average value L of the number of allyl groups in one molecule and the average value M of the number of epoxy groups in one molecule satisfy a relationship of 0 <L / M ≦ 0.1.
[5]前記[4]に記載のエポキシ樹脂と、硬化剤とを含有してなる硬化性樹脂組成物。 [5] A curable resin composition comprising the epoxy resin according to the above [4] and a curing agent.
[6]前記[5]に記載の硬化性樹脂組成物を硬化してなる硬化物。 [6] A cured product obtained by curing the curable resin composition according to [5].
 本発明によれば、特定のアリルエーテル化合物のアリル基の炭素-炭素二重結合を、効率的にエポキシ基に変換することができる、即ちエポキシ基の生成率の高いエポキシ樹脂の製造方法を提供することができる。
 また、本発明によれば、新規なエポキシ樹脂を提供することができる。
 さらに、本発明によれば、上記エポキシ樹脂を用いた硬化性樹脂組成物、および当該硬化性樹脂組成物を硬化してなる硬化物を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the carbon-carbon double bond of the allyl group of a specific allyl ether compound can be efficiently converted into an epoxy group, that is, a method for producing an epoxy resin with a high epoxy group production rate is provided. can do.
Moreover, according to this invention, a novel epoxy resin can be provided.
Furthermore, according to this invention, the hardened | cured material formed by hardening | curing the curable resin composition using the said epoxy resin and the said curable resin composition can be provided.
AEP(アリルエーテル樹脂)の高速液体クロマトグラフィーの測定結果の一例である。It is an example of the measurement result of the high performance liquid chromatography of AEP (allyl ether resin). AEP(アリルエーテル樹脂)の高速液体クロマトグラフィーの測定結果の他の例である。It is another example of the measurement result of the high performance liquid chromatography of AEP (allyl ether resin).
 以下、本発明についてその実施形態を例示して具体的に説明する。
 なお、本発明において、転化率とは、エポキシ化反応により、式(I)で表される化合物から消失したアリル基の割合(%)をいい、選択率とは、エポキシ化反応により式(I)で表される化合物から消失したアリル基の炭素-炭素二重結合中、エポキシ基に選択的に変換したものの割合(%)をいい、生成率とは、エポキシ化反応により、式(I)で表される化合物のアリル基の炭素-炭素二重結合中、エポキシ基に変換したものの割合(%)をいう。
Hereinafter, the present invention will be specifically described with reference to embodiments thereof.
In the present invention, the conversion rate means the ratio (%) of the allyl group lost from the compound represented by the formula (I) by the epoxidation reaction, and the selectivity means the formula (I ) Is the ratio (%) of the allyl group carbon-carbon double bond that has disappeared from the compound represented by the formula (I), which is selectively converted to an epoxy group. The ratio (%) of the allyl group carbon-carbon double bond converted to an epoxy group in the compound represented by
<エポキシ樹脂の製造方法>
 本発明のエポキシ樹脂の製造方法は、タングステン酸化合物と、4級アンモニウム塩と、陽イオン交換樹脂と、リン酸化合物の存在下、下記式(I):
Figure JPOXMLDOC01-appb-C000006
(式中、nは1~20の繰り返し数の平均値を表す)
で表される化合物と過酸化水素とを反応させる工程を備えることを特徴とする。ここで、nは1~10であることが好ましく、2~8であることがより好ましく、2~4であることが特に好ましい。
<Method for producing epoxy resin>
The method for producing an epoxy resin of the present invention comprises the following formula (I): in the presence of a tungstic acid compound, a quaternary ammonium salt, a cation exchange resin, and a phosphoric acid compound.
Figure JPOXMLDOC01-appb-C000006
(In the formula, n represents an average value of the number of repetitions of 1 to 20)
And a step of reacting hydrogen peroxide with a compound represented by the formula: Here, n is preferably 1 to 10, more preferably 2 to 8, and particularly preferably 2 to 4.
(式(I)で表される化合物)
 本発明のエポキシ樹脂の製造方法において原料として使用される、式(I)で表される化合物(アリルエーテル樹脂、以下、適宜、AEPと称する)は、対応するフェノール樹脂(フェノ-ル-ビフェニレンノボラック樹脂)とアリルハライドとを、溶媒中、塩基の存在下で反応させることによって得られる。
(Compound represented by formula (I))
The compound represented by formula (I) (allyl ether resin, hereinafter referred to as AEP as appropriate) used as a raw material in the method for producing an epoxy resin of the present invention is a corresponding phenol resin (phenol-biphenylene novolak). Resin) and allyl halide are reacted in a solvent in the presence of a base.
((AEPを製造する方法))
[フェノール樹脂]
 AEPの製造に用いるフェノール樹脂としては、例えば、フェノールと4,4’-ビス(クロルメチル)-1,1’-ビフェニルとの反応物、フェノールと4,4’-ビス(メトキシメチル)-1,1’-ビフェニルとの反応物が好適に挙げられる。
((Method of manufacturing AEP))
[Phenolic resin]
Examples of the phenol resin used in the production of AEP include a reaction product of phenol and 4,4′-bis (chloromethyl) -1,1′-biphenyl, phenol and 4,4′-bis (methoxymethyl) -1, A reaction product with 1′-biphenyl is preferred.
[アリルハライド]
 AEPの製造に用いるアリルハライドとしては、フェノール樹脂との反応性の観点から、アリルクロライドが好ましい。
 ここで、アリルクロライドは、アリルクロライド同士が重合し重合体(ポリアリルクロライド)となる傾向があるが、AEPの製造に用いるアリルクロライドは、ポリアリルクロライドの含有割合が少ないものを用いることが好ましい。
 用いるアリルクロライド中のポリアリルクロライドの含有割合が多いと、得られるAEP、更には該AEPを用いて本発明の製造方法により得られるエポキシ樹脂の全塩素量を押し上げる要因になるばかりか、AEP、そして得られるエポキシ樹脂の分子量の増加に寄与し、製品化の際に微量なゲル物を残す虞がある。またこの塩素量を低下させるためには相当量の塩基性物質の追加が必要となり産業上好ましくないばかりか、系内に毒性の高いアリルアルコールを生成してしまう虞がある。
[Allyl halide]
The allyl halide used for the production of AEP is preferably allyl chloride from the viewpoint of reactivity with the phenol resin.
Here, although allyl chloride tends to polymerize and form a polymer (polyallyl chloride), allyl chloride used for the production of AEP is preferably one having a low polyallyl chloride content. .
When the content ratio of polyallyl chloride in the allyl chloride used is large, not only becomes a factor to increase the total chlorine content of the obtained AEP, and also the epoxy resin obtained by the production method of the present invention using the AEP, AEP, And it contributes to the increase in the molecular weight of the epoxy resin obtained, and there is a possibility that a very small amount of gel is left at the time of commercialization. Further, in order to reduce the amount of chlorine, it is necessary to add a considerable amount of a basic substance, which is not preferable industrially, and there is a possibility that highly toxic allyl alcohol is produced in the system.
 これらポリアリルクロライドの含有割合はガスクロマトグラフィー等で容易に確認が可能であり、具体的なポリアリルクロライドの含有割合としては、ガスクロマトグラフィーで測定した際、その面積比で、アリルクロライドモノマーに対し、1面積%以下であることが好ましく、0.5面積%以下であることがより好ましく、0.2面積%以下であることが特に好ましい。 The content ratio of these polyallyl chlorides can be easily confirmed by gas chromatography or the like. The specific content ratio of polyallyl chloride is the area ratio when measured by gas chromatography. On the other hand, it is preferably 1 area% or less, more preferably 0.5 area% or less, and particularly preferably 0.2 area% or less.
 AEPの製造において、アリルクロライドなどのアリルハライドの使用量は、フェノール樹脂の水酸基1モル当量に対して通常1.0~1.15モル当量であり、好ましくは1.0~1.10モル当量、より好ましくは1.0~1.05モル当量である。 In the production of AEP, the amount of allyl halide such as allyl chloride used is usually 1.0 to 1.15 molar equivalents, preferably 1.0 to 1.10 molar equivalents, based on 1 molar equivalent of the hydroxyl group of the phenol resin. More preferably, it is 1.0 to 1.05 molar equivalent.
[塩基]
 AEPの製造に用いる塩基としては、アルカリ金属水酸化物が好ましく、その具体的な例としては水酸化ナトリウム、水酸化カリウム等が挙げられる。このようなアルカリ金属水酸化物は、固形物の状態で使用してもよく、その水溶液の状態で使用してもよいが、特に、溶媒に対する溶解性、ハンドリングの観点からフレーク状に成型された固形物の状態で使用することが好ましい。
[base]
The base used for the production of AEP is preferably an alkali metal hydroxide, and specific examples thereof include sodium hydroxide and potassium hydroxide. Such an alkali metal hydroxide may be used in the form of a solid or in the form of an aqueous solution thereof. In particular, the alkali metal hydroxide was formed into a flake shape from the viewpoint of solubility in a solvent and handling. It is preferable to use it in a solid state.
 AEPの製造において、アルカリ金属水酸化物などの塩基の使用量は、フェノール樹脂の水酸基1モル当量に対して通常1.0~1.15モル当量であり、好ましくは1.0~1.10モル当量、より好ましくは1.0~1.05モル当量である。 In the production of AEP, the use amount of a base such as an alkali metal hydroxide is usually 1.0 to 1.15 mole equivalent, preferably 1.0 to 1.10, relative to 1 mole equivalent of the hydroxyl group of the phenol resin. The molar equivalent, more preferably 1.0 to 1.05 molar equivalent.
[溶媒]
 AEPの製造に用いる溶媒は、非プロトン性極性溶媒を含むことが好ましく、水と非プロトン性極性溶媒とを含むことがより好ましい。AEPの製造に用いる溶媒が非プロトン性極性溶媒を含むことで、フェノール樹脂の溶媒への溶解度を向上させることができる。このような非プロトン性極性溶媒としては、ジメチルスルホキシド、N-メチルピロリドン、ジメチルアセトアミド、ジオキサン等が挙げられ、特にジメチルスルホキシドが好ましい。
 AEPの製造において、ジメチルスルホキシド等の非プロトン性極性溶媒の使用量は、フェノール樹脂の総質量に対し、好ましくは20~300質量%、より好ましくは25~250質量%、特に好ましくは25~200質量%である。ジメチルスルホキシド等の非プロトン性極性溶媒は、水洗等の精製に有用ではなく、また沸点が高く除去が困難であるため、その使用量がフェノール樹脂の総質量に対し300質量%超であることは好ましくない。
[solvent]
The solvent used for the production of AEP preferably contains an aprotic polar solvent, and more preferably contains water and an aprotic polar solvent. When the solvent used for the production of AEP contains an aprotic polar solvent, the solubility of the phenol resin in the solvent can be improved. Examples of such aprotic polar solvents include dimethyl sulfoxide, N-methylpyrrolidone, dimethylacetamide, dioxane and the like, and dimethyl sulfoxide is particularly preferable.
In the production of AEP, the amount of an aprotic polar solvent such as dimethyl sulfoxide used is preferably 20 to 300% by mass, more preferably 25 to 250% by mass, particularly preferably 25 to 200%, based on the total mass of the phenol resin. % By mass. Aprotic polar solvents such as dimethyl sulfoxide are not useful for purification such as washing with water, and have a high boiling point and are difficult to remove. Therefore, the amount used is more than 300% by mass with respect to the total mass of the phenol resin. It is not preferable.
 AEPの製造に用いる溶媒は、上述の水、非プロトン性極性溶媒に加え、炭素数1~5のアルコールを含んでもよい。
 また、AEPの製造に用いる溶媒は、メチルエチルケトン、メチルイソブチルケトン、トルエン等の、上述の非プロトン性極性溶媒と炭素数1~5のアルコール以外の有機溶媒(他の有機溶媒)を含んでもよい。他の有機溶媒の使用量は、非プロトン性極性溶媒の使用量に対し、100質量%以下であることが好ましく、0.5~50質量%であることがより好ましい。過剰にメチルエチルケトン、メチルイソブチルケトン、トルエン等を用いると、反応時にクライゼン転移が起こり、残留するフェノール性水酸基が増加してしまい系内のアリルクロライド量が不足するばかりか、目的とする構造以外のものが生成する、またフェノール性水酸基がすべてアリルエーテル化されない、等の不具合が生じる虞があり、好ましくない。
The solvent used for the production of AEP may contain an alcohol having 1 to 5 carbon atoms in addition to the water and the aprotic polar solvent described above.
The solvent used for the production of AEP may contain an organic solvent other than the above-mentioned aprotic polar solvent and an alcohol having 1 to 5 carbon atoms (other organic solvents) such as methyl ethyl ketone, methyl isobutyl ketone and toluene. The amount of other organic solvent used is preferably 100% by mass or less, more preferably 0.5 to 50% by mass, based on the amount of aprotic polar solvent used. Excessive use of methyl ethyl ketone, methyl isobutyl ketone, toluene, etc. causes a Claisen transition during the reaction, resulting in an increase in residual phenolic hydroxyl groups resulting in a shortage of allyl chloride in the system, and other than the intended structure May occur, and the phenolic hydroxyl groups may not be allyl etherified.
[反応条件等]
 AEPの製造において、フェノール樹脂のアリルエーテル化反応の反応温度は通常30~90℃であり、好ましくは35~80℃である。また、より高純度にAEPを得るためには、2段階以上に分けて反応温度を上昇させることが好ましく、例えば、1段階目は35~50℃、2段階目は45℃~70℃とすることが特に好ましい。
 フェノール樹脂のアリルエーテル化反応の反応時間は通常0.5~10時間であり、好ましくは1~8時間、特に好ましくは1~5時間である。反応時間が0.5時間以上であることで反応が十分進行し、10時間以下であることで、副生成物の生成量を低く抑えることが可能になる。
 反応終了後、溶媒を加熱減圧下で留去することで、生成物を得る。回収した生成物を炭素数4~7のケトン化合物(たとえば、メチルイソブチルケトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン等が挙げられる。)に溶解させ、40℃~90℃、より好ましくは50~80℃に加温した状態で、水層がpH5~8になるまで水洗を行う。水層のpHを8未満とするまで水洗することで、後のエポキシ化反応の際に、触媒系のバランスを崩し反応の進行が抑制されるのを防ぐことができる。
 なお、フェノール樹脂のアリルエーテル化反応は、通常、窒素等不活性ガスを系内(気中、もしくは液中)に吹き込みながら行う。不活性ガスを系内に吹き込みながら該反応を行うことで、得られる生成物が着色することを防ぐことができる。
 不活性ガスの単位時間当たり吹き込み量は、その反応に用いる釜の容積によっても異なり、例えば0.5~20時間でその釜の容積が置換できるように、不活性ガスの単位時間当たりの吹き込み量を調整することが好ましい。
[Reaction conditions, etc.]
In the production of AEP, the reaction temperature of the allyl etherification reaction of the phenol resin is usually 30 to 90 ° C., preferably 35 to 80 ° C. In order to obtain AEP with higher purity, it is preferable to increase the reaction temperature in two or more stages. For example, the first stage is 35 to 50 ° C., and the second stage is 45 to 70 ° C. It is particularly preferred.
The reaction time for the allyl etherification reaction of the phenol resin is usually 0.5 to 10 hours, preferably 1 to 8 hours, particularly preferably 1 to 5 hours. When the reaction time is 0.5 hours or longer, the reaction proceeds sufficiently, and when it is 10 hours or shorter, the amount of by-products generated can be kept low.
After completion of the reaction, the solvent is distilled off under reduced pressure by heating to obtain the product. The recovered product is dissolved in a ketone compound having 4 to 7 carbon atoms (for example, methyl isobutyl ketone, methyl ethyl ketone, cyclopentanone, cyclohexanone, etc.) and 40 ° C to 90 ° C, more preferably 50 to 80 ° C. Wash with water until the water layer has a pH of 5-8. By washing with water until the pH of the aqueous layer is less than 8, it is possible to prevent the balance of the catalyst system from being lost and the progress of the reaction from being suppressed during the subsequent epoxidation reaction.
The allyl etherification reaction of the phenol resin is usually carried out while blowing an inert gas such as nitrogen into the system (in the air or in the liquid). By carrying out the reaction while blowing an inert gas into the system, the resulting product can be prevented from being colored.
The amount of inert gas blown per unit time depends on the volume of the kettle used for the reaction. For example, the amount of inert gas blown per unit time so that the volume of the kettle can be replaced in 0.5 to 20 hours. Is preferably adjusted.
[AEPの性状]
 上述の反応より得られたAEPを含有する生成物は、高速液体クロマトグラフィー(HPLC)で測定すると、そのスペクトルには前記式(I)においてn=1であるAEPのピークと、同n=2であるAEPのピークとの間に、不純物のピークが確認される場合がある。
 AEPをエポキシ化する際の反応性の観点から、この不純物のピークの量が、その面積比で、AEPを含有する生成物全体に対し、1.5面積%未満、特に1.0面積%未満であることが好ましい。この面積比が2.0面積%を超える場合、エポキシ化反応の進行に大きな影響を与える虞がある。
 より具体的に説明するため、図1,2にAEPを含有する生成物のHPLCデータを示す。31分程度に確認される3本の大きなピークが式(I)においてn=1であるAEPに相当し、35分付近程度に確認される3本の大きなピーク(ショルダーピークが見えるが1本として換算している。)がn=2であるAEPに相当する。図1においては、これらの間の32~34分付近に不純物のピークが見られる。このピークが存在する場合、後のAEPのエポキシ化の際に悪影響を及ぼすため好ましくない。一方の図2においては、該範囲に大きなピークはみられず、好ましい。
[Properties of AEP]
When the product containing AEP obtained from the above reaction was measured by high performance liquid chromatography (HPLC), the spectrum showed an AEP peak where n = 1 in the formula (I), and n = 2. In some cases, an impurity peak is observed between the AEP peak and the AEP peak.
From the viewpoint of reactivity when epoxidizing AEP, the peak amount of this impurity is less than 1.5 area%, particularly less than 1.0 area%, in terms of area ratio, with respect to the entire product containing AEP. It is preferable that When this area ratio exceeds 2.0 area%, there is a possibility of greatly affecting the progress of the epoxidation reaction.
For more specific explanation, FIGS. 1 and 2 show the HPLC data of the product containing AEP. The three large peaks confirmed at about 31 minutes correspond to the AEP with n = 1 in the formula (I), and the three large peaks confirmed at around 35 minutes (shoulder peaks are visible but one Corresponds to an AEP in which n = 2. In FIG. 1, an impurity peak is observed in the vicinity of 32 to 34 minutes therebetween. The presence of this peak is undesirable because it adversely affects the subsequent epoxidation of AEP. On the other hand, in FIG. 2, a large peak is not observed in this range, which is preferable.
 また、本発明のエポキシ樹脂の製造方法に用いるAEPは、軟化点が120℃以下であることが好ましい。AEPの軟化点が120℃を超えると、溶剤への溶解が非常に困難であるため洗浄等によりAEPに含まれる塩を除くことが困難となり、特に電気信頼性の必要な分野においては、腐食の懸念から好ましくない。 The AEP used in the method for producing an epoxy resin of the present invention preferably has a softening point of 120 ° C. or lower. If the softening point of AEP exceeds 120 ° C, it will be very difficult to dissolve in a solvent, and it will be difficult to remove the salt contained in AEP by washing, etc., especially in fields where electrical reliability is required. Not preferred due to concerns.
(タングステン酸化合物)
 本発明のエポキシ樹脂の製造方法は、タングステン酸化合物の存在下で行う。本発明においてタングステン酸化合物は、水中でタングステン酸イオン(WO4 2-)を生成する化合物であれば特に限定されず、例えば、タングステン酸、三酸化タングステン、リンタングステン酸、タングステン酸アンモニウム、タングステン酸カリウム二水和物、タングステン酸ナトリウム二水和物などが挙げられる。これらの中でも、エポキシ基の生成率の向上の観点から、タングステン酸、三酸化タングステン、リンタングステン酸、タングステン酸ナトリウム二水和物が好ましい。これらタングステン酸化合物類は単独で使用しても、2種以上を併用してもよい。タングステン酸化合物の使用量は、エポキシ基の生成率の向上の観点から、式(I)で表される化合物1モル当たり、1×10-6~0.2モルが好ましく、0.0001~0.2モルがより好ましい。
(Tungstic acid compound)
The method for producing an epoxy resin of the present invention is performed in the presence of a tungstic acid compound. In the present invention, the tungstic acid compound is not particularly limited as long as it is a compound that generates tungstate ion (WO 4 2− ) in water. For example, tungstic acid, tungsten trioxide, phosphotungstic acid, ammonium tungstate, tungstic acid Examples include potassium dihydrate and sodium tungstate dihydrate. Among these, tungstic acid, tungsten trioxide, phosphotungstic acid, and sodium tungstate dihydrate are preferable from the viewpoint of improving the production rate of epoxy groups. These tungstic acid compounds may be used alone or in combination of two or more. The amount of the tungstic acid compound used is preferably 1 × 10 −6 to 0.2 mol per mol of the compound represented by the formula (I) from the viewpoint of improving the production rate of the epoxy group, and is 0.0001 to 0 More preferred is 2 moles.
(4級アンモニウム塩)
 本発明のエポキシ樹脂の製造方法は、4級アンモニウム塩の存在下で行う。本発明において4級アンモニウム塩は、相間移動触媒として働くものであれば特に限定されない。4級アンモニウム塩は、4級アンモニウムカチオンと、アニオンから構成される。
(Quaternary ammonium salt)
The method for producing the epoxy resin of the present invention is carried out in the presence of a quaternary ammonium salt. In the present invention, the quaternary ammonium salt is not particularly limited as long as it functions as a phase transfer catalyst. The quaternary ammonium salt is composed of a quaternary ammonium cation and an anion.
 4級アンモニウム塩を構成する4級アンモニウムカチオンとしては、特に限定されないが、トリデカニルメチルアンモニウムカチオン、ジラウリルジメチルアンモニウムカチオン、トリオクチルメチルアンモニウムカチオン、ジオクチルデカニルメチルアンモニウムカチオン、ジデカニルオクチルメチルアンモニウムカチオン、トリヘキサデシルメチルアンモニウムカチオン、トリメチルステアリルアンモニウムカチオン、テトラペンチルアンモニウムカチオン、セチルトリメチルアンモニウムカチオン、ベンジルトリブチルアンモニウムカチオン、ジセチルジメチルアンモニウムカチオン、トリセチルメチルアンモニウムカチオン、ジ硬化牛脂アルキルジメチルアンモニウムカチオンなどが挙げられる。 The quaternary ammonium cation constituting the quaternary ammonium salt is not particularly limited, but is tridecanylmethylammonium cation, dilauryldimethylammonium cation, trioctylmethylammonium cation, dioctyldecanylmethylammonium cation, didecanyloctylmethyl. Ammonium cation, trihexadecylmethylammonium cation, trimethylstearylammonium cation, tetrapentylammonium cation, cetyltrimethylammonium cation, benzyltributylammonium cation, dicetyldimethylammonium cation, tricetylmethylammonium cation, di-cured tallow alkyldimethylammonium cation, etc. Is mentioned.
 これらの中でも、疎水性と親水性のバランスを良好とするために、4級アンモニウムカチオン中の炭素数が16~100のものが好ましく、25~100のものがより好ましい。そして、該カチオンの窒素原子に結合する炭素鎖が脂肪族鎖であることが好ましい。4級アンモニウムカチオン中の炭素数が25~100であって、かつ窒素原子に結合する炭素鎖が脂肪族鎖である4級アンモニウムカチオンとしては、トリデカニルメチルアンモニウムカチオン、ジラウリルジメチルアンモニウムカチオン、トリオクチルメチルアンモニウムカチオン、ジオクチルデカニルメチルアンモニウムカチオン、ジデカニルオクチルメチルアンモニウムカチオン、トリヘキサデシルメチルアンモニウムカチオン、ジセチルジメチルアンモニウムカチオン、トリセチルメチルアンモニウムカチオン、などが挙げられる。また、上記窒素原子に結合する炭素鎖は、直鎖の脂肪族鎖であることが好ましい。 Among these, in order to improve the balance between hydrophobicity and hydrophilicity, those having 16 to 100 carbon atoms in the quaternary ammonium cation are preferable, and those having 25 to 100 are more preferable. And it is preferable that the carbon chain couple | bonded with the nitrogen atom of this cation is an aliphatic chain. Examples of the quaternary ammonium cation having 25 to 100 carbon atoms in the quaternary ammonium cation and the carbon chain bonded to the nitrogen atom being an aliphatic chain include tridecanylmethylammonium cation, dilauryldimethylammonium cation, Examples include trioctylmethylammonium cation, dioctyldecanylmethylammonium cation, didecanyloctylmethylammonium cation, trihexadecylmethylammonium cation, dicetyldimethylammonium cation, and tricetylmethylammonium cation. The carbon chain bonded to the nitrogen atom is preferably a straight aliphatic chain.
 4級アンモニウム塩を構成するアニオンとしては、特に限定されないが、ハロゲン化物イオン(塩化物イオン、臭化物イオン、ヨウ化物イオンなど)、硝酸イオン、硫酸イオン、硫酸メチルイオン、硫酸水素イオン、酢酸イオン、ギ酸イオン、炭酸イオン、などのアニオンが挙げられ、これらの中でも、エポキシ基の生成率の向上の観点から、硫酸イオン、硫酸メチルイオン、硫酸水素イオン、酢酸イオン、ギ酸イオン、炭酸イオンが好ましく、酢酸イオン、ギ酸イオン、炭酸イオン、硫酸メチルイオン、硫酸水素イオンが特に好ましい。 The anion constituting the quaternary ammonium salt is not particularly limited, but halide ion (chloride ion, bromide ion, iodide ion, etc.), nitrate ion, sulfate ion, methyl sulfate ion, hydrogen sulfate ion, acetate ion, Examples include anions such as formate ion and carbonate ion, and among these, sulfate ion, methyl sulfate ion, hydrogen sulfate ion, acetate ion, formate ion and carbonate ion are preferable from the viewpoint of improving the production rate of epoxy group. Particularly preferred are acetate ion, formate ion, carbonate ion, methyl sulfate ion, and hydrogen sulfate ion.
 即ち、本発明において使用する4級アンモニウム塩としては、上述した観点から、例えば、トリオクチルメチルアンモニウムアセテート(TOMAA)、トリオクチルメチルアンモニウム硫酸水素塩、トリオクチルメチルアンモニウム硫酸メチル塩、などが好ましい。 That is, the quaternary ammonium salt used in the present invention is preferably, for example, trioctylmethylammonium acetate (TOMAA), trioctylmethylammonium hydrogensulfate, or trioctylmethylammonium sulfate methyl salt from the above-mentioned viewpoint.
 4級アンモニウム塩の使用量は、エポキシ基の生成率の向上の観点から、式(I)で表される化合物1モル当たり、0.01~0.5モルが好ましく、0.05~0.3モルがより好ましい。 The amount of the quaternary ammonium salt used is preferably from 0.01 to 0.5 mol, preferably from 0.05 to 0.001 mol per mol of the compound represented by the formula (I), from the viewpoint of improving the production rate of the epoxy group. 3 moles is more preferred.
(陽イオン交換樹脂)
 本発明のエポキシ樹脂の製造方法は、陽イオン交換樹脂の存在下で行う。本発明の製造方法は、陽イオン交換樹脂の存在下で行うことで、エポキシ基の生成率を大幅に向上させることができる。これは、陽イオン交換樹脂の周囲では局所的にpHが低くなるため、強酸性において高い効率を示す炭素-炭素二重結合からエポキシ基への反応の反応性が特に高まるからであると推察される。また、反応系の水相全体のpHを低くし過ぎると、加水分解によりエポキシ基が分解され、エポキシ基の生成率が下がるというデメリットがあるが、陽イオン交換樹脂を使用する本発明の製造方法は、該樹脂の周囲に局所的に低pHの環境を作ることができ、上記のような低過ぎるpHによる生成したエポキシ基の水付加による分解およびエポキシ基どうしの重合などによる高分子量化を低減できる点において有利であると推察される。
(Cation exchange resin)
The method for producing an epoxy resin of the present invention is performed in the presence of a cation exchange resin. When the production method of the present invention is carried out in the presence of a cation exchange resin, the production rate of epoxy groups can be greatly improved. This is presumably because the pH is locally lowered around the cation exchange resin, and the reactivity of the reaction from a carbon-carbon double bond to an epoxy group, which exhibits high efficiency in strong acidity, is particularly increased. The Moreover, if the pH of the entire aqueous phase of the reaction system is too low, there is a demerit that the epoxy group is decomposed by hydrolysis and the production rate of the epoxy group is lowered, but the production method of the present invention using a cation exchange resin Can locally create a low pH environment around the resin, reducing the high molecular weight due to decomposition of the generated epoxy groups by water addition and polymerization of the epoxy groups due to too low pH as described above It is inferred that it is advantageous in that it can be done.
 本発明において陽イオン交換樹脂としては、強酸性陽イオン交換樹脂であっても、弱酸性陽イオン交換樹脂であってもよいが、エポキシ基の生成率の向上の観点から、強酸性陽イオン交換樹脂が好ましい。強酸性陽イオン交換樹脂としては、重合系のスチレンに少量のジビニルベンゼンを共重合させて三次元的網目構造をつくり、これにスルホン酸基(-SO3H)などの強酸性基を導入した多孔質タイプ(MR形)の陽イオン交換樹脂が挙げられる。
 本発明において使用可能な陽イオン交換樹脂の市販品としては、例えば、日本国内においてオルガノが販売するアンバーリスト(登録商標)15DRY、15JWET、16WET、31WET、35WET、A21等の強酸性タイプのイオン交換樹脂、日本国内において住化ケムテックスが販売するDUOLITE(登録商標)C20J、C20LF、C255LFH、C26A、C26TRH等の強酸性タイプのイオン交換樹脂、DUOLITE  C433LF、C476等の弱酸性タイプのイオン交換樹脂、三菱化学が製造販売するダイヤイオン(登録商標)SKシリーズ(ゲル型)、UBKシリーズ(ゲル型均一粒径)、PKシリーズ(ポーラス型)、HPK25・RCPシリーズ(ハイポーラス型)、クロマト分離用UBK500シリーズ、などが挙げられる。また、本発明の製造方法においては、陽イオン交換樹脂が反応系に含まれているため、式(I)で表される化合物と過酸化水素とを反応させる工程が、有機相、水相、固相(陽イオン交換樹脂)の三相系で行われることとなる。
In the present invention, the cation exchange resin may be a strong acid cation exchange resin or a weak acid cation exchange resin. From the viewpoint of improving the production rate of epoxy groups, a strong acid cation exchange resin may be used. Resins are preferred. As a strongly acidic cation exchange resin, a small amount of divinylbenzene is copolymerized with a polymerized styrene to form a three-dimensional network structure, and a strongly acidic group such as a sulfonic acid group (—SO 3 H) is introduced into this. A porous type (MR type) cation exchange resin may be mentioned.
Examples of commercially available cation exchange resins that can be used in the present invention include strongly acidic ion exchanges such as Amberlyst (registered trademark) 15DRY, 15JWET, 16WET, 31WET, 35WET, and A21 sold by Organo in Japan. Resin, DUOLITE (registered trademark) C20J, C20LF, C255LFH, C26A, C26TRH and other strongly acidic ion exchange resins sold by Sumika Chemtex in Japan, weakly acidic ion exchange resins such as DUOLITE C433LF and C476, Mitsubishi Diaion (registered trademark) SK series (gel type), UBK series (gel type uniform particle size), PK series (porous type), HPK25 / RCP series (high porous type), and UBK500 series for chromatographic separation , Etc. In the production method of the present invention, since a cation exchange resin is contained in the reaction system, the step of reacting the compound represented by the formula (I) with hydrogen peroxide includes an organic phase, an aqueous phase, It is performed in a three-phase system of a solid phase (cation exchange resin).
 陽イオン交換樹脂の使用量は、エポキシ基の生成率の向上の観点から、式(I)で表される化合物100質量部当たり、1~10質量部が好ましく、2~5質量部が好ましい。 The amount of the cation exchange resin used is preferably 1 to 10 parts by mass and preferably 2 to 5 parts by mass per 100 parts by mass of the compound represented by the formula (I) from the viewpoint of improving the production rate of the epoxy group.
(リン酸化合物)
 本発明のエポキシ樹脂の製造方法は、リン酸化合物の存在下で行う。リン酸化合物としては、水中でリン酸イオン(PO4 3-)を生成する化合物であれば特に限定されないが、例えば、リン酸、リン酸二水素アルカリ金属塩、リン酸二水素アルカリ土類金属塩、リン酸水素二アルカリ金属塩、リン酸水素二アルカリ土類金属塩、リン酸アルカリ金属塩、リン酸アルカリ土類金属塩、ポリリン酸、ポリリン酸アルカリ金属塩、ポリリン酸アルカリ土類金属塩、トリポリリン酸、トリポリリン酸アルカリ金属塩、トリポリリン酸アルカリ土類金属塩などが挙げられるが、これらの中でも、リン酸、リン酸水素二ナトリウム、リン酸二水素ナトリウム、リン酸ナトリウムなどの塩を含有する物が、入手が簡便であり好ましい。
(Phosphate compound)
The manufacturing method of the epoxy resin of this invention is performed in presence of a phosphoric acid compound. The phosphate compound is not particularly limited as long as it is a compound that generates phosphate ions (PO 4 3− ) in water. For example, phosphoric acid, alkali metal dihydrogen phosphate, alkaline earth metal dihydrogen phosphate Salt, hydrogen phosphate di-alkaline metal salt, hydrogen phosphate di-alkaline earth metal salt, alkali phosphate metal phosphate, alkaline earth metal phosphate, polyphosphoric acid, alkali metal polyphosphate, alkaline earth metal polyphosphate , Tripolyphosphoric acid, alkali metal tripolyphosphate, alkaline earth metal tripolyphosphate, etc. Among these, salts such as phosphoric acid, disodium hydrogen phosphate, sodium dihydrogen phosphate, sodium phosphate are included. The product to be obtained is preferable because it is easy to obtain.
 リン酸化合物の使用量は、エポキシ基の生成率の向上の観点から、式(I)で表される化合物1モル当たり、0.01~1.0モルが好ましく、0.05~0.5モルがより好ましい。 The amount of the phosphoric acid compound used is preferably 0.01 to 1.0 mol per mol of the compound represented by the formula (I) from the viewpoint of improving the production rate of the epoxy group, preferably 0.05 to 0.5 Mole is more preferred.
(過酸化水素)
 本発明の製造方法において、式(I)で表される化合物と反応させる過酸化水素は、特に限定されないが、通常水に溶解させて過酸化水素水として添加する。過酸化水素水中の過酸化水素の濃度は、特に限定されないが、取扱いの簡便さから過酸化水素濃度が10~40質量%の濃度であることが好ましい。また過酸化水素水の使用量は、特に限定されないが、過酸化水素の量が、式(I)で表される化合物のアリル基1モル当量に対して、0.3~10モル当量が好ましく、1~5モル当量がより好ましい。過酸化水素水の量が、式(I)で表される化合物のアリル基1モル当量に対して0.3モル当量以上であることで、エポキシ化を効率よく進めることができ、10モル当量以下であることで、生成するエポキシ基の加水分解を抑制することができる。
(hydrogen peroxide)
In the production method of the present invention, the hydrogen peroxide to be reacted with the compound represented by the formula (I) is not particularly limited, but it is usually dissolved in water and added as a hydrogen peroxide solution. The concentration of hydrogen peroxide in the hydrogen peroxide water is not particularly limited, but the hydrogen peroxide concentration is preferably 10 to 40% by mass for ease of handling. The amount of aqueous hydrogen peroxide used is not particularly limited, but the amount of hydrogen peroxide is preferably 0.3 to 10 molar equivalents relative to 1 molar equivalent of the allyl group of the compound represented by formula (I). More preferred is 1 to 5 molar equivalents. The amount of hydrogen peroxide solution is 0.3 molar equivalent or more with respect to 1 molar equivalent of the allyl group of the compound represented by the formula (I), so that epoxidation can be advanced efficiently and 10 molar equivalent. By being below, the hydrolysis of the epoxy group to produce | generate can be suppressed.
 本発明のエポキシ樹脂の製造方法は、特に限定されないが、式(I)で表される化合物が溶解可能なトルエン、キシレン、メシチレン、1,2-ジクロロベンゼン、トリクロロメタン、酢酸エチル、ジクロロエタンなどの有機溶媒に、上記式(I)で表される化合物、タングステン酸化合物、4級アンモニウムイオン塩と、陽イオン交換樹脂と、リン酸化合物を加えてから、その後、過酸化水素水を加えてエポキシ化反応を開始させることが好ましい。しかしながら、本発明の製造方法が、この添加順序に限定されることはなく、タングステン酸化合物と、4級アンモニウム塩と、陽イオン交換樹脂と、リン酸化合物との存在下であれば、式(I)で表される化合物のアリル基中の炭素-炭素二重結合の、エポキシ基への変換を効率よく行うことができる。 The production method of the epoxy resin of the present invention is not particularly limited, but toluene, xylene, mesitylene, 1,2-dichlorobenzene, trichloromethane, ethyl acetate, dichloroethane and the like in which the compound represented by the formula (I) can be dissolved. After adding a compound represented by the above formula (I), a tungstic acid compound, a quaternary ammonium ion salt, a cation exchange resin, and a phosphoric acid compound to an organic solvent, an aqueous hydrogen peroxide solution is added, followed by epoxy. It is preferable to initiate the reaction. However, the production method of the present invention is not limited to this addition order, and in the presence of a tungstic acid compound, a quaternary ammonium salt, a cation exchange resin, and a phosphoric acid compound, the formula ( Conversion of the carbon-carbon double bond in the allyl group of the compound represented by I) to an epoxy group can be performed efficiently.
 本発明のエポキシ樹脂の製造方法において、エポキシ化の際の反応温度は、特に限定されなないが、10~120℃であることが好ましく、25~100℃であることがより好ましい。10℃以上であることで、反応速度を好適なものとすることができ、120℃以下であることで、生成したエポキシ基の加水分解反応を抑制することができる。 In the method for producing an epoxy resin of the present invention, the reaction temperature during epoxidation is not particularly limited, but is preferably 10 to 120 ° C, and more preferably 25 to 100 ° C. By being 10 degreeC or more, reaction rate can be made suitable, and the hydrolysis reaction of the produced | generated epoxy group can be suppressed by being 120 degreeC or less.
 本発明のエポキシ樹脂の製造方法において、反応時間は、反応温度触媒などの量にもよるが、エポキシ化が十分に進行する時間を確保するため、及び、工業的に効率よく生産するため、所定量の過酸化水素水を添加後、1~48時間が好ましく、3~36時間がより好ましく、4~24時間が特に好ましい。 In the method for producing an epoxy resin of the present invention, the reaction time depends on the amount of the reaction temperature catalyst and the like, but in order to ensure a sufficient time for epoxidation to proceed and to produce industrially efficiently, After adding a fixed amount of hydrogen peroxide solution, it is preferably 1 to 48 hours, more preferably 3 to 36 hours, and particularly preferably 4 to 24 hours.
 反応終了後、過剰な過酸化水素のクエンチ処理を行う。過酸化水素のクエンチの手法としては、還元剤を使用する手法、塩基性化合物を使用する手法が挙げられ、本発明においては、その両方で行うことが好ましい。具体的には、塩基性化合物で水相のpH6~11に調整後、還元剤を添加し、過酸化水素をクエンチすることが好ましい。pHを6以上とすることで、還元する際の発熱を抑制し生成したエポキシ基の加水分解を防ぐことができ、pHを11以下とすることでも、生成したエポキシ基の加水分解を防ぐことができる。還元剤、塩基性化合物の種類、量については、特開2011-225711号公報に記載のものと同様のものをそれぞれ同様の範囲で使用することができる。 After the reaction, quench the excess hydrogen peroxide. Examples of the method for quenching hydrogen peroxide include a method using a reducing agent and a method using a basic compound. In the present invention, it is preferable to perform both of them. Specifically, it is preferable to quench the hydrogen peroxide by adding a reducing agent after adjusting the pH of the aqueous phase to 6 to 11 with a basic compound. By setting the pH to 6 or more, it is possible to prevent the generated epoxy group from being hydrolyzed by suppressing heat generation during the reduction, and even to set the pH to 11 or less can prevent hydrolysis of the generated epoxy group. it can. About the kind and quantity of a reducing agent and a basic compound, the thing similar to what is described in Unexamined-Japanese-Patent No. 2011-225711 can be used in the same range, respectively.
 次に、過酸化水素のクエンチ処理後、有機相と、水相及び固相(陽イオン交換樹脂)とを分離する。この際、有機相と水相とが上手く分離しない場合は、反応に使用した有機溶媒をさらに添加して、水相より反応生成物の抽出を行う。また、固形分は濾過、デカンテーション、遠心分離等の手法によって分離する。分離した有機相を、必要に応じて水洗して精製する。なお、この分離操作は、上記過酸化水素のクエンチ処理前に行ってもよい。 Next, after quenching with hydrogen peroxide, the organic phase is separated from the aqueous phase and solid phase (cation exchange resin). At this time, if the organic phase and the aqueous phase do not separate well, the organic solvent used for the reaction is further added, and the reaction product is extracted from the aqueous phase. Moreover, solid content is isolate | separated by methods, such as filtration, a decantation, and centrifugation. The separated organic phase is purified by washing with water as necessary. The separation operation may be performed before the hydrogen peroxide quenching process.
 得られた有機相は、複合金属塩、活性炭、粘土鉱物、フェノール-ホルムアルデヒド系樹脂、金属酸化物などの公知の処理剤により、不純物(例えば残存する4級アンモニウム塩)を除去し、必要に応じてさらに水洗、ろ過などを行った後、溶剤を留去することで、目的とするエポキシ樹脂が得られる。複合金属塩、活性炭、粘土鉱物、フェノール-ホルムアルデヒド系樹脂としては、例えば特開2011-225711号公報に記載のものを使用することができる。これら処理剤による精製を行うことで、蒸留などによる精製工程を減らすことができ、高い収率で目的のエポキシ樹脂を取り出すことができる。 From the obtained organic phase, impurities (for example, residual quaternary ammonium salt) are removed by a known treating agent such as composite metal salt, activated carbon, clay mineral, phenol-formaldehyde resin, metal oxide, and the like. After further washing with water, filtration and the like, the target epoxy resin is obtained by distilling off the solvent. As the composite metal salt, activated carbon, clay mineral, and phenol-formaldehyde resin, for example, those described in JP-A-2011-225711 can be used. By performing purification with these treatment agents, the purification step by distillation or the like can be reduced, and the target epoxy resin can be taken out with high yield.
 上記本発明のエポキシ樹脂の製造方法を用いることで、式(I)で表される化合物のアリル基の炭素-炭素二重結合を効率よくエポキシ基に変換することができる。言い換えると、本発明のエポキシ樹脂の製造方法によれば、式(I)で表される化合物中のアリル基の炭素-炭素二重結合を高い転化率で反応させることができ、エポキシ基への選択率も高く、即ち、高い生成率でエポキシ基を得ることができる。 By using the method for producing an epoxy resin of the present invention, the carbon-carbon double bond of the allyl group of the compound represented by the formula (I) can be efficiently converted into an epoxy group. In other words, according to the method for producing an epoxy resin of the present invention, the carbon-carbon double bond of the allyl group in the compound represented by the formula (I) can be reacted at a high conversion rate. The selectivity is high, that is, an epoxy group can be obtained with a high production rate.
<エポキシ樹脂>
 本発明のエポキシ樹脂は、上記本発明のエポキシ樹脂の製造方法により得ることができるものであり、下記式(II):
<Epoxy resin>
The epoxy resin of the present invention can be obtained by the method for producing the epoxy resin of the present invention, and has the following formula (II):
Figure JPOXMLDOC01-appb-C000007
の繰り返し単位及び、下記式(III):
Figure JPOXMLDOC01-appb-C000007
A repeating unit of the following formula (III):
Figure JPOXMLDOC01-appb-C000008
の繰り返し単位を含み、
1分子内のアリル基の数の平均値Lと、1分子内のエポキシ基の数の平均値Mが0<L/M≦0.1の関係を満たすエポキシ樹脂である。
Figure JPOXMLDOC01-appb-C000008
Containing repeating units of
It is an epoxy resin in which the average value L of the number of allyl groups in one molecule and the average value M of the number of epoxy groups in one molecule satisfy the relationship of 0 <L / M ≦ 0.1.
 1分子内のアリル基の数の平均値Lと、1分子内のエポキシ基の数の平均値Mは、1H-NMR測定により決定することができる。また、L、M、及びL/Mは、上述の本発明のエポキシ樹脂の製造方法の評価の際に使用する転化率(%)、生成率(%)と以下の関係を有する。 The average value L of the number of allyl groups in one molecule and the average value M of the number of epoxy groups in one molecule can be determined by 1 H-NMR measurement. L, M, and L / M have the following relationship with the conversion rate (%) and the generation rate (%) used in the evaluation of the above-described method for producing the epoxy resin of the present invention.
L=(100-転化率/100)×(n+1)
M=(生成率/100)×(n+1)
L/M=(100-転化率)/生成率)
 なお、上記式中nは、上述の本発明のエポキシ樹脂の製造方法において原料として用いられる式(I)で表される化合物の繰り返し数の平均値である。
L = (100−conversion / 100) × (n + 1)
M = (Production rate / 100) × (n + 1)
L / M = (100-conversion rate) / production rate)
In the above formula, n is an average value of the number of repetitions of the compound represented by formula (I) used as a raw material in the above-described method for producing an epoxy resin of the present invention.
 本発明のエポキシ樹脂は、上述の本発明のエポキシ樹脂の製造方法により得られるものであるため、1分子内の全繰り返し単位の数の平均値(n)は、1~20であり、1~10であることが好ましく、2~8であることがより好ましく、2~4であることが特に好ましい。そして、1分子内の式(II)の繰り返し単位の数の平均値(o)と1分子内の式(III)の繰り返し単位の数の平均値(p)を足した値はnとなることが好ましい。このような場合、本発明のエポキシ樹脂の繰り返し単位は、上記式(II)の繰り返し単位と上記式(III)の繰り返し単位のみから構成されることとなる。また、1分子内の式(II)の繰り返し単位の数の平均値(o)は、1分子内の全繰り返し単位の数の平均値(n)に対して80%以上100%未満であることが好ましく、1分子内の式(III)の繰り返し単位の数の平均値(p)は、1分子内の全繰り返し単位の数の平均値(n)に対して0%超20%未満であることが好ましい。 Since the epoxy resin of the present invention is obtained by the above-described method for producing the epoxy resin of the present invention, the average value (n) of the number of all repeating units in one molecule is 1 to 20, It is preferably 10, more preferably 2 to 8, and particularly preferably 2 to 4. The value obtained by adding the average value (o) of the number of repeating units of formula (II) in one molecule and the average value (p) of the number of repeating units of formula (III) in one molecule is n. Is preferred. In such a case, the repeating unit of the epoxy resin of the present invention is composed only of the repeating unit of the above formula (II) and the repeating unit of the above formula (III). Moreover, the average value (o) of the number of repeating units of the formula (II) in one molecule is 80% or more and less than 100% with respect to the average value (n) of the number of all repeating units in one molecule. The average value (p) of the number of repeating units of formula (III) in one molecule is more than 0% and less than 20% with respect to the average value (n) of all repeating units in one molecule. It is preferable.
 本発明のエポキシ樹脂の末端は、水素原子、以下の式(IV)、又は、式(V)の構造を有することが好ましく、式(II)又は式(III)の繰り返し単位の隣にエポキシ樹脂の末端が存在する場合は、ベンゼン環側の末端は水素原子であることが好ましく、メチレン基(-CH2-)側の末端は、以下の式(IV)又は式(V)の構造を有することが好ましい。 The terminal of the epoxy resin of the present invention preferably has a hydrogen atom, the structure of the following formula (IV) or formula (V), and the epoxy resin is adjacent to the repeating unit of formula (II) or formula (III). Is present, the benzene ring side terminal is preferably a hydrogen atom, and the methylene group (—CH 2 —) side terminal has a structure of the following formula (IV) or formula (V): It is preferable.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 本発明のエポキシ樹脂は、難燃性に優れているため、難燃剤としてハロゲンを添加させることなく難燃性を発現できうる組成物を製造でき、環境に対する付加が少ない。かつ、その疎水性の高さから、多少塩素等のイオンが含まれてもそれらの移動を抑制することができ、高い電気信頼性を有しており、電気電子部品材料として有用である。 Since the epoxy resin of the present invention is excellent in flame retardancy, it can produce a composition that can exhibit flame retardancy without adding halogen as a flame retardant, and has little addition to the environment. In addition, due to its high hydrophobicity, even if ions such as chlorine are contained, their movement can be suppressed, and it has high electrical reliability and is useful as an electrical / electronic component material.
<硬化性樹脂組成物>
 本発明の硬化性樹脂組成物は、前記エポキシ樹脂と硬化剤を含有してなる。本発明の硬化性樹脂組成物に使用する硬化剤としては、例えば、アミン系化合物、酸無水物系化合物、アミド系化合物、フェノール系化合物など公知の硬化剤を使用することができ、これらの具体例としては、国際公開第2006/090662号に記載のものが挙げられる。
<Curable resin composition>
The curable resin composition of the present invention contains the epoxy resin and a curing agent. As the curing agent used in the curable resin composition of the present invention, for example, known curing agents such as amine compounds, acid anhydride compounds, amide compounds, and phenol compounds can be used. Examples thereof include those described in International Publication No. 2006/090662.
 本発明の硬化性樹脂組成物において、硬化剤の使用量は、本発明のエポキシ樹脂のエポキシ基1モル当量に対して0.5~1.5モル当量が好ましく、0.6~1.2モル当量が特に好ましい。硬化剤の使用量が上記の範囲であることで、良好な硬化物性を得ることができる。 In the curable resin composition of the present invention, the amount of the curing agent used is preferably 0.5 to 1.5 molar equivalents relative to 1 molar equivalent of the epoxy group of the epoxy resin of the present invention, and preferably 0.6 to 1.2. A molar equivalent is particularly preferred. Good hardened | cured material properties can be obtained because the usage-amount of a hardening | curing agent is said range.
 本発明の硬化性樹脂組成物は、例えば、国際公開第2006/090662号に記載された、公知の、硬化促進剤、無機充填剤、シランカップリング剤、離型剤、顔料などの種々の配合剤、各種熱硬化性樹脂、その他添加剤を適宜含有してもよい。本発明の硬化性樹脂組成物は、上記各成分を均一に混合することにより得られる。本発明の硬化性樹脂組成物は、例えば、接着剤、塗料、コーティング剤など各種の用途に使用することができる。 The curable resin composition of the present invention includes, for example, various blends of known curing accelerators, inorganic fillers, silane coupling agents, release agents, pigments and the like described in International Publication No. 2006/090662. An agent, various thermosetting resins, and other additives may be appropriately contained. The curable resin composition of the present invention can be obtained by uniformly mixing the above components. The curable resin composition of this invention can be used for various uses, such as an adhesive agent, a coating material, and a coating agent, for example.
<硬化物>
 本発明の硬化物は、上記本発明の硬化性樹脂組成物を硬化することにより得られる。硬化の方法としては、公知の方法を用いることができ、硬化により得られた本発明の硬化物は、例えば、プリント基板の絶縁材料や半導体の封止剤などの各種の用途に使用することができる。
<Hardened product>
The cured product of the present invention is obtained by curing the curable resin composition of the present invention. As a curing method, a known method can be used, and the cured product of the present invention obtained by curing can be used for various applications such as an insulating material for printed circuit boards and a semiconductor sealant. it can.
 以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、実施例、比較例において、転化率、選択率、生成率、及び、L/Mは、以下の手法により求めた。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. In Examples and Comparative Examples, the conversion rate, selectivity, production rate, and L / M were determined by the following methods.
<転化率、選択率、生成率>
 転化率、選択率、生成率は、1H-NMR測定(溶媒:CDCl3、内標準物質:ナフタレン)により、得られたデータをもとに以下の式により計算した。計算した各々の値の少数第一位を四捨五入して、それぞれ転化率、選択率、生成率とした。
<Conversion rate, selectivity, production rate>
The conversion rate, selectivity and production rate were calculated by 1 H-NMR measurement (solvent: CDCl 3 , internal standard substance: naphthalene) according to the following formula based on the obtained data. The first decimal place of each calculated value was rounded off to obtain the conversion rate, selectivity, and production rate, respectively.
・転化率(%)=(1-得られたエポキシ樹脂1分子内に残存するアリル基の数の平均値/反応前のAEP1分子内のアリル基の数の平均値)×100
・選択率(%)={得られたエポキシ樹脂1分子内に存在するエポキシ基の数の平均値/(反応前のAEP1分子内のアリル基の数の平均値-得られたエポキシ樹脂1分子内に残存するアリル基の数の平均値)}×100
・生成率(%)=転化率×選択率/100
Conversion (%) = (1−average number of allyl groups remaining in one molecule of the obtained epoxy resin / average number of allyl groups in one AEP molecule before reaction) × 100
Selectivity (%) = {average value of the number of epoxy groups present in one molecule of the obtained epoxy resin / (average value of the number of allyl groups in one molecule of the AEP before the reaction−one molecule of the obtained epoxy resin) Average value of the number of allyl groups remaining therein}} × 100
Production rate (%) = conversion rate × selectivity / 100
<L/M>
 上記1H-NMR測定により得られた「得られたエポキシ樹脂1分子内に残存するアリル基の数の平均値」(即ち、L)を「得られたエポキシ樹脂1分子内に存在するエポキシ基の数の平均値」(即ち、M)で除して求めた。
<L / M>
The “average value of the number of allyl groups remaining in one molecule of the obtained epoxy resin” (that is, L) obtained by the above 1 H-NMR measurement is expressed as “the epoxy group present in one molecule of the obtained epoxy resin”. It was obtained by dividing by the “average value of the numbers” (ie, M).
[AEPの合成]
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら水40質量部、ジメチルスルホキシド400質量部、フェノール樹脂(フェノール-ビフェニレン型 水酸基当量210g/eq.軟化点74℃)210質量部を加え、45℃に昇温し溶解させた。次いで38~40℃に冷却、そのままフレーク状の苛性ソーダ(純度 99%  東ソー製)44.4質量部(フェノール樹脂の水酸基1モル当量に対し、1.1モル当量)を60分かけて添加した。その後、さらにアリルクロライド(純度98.7%  市販のアリルクロライドを蒸留生成により分離。アリルクロライドポリマーが0.2面積%未満であることをガスクロマトグラフィーにより確認)101.5質量部(フェノール樹脂の水酸基1モル当量に対し、1.3モル当量)を60分かけて滴下し、そのまま38~40℃で5時間、60~65℃で1時間反応を行った。
 反応終了後、ロータリーエバポレータにて135℃以下で加熱減圧下、水やジメチルスルホキシド等を留去した。そして、メチルイソブチルケトン740質量部を加え、水洗を繰り返し、水層が中性になったことを確認した。その後油層からロータリーエバポレータを用いて、減圧下、窒素バブリングしながら溶剤類を留去することで、n=2.4である式(I)のAEP240質量部を得た。得られたAEPの高速液体クロマトグラフィー(HPLC)の測定結果は、上述の図2に相当する。
[Synthesis of AEP]
A flask equipped with a stirrer, a reflux condenser, and a stirrer was charged with 40 parts by mass of water, 400 parts by mass of dimethyl sulfoxide, phenol resin (phenol-biphenylene type hydroxyl equivalent 210 g / eq. Softening point 74 ° C.) 210 while purging with nitrogen. Mass parts were added, and the mixture was heated to 45 ° C. and dissolved. Next, the mixture was cooled to 38 to 40 ° C., and 44.4 parts by mass of flake caustic soda (purity: 99%, manufactured by Tosoh Corp.) (1.1 molar equivalents relative to 1 molar equivalent of the hydroxyl group of the phenol resin) was added over 60 minutes. Thereafter, further allyl chloride (purity 98.7% commercially available allyl chloride was separated by distillation. Gas chromatography confirmed that the allyl chloride polymer was less than 0.2 area%) 101.5 parts by mass (of phenol resin) 1.3 mole equivalents per 1 mole equivalent of hydroxyl group) was added dropwise over 60 minutes, and the reaction was carried out at 38 to 40 ° C. for 5 hours and then at 60 to 65 ° C. for 1 hour.
After completion of the reaction, water, dimethyl sulfoxide and the like were distilled off under reduced pressure by heating at 135 ° C. or lower using a rotary evaporator. And 740 mass parts of methyl isobutyl ketone was added, and water washing was repeated, and it confirmed that the water layer became neutral. Thereafter, the solvent was distilled off from the oil layer using a rotary evaporator under nitrogen bubbling under reduced pressure to obtain 240 parts by mass of AEP having the formula (I) where n = 2.4. The measurement result of the obtained AEP by high performance liquid chromatography (HPLC) corresponds to FIG. 2 described above.
[実施例1]
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら、上記合成したAEPを含むトルエン溶液(AEPの濃度:15質量%)を投入し、さらにAEP1モル部当たり、タングステン酸化合物としてのタングステン酸ナトリウム2水和物を0.16モル部、4級アンモニウム塩としてのトリオクチルメチルアンモニウムアセテート(TOMAA)を0.08モル部、リン酸化合物としてのリン酸を0.1モル部(85%リン酸水溶液)、そして、AEP100質量部当たり陽イオン交換樹脂としてのアンバーリスト35WET(オルガノより購入)を2.7質量部投入し、この混合液を90℃に昇温した。昇温後、攪拌しながら、30%過酸化水素水溶液を、AEP中のアリル基1モル当量に対し、過酸化水素が3モル当量となる量を20分間かけて添加した。添加終了後、そのまま90℃で2時間攪拌した。
 ついでチオ硫酸ナトリウム水溶液でクエンチし、水相を分離することでエポキシ樹脂を含む溶液を得た。1H-NMRで確認したところ、転化率は94%、選択率は98%、生成率は92%であった。
[Example 1]
To a flask equipped with a stirrer, a reflux condenser, and a stirrer, while purging with nitrogen, the toluene solution containing the synthesized AEP (concentration of AEP: 15% by mass) was charged, and tungstic acid per mol of AEP. 0.16 mol part of sodium tungstate dihydrate as a compound, 0.08 mol part of trioctylmethylammonium acetate (TOMAA) as a quaternary ammonium salt, 0.1 mol of phosphoric acid as a phosphate compound 2.7 parts by mass (85% phosphoric acid aqueous solution) and Amberlyst 35 WET (purchased from Organo) as a cation exchange resin per 100 parts by mass of AEP were added, and the mixture was heated to 90 ° C. After the temperature rise, with stirring, a 30% aqueous hydrogen peroxide solution was added over 20 minutes so that hydrogen peroxide was 3 molar equivalents relative to 1 molar equivalent of allyl groups in AEP. After completion of the addition, the mixture was stirred at 90 ° C. for 2 hours.
Subsequently, it was quenched with an aqueous sodium thiosulfate solution, and the aqueous phase was separated to obtain a solution containing an epoxy resin. As confirmed by 1 H-NMR, the conversion was 94%, the selectivity was 98%, and the production rate was 92%.
[実施例2]
 過酸化水素水添加終了後の反応時間を2.5時間とした以外は実施例1と同様の操作でエポキシ樹脂を得た。転化率は96%、選択率は96%、生成率は92%であった。
[Example 2]
An epoxy resin was obtained in the same manner as in Example 1 except that the reaction time after the addition of hydrogen peroxide solution was 2.5 hours. The conversion was 96%, the selectivity was 96%, and the production rate was 92%.
[実施例3]
 陽イオン交換樹脂としてのアンバーリスト35WETの量をAEP100質量部当たり3.0質量部とした以外は、実施例1と同様の操作でエポキシ樹脂を得た。転化率は97%、選択率は86%、生成率は83%であった。
[Example 3]
An epoxy resin was obtained in the same manner as in Example 1 except that the amount of Amberlyst 35 WET as the cation exchange resin was changed to 3.0 parts by mass per 100 parts by mass of AEP. The conversion was 97%, the selectivity was 86%, and the production rate was 83%.
[実施例4]
 陽イオン交換樹脂としてのアンバーリスト35WETの量をAEP100質量部当たり3.5質量部とした以外は、実施例1と同様の操作でエポキシ樹脂を得た。転化率は100%、選択率は71%、生成率は71%であった。
[Example 4]
An epoxy resin was obtained in the same manner as in Example 1 except that the amount of Amberlyst 35 WET as the cation exchange resin was 3.5 parts by mass per 100 parts by mass of AEP. The conversion was 100%, the selectivity was 71%, and the production rate was 71%.
[比較例1]
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら、上記合成したAEPを含むトルエン溶液(AEPの濃度:10質量%)を投入し、さらにAEP1モル部当たり、タングステン酸化合物としてのタングステン酸ナトリウム2水和物を0.02モル部、4級アンモニウム塩としてのトリオクチルメチルアンモニウムクロライド(TOMACl)を0.01モル部、および、リン酸化合物としてのリン酸を0.26モル部(85%リン酸水溶液)投入し、この混合液を90℃に昇温した。なお、陽イオン交換樹脂は使用しなかった。昇温後、攪拌しながら、30%過酸化水素水溶液を、AEP中のアリル基1モル当量に対し過酸化水素が1モル当量となる量を、30分間かけて添加した。添加終了後、そのまま90℃で3時間攪拌した。
 ついでチオ硫酸ナトリウム水溶液でクエンチし、水相を分離することでエポキシ樹脂を含む溶液を得た。1H-NMRで確認したところ、転化率は40%、選択率72%、生成率は29%であった。
[Comparative Example 1]
To a flask equipped with a stirrer, a reflux condenser, and a stirrer, while purging with nitrogen, the toluene solution containing the synthesized AEP (AEP concentration: 10% by mass) was charged, and tungstic acid per mole of AEP. 0.02 mol part of sodium tungstate dihydrate as a compound, 0.01 mol part of trioctylmethylammonium chloride (TOMACl) as a quaternary ammonium salt, and 0.02 mol of phosphoric acid as a phosphate compound. 26 mol part (85% phosphoric acid aqueous solution) was added, and the temperature of the mixture was increased to 90 ° C. Cation exchange resin was not used. After the temperature rise, with stirring, a 30% aqueous hydrogen peroxide solution was added over 30 minutes in such an amount that hydrogen peroxide was 1 molar equivalent to 1 molar equivalent of allyl group in AEP. After completion of the addition, the mixture was stirred at 90 ° C. for 3 hours.
Subsequently, it was quenched with an aqueous sodium thiosulfate solution, and the aqueous phase was separated to obtain a solution containing an epoxy resin. When confirmed by 1 H-NMR, the conversion was 40%, the selectivity was 72%, and the production rate was 29%.
[比較例2]
 AEPのトルエン溶液の濃度を5質量%にした以外(AEP自体の投入量は比較例1と同じ)は、比較例1と同様の操作でエポキシ樹脂を得た。転化率は29%、選択率は66%、生成率は19%であった。
[Comparative Example 2]
An epoxy resin was obtained in the same manner as in Comparative Example 1 except that the concentration of the AEP toluene solution was changed to 5% by mass (the amount of AEP itself charged was the same as in Comparative Example 1). The conversion was 29%, the selectivity was 66%, and the production rate was 19%.
[比較例3]
 AEPのトルエン溶液の濃度を15質量%にした以外(AEP自体の投入量は比較例1と同じ)は、比較例1と同様の操作でエポキシ樹脂を得た。転化率は55%、選択率は60%、生成率は32%であった。
[Comparative Example 3]
An epoxy resin was obtained in the same manner as in Comparative Example 1, except that the concentration of the toluene solution of AEP was 15% by mass (the amount of AEP itself input was the same as in Comparative Example 1). The conversion was 55%, the selectivity was 60%, and the production rate was 32%.
[比較例4]
 AEPのトルエン溶液の濃度を20質量%にした以外(AEP自体の投入量は比較例1と同じ)は、比較例1と同様の操作でエポキシ樹脂を得た。転化率は50%、選択率は54%、生成率は27%であった。
[Comparative Example 4]
An epoxy resin was obtained in the same manner as in Comparative Example 1, except that the concentration of the toluene solution of AEP was 20% by mass (the amount of AEP itself input was the same as in Comparative Example 1). The conversion was 50%, the selectivity was 54%, and the production rate was 27%.
[比較例5]
 AEPを1,2-ジクロロベンゼン溶液(AEPの濃度:10質量%、AEP自体の投入量は比較例1と同じ)にした以外は、比較例1と同様の操作でエポキシ樹脂を得た。転化率は45%、選択率は32%、生成率は15%であった。
[Comparative Example 5]
An epoxy resin was obtained in the same manner as in Comparative Example 1 except that the AEP was changed to a 1,2-dichlorobenzene solution (AEP concentration: 10% by mass, the amount of AEP itself charged was the same as in Comparative Example 1). The conversion was 45%, the selectivity was 32%, and the production rate was 15%.
[比較例6]
 AEPをトリクロロメタン溶液(AEPの濃度:10質量%、AEP自体の投入量は比較例1と同じ)にし、反応温度を60℃とした以外は、比較例1と同様の操作でエポキシ樹脂を得た。転化率は24%、選択率は75%、生成率は18%であった。
[Comparative Example 6]
An epoxy resin was obtained in the same manner as in Comparative Example 1 except that the AEP was changed to a trichloromethane solution (AEP concentration: 10% by mass, and the input amount of AEP itself was the same as in Comparative Example 1), and the reaction temperature was 60 ° C. It was. The conversion was 24%, the selectivity was 75%, and the production rate was 18%.
[比較例7]
 AEPをジクロロエタン溶液(AEPの濃度:10質量%、AEP自体の投入量は比較例1と同じ)にし、反応温度を60℃とした以外は、比較例1と同様の操作でエポキシ樹脂を得た。転化率は13%、選択率は72%、生成率は9%であった。
[Comparative Example 7]
An epoxy resin was obtained in the same manner as in Comparative Example 1 except that the AEP was changed to a dichloroethane solution (AEP concentration: 10% by mass, the input amount of AEP itself was the same as in Comparative Example 1), and the reaction temperature was 60 ° C. . The conversion was 13%, the selectivity was 72%, and the production rate was 9%.
[比較例8]
 AEPをジクロロエタン溶液(AEPの濃度:10質量%、AEP自体の投入量は比較例1と同じ)にした以外は、比較例1と同様の操作でエポキシ樹脂を得た。転化率は25%、選択率は69%、生成率は17%であった。
[Comparative Example 8]
An epoxy resin was obtained in the same manner as in Comparative Example 1 except that the AEP was changed to a dichloroethane solution (AEP concentration: 10% by mass, the amount of AEP itself charged was the same as in Comparative Example 1). The conversion was 25%, the selectivity was 69%, and the production rate was 17%.
[比較例9]
 AEPをジクロロエタン溶液(AEPの濃度:10質量%、AEP自体の投入量は比較例1と同じ)にし、反応温度を80℃とし、過酸化水素水添加終了後の反応時間を24時間とした以外は、比較例1と同様の操作でエポキシ樹脂を得た。転化率は38%、選択率は46%、生成率は17%であった。
[Comparative Example 9]
AEP was changed to a dichloroethane solution (AEP concentration: 10% by mass, the input amount of AEP itself was the same as in Comparative Example 1), the reaction temperature was set to 80 ° C., and the reaction time after the addition of hydrogen peroxide solution was set to 24 hours. Obtained an epoxy resin in the same manner as in Comparative Example 1. The conversion was 38%, the selectivity was 46%, and the production rate was 17%.
[比較例10]
 AEPを酢酸エチル溶液(AEPの濃度:10質量%、AEP自体の投入量は比較例1と同じ)にし、反応温度を60℃とした以外は、比較例1と同様の操作でエポキシ樹脂を得た。転化率は14%、選択率は27%、生成率は4%であった。
[Comparative Example 10]
An epoxy resin was obtained in the same manner as in Comparative Example 1 except that the AEP was changed to an ethyl acetate solution (AEP concentration: 10% by mass, the amount of AEP itself charged was the same as in Comparative Example 1), and the reaction temperature was 60 ° C. It was. The conversion was 14%, the selectivity was 27%, and the production rate was 4%.
 結果を以下の表1、2にまとめた。 The results are summarized in Tables 1 and 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1の結果からわかるように、実施例1~4はエポキシ基の生成率が70%以上であり、比較例1~10に比して高い値を示した。実施例1~3は生成率が80%以上であり、特に高い値を示した。比較例1~10は、陽イオン交換樹脂を用いておらず、特に転化率、生成率が低かった。
 また、実施例1~3において得られたエポキシ樹脂は、L/Mの値が0を超えて0.1以下であり、エポキシ基とアリル基を両方含有し、かつエポキシ基がアリル基に比して10倍以上多く、エポキシ樹脂として有用であることがわかる。一方比較例1~10において得られたエポキシ樹脂は、L/Mの値が0.1を大幅に超えており、エポキシ基とアリル基を両方含有するが、エポキシ基の占める比率が十分ではないことがわかる。
As can be seen from the results in Table 1, Examples 1 to 4 had an epoxy group production rate of 70% or more, which was higher than that of Comparative Examples 1 to 10. In Examples 1 to 3, the production rate was 80% or more, which was a particularly high value. Comparative Examples 1 to 10 did not use a cation exchange resin, and the conversion and production rate were particularly low.
In addition, the epoxy resins obtained in Examples 1 to 3 have an L / M value exceeding 0 and 0.1 or less, containing both an epoxy group and an allyl group, and the epoxy group is compared to the allyl group. As a result, it is found that it is more than 10 times more useful as an epoxy resin. On the other hand, the epoxy resins obtained in Comparative Examples 1 to 10 have an L / M value significantly exceeding 0.1 and contain both an epoxy group and an allyl group, but the ratio of the epoxy group is not sufficient. I understand that.

Claims (6)

  1.  タングステン酸化合物と、4級アンモニウム塩と、陽イオン交換樹脂と、リン酸化合物との存在下、下記式(I):
    Figure JPOXMLDOC01-appb-C000011
    (式中、nは1~20の繰り返し数の平均値を表す)
    で表される化合物と過酸化水素とを反応させる工程を備えることを特徴とするエポキシ樹脂の製造方法。
    In the presence of a tungstic acid compound, a quaternary ammonium salt, a cation exchange resin, and a phosphoric acid compound, the following formula (I):
    Figure JPOXMLDOC01-appb-C000011
    (In the formula, n represents an average value of the number of repetitions of 1 to 20)
    A process for producing an epoxy resin, comprising a step of reacting a compound represented by formula (II) with hydrogen peroxide.
  2.  陽イオン交換樹脂の使用量が、前記式(I)で表される化合物100質量部当たり、1~10質量部であることを特徴とする請求項1に記載のエポキシ樹脂の製造方法。 The method for producing an epoxy resin according to claim 1, wherein the amount of the cation exchange resin used is 1 to 10 parts by mass per 100 parts by mass of the compound represented by the formula (I).
  3.  前記式(I)で表される化合物と過酸化水素とを反応させる工程が、有機相、水相、固相の三相系で行われることを特徴とする請求項1又は2に記載のエポキシ樹脂の製造方法。 The epoxy according to claim 1 or 2, wherein the step of reacting the compound represented by the formula (I) with hydrogen peroxide is performed in a three-phase system of an organic phase, an aqueous phase, and a solid phase. Manufacturing method of resin.
  4.  下記式(II):
    Figure JPOXMLDOC01-appb-C000012
    及び、下記式(III):
    Figure JPOXMLDOC01-appb-C000013
    の繰り返し単位を含み、
    1分子内のアリル基の数の平均値Lと、1分子内のエポキシ基の数の平均値Mが0<L/M≦0.1の関係を満たすエポキシ樹脂。
    Formula (II) below:
    Figure JPOXMLDOC01-appb-C000012
    And the following formula (III):
    Figure JPOXMLDOC01-appb-C000013
    Containing repeating units of
    An epoxy resin in which the average value L of the number of allyl groups in one molecule and the average value M of the number of epoxy groups in one molecule satisfy a relationship of 0 <L / M ≦ 0.1.
  5.  請求項4に記載のエポキシ樹脂と、硬化剤とを含有してなる硬化性樹脂組成物。 A curable resin composition comprising the epoxy resin according to claim 4 and a curing agent.
  6.  請求項5に記載の硬化性樹脂組成物を硬化してなる硬化物。 A cured product obtained by curing the curable resin composition according to claim 5.
PCT/JP2014/005115 2013-10-09 2014-10-07 Method for producing epoxy resin, epoxy resin, curable resin composition, and cured product WO2015052925A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015541440A JP6440207B2 (en) 2013-10-09 2014-10-07 Epoxy resin production method, epoxy resin, curable resin composition, and cured product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013212283 2013-10-09
JP2013-212283 2013-10-09

Publications (1)

Publication Number Publication Date
WO2015052925A1 true WO2015052925A1 (en) 2015-04-16

Family

ID=52812755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005115 WO2015052925A1 (en) 2013-10-09 2014-10-07 Method for producing epoxy resin, epoxy resin, curable resin composition, and cured product

Country Status (3)

Country Link
JP (1) JP6440207B2 (en)
TW (1) TWI621636B (en)
WO (1) WO2015052925A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6951829B1 (en) * 2019-11-19 2021-10-20 日本化薬株式会社 Compounds, mixtures, curable resin compositions and cured products thereof, and methods for producing compounds.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247193A (en) * 1991-03-29 1993-09-24 New Japan Chem Co Ltd Epoxidized polyester and its production
JP2003238244A (en) * 2002-02-21 2003-08-27 Murata Mfg Co Ltd Dielectric porcelain for high frequency, dielectric resonator, dielectric filter, dielectric duplexer and communication device
WO2011019061A1 (en) * 2009-08-13 2011-02-17 昭和電工株式会社 Method for producing polyglycidyl ether compound
JP2012024654A (en) * 2010-07-20 2012-02-09 Nippon Kayaku Co Ltd Method for producing polyacid-supporting catalyst
JP2012211240A (en) * 2011-03-31 2012-11-01 Showa Denko Kk Method of manufacturing epoxy compound
WO2014123051A1 (en) * 2013-02-05 2014-08-14 日本化薬株式会社 Allyl ether resin and epoxy resin

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI403501B (en) * 2010-05-13 2013-08-01 Double Bond Chemical Ind Co Ltd Photosensitizer
TWI459051B (en) * 2012-03-01 2014-11-01 Chi Mei Corp Photosensitive resin composition, black matrix, color filter and liquid crystal display element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247193A (en) * 1991-03-29 1993-09-24 New Japan Chem Co Ltd Epoxidized polyester and its production
JP2003238244A (en) * 2002-02-21 2003-08-27 Murata Mfg Co Ltd Dielectric porcelain for high frequency, dielectric resonator, dielectric filter, dielectric duplexer and communication device
WO2011019061A1 (en) * 2009-08-13 2011-02-17 昭和電工株式会社 Method for producing polyglycidyl ether compound
JP2012024654A (en) * 2010-07-20 2012-02-09 Nippon Kayaku Co Ltd Method for producing polyacid-supporting catalyst
JP2012211240A (en) * 2011-03-31 2012-11-01 Showa Denko Kk Method of manufacturing epoxy compound
WO2014123051A1 (en) * 2013-02-05 2014-08-14 日本化薬株式会社 Allyl ether resin and epoxy resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6951829B1 (en) * 2019-11-19 2021-10-20 日本化薬株式会社 Compounds, mixtures, curable resin compositions and cured products thereof, and methods for producing compounds.

Also Published As

Publication number Publication date
JPWO2015052925A1 (en) 2017-03-09
TWI621636B (en) 2018-04-21
JP6440207B2 (en) 2018-12-19
TW201520239A (en) 2015-06-01

Similar Documents

Publication Publication Date Title
JP4285491B2 (en) Epoxy resin composition, cured product thereof, novel epoxy resin, novel phenol resin, and semiconductor sealing material
JP4259536B2 (en) Method for producing phenol resin and method for producing epoxy resin
JPH04217675A (en) Epoxy resin and its intermediate, production thereof and epoxy resin composition
JP3986445B2 (en) Method for producing high-purity epoxy resin and epoxy resin composition
JP5028844B2 (en) Epoxy resin composition, cured product thereof, novel epoxy compound and production method thereof
JP5875030B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product thereof
WO2020195733A1 (en) Epoxy resin and method for producing same
JP6440207B2 (en) Epoxy resin production method, epoxy resin, curable resin composition, and cured product
KR102473850B1 (en) Tetramethylbiphenol epoxy resin and method for preparing the same
WO2008047613A1 (en) Epoxy resin, method for producing the epoxy resin, epoxy resin composition using the epoxy resin, and cured product of the epoxy resin composition
JP2003301031A (en) Phenolic resin, epoxy resin and method for preparation thereof, and resin composition
JP5832016B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP3021148B2 (en) Epoxy resin, resin composition and cured product
JPH04323214A (en) Novolak resin, its production, epoxy resin, resin composition and its cured product
JP2865439B2 (en) Epoxy resin and its cured product
JP4899257B2 (en) Phenol resin, epoxy resin, epoxy resin composition and cured product thereof.
JP4186153B2 (en) Epoxy resin composition, cured product thereof, semiconductor sealing material, and resin composition for electronic circuit board
KR20230171851A (en) Tetramethylbiphenol epoxy resin and method for preparing the same
KR20230171850A (en) Tetramethylbiphenol epoxy resin and method for preparing the same
JPH04275317A (en) New novolak type resin and its production
KR20230171848A (en) Tetramethylbiphenol epoxy resin and method for preparing the same
KR20230171849A (en) Tetramethylbiphenol epoxy resin and method for preparing the same
TW202402865A (en) Tetramethylbiphenol epoxy resin and method for preparing the same, tetramethylbiphenol epoxy resin composition, and cured product
JPH08269168A (en) Epoxy resin, epoxy resin composition and its cured product
KR20240035472A (en) Phenol mixtures, epoxy resins, epoxy resin compositions, cured products, and electrical/electronic components

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015541440

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851742

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14851742

Country of ref document: EP

Kind code of ref document: A1