JP4186153B2 - Epoxy resin composition, cured product thereof, semiconductor sealing material, and resin composition for electronic circuit board - Google Patents

Epoxy resin composition, cured product thereof, semiconductor sealing material, and resin composition for electronic circuit board Download PDF

Info

Publication number
JP4186153B2
JP4186153B2 JP2002248640A JP2002248640A JP4186153B2 JP 4186153 B2 JP4186153 B2 JP 4186153B2 JP 2002248640 A JP2002248640 A JP 2002248640A JP 2002248640 A JP2002248640 A JP 2002248640A JP 4186153 B2 JP4186153 B2 JP 4186153B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
group
electronic circuit
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002248640A
Other languages
Japanese (ja)
Other versions
JP2004083783A (en
Inventor
一郎 小椋
広治 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2002248640A priority Critical patent/JP4186153B2/en
Publication of JP2004083783A publication Critical patent/JP2004083783A/en
Application granted granted Critical
Publication of JP4186153B2 publication Critical patent/JP4186153B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、優れた耐熱性と耐湿性が求められる、半導体封止材料、電子回路基板用樹脂組成物、樹脂注型材料、接着剤、ビルドアップ基板用層間絶縁材料、絶縁塗料等のコーティング材料等として好適に用いることができるエポキシ樹脂組成物、その成形硬化物、半導体封止材料および電子回路基板用樹脂組成物に関する。
【0002】
【従来の技術】
エポキシ樹脂は種々の硬化剤で硬化させることにより、一般的に機械的性質、耐湿性、耐薬品性、耐熱性、電気的性質などに優れた硬化物となり、接着剤、塗料、積層板、成形材料、注型材料などの幅広い分野に利用されている。なかでも、低粘度エポキシ樹脂は、作業性、流動性等に優れ、上記汎用分野はもとより、半導体デバイス用のグローブトップ材やアンダーフィル材のような液状封止材、半導体用ダイアタッチ材、高密度回路基板層間導通用の導電ペースト材のような高い信頼性が要求される部材にも用いられている。低粘度エポキシ樹脂の代表格は、ビスフェノールA型エポキシ樹脂であるが、その他、耐熱性が優れる特殊エポキシ樹脂して、ジヒドロキシナフタレン型エポキシ樹脂なども特殊な分野で使用されている(特開2001−11286号公報)。近年、半導体封止材やプリント配線基板などの電子分野では優れた耐熱性と耐湿性をバランス良く兼備したエポキシ樹脂が強く求められている。
【0003】
ところが前述のビスフェノールA型エポキシ樹脂は耐熱性が乏しく、上記要求を満足できない。また前述のジヒドロキシナフタレン型エポキシ樹脂は、耐熱性は高いものの吸湿率が高く、耐熱性と耐湿性のバランス特性が満足できるレベルではない。
【0004】
【発明が解決しようとする課題】
本発明の課題は、優れた耐熱性と耐湿性が求められる、半導体封止材料、電子回路基板用樹脂組成物、樹脂注型材料、接着剤、ビルドアップ基板用層間絶縁材料、絶縁塗料等のコーティング材料等として好適に用いることができるエポキシ樹脂組成物、その成形硬化物、半導体封止材料および電子回路基板用樹脂組成物を提供することにある。
【0005】
【課題を解決するための手段】
本発明者はこの様な課題を解決すべく鋭意研究を重ねた結果、特定の分子構造を有する4置換ジヒドロキシ化合物から誘導されたエポキシ樹脂を含むエポキシ樹脂組成物が、特に優れた耐熱性と耐湿性を兼ね備えた硬化物を与えることを見出し、本発明を完成した。
【0006】
すなわち本発明は、下記一般式(1)で表される4置換ジヒドロキシベンゼン類(a)とエピハロヒドリンとから誘導されるエポキシ樹脂(A)と、硬化剤(B)とを含むことを特徴とするエポキシ樹脂組成物を提供するものである。
【化3】

Figure 0004186153
〔式中、R 〜R は、それぞれ独立に、ヒドロキシ基、炭素数1〜6のアルキル基、炭素数1〜6のシクロアルキル基、アリール基、ハロゲン原子または下記一般式(2)
【化4】
Figure 0004186153
(式中、R 、R はそれぞれ独立に水素原子またはメチル基を示す。)
で表される置換基を示し、かつ、そのうち2つは必ずヒドロキシ基であり、1つは必ず上記一般式(2)で表される基である。〕
また更に、該エポキシ樹脂組成物を成形硬化させてなることを特徴とする成形硬化物、該エポキシ樹脂組成物を含有することを特徴とする半導体封止材料および電子回路基板用樹脂組成物を提供するものである。
【0007】
以下、本発明を詳細に説明する。
本発明のエポキシ樹脂組成物で用いるエポキシ樹脂(A)は、下記一般式(1)で表される4置換ジヒドロキシベンゼン類(a)とエピハロヒドリンとから誘導されるエポキシ樹脂であればよく、特に限定されない。
【0008】
【化5】
Figure 0004186153
〔式中、R〜Rは、それぞれ独立に、ヒドロキシ基、炭素数1〜6のアルキル基、炭素数1〜6のシクロアルキル基、アリール基、ハロゲン原子または下記一般式(2)
【化6】
Figure 0004186153
(式中、R、Rはそれぞれ独立に水素原子またはメチル基を示す。)
で表される置換基を示し、かつ、そのうち2つは必ずヒドロキシ基であり、1つは必ず上記一般式(2)で表される基である。〕
【0009】
これらの中でも、2個のヒドロキシ基および1個の上記一般式(2)で示される置換基以外の3個の置換基がいずれもメチル基である化合物が好ましく、例えば、以下の構造式(3−1)〜(3−5)で表される化合物が挙げられる。
【化7】
Figure 0004186153
【0010】
前記4置換ジヒドロキシベンゼン類(a)の製造方法は特に限定されるものではないが、例えば、3置換ジヒドロキシベンゼン化合物(a1)と、芳香族性モノビニル化合物(a2)或いはベンジル位に脱離基を有するベンジル化合物(a3)とを反応させることによって得ることができる。
【0011】
前記3置換ジヒドロキシベンゼン化合物(a1)としては、その構造が特に限定されるものではなく、例えば下記一般式(4)
【化8】
Figure 0004186153
(式中、R〜R12はそれぞれ独立に炭素数1〜6のアルキル基、炭素数1〜6のシクロアルキル基、アリール基またはハロゲン原子を示し、且つそのうち1つは必ずヒドロキシ基である。)
で表される化合物が挙げられる。
【0012】
前記3置換ジヒドロキシベンゼン化合物(a1)の具体的な例としては、トリメチルハイドロキノン、2,4,5−トリメチルレゾルシン、4,5,6−トリメチルレゾルシン、3,4,5−トリメチルカテコール、3,5,6−トリメチルカテコール、トリエチルハイドロキノン、2,4,5−トリエチルレゾルシン、4,5,6−トリエチルレゾルシン、3,4,5−トリエチルカテコール、3,5,6−トリエチルカテコール、トリプロピルハイドロキノン、2,4,5−トリプロピルレゾルシン、4,5,6−トリプロピルレゾルシン、3,4,5−トリプロピルカテコール、3,5,6−トリプロピルカテコール、トリブチルハイドロキノン、2,4,5−トリブチルレゾルシン、4,5,6−トリブチルレゾルシン、3,4,5−トリブチルカテコール、3,5,6−トリブチルカテコールなどのトリアルキル置換ジヒドロキシベンゼン類、トリフェニルハイドロキノン、2,4,5−トリフェニルレゾルシンなどのトリアリール置換ハイドキノン類、トリブロモハイドロキノンなどのトリハロゲン置換ジヒドロキシベンゼン類などが挙げられるが、これらの中でも、耐熱性と耐湿性のバランスに優れることからトリメチルハイドロキノンが特に好ましい。
【0013】
前記芳香族性モノビニル化合物(a2)としては、芳香環にビニル基が1個結合している化合物であれば特に限定されるものではなく、スチレン、メチルスチレン等が挙げられ、ベンジル位に脱離基を有するベンジル化合物(a3)としては、塩化ベンジル、臭化ベンジル、沃化ベンジル等のハロゲン化ベンジル化合物或いは、ベンジルアルコール、ベンジルメトキサイド等が挙げられる。
【0014】
これら芳香族性モノビニル化合物(a2)、ベンジル位に脱離基を有するベンジル化合物(a3)の中でも、工業的に入手し易く、且つ、副反応が起こりにくいことからスチレン、塩化ベンジル、臭化ベンジルが好ましい。
【0015】
前記3置換ジヒドロキシベンゼン化合物(a1)と、芳香族性モノビニル化合物(a2)或いはベンジル位に脱離基を有するベンジル化合物(a3)との反応について以下に説明する。
【0016】
まず、3置換ジヒドロキシベンゼン化合物(a1)と芳香族性モノビニル化合物(a2)を仕込み、必要に応じて反応触媒や有機溶媒を用いて、3置換ジヒドロキシベンゼン化合物(a1)の芳香環上の置換基のない1箇所とビニル基を付加反応させる。
【0017】
また、3置換ジヒドロキシベンゼン化合物(a1)とベンジル位に脱離基を有するベンジル化合物(a3)を反応させる場合も同様に、3置換ジヒドロキシベンゼン化合物(a1)とベンジル位に脱離基を有するベンジル化合物(a3)を仕込み、必要に応じて反応触媒や有機溶媒を用いて、3置換ジヒドロキシベンゼン化合物(a1)の芳香環上の置換基のない1箇所とベンジル位とを、脱水、脱ハロゲン、脱アルコール反応等の縮合反応させる。
【0018】
前記反応の終了後、必要に応じて、苛性ソーダ、重炭酸ソーダ、アンモニア、トリエチルアミン等の塩基性化合物を用いて中和、或いは水洗などして反応触媒を失活させた後に、有機溶媒を蒸留などによって除去し、再結晶などを行って精製し、4置換ジヒドロキシベンゼン類(a)を得ることができる。
【0019】
前記触媒としては、例えば、塩酸、硫酸、無水硫酸、p−トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、シユウ酸、ギ酸、リン酸、トリクロロ酢酸、トリフルオロ酢酸、三弗化硼素エーテル錯体、三弗化硼素フェノール錯体等が挙げられ、これらの中でも、反応速度が速い点からp−トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸が好ましい。前記触媒の添加量としては、3置換ジヒドロキシベンゼン化合物(a1)と、芳香族性モノビニル化合物(a2)或いはベンジル位に脱離基を有するベンジル化合物(a3)との総量100重量部に対して、0.01〜10重量部の範囲であることが好ましい。
【0020】
また前記有機溶媒としては、3置換ジヒドロキシベンゼン化合物(a1)と、芳香族性モノビニル化合物(a2)或いはベンジル位に脱離基を有するベンジル化合物(a3)、並びに生成物を溶解し、それらに対して不活性であれば特に制限されるものではないが、例えば、ベンゼン、トルエン、キシレンなどの芳香族性有機溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系有機溶媒、メタノール、エタノール、イソプロピルアルコール、ノルマルブタノールなどのアルコール系有機溶媒、ジエチルエーテル、テトラヒドロフラン、ジオキサン、メトキシエタノールなどのエーテル系有機溶媒等が挙げられ、用いる原料や生成物の溶解度などの性状や反応条件や経済性等を考慮して適宜選択することが出来るが、特に芳香族性有機溶媒、ケトン系有機溶媒が好ましい。
【0021】
前記有機溶媒の使用量としては、特に制限されるものではないが、3置換ジヒドロキシベンゼン化合物(a1)と、芳香族性モノビニル化合物(a2)或いはベンジル位に脱離基を有するベンジル化合物(a3)との総量100重量部に対して、10〜500重量部の範囲が好ましい。反応条件としては、室温〜200℃、好ましくは、50〜150℃の温度にて、0.5〜30時間加熱撹拌する。
【0022】
本発明で用いるエポキシ樹脂(A)は、前述のようにして得られた4置換ジヒドロキシベンゼン類(a)とエピハロヒドリンから誘導されるものであり、その構造が特に限定されるものではないが、例えば、下記構造式(5−1)〜(5−2)で表されるものが挙げられる。
【0023】
【化9】
Figure 0004186153
(式中、nは繰り返し数を示す。)
【0024】
前記構造式中のnは該エポキシ樹脂の用途に応じて適宜設定し合成されるものであるが、0〜10が好ましく、粘度が低く取り扱いが容易であることから0〜3が特に好ましい。
【0025】
前記エポキシ樹脂(A)を製造する方法は、特に限定されるものではないが、例えば、前述の方法で得られた4置換ジヒドロキシベンゼン類(a)とエピハロヒドリンとの溶解混合物にアルカリ金属水酸化物を添加し、または添加しながら20〜120℃で1〜10時間反応させ、必要に応じて、溶媒を用いてグリシジル化反応を行う方法が挙げられる。
【0026】
前記エピハロヒドリンとしては特に限定されるものではないが、例えば、エピクロルヒドリン、β−メチルエピクロルヒドリン、エピブロモヒドリン、β−メチルエピブロモヒドリン等が挙げられる。これらの中でも反応性の点からエピクロルヒドリンが好ましい。
【0027】
前記エピハロヒドリンの添加量は、原料の4置換ジヒドロキシベンゼン類(a)中の水酸基1当量に対して、0.3〜10当量の範囲が好ましく、前記エポキシ樹脂(A)の所望の特性に応じて、エピハロヒドリンの量を適宜調節することが出来るが、例えば、エピハロヒドリンが2.5当量よりも少ない場合には、エポキシ基と未反応の4置換ジヒドロキシベンゼン類(a)との反応が起こり、-CH2CH(OH)CH2-を多く含む高分子量物が得られ、2.5当量以上の場合には、低分子量物、例えば上記構造式(5−1)、(5−2)中のn=0の化合物の含有量が高くなり、低粘度の液状エポキシ樹脂が得られる。
【0028】
前記アルカリ金属水酸化物としては特に限定されるものではないが、水酸化カリウム、水酸化ナトリウム、水酸化バリウム、酸化マグネシウム、炭酸ナトリウム、炭酸カリウム等が挙げられ、これらの中でも水酸化カリウム、水酸化ナトリウムが好ましい。また、これらは水溶液、固形のいずれでも好適に用いることが出来る。
【0029】
前記アルカリ金属水酸化物を水溶液として使用する場合は、該アルカリ金属水酸化物の水溶液を連続的に反応系内に添加すると共に減圧下、または常圧下連続的に水及びエピハロヒドリンを留出させ、更に分液し水は除去しエピハロヒドリンは反応系内に連続的に戻す方法が挙げられる。
【0030】
前記溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、ブタノールなどのアルコール類、アセトン、メチルエチルケトンなどのケトン類、ジオキサンなどのエーテル類、ジメチルスルホン、ジメチルスルホキシド等の非プロトン性極性溶媒などが挙げられる。
【0031】
前記アルコール類、エーテル類を溶媒とする場合の使用量は、エピハロヒドリン100重量部対し、通常5〜50重量部、特に10〜30重量部であることが好ましい。また非プロトン性極性溶媒を用いる場合の使用量は、エピハロヒドリン100重量部に対し、通常5〜100重量部、特に10〜60重量部であることが好ましい。
【0032】
また、4置換ジヒドロキシベンゼン類(a)とエピハロヒドリンの溶解混合物にテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライド等の4級アンモニウム塩を触媒として添加し、50〜150℃で1〜5時間反応させて得られる4置換ジヒドロキシベンゼン類(a)のハロヒドリンエーテル化物に、前記アルカリ金属水酸化物の固体または水溶液を加え、再び20〜120℃で1〜10時間反応させ脱ハロゲン化水素(閉環)させる方法でもよい。
【0033】
次いで、前述のグリシジル化反応で得られた反応物を水洗後、または水洗無しに加熱減圧下、110〜250℃、圧力10mmHg以下でエピハロヒドリンや他の添加溶媒などを除去することにより、粗エポキシ樹脂が得られる。
【0034】
更に加水分解性ハロゲンの少ないエポキシ樹脂とするために、エピハロヒドリン等を回収した後に得られる前記粗エポキシ樹脂を再びトルエン、メチルイソブチルケトンなどの溶剤に溶解し、前記アルカリ金属水酸化物の水溶液を加えて更に反応させて閉環を確実なものにする、再閉環反応を行うこともできる。この場合、アルカリ金属水酸化物の使用量は粗エポキシ樹脂中に残存する加水分解性塩素1モルに対して、0.5〜10モル、特に1.2〜5.0モル使用することが好ましい。
【0035】
前記再閉環反応の反応条件は特に限定されるものではないが、反応温度は50〜120℃、反応時間は0.5〜3時間であることが好ましい。更に反応速度の向上を目的として、4級アンモニウム塩やクラウンエーテル等の相関移動触媒を用いることも出来る。前記相関移動触媒を使用する場合のその使用量は、粗エポキシ樹脂100重量部に対して0.1〜3.0重量部の範囲が好ましい。
【0036】
再閉環反応終了後、生成した塩を濾過、水洗などにより除去し、更に、加熱減圧下トルエン、メチルイソブチルケトンなどの溶剤を留去することにより高純度化することが出来る。
【0037】
本発明で用いる硬化剤(B)は、種々のエポキシ樹脂用硬化剤が使用でき、アミン系化合物、酸無水物系化合物、アミド系化合物、フェノ−ル系化合物などのエポキシ樹脂用硬化剤が挙げられる。
【0038】
具体的には、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂、クレゾールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニル変性フェノールアラルキル樹脂、フェノールトリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂、アミノトリアジン変性フェノール樹脂等を始めとする多価フェノール化合物、及びこれらの変性物、イミダゾ−ル、BF3−アミン錯体、並びにグアニジン誘導体などが挙げられる。またこれらの硬化剤は単独で用いてもよく、2種以上を混合してもよい。
【0039】
これらの硬化剤のなかでも、特に耐熱性が優れる点では、例えば、フェノールノボラック樹脂、ナフトールノボラック樹脂、フェノールトリメチロールメタン樹脂が特に好ましく、耐湿性が優れる点では、フェノールアラルキル樹脂、クレゾールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニル変性フェノールアラルキル樹脂が特に好ましく、難燃性が優れる点では、フェノールアラルキル樹脂、クレゾールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニル変性フェノールアラルキル樹脂、アミノトリアジン変性フェノール樹脂が特に好ましい。
【0040】
前記硬化剤(B)の使用量は、硬化反応が充分で、硬化物性が良好となる点から、エポキシ樹脂のエポキシ基1当量に対して、硬化剤中の活性水素基が0.7〜1.5当量になる範囲が好ましい。
【0041】
また、硬化促進剤を適宜使用することもできる。硬化促進剤としては特に限定されるものではなく、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。半導体封止材料、電子回路基板用樹脂組成物として使用する場合は、リン系化合物ではトリフェニルフォスフィン、第3級アミンでは1,8−ジアザビシクロ−[5,4,0]−ウンデセン(DBU)などが、硬化性、耐熱性、電気特性、耐湿信頼性などが優れるために好ましい。
【0042】
本発明のエポキシ樹脂組成物には、上記した各成分に加え、更にその他のエポキシ樹脂を併用して使用することもできる。併用する場合の混合比は、得られる硬化物の耐熱性と耐湿性のバランスが良好である点から、エポキシ樹脂(A)の全エポキシ樹脂に占める割合が30〜90重量%が好ましく、特に40〜80重量%が好ましい。
【0043】
前記その他のエポキシ樹脂としては、特に制限されるものではなく、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、レゾルシン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、カテコール型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂等の液状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニル変性ノボラック型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂、ブロム化フェノールノボラック型エポキシ樹脂などが挙げられ、これらの中でも粘度が低く、且つ硬化性が良好である点から、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂が好ましい。またこれらのその他のエポキシ樹脂は単独で用いてもよく、2種以上を混合してもよい。
【0044】
また本発明のエポキシ樹脂組成物は必要に応じて、無機充填剤、難燃付与剤、顔料、シランカップリング剤、離型剤等の種々の配合剤を添加することができる。
【0045】
前記無機充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。該充填材の配合量を特に大きくする場合は溶融シリカを用いるのが好ましく、溶融シリカとしては破砕状、球状のいずれでも使用可能であるが、配合量を高め且つ成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に用いる方が特に好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調製し、平均粒径が5〜30μmにすることが好ましい。その充填率は難燃性が良好となる点から、エポキシ樹脂組成物の全体量に対して65〜92重量%が特に好ましい。また導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることもできる。
【0046】
前記難燃付与剤としては特に制限されるものではなく、ハロゲン化合物、燐原子含有化合物や窒素原子含有化合物や無機系難燃化合物などが挙げられる。具体的には、テトラブロモビスフェノールA型エポキシ樹脂などのハロゲン化合物、赤燐、燐酸エステル化合物などの燐原子含有化合物、メラミンなどの窒素原子含有化合物、水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、硼酸カルシウムなどの無機系難燃化合物が挙げられる。
【0047】
本発明のエポキシ樹脂組成物の使用用途としては、半導体封止材料、積層板や電子回路基板等に用いられる樹脂組成物、樹脂注型材料、接着剤、ビルドアップ基板用層間絶縁材料、絶縁塗料等のコーティング材料等が挙げられ、これらの中でも、半導体封止材料、電子回路基板用樹脂組成物に好適に用いることができる。
【0048】
前記半導体封止材材料は、本発明のエポキシ樹脂組成物及び前述の無機充填材、必要に応じその他の成分を押出機、ニ−ダ、ロ−ル等を用いて均一になるまで充分に混合して製造することができる。ここで用いる充填剤は、シリカが好ましい。また、無機充填材の使用量は通常、充填率30〜95重量%となる範囲であり、難燃性や耐湿性や耐ハンダクラック性の向上、線膨張係数の低下を図るためには、好ましくは70〜95重量%、それらの効果を顕著なものとするには80〜95重量%であることが特に好ましい。
【0049】
前記電子回路基板用樹脂組成物は、本発明のエポキシ樹脂組成物をトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン等の溶剤に溶解させることにより製造することができる。この際の溶剤の使用量は、前記電子回路基板用樹脂組成物中、通常10〜70重量%であり、好ましくは15〜65重量%、特に好ましくは35〜65重量%なる範囲である。なお、前記電子回路基板は、具体的には、プリント配線基板、プリント回路板、フレキシブルプリント配線板、ビルドアップ配線板等が挙げられる。
【0050】
また、本発明のエポキシ樹脂組成物を接着剤や塗料等のコーティング材料として使用する場合は、該組成物を溶融してコーティングしても良いし、該組成物を前記溶剤に溶解したものを通常の方法でコーティングした後、溶剤を乾燥除去させ硬化させても良い。この際、必要に応じて、前記硬化触媒を使用してもよい。また、前記の無機フィラー等を混合しても良い。
【0051】
本発明の成形硬化物は、前記エポキシ樹脂組成物を成形熱硬化させて得ることができる。該硬化物は積層物、注型物、接着剤、塗膜、フィルムとして使用できる。例えば、半導体封止材料の硬化物を得る方法としては、該組成物を注型、或いはトランスファ−成形機、射出成形機などを用いて成形し、さらに80〜200℃で2〜10時間に加熱する方法が挙げられる。また、電子回路基板用樹脂組成物の硬化物を得る方法としては、電子回路基板用樹脂組成物をガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させ加熱乾燥してプリプレグを得て積層した後、それを熱プレス成形する方法が挙げられる。
【0052】
【実施例】
次に本発明を実施例、比較例により具体的に説明するが、以下において部、%は特に断わりのない限り重量基準である。
【0053】
実施例1
4置換ジヒドロキシベンゼンの合成
温度計、滴下ロート、冷却および撹拌機を取り付けたフラスコに窒素ガスパージを施しながら、トリメチルハイドロキノン152g(1.0モル)をメチルイソブチルケトン150gに溶解し、パラトルエンスルホン酸1水和物1.5gを加えて80℃まで昇温した後に、スチレンモノマー114g(1.1モル)を発熱に注意しながら1時間要して滴下した。滴下終了後、135℃で10時間反応を続けた後に、5%NaOHを添加して触媒を中和失活させた。その後、水洗によって、系内から副生塩を除去し、最後にメチルイソブチルケトンを蒸留除去することにより、下記構造式(6)で示される、4置換ジヒドロキシベンゼン205gを得た。
【化10】
Figure 0004186153
【0054】
エポキシ樹脂の合成
温度計、滴下ロート、冷却管および撹拌機を取り付けたフラスコに窒素ガスパージを施しながら、で得られた4置換ジヒドロキシベンゼン128g(水酸基1.0当量)、エピクロルヒドリン463g(5.0モル)、ジメチルスルホキシド53gを仕込み溶解させた。65℃に昇温した後に、共沸する圧力までに減圧して、49%水酸化ナトリウム水溶液82g(1.0モル)を5時間かけて滴下した、次いでこの条件下で0.5時間撹拌を続けた。この間、共沸で留出してきた留出分をディーンスタークトラップで分離して、水層を除去し、有機層を反応系内に戻しながら反応した。その後、未反応のエピクロルヒドリンを減圧蒸留して留去させた。それで得られた粗エポキシ樹脂にメチルイソブチルケトン550gを加えて溶解し、水100gを用いた水洗を5回繰り返してジメチルスルホキシドを除去した。次いでそれにn−ブタノール55gを加え溶解した。更にこの溶液に10%水酸化ナトリウム水溶液15gを添加して80℃で2時間反応させた後に洗浄液のPHが中性となるまで水100gを用いた水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去して下記構造式(7)で示されるエポキシ樹脂(α)170gを得た。得られたエポキシ樹脂は、常温で粘凋液体であり、そのエポキシ当量は208g/eq.であった。エポキシ当量から式中のnは0.16であることが確認された。
【化11】
Figure 0004186153
【0055】
エポキシ樹脂組成物の調製
で得られたエポキシ樹脂(α)199部、硬化剤として、フェノールノボラック樹脂(PHENOLITE TD−2131:大日本インキ化学工業(株)製、軟化点80℃、水酸基当量104g/eq.)104部、硬化促進剤として、トリフェニルフォスフィン(TPP)3部を配合し、100℃の温度で激しく撹拌混練して目的のエポキシ樹脂組成物(i)を得た。
【0056】
比較例1
エポキシ樹脂(α)199部の代わりにビスフェノールA型エポキシ樹脂(EPICLON 850S:大日本インキ化学工業(株)製、エポキシ当量188g/eq.)183部を用いた以外は、実施例1−と同様にして、エポキシ樹脂組成物(ii)を得た。
【0057】
比較例2
エポキシ樹脂(α)199部の代わりにジヒドロキシナフタレン型エポキシ樹脂(EPICLON HP−4032、エポキシ当量160g/eq.)160部を用いた以外は、実施例1−と同様にしてエポキシ樹脂組成物(iii)を得た。
【0058】
試験例1および比較試験例1〜2
実施例1、比較例1〜2で得られた組成物をそれぞれ150℃で10分間プレス成形し,その後175℃で5時間さらに硬化せしめた後に試験片(サイズ 2.5mm×25mm×75mm)を作成した。得られた試験片のガラス転移温度(動的粘弾性法)と吸湿率の試験結果を第1表に示す。なお、吸湿率は85℃・85%RHの恒温恒湿機内で300時間処理し、その後の重量増加量を処理前の重量で除した値である。
【表1】
Figure 0004186153
【0059】
【発明の効果】
本発明によれば、優れた耐熱性と耐湿性が求められる、半導体封止材料、電子回路基板用マトリックス樹脂、樹脂注型材料、接着剤、ビルドアップ基板用層間絶縁材料、絶縁塗料等のコーティング材料等として好適に用いることができるエポキシ樹脂組成物、その成形硬化物、半導体封止材料および電子回路基板用樹脂組成物を提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention is a coating material such as a semiconductor sealing material, a resin composition for an electronic circuit board, a resin casting material, an adhesive, an interlayer insulating material for a build-up board, an insulating paint, etc. The present invention relates to an epoxy resin composition that can be suitably used as an adhesive, a molded and cured product thereof, a semiconductor sealing material, and a resin composition for electronic circuit boards.
[0002]
[Prior art]
Epoxy resins are generally cured with various curing agents, resulting in cured products with excellent mechanical properties, moisture resistance, chemical resistance, heat resistance, electrical properties, etc., adhesives, paints, laminates, molding It is used in a wide range of fields such as materials and casting materials. Among them, low-viscosity epoxy resins are excellent in workability, fluidity, etc. In addition to the above general-purpose fields, liquid sealing materials such as glove top materials and underfill materials for semiconductor devices, die attach materials for semiconductors, high It is also used for members that require high reliability, such as a conductive paste material for density circuit board interlayer conduction. A typical example of the low-viscosity epoxy resin is a bisphenol A type epoxy resin. In addition, as a special epoxy resin having excellent heat resistance, a dihydroxynaphthalene type epoxy resin is also used in a special field (Japanese Patent Laid-Open No. 2001-2001). No. 11286). In recent years, there has been a strong demand for epoxy resins that have a good balance between excellent heat resistance and moisture resistance in the electronic field such as semiconductor encapsulants and printed wiring boards.
[0003]
However, the aforementioned bisphenol A type epoxy resin has poor heat resistance and cannot satisfy the above requirements. Moreover, although the above-mentioned dihydroxynaphthalene type epoxy resin has high heat resistance, it has a high moisture absorption rate and is not at a level that can satisfy the balance between heat resistance and moisture resistance.
[0004]
[Problems to be solved by the invention]
The object of the present invention is to provide excellent heat resistance and moisture resistance, such as semiconductor sealing materials, resin compositions for electronic circuit boards, resin casting materials, adhesives, interlayer insulation materials for build-up boards, insulating paints, etc. An object of the present invention is to provide an epoxy resin composition that can be suitably used as a coating material, a molded cured product thereof, a semiconductor sealing material, and a resin composition for electronic circuit boards.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve such problems, the present inventors have found that an epoxy resin composition containing an epoxy resin derived from a 4-substituted dihydroxy compound having a specific molecular structure has particularly excellent heat resistance and moisture resistance. The present invention has been completed by finding that a cured product having properties can be obtained.
[0006]
  That is, the present inventionIt is represented by the following general formula (1)An epoxy resin composition comprising an epoxy resin (A) derived from a 4-substituted dihydroxybenzene (a) and an epihalohydrin and a curing agent (B) is provided.
[Chemical 3]
Figure 0004186153
[In the formula, R 1 ~ R 6 Are each independently a hydroxy group, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 1 to 6 carbon atoms, an aryl group, a halogen atom, or the following general formula (2)
[Formula 4]
Figure 0004186153
(Wherein R 7 , R 8 Each independently represents a hydrogen atom or a methyl group. )
And two of them are necessarily hydroxy groups, and one is a group represented by the general formula (2). ]
  Furthermore, a molded and cured product obtained by molding and curing the epoxy resin composition, and a semiconductor sealing material and a resin composition for electronic circuit boards characterized by containing the epoxy resin composition are provided. To do.
[0007]
  Hereinafter, the present invention will be described in detail.
  The epoxy resin (A) used in the epoxy resin composition of the present invention is:It is represented by the following general formula (1)Any epoxy resin derived from tetrasubstituted dihydroxybenzenes (a) and epihalohydrin may be used, and is not particularly limited.
[0008]
[Chemical formula 5]
Figure 0004186153
[In the formula, R1~ R6Are each independently a hydroxy group, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 1 to 6 carbon atoms, an aryl group, a halogen atom, or the following general formula (2)
[Chemical 6]
Figure 0004186153
(Wherein R7, R8Each independently represents a hydrogen atom or a methyl group. )
And two of them are necessarily hydroxy groups, and one is a group represented by the general formula (2). ]
[0009]
  Among these, compounds in which all three substituents other than the two hydroxy groups and one substituent represented by the general formula (2) are methyl groups are preferred. For example, the following structural formula (3 -1) to (3-5).
[Chemical 7]
Figure 0004186153
[0010]
The production method of the 4-substituted dihydroxybenzenes (a) is not particularly limited. For example, a 3-substituted dihydroxybenzene compound (a1) and an aromatic monovinyl compound (a2) or a leaving group at the benzyl position. It can be obtained by reacting with the benzyl compound (a3).
[0011]
  The structure of the trisubstituted dihydroxybenzene compound (a1) is not particularly limited, and for example, the following general formula (4)
[Chemical 8]
Figure 0004186153
(Wherein R9~ R12Each independently represents an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 1 to 6 carbon atoms, an aryl group or a halogen atom, and one of them is necessarily a hydroxy group. )
The compound represented by these is mentioned.
[0012]
Specific examples of the trisubstituted dihydroxybenzene compound (a1) include trimethylhydroquinone, 2,4,5-trimethylresorcin, 4,5,6-trimethylresorcin, 3,4,5-trimethylcatechol, 3,5 , 6-trimethylcatechol, triethylhydroquinone, 2,4,5-triethylresorcin, 4,5,6-triethylresorcin, 3,4,5-triethylcatechol, 3,5,6-triethylcatechol, tripropylhydroquinone, 2 , 4,5-tripropylresorcin, 4,5,6-tripropylresorcin, 3,4,5-tripropylcatechol, 3,5,6-tripropylcatechol, tributylhydroquinone, 2,4,5-tributylresorcin 4,5,6-tributylresorcin, 3,4,5 Trialkyl-substituted dihydroxybenzenes such as tributylcatechol and 3,5,6-tributylcatechol, triaryl-substituted hydroquinones such as triphenylhydroquinone and 2,4,5-triphenylresorcin, and trihalogen-substituted dihydroxys such as tribromohydroquinone Benzenes and the like can be mentioned, and among these, trimethylhydroquinone is particularly preferable because of its excellent balance between heat resistance and moisture resistance.
[0013]
The aromatic monovinyl compound (a2) is not particularly limited as long as it is a compound in which one vinyl group is bonded to the aromatic ring, and examples thereof include styrene, methylstyrene, and the like, and it is eliminated at the benzyl position. Examples of the benzyl compound (a3) having a group include benzyl halide compounds such as benzyl chloride, benzyl bromide and benzyl iodide, benzyl alcohol, benzyl methoxide and the like.
[0014]
Among these aromatic monovinyl compounds (a2) and benzyl compounds (a3) having a leaving group at the benzyl position, styrene, benzyl chloride, benzyl bromide are easily available industrially and hardly cause side reactions. Is preferred.
[0015]
The reaction of the trisubstituted dihydroxybenzene compound (a1) with the aromatic monovinyl compound (a2) or the benzyl compound (a3) having a leaving group at the benzyl position will be described below.
[0016]
First, a trisubstituted dihydroxybenzene compound (a1) and an aromatic monovinyl compound (a2) are charged, and if necessary, a substituent on the aromatic ring of the trisubstituted dihydroxybenzene compound (a1) using a reaction catalyst or an organic solvent. Addition reaction of one place with no vinyl and the vinyl group.
[0017]
Similarly, when the 3-substituted dihydroxybenzene compound (a1) is reacted with a benzyl compound (a3) having a leaving group at the benzyl position, the benzyl having a leaving group at the benzyl position is similarly obtained. The compound (a3) is charged, and if necessary, using a reaction catalyst or an organic solvent, one non-substituent on the aromatic ring of the trisubstituted dihydroxybenzene compound (a1) and the benzyl position are dehydrated, dehalogenated, A condensation reaction such as a dealcoholization reaction is performed.
[0018]
After completion of the reaction, if necessary, the reaction catalyst is deactivated by neutralization or washing with basic compounds such as caustic soda, sodium bicarbonate, ammonia, triethylamine, etc., and then the organic solvent is removed by distillation or the like. Then, purification can be performed by recrystallization or the like to obtain the 4-substituted dihydroxybenzenes (a).
[0019]
Examples of the catalyst include hydrochloric acid, sulfuric acid, sulfuric anhydride, p-toluenesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, oxalic acid, formic acid, phosphoric acid, trichloroacetic acid, trifluoroacetic acid, boron trifluoride ether complex. And boron trifluoride phenol complex. Among these, p-toluenesulfonic acid, methanesulfonic acid, and trifluoromethanesulfonic acid are preferred because of their high reaction rate. The amount of the catalyst added is based on 100 parts by weight of the total amount of the trisubstituted dihydroxybenzene compound (a1) and the aromatic monovinyl compound (a2) or the benzyl compound (a3) having a leaving group at the benzyl position. The range is preferably 0.01 to 10 parts by weight.
[0020]
In addition, as the organic solvent, a 3-substituted dihydroxybenzene compound (a1), an aromatic monovinyl compound (a2), a benzyl compound (a3) having a leaving group at the benzyl position, and a product are dissolved. Is not particularly limited, for example, aromatic organic solvents such as benzene, toluene, xylene, ketone organic solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methanol, ethanol, Examples include alcohol-based organic solvents such as isopropyl alcohol and normal butanol, and ether-based organic solvents such as diethyl ether, tetrahydrofuran, dioxane, and methoxyethanol. Properties such as solubility of raw materials and products used, reaction conditions, economics, etc. Choose as appropriate Although Rukoto can, especially aromatic organic solvents, ketone-based organic solvents preferably used.
[0021]
The amount of the organic solvent used is not particularly limited, but the 3-substituted dihydroxybenzene compound (a1) and the aromatic monovinyl compound (a2) or the benzyl compound (a3) having a leaving group at the benzyl position. The total amount is preferably 10 to 500 parts by weight per 100 parts by weight. The reaction conditions are room temperature to 200 ° C., preferably 50 to 150 ° C., and the mixture is heated and stirred for 0.5 to 30 hours.
[0022]
The epoxy resin (A) used in the present invention is derived from the 4-substituted dihydroxybenzenes (a) obtained as described above and epihalohydrin, and the structure thereof is not particularly limited. And those represented by the following structural formulas (5-1) to (5-2).
[0023]
[Chemical 9]
Figure 0004186153
(In the formula, n represents the number of repetitions.)
[0024]
N in the structural formula is appropriately set and synthesized according to the use of the epoxy resin, but 0 to 10 is preferable, and 0 to 3 is particularly preferable because of low viscosity and easy handling.
[0025]
A method for producing the epoxy resin (A) is not particularly limited. For example, an alkali metal hydroxide is added to a dissolved mixture of the tetrasubstituted dihydroxybenzenes (a) and epihalohydrin obtained by the above-described method. The method of making it react at 20-120 degreeC for 1 to 10 hours, adding or adding a glycidylation reaction using a solvent as needed is mentioned.
[0026]
The epihalohydrin is not particularly limited, and examples thereof include epichlorohydrin, β-methylepichlorohydrin, epibromohydrin, β-methylepibromohydrin, and the like. Among these, epichlorohydrin is preferable from the viewpoint of reactivity.
[0027]
The addition amount of the epihalohydrin is preferably in the range of 0.3 to 10 equivalents with respect to 1 equivalent of the hydroxyl group in the raw 4-substituted dihydroxybenzenes (a), depending on the desired properties of the epoxy resin (A). The amount of epihalohydrin can be adjusted as appropriate. For example, when the epihalohydrin is less than 2.5 equivalents, a reaction between an epoxy group and unreacted tetrasubstituted dihydroxybenzenes (a) occurs, and —CH2CH (OH) CH2When a high molecular weight product containing a large amount of-is obtained and the amount is 2.5 equivalents or more, the content of a low molecular weight product, for example, a compound of n = 0 in the above structural formulas (5-1) and (5-2) And a low viscosity liquid epoxy resin is obtained.
[0028]
The alkali metal hydroxide is not particularly limited, and examples thereof include potassium hydroxide, sodium hydroxide, barium hydroxide, magnesium oxide, sodium carbonate, potassium carbonate and the like. Among these, potassium hydroxide, water Sodium oxide is preferred. In addition, these can be suitably used either in aqueous solution or in solid form.
[0029]
When the alkali metal hydroxide is used as an aqueous solution, the aqueous solution of the alkali metal hydroxide is continuously added to the reaction system and water and epihalohydrin are distilled off under reduced pressure or continuously under normal pressure. Further, a method in which the liquid is separated and water is removed and epihalohydrin is continuously returned to the reaction system.
[0030]
Examples of the solvent include alcohols such as methanol, ethanol, isopropyl alcohol, and butanol, ketones such as acetone and methyl ethyl ketone, ethers such as dioxane, and aprotic polar solvents such as dimethyl sulfone and dimethyl sulfoxide. .
[0031]
The amount of the alcohol or ether used as a solvent is usually 5 to 50 parts by weight, particularly 10 to 30 parts by weight, based on 100 parts by weight of epihalohydrin. Moreover, the usage-amount in the case of using an aprotic polar solvent is 5-100 weight part normally with respect to 100 weight part of epihalohydrins, It is preferable that it is especially 10-60 weight part.
[0032]
Further, a quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide, trimethylbenzylammonium chloride or the like is added to a dissolved mixture of the 4-substituted dihydroxybenzenes (a) and epihalohydrin as a catalyst, and 1 to 5 at 50 to 150 ° C. The alkali metal hydroxide solid or aqueous solution is added to the halohydrin etherified product of the 4-substituted dihydroxybenzenes (a) obtained by the reaction for a period of time, and the mixture is reacted again at 20 to 120 ° C. for 1 to 10 hours to dehalogenate. Alternatively, hydrogen (ring closure) may be used.
[0033]
Subsequently, the reaction product obtained by the above-mentioned glycidylation reaction is washed with water, or by removing epihalohydrin and other additive solvents at 110 to 250 ° C. under a pressure of 10 mmHg or less under heating and decompression without washing with water, thereby to obtain a crude epoxy resin. Is obtained.
[0034]
Further, in order to obtain an epoxy resin with less hydrolyzable halogen, the crude epoxy resin obtained after recovering epihalohydrin or the like is dissolved again in a solvent such as toluene or methyl isobutyl ketone, and an aqueous solution of the alkali metal hydroxide is added. It is also possible to carry out a re-ring closure reaction which ensures further ring closure by further reaction. In this case, the alkali metal hydroxide is used in an amount of 0.5 to 10 mol, particularly 1.2 to 5.0 mol, based on 1 mol of hydrolyzable chlorine remaining in the crude epoxy resin. .
[0035]
The reaction conditions for the re-ring closure reaction are not particularly limited, but the reaction temperature is preferably 50 to 120 ° C. and the reaction time is preferably 0.5 to 3 hours. Further, for the purpose of improving the reaction rate, a phase transfer catalyst such as a quaternary ammonium salt or crown ether can be used. The amount of the phase transfer catalyst used is preferably in the range of 0.1 to 3.0 parts by weight with respect to 100 parts by weight of the crude epoxy resin.
[0036]
After completion of the re-ringing reaction, the produced salt can be removed by filtration, washing with water, etc., and the solvent can be further purified by distilling off a solvent such as toluene and methyl isobutyl ketone under heating and reduced pressure.
[0037]
As the curing agent (B) used in the present invention, various curing agents for epoxy resins can be used, and examples include curing agents for epoxy resins such as amine compounds, acid anhydride compounds, amide compounds, and phenol compounds. It is done.
[0038]
Specifically, polyamide resin synthesized from diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, linolenic acid and ethylenediamine, phthalic anhydride, trimellitic anhydride, pyrone anhydride Mellitic acid, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, phenol novolac resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin modified Phenol resin, dicyclopentadiene phenol addition resin, phenol aralkyl resin, cresol aralkyl resin, naphthol aralkyl resin, biphenyl modified Enol aralkyl resin, phenol trimethylol methane resin, tetraphenylol ethane resin, naphthol novolak resin, naphthol-phenol co-condensed novolac resin, naphthol-cresol co-condensed novolac resin, biphenyl-modified phenol resin, aminotriazine-modified phenol resin, etc. Polyphenol compounds, modified products thereof, imidazole, BFThree-An amine complex, a guanidine derivative, etc. are mentioned. Moreover, these hardening | curing agents may be used independently and may mix 2 or more types.
[0039]
Among these curing agents, particularly in terms of excellent heat resistance, for example, phenol novolak resin, naphthol novolac resin, phenol trimethylol methane resin is particularly preferable, and in terms of excellent moisture resistance, phenol aralkyl resin, cresol aralkyl resin, Naphthol aralkyl resins and biphenyl-modified phenol aralkyl resins are particularly preferable, and phenol aralkyl resins, cresol aralkyl resins, naphthol aralkyl resins, biphenyl-modified phenol aralkyl resins, and aminotriazine-modified phenol resins are particularly preferable in terms of excellent flame retardancy.
[0040]
The amount of the curing agent (B) used is such that the active hydrogen group in the curing agent is 0.7 to 1 with respect to 1 equivalent of the epoxy group of the epoxy resin from the viewpoint that the curing reaction is sufficient and the cured physical properties are good. A range of 0.5 equivalent is preferred.
[0041]
Moreover, a hardening accelerator can also be used suitably. The curing accelerator is not particularly limited, and examples thereof include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, and amine complex salts. When used as a semiconductor encapsulating material or a resin composition for electronic circuit boards, triphenylphosphine is used for phosphorus compounds, and 1,8-diazabicyclo- [5,4,0] -undecene (DBU) is used for tertiary amines. Are preferable because they are excellent in curability, heat resistance, electrical characteristics, moisture resistance reliability, and the like.
[0042]
In addition to the above-described components, other epoxy resins can be used in combination with the epoxy resin composition of the present invention. The mixing ratio in the case of using together is preferably 30 to 90% by weight, particularly 40% of the total epoxy resin of the epoxy resin (A), from the viewpoint of good balance between heat resistance and moisture resistance of the resulting cured product. ~ 80 wt% is preferred.
[0043]
The other epoxy resin is not particularly limited. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type epoxy resin, resorcin type epoxy resin, hydroquinone type epoxy Resin, catechol type epoxy resin, dihydroxynaphthalene type epoxy resin, biphenyl type epoxy resin, liquid epoxy resin such as tetramethylbiphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenylmethane type epoxy resin, tetra Phenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, naphthol novolak type epoxy resin Resin, naphthol aralkyl type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolac type epoxy resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin type epoxy resin, biphenyl-modified novolac type epoxy resin, tetrabromo Examples thereof include bisphenol A type epoxy resins and brominated phenol novolak type epoxy resins. Among these, bisphenol A type epoxy resins and bisphenol F type epoxy resins are preferred because of low viscosity and good curability. Moreover, these other epoxy resins may be used independently and may mix 2 or more types.
[0044]
Moreover, the epoxy resin composition of this invention can add various compounding agents, such as an inorganic filler, a flame-retardant imparting agent, a pigment, a silane coupling agent, and a mold release agent, as needed.
[0045]
Examples of the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, and aluminum hydroxide. When the blending amount of the filler is particularly large, it is preferable to use fused silica. As the fused silica, either crushed or spherical can be used, but the blending amount is increased and the melt viscosity of the molding material is increased. In order to suppress, it is particularly preferable to use mainly spherical ones. In order to further increase the blending amount of the spherical silica, it is preferable that the particle size distribution of the spherical silica is appropriately adjusted so that the average particle size is 5 to 30 μm. The filling rate is particularly preferably 65 to 92% by weight based on the total amount of the epoxy resin composition from the viewpoint of good flame retardancy. Moreover, when using for uses, such as an electrically conductive paste, electroconductive fillers, such as silver powder and copper powder, can also be used.
[0046]
The flame retardant imparting agent is not particularly limited, and examples thereof include halogen compounds, phosphorus atom-containing compounds, nitrogen atom-containing compounds, and inorganic flame retardant compounds. Specifically, halogen compounds such as tetrabromobisphenol A type epoxy resin, phosphorus atom-containing compounds such as red phosphorus and phosphate ester compounds, nitrogen atom-containing compounds such as melamine, aluminum hydroxide, magnesium hydroxide, zinc borate, boric acid Examples include inorganic flame retardant compounds such as calcium.
[0047]
Applications of the epoxy resin composition of the present invention include semiconductor sealing materials, resin compositions used for laminates and electronic circuit boards, resin casting materials, adhesives, interlayer insulation materials for build-up substrates, insulation paints Among them, among these, it can be suitably used for semiconductor encapsulating materials and resin compositions for electronic circuit boards.
[0048]
The semiconductor encapsulant material is sufficiently mixed until the epoxy resin composition of the present invention and the above-mentioned inorganic filler, and other components as necessary, become uniform using an extruder, kneader, roll, etc. Can be manufactured. The filler used here is preferably silica. The amount of the inorganic filler used is usually in a range of 30 to 95% by weight, and is preferable for improving flame retardancy, moisture resistance and solder crack resistance, and reducing the linear expansion coefficient. Is preferably 70 to 95% by weight, and particularly preferably 80 to 95% by weight to make these effects remarkable.
[0049]
The resin composition for an electronic circuit board can be produced by dissolving the epoxy resin composition of the present invention in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, or methyl isobutyl ketone. The amount of the solvent used in this case is usually 10 to 70% by weight, preferably 15 to 65% by weight, and particularly preferably 35 to 65% by weight in the resin composition for electronic circuit boards. Specific examples of the electronic circuit board include a printed wiring board, a printed circuit board, a flexible printed wiring board, and a build-up wiring board.
[0050]
When the epoxy resin composition of the present invention is used as a coating material such as an adhesive or paint, the composition may be melted and coated, or a solution obtained by dissolving the composition in the solvent is usually used. After coating by this method, the solvent may be removed by drying and cured. At this time, the curing catalyst may be used as necessary. Moreover, you may mix the said inorganic filler etc.
[0051]
The molded cured product of the present invention can be obtained by molding and curing the epoxy resin composition. The cured product can be used as a laminate, a casting, an adhesive, a coating film, or a film. For example, as a method for obtaining a cured product of a semiconductor sealing material, the composition is cast or molded using a transfer molding machine, an injection molding machine, etc., and further heated at 80 to 200 ° C. for 2 to 10 hours. The method of doing is mentioned. Moreover, as a method for obtaining a cured product of a resin composition for an electronic circuit board, the resin composition for an electronic circuit board is impregnated into a base material such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, and heated. There is a method in which after drying and obtaining a prepreg and laminating, it is subjected to hot press molding.
[0052]
【Example】
EXAMPLES Next, the present invention will be specifically described with reference to Examples and Comparative Examples. In the following, parts and% are based on weight unless otherwise specified.
[0053]
Example 1
(1)Synthesis of tetrasubstituted dihydroxybenzenes
  While purging a flask equipped with a thermometer, dropping funnel, cooling and stirrer with nitrogen gas purge, 152 g (1.0 mol) of trimethylhydroquinone was dissolved in 150 g of methyl isobutyl ketone, and 1.5 g of paratoluenesulfonic acid monohydrate was dissolved. Was added, and the temperature was raised to 80 ° C., and 114 g (1.1 mol) of styrene monomer was added dropwise over 1 hour while paying attention to heat generation. After completion of dropping, the reaction was continued at 135 ° C. for 10 hours, and then 5% NaOH was added to neutralize and deactivate the catalyst. Then, by-product salt was removed from the system by washing with water, and finally methyl isobutyl ketone was distilled off to obtain 205 g of 4-substituted dihydroxybenzene represented by the following structural formula (6).
[Chemical Formula 10]
Figure 0004186153
[0054]
(2)Epoxy resin synthesis
  While applying a nitrogen gas purge to a flask equipped with a thermometer, dropping funnel, condenser and stirrer,(1)The 4-substituted dihydroxybenzene (128 g) (hydroxyl group 1.0 equivalent), epichlorohydrin 463 g (5.0 mol), and dimethylsulfoxide 53 g obtained in the above were charged and dissolved. After raising the temperature to 65 ° C., the pressure was reduced to the azeotropic pressure, and 82 g (1.0 mol) of 49% aqueous sodium hydroxide solution was added dropwise over 5 hours. Continued. During this time, the distillate distilled azeotropically was separated with a Dean-Stark trap, the aqueous layer was removed, and the reaction was conducted while returning the organic layer to the reaction system. Thereafter, unreacted epichlorohydrin was distilled off under reduced pressure. The crude epoxy resin thus obtained was dissolved by adding 550 g of methyl isobutyl ketone, and washing with 100 g of water was repeated 5 times to remove dimethyl sulfoxide. Next, 55 g of n-butanol was added and dissolved therein. Further, 15 g of a 10% aqueous sodium hydroxide solution was added to this solution and reacted at 80 ° C. for 2 hours. Then, washing with 100 g of water was repeated three times until the pH of the washing solution became neutral. Next, the system was dehydrated by azeotropic distillation, and after microfiltration, the solvent was distilled off under reduced pressure to obtain 170 g of an epoxy resin (α) represented by the following structural formula (7). The obtained epoxy resin is a viscous liquid at room temperature, and its epoxy equivalent is 208 g / eq. Met. From the epoxy equivalent, it was confirmed that n in the formula was 0.16.
Embedded image
Figure 0004186153
[0055]
(3)Preparation of epoxy resin composition
  (2)199 parts of the epoxy resin (α) obtained in the above, as a curing agent, phenol novolak resin (PHENOLITE TD-2131: manufactured by Dainippon Ink & Chemicals, Inc., softening point 80 ° C., hydroxyl group equivalent 104 g / eq.) 104 parts, As a curing accelerator, 3 parts of triphenylphosphine (TPP) was blended and vigorously stirred and kneaded at a temperature of 100 ° C. to obtain the desired epoxy resin composition (i).
[0056]
Comparative Example 1
  Example 1 except that 183 parts of bisphenol A type epoxy resin (EPICLON 850S: manufactured by Dainippon Ink & Chemicals, Inc., epoxy equivalent 188 g / eq.) Was used instead of 199 parts of epoxy resin (α).(3)In the same manner as above, an epoxy resin composition (ii) was obtained.
[0057]
Comparative Example 2
  Example 1 except that 160 parts of dihydroxynaphthalene type epoxy resin (EPICLON HP-4032, epoxy equivalent 160 g / eq.) Was used instead of 199 parts of epoxy resin (α).(3)In the same manner as above, an epoxy resin composition (iii) was obtained.
[0058]
Test Example 1 and Comparative Test Examples 1-2
Each of the compositions obtained in Example 1 and Comparative Examples 1 and 2 was press-molded at 150 ° C. for 10 minutes and then further cured at 175 ° C. for 5 hours, and then a test piece (size 2.5 mm × 25 mm × 75 mm) Created. Table 1 shows the glass transition temperature (dynamic viscoelasticity method) and moisture absorption test results of the obtained test pieces. The moisture absorption rate is a value obtained by processing for 300 hours in a constant temperature and humidity chamber at 85 ° C. and 85% RH, and dividing the subsequent increase in weight by the weight before processing.
[Table 1]
Figure 0004186153
[0059]
【The invention's effect】
According to the present invention, excellent heat resistance and moisture resistance are required, such as semiconductor sealing materials, matrix resins for electronic circuit boards, resin casting materials, adhesives, interlayer insulating materials for build-up boards, coatings for insulating paints, etc. An epoxy resin composition that can be suitably used as a material, a molded cured product thereof, a semiconductor sealing material, and an electronic circuit board resin composition can be provided.

Claims (4)

下記一般式(1)で表される4置換ジヒドロキシベンゼン類(a)とエピハロヒドリンとから誘導されるエポキシ樹脂(A)と、硬化剤(B)とを含むことを特徴とするエポキシ樹脂組成物。
Figure 0004186153
〔式中、R〜Rは、それぞれ独立に、ヒドロキシ基、炭素数1〜6のアルキル基、炭素数1〜6のシクロアルキル基、アリール基、ハロゲン原子または下記一般式(2)
Figure 0004186153
(式中、R、Rはそれぞれ独立に水素原子またはメチル基を示す。)
で表される置換基を示し、かつ、そのうち2つは必ずヒドロキシ基であり、1つは必ず上記一般式(2)で表される基である。〕
An epoxy resin composition comprising an epoxy resin (A) derived from a tetrasubstituted dihydroxybenzene (a) represented by the following general formula (1) and an epihalohydrin, and a curing agent (B).
Figure 0004186153
[Wherein R 1 to R 6 each independently represents a hydroxy group, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 1 to 6 carbon atoms, an aryl group, a halogen atom, or the following general formula (2)
Figure 0004186153
(In the formula, R 7 and R 8 each independently represent a hydrogen atom or a methyl group.)
And two of them are necessarily hydroxy groups, and one is a group represented by the general formula (2). ]
請求項1に記載のエポキシ樹脂組成物を成形硬化させてなることを特徴とする成形硬化物。A molded cured product obtained by molding and curing the epoxy resin composition according to claim 1 . 請求項1に記載のエポキシ樹脂組成物を含有することを特徴とする半導体封止材料。A semiconductor sealing material comprising the epoxy resin composition according to claim 1 . 請求項1に記載のエポキシ樹脂組成物を含有することを特徴とする電子回路基板用樹脂組成物。A resin composition for an electronic circuit board, comprising the epoxy resin composition according to claim 1 .
JP2002248640A 2002-08-28 2002-08-28 Epoxy resin composition, cured product thereof, semiconductor sealing material, and resin composition for electronic circuit board Expired - Lifetime JP4186153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002248640A JP4186153B2 (en) 2002-08-28 2002-08-28 Epoxy resin composition, cured product thereof, semiconductor sealing material, and resin composition for electronic circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002248640A JP4186153B2 (en) 2002-08-28 2002-08-28 Epoxy resin composition, cured product thereof, semiconductor sealing material, and resin composition for electronic circuit board

Publications (2)

Publication Number Publication Date
JP2004083783A JP2004083783A (en) 2004-03-18
JP4186153B2 true JP4186153B2 (en) 2008-11-26

Family

ID=32055972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002248640A Expired - Lifetime JP4186153B2 (en) 2002-08-28 2002-08-28 Epoxy resin composition, cured product thereof, semiconductor sealing material, and resin composition for electronic circuit board

Country Status (1)

Country Link
JP (1) JP4186153B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138182A (en) * 2006-11-02 2008-06-19 Hitachi Chem Co Ltd Circuit connecting material
KR20210087808A (en) * 2020-01-03 2021-07-13 주식회사 이지티엠 Method of depositing material layer using protective material

Also Published As

Publication number Publication date
JP2004083783A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP5262389B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP4247658B2 (en) Novel epoxy resin, epoxy resin composition and cured product thereof
JP5245199B2 (en) Epoxy resin composition, cured product thereof, novel epoxy resin, production method thereof, and novel phenol resin
WO2006101008A1 (en) Epoxy resin composition, cured product thereof, novel epoxy resin, process for production thereof, and novel phenol resin
KR101143131B1 (en) Epoxy compound, preparation method thereof, and use thereof
TWI648317B (en) Phenolic resin, phenol resin mixture, epoxy resin, epoxy resin composition and hardened materials
KR101408535B1 (en) Modified liquid epoxy resin, epoxy resin composition using the same, and cured product thereof
JP4224765B2 (en) Epoxy resin composition and molded cured product thereof
JP5875030B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP5233858B2 (en) Epoxy resin composition, cured product thereof, and semiconductor device
JP3944765B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JPH09291127A (en) Naphthol-containing novolac resin, naphthol novolac epoxy resin, epoxy resin composition, and cured product thereof
JP4186153B2 (en) Epoxy resin composition, cured product thereof, semiconductor sealing material, and resin composition for electronic circuit board
JP3998163B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP3636409B2 (en) Phenolic resins, epoxy resins, epoxy resin compositions and cured products thereof
JP4363048B2 (en) Epoxy resin composition and cured product thereof
JPH08239454A (en) Novolac resin, epoxy resin, epoxy resin composition and cured product thereof
JP3931616B2 (en) Epoxy resin, epoxy resin composition, aromatic polyol compound and cured product thereof.
JP4158137B2 (en) Epoxy resin composition and cured product thereof.
JP4899257B2 (en) Phenol resin, epoxy resin, epoxy resin composition and cured product thereof.
JPH11147929A (en) Epoxy resin, production of epoxy resin, epoxy resin composition, and cured product of the composition
JP3886060B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP2022093044A (en) Polyhydric hydroxy resin, epoxy resin, production methods of them, and epoxy resin composition and cured product that employ them
JP2003073318A (en) Polyhydroxy compound, epoxy resin, epoxy resin composition and hardened material of the same
JP2008255367A (en) Epoxy resin composition and molded and cured form thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080815

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080828

R150 Certificate of patent or registration of utility model

Ref document number: 4186153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term