JP4655490B2 - Epoxy resin composition and cured product thereof - Google Patents

Epoxy resin composition and cured product thereof Download PDF

Info

Publication number
JP4655490B2
JP4655490B2 JP2004068393A JP2004068393A JP4655490B2 JP 4655490 B2 JP4655490 B2 JP 4655490B2 JP 2004068393 A JP2004068393 A JP 2004068393A JP 2004068393 A JP2004068393 A JP 2004068393A JP 4655490 B2 JP4655490 B2 JP 4655490B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
general formula
component
anthrahydroquinone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004068393A
Other languages
Japanese (ja)
Other versions
JP2005255813A (en
Inventor
淳人 早川
明広 伊藤
保幸 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004068393A priority Critical patent/JP4655490B2/en
Publication of JP2005255813A publication Critical patent/JP2005255813A/en
Application granted granted Critical
Publication of JP4655490B2 publication Critical patent/JP4655490B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、硬化性に優れており、機械的強度、耐熱性、難燃性及び耐湿性に優れた硬化物を与える新規エポキシ樹脂組成物及びその硬化体に関する。   The present invention relates to a novel epoxy resin composition that is excellent in curability and gives a cured product excellent in mechanical strength, heat resistance, flame retardancy and moisture resistance, and a cured product thereof.

エポキシ樹脂組成物は、硬化性などの成形性に優れ、機械的性質、耐湿性、電気的性質などに優れた硬化物を与えるので電気・電子部品の封止材料、成形材料、注型材料、積層材料、複合材料、接着剤及び塗料等の幅広い分野に利用されている。しかしながら、技術の進歩に伴い、エポキシ樹脂組成物の高性能化に対する要求が高まってきており、従来の組成物ではその要求に対応できなくなってきた。たとえば、電気・電子用途の分野においては電子部品の小型化、高性能化技術の進展に伴い、機械的性質、耐湿性、電気的性質などに優れた硬化物を得るためのエポキシ化合物が望まれている。一般的なエポキシ化合物としては、ビスフェノールAのジグリシジルエーテルやノボラック樹脂のポリグリシジルエーテル等が広く用いられているが、これらのエポキシ樹脂を用いた硬化物は機械的強度、耐熱性、耐湿性及び難燃性が十分でない。   Epoxy resin compositions are excellent in moldability such as curability and give cured products with excellent mechanical properties, moisture resistance, electrical properties, etc., so sealing materials for electrical and electronic parts, molding materials, casting materials, It is used in a wide range of fields such as laminated materials, composite materials, adhesives and paints. However, with the advancement of technology, the demand for higher performance of the epoxy resin composition is increasing, and the conventional composition cannot meet the demand. For example, in the field of electrical and electronic applications, as electronic components become smaller and higher performance technology advances, epoxy compounds for obtaining cured products with excellent mechanical properties, moisture resistance, electrical properties, etc. are desired. ing. As a general epoxy compound, diglycidyl ether of bisphenol A, polyglycidyl ether of novolak resin, etc. are widely used, but cured products using these epoxy resins have mechanical strength, heat resistance, moisture resistance and Flame resistance is not enough.

これらの問題点を解決するために特殊骨格を有するエポキシ化合物を用いる技術が提案されている。たとえば、テトラメチルビフェニル型エポキシ化合物(特許文献1)、スチルベン型エポキシ化合物(特許文献2)などである。しかし、これらのエポキシ化合物は、エポキシ基の近くに嵩高い置換基がついているので硬化性の点で十分とはいえない。また、これらのエポキシ化合物を用いた硬化体は、耐熱性、難燃性や耐湿性につき、前述のビスフェノールA型エポキシ化合物を用いた硬化体に比べ、幾分向上するが、用途によっては不十分である。また、アントラセン骨格を有するエポキシ化合物(特許文献3)を用いることも提案されているが、ここで用いられているエポキシ化合物は分子量分布を持たないモノマーであり、その入手や製造が困難であるばかりか、結晶性が高すぎて硬化剤等との相溶性に劣るなどの欠点があった。
特公平7−53791号公報 特開平9−12674号公報 特開平5−283560号公報
In order to solve these problems, a technique using an epoxy compound having a special skeleton has been proposed. Examples thereof include a tetramethylbiphenyl type epoxy compound (Patent Document 1) and a stilbene type epoxy compound (Patent Document 2). However, these epoxy compounds are not sufficient in terms of curability since they have a bulky substituent near the epoxy group. In addition, cured products using these epoxy compounds are somewhat improved in terms of heat resistance, flame retardancy, and moisture resistance compared to the cured products using the bisphenol A type epoxy compounds described above, but may be insufficient depending on the application. It is. Moreover, although it has also been proposed to use an epoxy compound having an anthracene skeleton (Patent Document 3), the epoxy compound used here is a monomer having no molecular weight distribution, and its acquisition and production are difficult. Or there was a fault that crystallinity was too high and the compatibility with a hardening agent etc. was inferior.
Japanese Patent Publication No. 7-53791 Japanese Patent Laid-Open No. 9-12673 Japanese Patent Laid-Open No. 5-283560

本発明は、硬化性に優れており、機械的強度、耐熱性、難燃性及び耐湿性に優れた硬化物を与える新規エポキシ樹脂組成物及びその硬化体を提供しようとするものである。   The present invention is intended to provide a novel epoxy resin composition that is excellent in curability and gives a cured product excellent in mechanical strength, heat resistance, flame retardancy and moisture resistance, and a cured product thereof.

本発明者らは、前記の課題を解決するために鋭意研究を重ねた結果、特定の化学構造と分子量分布を持つエポキシ樹脂を用いた硬化性エポキシ樹脂組成物は硬化性に優れ、機械的強度、耐熱性、難燃性及び耐湿性に優れた硬化体を与えることを見出し、本発明を完成させるに至った。本発明は、以下の各発明を包含する。   As a result of intensive research to solve the above problems, the present inventors have found that a curable epoxy resin composition using an epoxy resin having a specific chemical structure and molecular weight distribution has excellent curability and mechanical strength. The present inventors have found that a cured product excellent in heat resistance, flame retardancy and moisture resistance can be obtained, and completed the present invention. The present invention includes the following inventions.

(1)(a)その全部又は少なくとも一部が一般式(1)

Figure 0004655490
(式中、Rは同一でも異なってもよく炭素数1〜10の炭化水素基を示す。pは同一でも異なってもよく0〜8の整数を示す。nは平均値で0.05〜100の数を示す。)
で表されるアントラハイドロキノン型エポキシ樹脂よりなるエポキシ樹脂成分、及び
(b)エポキシ樹脂用硬化剤成分
を必須成分とするエポキシ樹脂組成物(ただし、以下の「アルカリ現像型感光性樹脂組成物」を除く。
(a)同一分子内に不飽和基とカルボキシル基を有するアルカリ現像可能な不飽和基含有ポリカルボン酸及び
(b)エポキシ樹脂
を必須成分として配合してなるアルカリ現像型感光性樹脂組成物であって、(b)成分のエポキシ樹脂の全部又は一部が、一般式(I)で表されるアントラハイドロキノン型エポキシ樹脂又はジヒドロアントラハイドロキノン型エポキシ樹脂であって、該式(I)中のn=0の成分の含有量が50質量%以上であり、かつ融点が50〜150℃の結晶エポキシ樹脂からなることを特徴とするアルカリ現像型感光性樹脂組成物。
Figure 0004655490
〔式中、Xは同一でも異なってもよく、一般式(II)又は一般式(III)で表される基であり、nは0〜10の整数である。
Figure 0004655490
(式中、R は同一でも異なってもよく、炭素数1〜10までの炭化水素基であり、pは0〜8の整数である。)
Figure 0004655490
(式中、R は同一でも異なってもよく、炭素数1〜10までの炭化水素基であり、qは0〜10の整数である。)〕。 (1) (a) All or at least a part of the general formula (1)
Figure 0004655490
(In the formula, R may be the same or different and represents a hydrocarbon group having 1 to 10 carbon atoms. P may be the same or different and represents an integer of 0 to 8. n is an average value of 0.05 to 100. Indicates the number of
And an epoxy resin composition comprising an anthrahydroquinone type epoxy resin represented by the formula (b) and an epoxy resin composition comprising the curing agent component for epoxy resin as an essential component (however, the following “alkali development type photosensitive resin composition” except.
(A) an alkali-developable unsaturated group-containing polycarboxylic acid having an unsaturated group and a carboxyl group in the same molecule;
(B) Epoxy resin
Is an alkali-developable photosensitive resin composition that is blended as an essential component, wherein all or part of the component (b) epoxy resin is an anthrahydroquinone type epoxy resin or dihydro An anthrahydroquinone type epoxy resin, characterized in that the content of the component of n = 0 in the formula (I) is 50% by mass or more and a crystalline epoxy resin having a melting point of 50 to 150 ° C. Alkali development type photosensitive resin composition.
Figure 0004655490
[In the formula, X may be the same or different, and is a group represented by the general formula (II) or the general formula (III), and n is an integer of 0 to 10.
Figure 0004655490
(In the formula, R 1 may be the same or different, is a hydrocarbon group having 1 to 10 carbon atoms, p is an integer from 0-8.)
Figure 0004655490
(In the formula, R 2 may be the same or different, and is a hydrocarbon group having 1 to 10 carbon atoms, and q is an integer of 0 to 10).].

(2) 前記一般式(1)で表されるアントラハイドロキノン型エポキシ樹脂が、一般式(1)においてp=0である化学構造を持ち、エポキシ当量が163〜200g/eq.であり、融点が112〜130℃の結晶性エポキシ樹脂であることを特徴とする(1)項記載のエポキシ樹脂組成物。    (2) The anthrahydroquinone type epoxy resin represented by the general formula (1) has a chemical structure where p = 0 in the general formula (1), and an epoxy equivalent is 163 to 200 g / eq. The epoxy resin composition according to item (1), which is a crystalline epoxy resin having a melting point of 112 to 130 ° C.

(3)前記 (a)エポキシ樹脂成分が、
(a−1)前記一般式(1)で表されるアントラハイドロキノン型エポキシ樹脂:10〜95質量%、及び、
(a−2)その他のエポキシ樹脂:5〜90質量%、
からなることを特徴とする(1)項又は(2)項に記載のエポキシ樹脂組成物。
(3) The (a) epoxy resin component is
(A-1) Anthrahydroquinone type epoxy resin represented by the general formula (1): 10 to 95% by mass, and
(a-2) Other epoxy resins: 5 to 90% by mass,
The epoxy resin composition according to item (1) or (2), comprising:

(4)前記(b)エポキシ樹脂用硬化剤成分が、フェノールアラルキル樹脂、ナフトールノボラック樹脂、ナフトールアラルキル樹脂、フェノールジシクロペンタジエン樹脂及びフェノールヒドロキシベンズアルデヒド樹脂から選ばれる少なくとも一種類のフェノール樹脂である(1)項〜(3)項のいずれか1項に記載のエポキシ樹脂組成物。   (4) The (b) epoxy resin curing agent component is at least one phenol resin selected from a phenol aralkyl resin, a naphthol novolak resin, a naphthol aralkyl resin, a phenol dicyclopentadiene resin, and a phenol hydroxybenzaldehyde resin (1 The epoxy resin composition according to any one of items (1) to (3).

(5) 前記(a)成分及び(b)成分に加えて、(c)無機充填材成分として、組成物全体の60〜95質量%の破砕型及び/又は球状の、溶融及び/又は結晶シリカ粉末充填剤を含有することを特徴とする(1)項〜(4)項のいずれか1項に記載のエポキシ樹脂組成物。   (5) In addition to the components (a) and (b), (c) 60 to 95% by mass of the crushed mold and / or spherical fused and / or crystalline silica as the inorganic filler component The epoxy resin composition according to any one of (1) to (4), wherein the epoxy resin composition contains a powder filler.

) 前記一般式(1)で表されるエポキシ樹脂が、下記一般式(2)

Figure 0004655490
(ただし、Aは同一でも異なってもよくカリウム原子又はナトリウム原子を示し、Rは同一でも異なってもよく炭素数1〜10の炭化水素基を示す。pは同一でも異なってもよく0〜8の整数を示す。)
で表されるアントラハイドロキノン化合物のアルカリ金属塩をエピハロヒドリンと反応させて得られるエポキシ樹脂であることを特徴とする(1)項〜()項のいずれか1項に記載のエポキシ樹脂組成物。 ( 6 ) The epoxy resin represented by the general formula (1) is represented by the following general formula (2).
Figure 0004655490
(However, A may be the same or different and represents a potassium atom or a sodium atom, R represents the same or different, and represents a hydrocarbon group having 1 to 10 carbon atoms. Indicates an integer.)
The epoxy resin composition according to any one of (1) to ( 5 ), which is an epoxy resin obtained by reacting an alkali metal salt of an anthrahydroquinone compound represented by formula (1) with an epihalohydrin.

)上記(1)項〜()項のいずれか1項に記載のエポキシ樹脂組成物の硬化体。 ( 7 ) The cured product of the epoxy resin composition according to any one of (1) to ( 6 ).

本発明のエポキシ樹脂組成物は、硬化性に優れており、機械的強度、耐熱性、難燃性及び耐湿性に優れた硬化体を与える組成物であり、電気・電子部品の封止材料、成形材料、注型材料、積層材料、複合材料、接着剤及び塗料等の用途に有用である。   The epoxy resin composition of the present invention is a composition that has excellent curability and gives a cured product excellent in mechanical strength, heat resistance, flame retardancy and moisture resistance, and is a sealing material for electrical and electronic parts. It is useful for applications such as molding materials, casting materials, laminated materials, composite materials, adhesives and paints.

本発明のエポキシ樹脂組成物は、(a)エポキシ樹脂成分及び(b)エポキシ樹脂用硬化剤成分を必須成分としてなり、(a)エポキシ樹脂成分中に、下記一般式(1)で表されるアントラハイドロキノン型エポキシ樹脂を含むことを特徴とするものである。

Figure 0004655490
(ただし、Rは同一でも異なってもよく炭素数1〜10の炭化水素基を示す。pは同一でも異なってもよく0〜8の整数を示す。nは平均値で0.05〜100の数を示す。) The epoxy resin composition of the present invention comprises (a) an epoxy resin component and (b) a curing agent component for epoxy resin as essential components, and is represented by the following general formula (1) in the epoxy resin component. Anthrahydroquinone type epoxy resin is included.
Figure 0004655490
(However, R may be the same or different and represents a hydrocarbon group having 1 to 10 carbon atoms. P may be the same or different and represents an integer of 0 to 8. n is an average value of 0.05 to 100. Indicates the number.)

一般式(1)のアントラハイドロキノン型エポキシ樹脂は、一般式(3)

Figure 0004655490
(式中、Rは同一でも異なってもよく、炭素数1〜10までの炭化水素基であり、pは0〜8の整数である。)
で表されるアントラハイドロキノン化合物とエピハロヒドリンとをアルカリ金属水酸化物の存在下に反応させて得ることができる。 The anthrahydroquinone type epoxy resin of the general formula (1) is represented by the general formula (3)
Figure 0004655490
(In the formula, R may be the same or different, and is a hydrocarbon group having 1 to 10 carbon atoms, and p is an integer of 0 to 8)
Can be obtained by reacting an anthrahydroquinone compound and epihalohydrin in the presence of an alkali metal hydroxide.

たとえば、不活性ガス気流下、アントラハイドロキノン化合物1モル当たり2〜40モルに相当する量のエピハロヒドリンに溶解させて均一な溶液とする。次いで、その溶液を撹拌しながら、これにアントラハイドロキノン化合物1モル当たり1.8〜5モル量のアルカリ金属水酸化物を固体又は水溶液で加えて反応させる。この反応は、常圧下又は減圧下で行わせることができ、反応温度は、通常、常圧下の反応の場合は30〜120℃であり、減圧下の反応の場合は30〜80℃である。反応は、必要に応じて、所定の温度を保持しながら反応液を共沸させ、揮発する蒸気を冷却して得られた凝縮液を油/水分離し、水分を除いた油分を反応系へ戻す方法により脱水しながら行うことができる。   For example, in an inert gas stream, it is dissolved in an amount of epihalohydrin corresponding to 2 to 40 mol per mol of anthrahydroquinone compound to obtain a uniform solution. Next, while stirring the solution, an alkali metal hydroxide in an amount of 1.8 to 5 mol per 1 mol of the anthrahydroquinone compound is added as a solid or an aqueous solution to react. This reaction can be carried out under normal pressure or reduced pressure, and the reaction temperature is usually 30 to 120 ° C. in the case of reaction under normal pressure and 30 to 80 ° C. in the case of reaction under reduced pressure. In the reaction, if necessary, the reaction liquid is azeotroped while maintaining a predetermined temperature, the condensate obtained by cooling the vaporized vapor is separated into oil / water, and the oil component excluding moisture is transferred to the reaction system. It can be performed while dehydrating by the returning method.

アルカリ金属水酸化物の添加は、急激な反応を抑えるために1〜8時間かけて少量ずつを断続的もしくは連続的に添加することによって行われる。その全反応時間は、通常、1〜10時間である。なお、反応が終了するまで系内は不活性ガス雰囲気であることが望ましい。ここでいう不活性ガスとは、たとえば、窒素、アルゴンなどをいう。   The addition of the alkali metal hydroxide is performed by adding small portions intermittently or continuously over 1 to 8 hours in order to suppress a rapid reaction. The total reaction time is usually 1 to 10 hours. In addition, it is desirable that the inside of the system is an inert gas atmosphere until the reaction is completed. The inert gas here refers to, for example, nitrogen, argon or the like.

反応終了後、不溶性の副生塩を濾別して除くか、水洗により除去した後、未反応のエピハロヒドリンを減圧留去して除くと、目的のエポキシ樹脂が得られる。
この反応におけるエピハロヒドリンとしては、通常、エピクロルヒドリン又はエピブロモヒドリンが用いられる。アルカリ金属水酸化物としては、通常、水酸化ナトリウム又は水酸化カリウムが用いられる。
After completion of the reaction, the insoluble by-product salt is removed by filtration or removed by washing with water, and then the unreacted epihalohydrin is removed by distillation under reduced pressure to obtain the desired epoxy resin.
As epihalohydrin in this reaction, epichlorohydrin or epibromohydrin is usually used. As the alkali metal hydroxide, sodium hydroxide or potassium hydroxide is usually used.

また、この反応においては、テトラメチルアンモニウムクロリド、テトラエチルアンモニウムブロミドなどの第4級アンモニウム塩;ベンジルジメチルアミン、2,4,6−トリス(ジメチルアミノメチル)フェノールなどの第3級アミン;2−エチル−4−メチルイミダゾール、2−フェニルイミダゾールなどのイミダゾール類;エチルトリフェニルホスホニウムアイオダイドなどのホスホニウム塩;トリフェニルホスフィンなどのホスフィン類等の触媒を用いてもよい。   In this reaction, quaternary ammonium salts such as tetramethylammonium chloride and tetraethylammonium bromide; tertiary amines such as benzyldimethylamine and 2,4,6-tris (dimethylaminomethyl) phenol; 2-ethyl Catalysts such as imidazoles such as -4-methylimidazole and 2-phenylimidazole; phosphonium salts such as ethyltriphenylphosphonium iodide; phosphines such as triphenylphosphine may be used.

さらに、この反応においては、エタノール、2−プロパノールなどのアルコール類;アセトン、メチルエチルケトンなどのケトン類;ジオキサン、エチレングリコールジメチルエーテルなどのエーテル類;メトキシプロパノールなどのグリコールエーテル類;ジメチルスルホキシド、ジメチルホルムアミドなどの非プロトン性極性溶媒等の不活性な有機溶媒を単独又は2種以上組み合わせて使用してもよい。   Furthermore, in this reaction, alcohols such as ethanol and 2-propanol; ketones such as acetone and methyl ethyl ketone; ethers such as dioxane and ethylene glycol dimethyl ether; glycol ethers such as methoxypropanol; dimethyl sulfoxide, dimethylformamide and the like Inert organic solvents such as aprotic polar solvents may be used alone or in combination of two or more.

さらに、上記のようにして得られたエポキシ樹脂の可鹸化ハロゲン量が多すぎる場合は、再処理して十分に可鹸化ハロゲン量が低下した精製エポキシ樹脂を得ることができる。つまり、その粗製エポキシ樹脂を、2−プロパノール、メチルエチルケトン、メチルイソブチルケトン、トルエン、キシレン、ジオキサン、メトキシプロパノール、ジメチルスルホキシドなどの不活性な有機溶媒に再溶解しアルカリ金属水酸化物を固体又は水溶液で加えて約30〜120℃の温度で0.5〜8時間、再閉環反応を行った後、水洗等の方法で過剰のアルカリ金属水酸化物や副生塩を除去し、さらに有機溶媒を減圧留去して除くと、精製されたエポキシ樹脂が得られる。   Furthermore, when the amount of saponifiable halogen in the epoxy resin obtained as described above is too large, a purified epoxy resin having a sufficiently reduced amount of saponifiable halogen can be obtained by reprocessing. That is, the crude epoxy resin is redissolved in an inert organic solvent such as 2-propanol, methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, dioxane, methoxypropanol, dimethyl sulfoxide, and the alkali metal hydroxide is dissolved in a solid or aqueous solution. In addition, after re-ringing reaction is carried out at a temperature of about 30 to 120 ° C. for 0.5 to 8 hours, excess alkali metal hydroxide and by-product salt are removed by a method such as washing with water, and the organic solvent is reduced in pressure. When removed by distillation, a purified epoxy resin is obtained.

アントラハイドロキノン型エポキシ樹脂は、あらかじめ調製した前記一般式(2)で表されるアントラハイドロキノン化合物のアルカリ金属塩をエピハロヒドリンと反応させる方法で製造することもできる。ここで、塩を形成するアルカリ金属としては、カリウム又はナトリウムが挙げられ、一般的には、水酸化物(水酸化カリウム又は水酸化ナトリウム)として、そのまま、あるいは水又はアルコールなどの溶剤に溶解させた形態で供給される。この場合、アントラハイドロキノン化合物のアルカリ金属塩は、そのまま、あるいは水溶液としてエピハロヒドリン中に添加するが、急激な反応を防ぐために、少量づつ分割して系内へ添加することが望ましい。   An anthrahydroquinone type epoxy resin can also be produced by a method in which an alkali metal salt of an anthrahydroquinone compound represented by the general formula (2) prepared in advance is reacted with epihalohydrin. Here, examples of the alkali metal that forms the salt include potassium and sodium. Generally, as the hydroxide (potassium hydroxide or sodium hydroxide), it is dissolved as it is or in a solvent such as water or alcohol. Supplied in different forms. In this case, the alkali metal salt of the anthrahydroquinone compound is added to the epihalohydrin as it is or as an aqueous solution, but it is desirable to add it into the system in small portions in order to prevent rapid reaction.

また、水溶液として供給した場合は、閉環反応を十分に進行させるために、途中で系内の水を除去した後、アルカリ金属水酸化物を固形又は水溶液で添加してエポキシ化率をあげることが望ましい。その際、アントラハイドロキノン化合物のアルカリ金属塩水溶液の濃度は5〜50質量%、望ましくは15〜30質量%である。5質量%より低濃度では、系内に持ち込む水の量が増え、エポキシ化反応の進行を阻害することがある。50質量%より高濃度では水溶液の流動性が低下し、装置の配管を閉塞するなどのおそれがあるのでよくない。また、アントラハイドロキノン化合物のアルカリ金属塩水溶液は、安定化のために、塩を形成させるに必要な当量以上のアルカリ金属水酸化物を含むことができる。この水溶液には、その安定性を損なわないのであれば、他の有機溶媒、たとえばアルコール類を添加しても差し支えない。   In addition, when supplied as an aqueous solution, in order to sufficiently advance the cyclization reaction, after removing water in the system on the way, an alkali metal hydroxide may be added in solid or aqueous solution to increase the epoxidation rate. desirable. In that case, the density | concentration of the alkali metal salt aqueous solution of an anthrahydroquinone compound is 5-50 mass%, Preferably it is 15-30 mass%. When the concentration is lower than 5% by mass, the amount of water brought into the system increases, which may inhibit the progress of the epoxidation reaction. If the concentration is higher than 50% by mass, the fluidity of the aqueous solution is lowered, and the piping of the apparatus may be blocked. Moreover, the aqueous alkali metal salt solution of an anthrahydroquinone compound can contain an alkali metal hydroxide in an equivalent amount or more necessary to form a salt for stabilization. If this aqueous solution does not impair the stability, other organic solvents such as alcohols may be added.

アントラハイドロキノン化合物のアルカリ金属塩あるいはその水溶液を出発物質とする場合も、前記アントラハイドロキノン化合物のエポキシ化反応と同様な各種条件、各種反応触媒、各種有機溶剤及び操作を用いてエポキシ樹脂を得ることができる。また、粗エポキシ樹脂を精製エポキシ樹脂にする場合も、前述の方法が利用できる。
本発明に用いるアントラハイドロキノン型エポキシ樹脂としては、その純度などから後者のアントラハイドロキノン化合物のアルカリ金属塩を用いる方法で得られたエポキシ樹脂が好ましい。
Even when an alkali metal salt of an anthrahydroquinone compound or an aqueous solution thereof is used as a starting material, an epoxy resin can be obtained using various conditions, various reaction catalysts, various organic solvents and operations similar to the epoxidation reaction of the anthrahydroquinone compound. it can. The above-described method can also be used when a crude epoxy resin is used as a purified epoxy resin.
The anthrahydroquinone type epoxy resin used in the present invention is preferably an epoxy resin obtained by a method using an alkali metal salt of the latter anthrahydroquinone compound because of its purity.

前記一般式(1)におけるnは繰り返し数であり、0又は正の整数である。上記のようにして製造されたエポキシ樹脂は、異なる繰り返し数を持つ多数の成分の混合物である。この繰り返し数nの平均値により、樹脂の性状や硬化物性が変化するため、使用目的に応じて調整する必要がある。一般に、nの平均値が小さいほど低溶融粘度の樹脂となり、その硬化物の耐熱性は良好となるため、電気・電子部品の封止材料等に適する。しかし、nの平均値が0.05未満であると結晶性が高すぎて硬化剤等との相溶性に劣るなどの欠点がある。また、nの平均値が大きいほど可とう性に優れた硬化物を与えるため、積層材料、塗料等に適する。繰り返し数nの平均値は、前記アントラハイドロキノン型エポキシ樹脂の製造において、各種製造条件、たとえばアントラハイドロキノン化合物に対するエピハロヒドリンのモル比で制御することができる。   In the general formula (1), n is the number of repetitions, and is 0 or a positive integer. The epoxy resin produced as described above is a mixture of a number of components having different numbers of repetitions. Since the properties and cured properties of the resin change depending on the average value of the number of repetitions n, it is necessary to adjust according to the purpose of use. Generally, the smaller the average value of n, the lower the melt viscosity of the resin, and the better the heat resistance of the cured product, so it is suitable for sealing materials for electrical and electronic parts. However, if the average value of n is less than 0.05, the crystallinity is too high and the compatibility with the curing agent or the like is inferior. Moreover, since the hardened | cured material excellent in the flexibility is given, so that the average value of n is large, it is suitable for a laminated material, a coating material, etc. In the production of the anthrahydroquinone type epoxy resin, the average value of the repeating number n can be controlled by various production conditions, for example, the molar ratio of epihalohydrin to the anthrahydroquinone compound.

本発明のエポキシ樹脂組成物を封止材料等に使用する場合は、常温で結晶性であり、融点以上では低溶融粘度となることが好ましく、そのためには、繰り返し数nの平均値は0.05〜3であり、好ましくは0.05〜1、より好ましくは0.07〜0.5である。上記の好ましい範囲に調整するためには、アントラハイドロキノン化合物1モルに対するエピハロヒドリンのモル比は、好ましくは4〜40モル、より好ましくは8〜20モルである。このモル比が低すぎるとnの平均値が大きくなりすぎるため結晶性と低粘度性が十分でなくなるし、モル比が高すぎてもその効果には限界があるばかりか、未反応のエピハロヒドリンの留去に手間がかかることや、製造設備の効率が下がるなどの不利益がある。   When the epoxy resin composition of the present invention is used as a sealing material or the like, it is preferable that it is crystalline at room temperature and has a low melt viscosity above the melting point. It is 05-3, Preferably it is 0.05-1, More preferably, it is 0.07-0.5. In order to adjust to said preferable range, the molar ratio of epihalohydrin with respect to 1 mol of anthrahydroquinone compounds becomes like this. Preferably it is 4-40 mol, More preferably, it is 8-20 mol. If this molar ratio is too low, the average value of n becomes too large, so that the crystallinity and low viscosity are not sufficient. If the molar ratio is too high, the effect is limited, and the unreacted epihalohydrin There are disadvantages such as time-consuming distillation and reduced efficiency of production equipment.

通常、反応溶剤の留去はエポキシ樹脂の融点近傍かそれ以上の温度で実施されるため、溶剤留去直後のエポキシ樹脂は溶融状態である。この溶融状態のエポキシ樹脂を結晶させ固形物とする方法としては、特に指定はなく公知の方法を用いることができる。たとえば、高温で溶融状態のエポキシ樹脂をバット等に抜き出し自然冷却により結晶固形化する方法、抜き出した後、あらかじめ用意したそのエポキシ樹脂の結晶固形物を結晶核として少量添加し結晶化を促進する方法、溶融状態のエポキシ樹脂を撹拌したり、振動を与えるなどにより結晶化を促進する方法、ニーダーなどで強い外力を加えながら抜き出す方法、過冷却にならないように温度を管理しながら結晶化を促進させる方法などが挙げられ、これらの方法を単独あるいは複数組み合わせて行うことができる。前記一般式(1)で表されるエポキシ樹脂についても上記のような操作を行い、結晶化を促進することが、生産性の観点から望ましい。   Usually, the reaction solvent is distilled off at a temperature close to or above the melting point of the epoxy resin, so that the epoxy resin immediately after the solvent is distilled off is in a molten state. A method for crystallizing the molten epoxy resin to form a solid is not particularly specified, and a known method can be used. For example, a method of extracting a molten epoxy resin at a high temperature into a vat, etc., and solidifying the crystal by natural cooling, and a method of adding a small amount of the crystalline solid of the epoxy resin prepared in advance as a crystal nucleus to promote crystallization , A method of promoting crystallization by stirring molten epoxy resin or applying vibration, a method of extracting while applying a strong external force with a kneader, etc., promoting crystallization while controlling the temperature so as not to overcool These methods can be mentioned, and these methods can be carried out singly or in combination. It is desirable from the viewpoint of productivity that the epoxy resin represented by the general formula (1) is also operated as described above to promote crystallization.

本発明に用いるアントラハイドロキノン型エポキシ樹脂としては、前記一般式(1)において、p=0(つまりアントラセン骨格に置換基を持たない)のエポキシ樹脂が、樹脂の性状や硬化物性等から好ましい。封止材料等に使用する場合は、そのエポキシ当量は163〜200g/eq.が好ましく、より好ましくは165〜195g/eq.である。エポキシ当量が高すぎると結晶性と低粘度性が十分でなく、低すぎる樹脂は上記の理由で入手が困難であり、また、結晶性が高すぎて硬化剤等との相溶性に劣るなどの欠点がある。   As the anthrahydroquinone type epoxy resin used in the present invention, an epoxy resin of p = 0 (that is, having no substituent in the anthracene skeleton) in the general formula (1) is preferable from the properties of the resin and cured properties. When used as a sealing material, the epoxy equivalent is 163 to 200 g / eq. Is preferable, and more preferably 165 to 195 g / eq. It is. If the epoxy equivalent is too high, the crystallinity and low viscosity are not sufficient, and a resin that is too low is difficult to obtain for the above reasons, and the crystallinity is too high to be inferior in compatibility with a curing agent or the like. There are drawbacks.

また、その融点は112〜130℃が好ましく、より好ましくは115〜125℃である。融点が低すぎると常温での固形物としての取り扱い性が劣り、高すぎると硬化剤等との相溶性が悪化する。さらに、その溶融粘度は、150℃において5〜100mPa・sが好ましく、より好ましくは10〜50mPa・sである。溶融粘度が高すぎると低粘度性が十分でなく、低すぎる樹脂は上記の理由で入手が困難であり、また、結晶性が高すぎて硬化剤等との相溶性に劣るなどの欠点がある。〔溶融粘度の測定は、コーンプレート型回転粘度計(たとえば、マイセック社 CV−1D)を用い、プレート温:150℃、コーン:500mPa・s、回転数:750rpm、サンプル量0.5gで行った。〕   The melting point is preferably 112 to 130 ° C, more preferably 115 to 125 ° C. If the melting point is too low, the handleability as a solid at normal temperature is poor, and if it is too high, the compatibility with the curing agent and the like deteriorates. Furthermore, the melt viscosity is preferably 5 to 100 mPa · s at 150 ° C., more preferably 10 to 50 mPa · s. If the melt viscosity is too high, the low viscosity is not sufficient, and a resin that is too low is difficult to obtain due to the above reasons, and has the disadvantages that the crystallinity is too high and the compatibility with the curing agent is poor. . [Measurement of melt viscosity was performed using a cone plate type rotational viscometer (for example, Mysek CV-1D) at a plate temperature of 150 ° C., a cone of 500 mPa · s, a rotation speed of 750 rpm, and a sample amount of 0.5 g. . ]

積層材料、塗料等に使用する場合は、ある程度分子分布の広い方が、接着性、柔軟性などの面で好ましく、そのためには、繰り返し数nの平均値は1〜100であり、そのエポキシ当量は300〜100,000g/eq.、軟化点は55℃〜150℃である。分子量の大きいエポキシ樹脂を製造するに当たっては、アントラハイドロキノン化合物に対するエピハロヒドリンのモル比を小さくする(たとえば、2〜3モル)方法と、一旦大きなモル比で製造した低分子量のエポキシ樹脂を、さらにアントラハイドロキノン化合物と反応させて高分子量化する方法がある。   When used for laminated materials, paints, etc., a wider molecular distribution is preferable in terms of adhesion and flexibility, and for that purpose, the average number of repetitions n is 1 to 100, and its epoxy equivalent Is 300 to 100,000 g / eq. The softening point is 55 ° C to 150 ° C. In producing a high molecular weight epoxy resin, a method of reducing the molar ratio of epihalohydrin to an anthrahydroquinone compound (for example, 2 to 3 moles), a low molecular weight epoxy resin once produced at a large molar ratio, and further anthrahydroquinone. There is a method of increasing the molecular weight by reacting with a compound.

本発明のエポキシ樹脂組成物における(a)エポキシ樹脂成分中には、「(a−1)アントラハイドロキノン型エポキシ樹脂」以外に、1分子中にエポキシ基を2個以上有する「(a−2)その他のエポキシ樹脂」を併用することができ、「その他のエポキシ樹脂」としては公知のエポキシ樹脂を用いることができる。たとえば、ビスフェノールA型、ビスフェノールF型、ビフェニル型、テトラメチルビフェニル型、クレゾールノボラック型、フェノールノボラック型、ビスフェノールAノボラック型、ジシクロペンタジエンフェノール縮合型、フェノールアラルキル縮合型などのエポキシ樹脂や臭素化エポキシ樹脂、脂環式エポキシ樹脂、脂肪族エポキシ樹脂が挙げられる。これらエポキシ樹脂は1種あるいは2種以上を混合して用いることができるが、「(a−1)アントラハイドロキノン型エポキシ樹脂」の配合量は、エポキシ樹脂全体中10〜100質量%であり、好ましくは20〜100質量%である。配合量が低くすぎると本発明の効果が十分に発揮されない。   In the epoxy resin component of the epoxy resin composition of the present invention, in addition to “(a-1) anthrahydroquinone type epoxy resin”, “(a-2) having two or more epoxy groups in one molecule” Other epoxy resins ”can be used in combination, and known epoxy resins can be used as“ other epoxy resins ”. For example, epoxy resins such as bisphenol A type, bisphenol F type, biphenyl type, tetramethylbiphenyl type, cresol novolak type, phenol novolak type, bisphenol A novolak type, dicyclopentadiene phenol condensation type, phenol aralkyl condensation type, and brominated epoxy Examples thereof include resins, alicyclic epoxy resins, and aliphatic epoxy resins. These epoxy resins can be used alone or in combination of two or more, but the blending amount of “(a-1) anthrahydroquinone type epoxy resin” is preferably 10 to 100% by mass in the whole epoxy resin, preferably Is 20 to 100% by mass. If the blending amount is too low, the effect of the present invention is not sufficiently exhibited.

本発明のエポキシ樹脂組成物における(b)硬化剤成分としては、特に指定はなく、公知のエポキシ樹脂用硬化剤を用いることができる。それらのエポキシ樹脂用硬化剤としては、たとえば、ビスフェノールA、ビスフェノールF、ビスフェノールS、チオジフェノール、ハイドロキノン、レゾルシン、ビフェノール、テトラメチルビフェノール、ジヒドロキシナフタレン、ジヒドロキシジフェニルエーテルなどの多価フェノール類、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂、ナフトールノボラック樹脂、種々のフェノール類とベンズアルデヒド、ヒドロキシベンズアルデヒド、クロトンアルデヒド、グリオキザールなどの種々のアルデヒド類との縮合反応で得られるノボラック樹脂又はレゾール樹脂等、フェノールアラルキル樹脂、フェノールテルペン樹脂、ジシクロペンタジエンフェノール樹脂などの各種フェノール樹脂類、フェノール変性キシレン樹脂、各種フェノール(樹脂)類のフェノール性水酸基の全部もしくは一部をベンゾエート化あるいはアセテート化などのエステル化により得られた活性エステル化合物、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水ピロメリット酸、メチルナジック酸などの酸無水物類、ジエチレントリアミン、イソホロジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジシアンジアミド等のアミン類が挙げられる。   The (b) curing agent component in the epoxy resin composition of the present invention is not particularly specified, and known curing agents for epoxy resins can be used. Examples of these curing agents for epoxy resins include polyphenols such as bisphenol A, bisphenol F, bisphenol S, thiodiphenol, hydroquinone, resorcin, biphenol, tetramethylbiphenol, dihydroxynaphthalene, dihydroxydiphenyl ether, and phenol novolac resins. , Cresol novolak resin, bisphenol A novolak resin, naphthol novolak resin, novolak resin or resol resin obtained by condensation reaction of various phenols with various aldehydes such as benzaldehyde, hydroxybenzaldehyde, crotonaldehyde, glyoxal, etc., phenol aralkyl Various phenol resins such as resin, phenol terpene resin, dicyclopentadiene phenol resin Phenol-modified xylene resins, active ester compounds obtained by esterification of all or part of the phenolic hydroxyl groups of various phenols (resins), such as benzoate or acetate, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, anhydrous Examples include acid anhydrides such as pyromellitic acid and methylnadic acid, and amines such as diethylenetriamine, isophorodiamine, diaminodiphenylmethane, diaminodiphenylsulfone, and dicyandiamide.

(b)硬化剤成分は、1種単独でも、2種以上併用してもよい。使用される硬化剤の使用量は、(a)エポキシ樹脂全成分中のエポキシ基1モルに対して、全硬化剤中のエポキシ基と反応する基が0.5〜2.0モルになる量が好ましく、より好ましくは0.7〜1.2モルである。   (B) The curing agent component may be used alone or in combination of two or more. The amount of the curing agent used is such that (a) 1 mol of the epoxy group in all components of the epoxy resin is 0.5 to 2.0 mol of a group that reacts with the epoxy group in the entire curing agent. Is preferable, and more preferably 0.7 to 1.2 mol.

本発明のエポキシ樹脂組成物を半導体などの封止用に使用する場合には、(b)エポキシ樹脂用硬化剤成分としては、その硬化物性などから、フェノールアラルキル樹脂、ナフトールノボラック樹脂、ナフトールアラルキル樹脂、フェノールジシクロペンタジエン樹脂及びフェノールヒドロキシベンズアルデヒド樹脂から選ばれる少なくとも一種類のフェノール樹脂が好ましい。   When the epoxy resin composition of the present invention is used for sealing semiconductors and the like, (b) as a curing agent component for epoxy resin, phenol aralkyl resin, naphthol novolak resin, naphthol aralkyl resin is used due to its cured properties. At least one phenol resin selected from phenol dicyclopentadiene resin and phenol hydroxybenzaldehyde resin is preferred.

また、本発明のエポキシ樹脂組成物には、必要に応じて、無機充填材、硬化促進剤、カップリング剤、難燃剤、難燃助剤、可塑剤、溶剤、反応性希釈剤、顔料等を適宜に配合することができる。   In addition, the epoxy resin composition of the present invention contains, as necessary, an inorganic filler, a curing accelerator, a coupling agent, a flame retardant, a flame retardant aid, a plasticizer, a solvent, a reactive diluent, a pigment, and the like. It can mix | blend suitably.

「(c)無機充填材成分」の種類としては、たとえば、溶融シリカ、結晶性シリカ、ガラス粉、アルミナ、炭酸カルシウムなどが挙げられる。その形状としては、破砕型又は球状が挙げられる。各種の無機充填材は、単独で又は、2種以上混合して用いられるが、本発明のエポキシ樹脂組成物を半導体などの封止用に使用する場合には、それらの中で溶融シリカ又は結晶性シリカが好ましい。その使用量は、組成物全体の60〜95質量%である。(c)無機充填材成分の使用量が少なすぎると吸湿性が大きくなり、耐ハンダクラック性に悪影響を及ぼす。(c)無機充填材成分の使用量が多すぎると、成形時の流動性が損なわれる。   Examples of the type of “(c) inorganic filler component” include fused silica, crystalline silica, glass powder, alumina, calcium carbonate, and the like. The shape includes a crushing type or a spherical shape. Various inorganic fillers are used singly or in combination of two or more, but when the epoxy resin composition of the present invention is used for sealing a semiconductor or the like, among them, fused silica or crystal Silica is preferred. The usage-amount is 60-95 mass% of the whole composition. (C) If the amount of the inorganic filler component used is too small, the hygroscopicity increases and adversely affects the solder crack resistance. (C) When there is too much usage-amount of an inorganic filler component, the fluidity | liquidity at the time of shaping | molding will be impaired.

本発明のエポキシ樹脂組成物に用いられる硬化促進剤は、エポキシ樹脂中のエポキシ基と硬化剤中の活性基との硬化反応を促進する化合物である。その具体例としては、トリブチルホスフィン、トリフェニルホスフィン、トリス(ジメトキシフェニル)ホスフィン、トリス(ヒドロキシプロピル)ホスフィン、トリス(シアノエチル)ホスフィンなどのホスフィン化合物、テトラフェニルホスホニウムテトラフェニルボレート、メチルトリブチルホスホニウムテトラフェニルボレート、メチルトリシアノエチルホスホニウムテトラフェニルボレートなどのホスホニウム塩、2−メチルイミダゾール、2−フェニルイミダゾール、2−エチル−4−メチルイミダゾール、2−ウンデシルイミダゾール、1−シアノエチル−2−メチルイミダゾール、2、4−ジシアノ−6−[2−メチルイミダゾリル−(1)]−エチル−S−トリアジン、2、4−ジシアノ−6−[2−ウンデシルイミダゾリル−(1)]−エチル−S−トリアジンなどのイミダゾール類、1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテート、2−メチルイミダゾリウムイソシアヌレート、2−エチル−4−メチルイミダゾリウムテトラフェニルボレート、2−エチル−1,4−ジメチルイミダゾリウムテトラフェニルボレートなどのイミダゾリウム塩、2,4,6−トリス(ジメチルアミノメチル)フェノール、ベンジルジメチルアミン、テトラメチルブチルグアニジン、N−メチルピペラジン、2−ジメチルアミノ−1−ピロリンなどのアミン類、トリエチルアンモニウムテトラフェニルボレートなどのアンモニウム塩、1,5−ジアザビシクロ(5,4,0)−7−ウンデセン、1,5−ジアザビシクロ(4,3,0)−5−ノネン、1,4−ジアザビシクロ(2,2,2)−オクタンなどのジアザビシクロ化合物、それらジアザビシクロ化合物のテトラフェニルボレート、フェノール塩、フェノールノボラック塩、2−エチルヘキサン酸塩などが挙げられる。   The curing accelerator used in the epoxy resin composition of the present invention is a compound that accelerates the curing reaction between the epoxy group in the epoxy resin and the active group in the curing agent. Specific examples thereof include phosphine compounds such as tributylphosphine, triphenylphosphine, tris (dimethoxyphenyl) phosphine, tris (hydroxypropyl) phosphine, tris (cyanoethyl) phosphine, tetraphenylphosphonium tetraphenylborate, methyltributylphosphonium tetraphenylborate. Phosphonium salts such as methyltricyanoethylphosphonium tetraphenylborate, 2-methylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 1-cyanoethyl-2-methylimidazole, 2, 4 -Dicyano-6- [2-methylimidazolyl- (1)]-ethyl-S-triazine, 2,4-dicyano-6- [2-undecylimidazolyl (1)] Imidazoles such as -ethyl-S-triazine, 1-cyanoethyl-2-undecylimidazolium trimellitate, 2-methylimidazolium isocyanurate, 2-ethyl-4-methylimidazolium tetraphenylborate, Imidazolium salts such as 2-ethyl-1,4-dimethylimidazolium tetraphenylborate, 2,4,6-tris (dimethylaminomethyl) phenol, benzyldimethylamine, tetramethylbutylguanidine, N-methylpiperazine, 2- Amines such as dimethylamino-1-pyrroline, ammonium salts such as triethylammonium tetraphenylborate, 1,5-diazabicyclo (5,4,0) -7-undecene, 1,5-diazabicyclo (4,3,0) -5-Nonene, 1,4-diaza Cyclo (2,2,2) - diazabicyclo compounds such as octane, tetraphenylborate thereof diazabicyclo compounds, phenol salts, phenol novolak salts and 2-ethylhexanoic acid salts.

それらの硬化促進剤となる化合物の中では、三級アミン類、ホスフィン化合物、イミダゾール化合物、ジアザビシクロ化合物、及びそれらの塩が好ましい。それらの硬化促進剤は、単独、又は2種以上混合して用いられ、その使用量は、本発明の組成物の全エポキシ樹脂に対して0.1〜7質量%であり、好ましくは0.5〜5質量%であり、より好ましくは0.5〜3質量%である。硬化促進剤は組成物の硬化性や保存安定性に大きく影響することがあるので、その使う種類や使用量を、本発明の特性を損なわないように調整することができる。   Among these compounds serving as curing accelerators, tertiary amines, phosphine compounds, imidazole compounds, diazabicyclo compounds, and salts thereof are preferable. These curing accelerators are used singly or in combination of two or more, and the amount used is 0.1 to 7% by mass with respect to the total epoxy resin of the composition of the present invention, preferably 0.8. It is 5-5 mass%, More preferably, it is 0.5-3 mass%. Since the curing accelerator may greatly affect the curability and storage stability of the composition, the type and amount used thereof can be adjusted so as not to impair the characteristics of the present invention.

難燃剤としては、臭素化エポキシ樹脂、臭素化フェノール樹脂などのハロゲン系難燃剤、三酸化アンチモンなどのアンチモン化合物、赤リン、表面被覆化赤リン、リン酸エステル類、ホスフィン類などのリン系難燃剤、メラミン誘導体などの窒素系難燃剤及び水酸化アルミニウム、水酸化マグネシウムなどの無機系難燃剤、ホスファゼン難燃剤及び特殊シリコーン難燃剤などが挙げられる。   Examples of flame retardants include halogen flame retardants such as brominated epoxy resins and brominated phenol resins, antimony compounds such as antimony trioxide, red phosphorus, surface-coated red phosphorus, phosphate esters, and phosphines. Examples include flame retardants, nitrogen flame retardants such as melamine derivatives, inorganic flame retardants such as aluminum hydroxide and magnesium hydroxide, phosphazene flame retardants and special silicone flame retardants.

しかしながら、本発明のエポキシ樹脂組成物の硬化物は難燃性に優れるため、上記のうち、特に環境安全性が危惧されている臭素化エポキシ樹脂、臭素化フェノール樹脂などのハロゲン系難燃剤、三酸化アンチモンなどのアンチモン化合物については、これらの難燃剤を配合する必要がないか、配合量を少量にすることができる。ただし、組成物中の各成分の種類や配合量により難燃性は変化するので、UL−94規格のV−0あるいはそれに準じた難燃性を確保できるよう各成分の選択や配合量の調整をする必要がある。   However, since the cured product of the epoxy resin composition of the present invention is excellent in flame retardancy, among the above, halogen flame retardants such as brominated epoxy resins and brominated phenol resins, which are particularly concerned about environmental safety, About antimony compounds, such as antimony oxide, it is not necessary to mix | blend these flame retardants, or a compounding quantity can be made small. However, since flame retardancy varies depending on the type and blending amount of each component in the composition, selection of each component and adjustment of blending amount so as to ensure flame retardancy according to UL-94 V-0 or equivalent. It is necessary to do.

本発明の硬化性のエポキシ樹脂組成物は、エポキシ樹脂、硬化剤、硬化促進剤など、全配合成分が均一に混合されていればよく、従来より知られている方法と同様の方法を用いて組成物とすることができる。その方法としては、たとえば、ニーダー、ロールやエクストルーダーを用いた溶融混練や粉体状の成分を混合するドライブレンドが挙げられる。このようにして得られた組成物は、必要に応じて、粉砕、分級などを行ってもよい。   The curable epoxy resin composition of the present invention is only required to be uniformly mixed with all compounding components such as an epoxy resin, a curing agent, and a curing accelerator, and using a method similar to a conventionally known method. It can be a composition. Examples of the method include melt kneading using a kneader, roll or extruder, and dry blending in which powdery components are mixed. The composition thus obtained may be pulverized, classified, etc. as necessary.

また、本発明の硬化性エポキシ樹脂組成物をアセトン、メチルエチルケトン、メチルセロソルブ、ジメチルホルムアミド、トルエン、キシレンなどの溶剤に溶解させ、ワニス状組成物とすることもできる。ガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、紙などの基材に含浸させ加熱乾燥してできたプリプレグを熱プレス成形して硬化体を得ることができる。   Also, the curable epoxy resin composition of the present invention can be dissolved in a solvent such as acetone, methyl ethyl ketone, methyl cellosolve, dimethylformamide, toluene, xylene, etc. to obtain a varnish-like composition. A cured product can be obtained by hot press-molding a prepreg obtained by impregnating a base material such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, paper, and the like, followed by heating and drying.

本発明の硬化体は、本発明の硬化性エポキシ樹脂組成物を熱硬化させることで得ることができ、成形物、積層物、注型物、接着剤、塗膜、フィルムなどの形態になる。たとえば、形態が成形物の場合は、その組成物を注型あるいはトランスファー成形機、射出成形機などを用い30〜250℃で30秒〜10時間加熱することにより硬化体を得ることができ、形態がワニス状の場合は、ガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、紙などの基材に含浸させ加熱乾燥してできたプリプレグを熱プレス成形して硬化体を得ることができる。   The cured product of the present invention can be obtained by thermally curing the curable epoxy resin composition of the present invention, and is in the form of a molded product, a laminate, a cast product, an adhesive, a coating film, a film and the like. For example, when the form is a molded product, the cured product can be obtained by heating the composition at 30 to 250 ° C. for 30 seconds to 10 hours using a casting, transfer molding machine, injection molding machine or the like. In the case of varnish, a cured product can be obtained by hot press-molding a prepreg obtained by impregnating a base material such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, paper and the like, followed by heating and drying.

以上述べたように、本発明の新規エポキシ化合物は、常温で固体であり、取り扱い性に優れ、かつ溶融状態において極めて低溶融粘度を有し、硬化性に優れており、この化合物を用いた硬化性エポキシ樹脂組成物は、機械的強度、耐熱性及び耐湿性に優れた硬化体を与えることができるので、電気・電子部品の封止材料、成形材料、注型材料、積層材料、複合材料、接着剤及び粉体塗料等の用途に有用である。   As described above, the novel epoxy compound of the present invention is solid at room temperature, has excellent handleability, has an extremely low melt viscosity in the molten state, and has excellent curability. Curing using this compound Since the epoxy resin composition can provide a cured product having excellent mechanical strength, heat resistance and moisture resistance, it is a sealing material for electrical and electronic parts, a molding material, a casting material, a laminated material, a composite material, Useful in applications such as adhesives and powder coatings.

以下、製造例、実施例及び比較例を挙げて本発明を詳細に説明するが、本発明は、これらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although a manufacture example, an Example, and a comparative example are given and this invention is demonstrated in detail, this invention is not limited to these Examples.

<エポキシ樹脂の製造>
(製造例1)
撹拌装置、還流冷却管及び温度計を備えた容量3Lの4つ口フラスコに、エピクロルヒドリン1000g、2−プロパノール400gを仕込み、系内を減圧窒素置換した。これに、窒素雰囲気下、アントラハイドロキノン200gを加え、40℃に昇温して均一に溶解させた後、48.5質量%の水酸化ナトリウム水溶液180gを90分かけて滴下した。その間に徐々に昇温し、滴下終了後には系内が65℃になるようにした。その後、65℃で30分保持して反応を完了させ、水洗により副生塩及び過剰の水酸化ナトリウムを除去した。次いで、生成物から減圧下で過剰のエピクロルヒドリンと2−プロパノールを留去して粗製エポキシ樹脂混合物を得た。
<Manufacture of epoxy resin>
(Production Example 1)
Epichlorohydrin 1000 g and 2-propanol 400 g were charged into a 3 L four-necked flask equipped with a stirrer, a reflux condenser and a thermometer, and the system was purged with nitrogen under reduced pressure. To this was added 200 g of anthrahydroquinone in a nitrogen atmosphere, and the mixture was heated to 40 ° C. and dissolved uniformly, and then 180 g of a 48.5 mass% aqueous sodium hydroxide solution was added dropwise over 90 minutes. During this period, the temperature was gradually raised, and the temperature inside the system was adjusted to 65 ° C. after the dropping was completed. Thereafter, the reaction was completed by maintaining at 65 ° C. for 30 minutes, and by-product salt and excess sodium hydroxide were removed by washing with water. Subsequently, excess epichlorohydrin and 2-propanol were distilled off from the product under reduced pressure to obtain a crude epoxy resin mixture.

この粗製エポキシ樹脂混合物をメチルイソブチルケトン400gに溶解させ、48.5質量%の水酸化ナトリウム水溶液7gを加え、65℃の温度で1時間反応させた。その後、反応液に第一リン酸水素ナトリウム水溶液を加えて過剰の水酸化ナトリウムを中和し、水洗して副生塩を除去した。なお、水洗時は液温が65〜90℃になるように温度制御した。次いで、加温減圧下でメチルイソブチルケトンを完全に除去した後、溶融状態の樹脂をバットに抜き出し、ガラス棒で十数回撹拌した後、室温下にて自然冷却させた。約2時間後には全体が結晶固化した。これを取り出し、黄色結晶状エポキシ樹脂278gを得た。この結晶状エポキシ樹脂〔前記一般式(1)中、p=0〕は、エポキシ当量178g/eq.、加水分解性塩素540ppm、DSC測定による融点は114℃であり、GPC測定より一般式(1)中のnの平均値は0.12であった。   This crude epoxy resin mixture was dissolved in 400 g of methyl isobutyl ketone, 7 g of a 48.5 mass% sodium hydroxide aqueous solution was added, and the mixture was reacted at a temperature of 65 ° C. for 1 hour. Then, the sodium hydrogenphosphate aqueous solution was added to the reaction liquid, the excess sodium hydroxide was neutralized, and it washed with water, and removed byproduct salt. The temperature was controlled so that the liquid temperature was 65 to 90 ° C. during washing with water. Next, after methyl isobutyl ketone was completely removed under heating and reduced pressure, the molten resin was taken out into a vat and stirred for 10 times with a glass rod, and then naturally cooled at room temperature. The whole crystallized after about 2 hours. This was taken out to obtain 278 g of a yellow crystalline epoxy resin. This crystalline epoxy resin [p = 0 in the general formula (1)] has an epoxy equivalent of 178 g / eq. The hydrolyzable chlorine was 540 ppm, the melting point by DSC measurement was 114 ° C., and the average value of n in the general formula (1) was 0.12 from GPC measurement.

(製造例2)
撹拌装置、還流冷却管及び温度計を備えた容量3Lの4つ口フラスコに、エピクロルヒドリン1050g、2−プロパノール410gを仕込み、系内を減圧窒素置換し、温度を40℃に維持した。これに、窒素雰囲気下、アントラハイドロキノンナトリウム塩の28質量%水溶液900gを90分かけて滴下した。その間に徐々に昇温し、滴下終了後には系内が65℃になるよう温度制御した。その後、65℃で30分保持した後、液液分離により副生塩を含む水を排出した。次に、系内を65℃に保持したまま、48.5質量%水酸化ナトリウム水溶液32gを15分かけて滴下し、続いて、30分かけて反応を完了させた。この後、水洗により副生塩を除去し、さらに、生成物から減圧下で過剰のエピクロルヒドリンと2−プロパノールを留去して粗製エポキシ樹脂混合物を得た。
(Production Example 2)
Epichlorohydrin (1050 g) and 2-propanol (410 g) were charged into a 3 L four-necked flask equipped with a stirrer, a reflux condenser and a thermometer, and the system was purged with nitrogen under reduced pressure to maintain the temperature at 40 ° C. Under a nitrogen atmosphere, 900 g of a 28% by mass aqueous solution of anthrahydroquinone sodium salt was added dropwise thereto over 90 minutes. During this period, the temperature was gradually raised, and the temperature was controlled so that the temperature inside the system was 65 ° C. after the completion of the dropping. Then, after maintaining at 65 ° C. for 30 minutes, water containing by-product salt was discharged by liquid-liquid separation. Next, while maintaining the system at 65 ° C., 32 g of 48.5 mass% sodium hydroxide aqueous solution was dropped over 15 minutes, and then the reaction was completed over 30 minutes. Thereafter, by-product salts were removed by washing with water, and excess epichlorohydrin and 2-propanol were distilled off from the product under reduced pressure to obtain a crude epoxy resin mixture.

この粗製エポキシ樹脂混合物をメチルイソブチルケトン400gに溶解させ、48.5質量%の水酸化ナトリウム水溶液7gを加え、65℃の温度で1時間反応させた。その後、反応液に第一リン酸水素ナトリウム水溶液を加えて過剰の水酸化ナトリウムを中和し、水洗して副生塩を除去した。次いで、加温減圧下でメチルイソブチルケトンを完全に除去した後、溶融状態の樹脂をバットに抜き出し、ガラス棒で十数回撹拌した後、室温下にて自然冷却させた。約2時間後には全体が結晶固化した。これを取り出し、前記一般式(1)〔式中、p=0〕で表される黄色結晶状エポキシ樹脂290gを得た。得られたエポキシ樹脂は、エポキシ当量174g/eq.、加水分解性塩素390ppm、DSC測定による融点は119℃であった。GPC測定より一般式(1)中のnの平均値は0.08であった。   This crude epoxy resin mixture was dissolved in 400 g of methyl isobutyl ketone, 7 g of a 48.5 mass% sodium hydroxide aqueous solution was added, and the mixture was reacted at a temperature of 65 ° C. for 1 hour. Then, the sodium hydrogenphosphate aqueous solution was added to the reaction liquid, the excess sodium hydroxide was neutralized, and it washed with water, and removed byproduct salt. Next, after methyl isobutyl ketone was completely removed under heating and reduced pressure, the molten resin was taken out into a vat and stirred for 10 times with a glass rod, and then naturally cooled at room temperature. The whole crystallized after about 2 hours. This was taken out to obtain 290 g of a yellow crystalline epoxy resin represented by the general formula (1) [wherein p = 0]. The obtained epoxy resin had an epoxy equivalent of 174 g / eq. The hydrolyzable chlorine was 390 ppm, and the melting point by DSC measurement was 119 ° C. From the GPC measurement, the average value of n in the general formula (1) was 0.08.

(製造例3)
撹拌装置、環流冷却管及び温度計を備えた容量3Lの4つ口フラスコに、エピクロルヒドリン280g、2−プロパノール200g、メチルエチルケトン200gを仕込み、系内を減圧窒素置換し、温度を40℃に維持した。これに、窒素雰囲気下、アントラハイドロキノンナトリウム塩の28質量%水溶液900gを90分かけて滴下した。その間に徐々に昇温し、滴下終了後には系内が75℃になるよう温度制御した。その後、75℃で30分保持した後、液液分離により副生塩を含む水を排出した。次に、系内を75℃に保持したまま、48.5質量%水酸化ナトリウム水溶液32gを15分かけて滴下し、続いて、30分かけて反応を完了させた。この後、水洗により副生塩を除去し、さらに、生成物から減圧下で過剰のエピクロルヒドリン、2−プロパノール及びメチルエチルケトンを留去して粗製エポキシ樹脂混合物を得た。
(Production Example 3)
Epichlorohydrin (280 g), 2-propanol (200 g) and methyl ethyl ketone (200 g) were charged into a 3 L four-necked flask equipped with a stirrer, a reflux condenser and a thermometer, and the system was purged with nitrogen under reduced pressure to maintain the temperature at 40 ° C. Under a nitrogen atmosphere, 900 g of a 28% by mass aqueous solution of anthrahydroquinone sodium salt was added dropwise thereto over 90 minutes. During this period, the temperature was gradually raised, and the temperature was controlled so that the temperature inside the system was 75 ° C. after the completion of the dropping. Then, after hold | maintaining at 75 degreeC for 30 minutes, the water containing a byproduct salt was discharged | emitted by liquid-liquid separation. Next, while maintaining the inside of the system at 75 ° C., 32 g of 48.5 mass% sodium hydroxide aqueous solution was dropped over 15 minutes, and then the reaction was completed over 30 minutes. Thereafter, by-product salts were removed by washing with water, and excess epichlorohydrin, 2-propanol and methyl ethyl ketone were distilled off from the product under reduced pressure to obtain a crude epoxy resin mixture.

この粗製エポキシ樹脂混合物をメチルイソブチルケトン450gに溶解させ、48.5質量%の水酸化ナトリウム水溶液7gを加え、65℃の温度で1時間反応させた。その後、反応液に第一リン酸水素ナトリウム水溶液を加えて、過剰の水酸化ナトリウムを中和し、水洗して副生塩を除去した。次いで、加温減圧下でメチルイソブチルケトンを完全に除去した後、溶融状態の樹脂をバットに抜き出し、室温下にて自然冷却させた。約2時間後には全体が固化(非晶質)した。これを取り出し、前記一般式(1)〔式中、p=0〕で表される黄色結晶状エポキシ樹脂220gを得た。得られたエポキシ樹脂は、エポキシ当量489g/eq.、加水分解性塩素300ppm、環球法による軟化点は72℃であった。GPC測定より一般式(1)中のnの平均値は、2.4であった。   This crude epoxy resin mixture was dissolved in 450 g of methyl isobutyl ketone, 7 g of 48.5 mass% sodium hydroxide aqueous solution was added, and the mixture was reacted at a temperature of 65 ° C. for 1 hour. Thereafter, an aqueous sodium hydrogen phosphate solution was added to the reaction solution to neutralize excess sodium hydroxide, followed by washing with water to remove by-product salts. Next, after the methyl isobutyl ketone was completely removed under heating and reduced pressure, the molten resin was extracted into a vat and allowed to cool naturally at room temperature. The whole solidified (amorphous) after about 2 hours. This was taken out to obtain 220 g of a yellow crystalline epoxy resin represented by the general formula (1) [wherein p = 0]. The obtained epoxy resin had an epoxy equivalent of 489 g / eq. The hydrolyzable chlorine was 300 ppm, and the softening point by the ring and ball method was 72 ° C. From the GPC measurement, the average value of n in the general formula (1) was 2.4.

(製造例4)
製造例1と同様の条件で製造したアントラハイドロキノン型エポキシ樹脂400gをメチルイソブチルケトン600gに100℃で完全に溶解した。その溶液を室温に1昼夜放置して結晶を析出させた。結晶を濾過し、精製されたアントラハイドロキノン型エポキシ樹脂〔一般式(1)中のp=0〕210gを得た。このエポキシ樹脂は、エポキシ当量162g/eq.、加水分解性塩素130ppm、DSC測定による融点は132℃であった。GPC測定より一般式(1)中のnの平均値は0.02であった。
(Production Example 4)
400 g of an anthrahydroquinone type epoxy resin produced under the same conditions as in Production Example 1 was completely dissolved in 600 g of methyl isobutyl ketone at 100 ° C. The solution was allowed to stand at room temperature for one day to precipitate crystals. The crystals were filtered to obtain 210 g of purified anthrahydroquinone type epoxy resin [p = 0 in the general formula (1)]. This epoxy resin has an epoxy equivalent of 162 g / eq. The hydrolyzable chlorine was 130 ppm and the melting point by DSC measurement was 132 ° C. From the GPC measurement, the average value of n in the general formula (1) was 0.02.

<エポキシ樹脂組成物の実施例及び比較例>
(実施例1〜3及び比較例1〜3)
表1に示したように、実施例1及び2ではエポキシ樹脂成分として製造例1及び2で製造したエポキシ樹脂を使用し、比較例3では製造例4で製造したエポキシ樹脂を使用し、比較例1ではオルソ−クレゾールノボラック型エポキシ樹脂を使用し、比較例2ではテトラメチルビフェノール型エポキシ樹脂を使用し、他に、それぞれに対して、臭素化エポキシ樹脂(難燃剤として)、硬化剤としてフェノールノボラック樹脂、フェノールアラルキル樹脂を用い、エポキシ樹脂と硬化剤を当量配合し、さらに、無機充填材として溶融シリカ粉末、硬化促進剤としてトリフェニルホスフィン、難燃助剤として三酸化アンチモン、離型剤としてカルナバワックス、シランカップリング剤としてエポキシシランを用いて、各半導体封止用エポキシ樹脂組成物を配合した。
<Examples and Comparative Examples of Epoxy Resin Composition>
(Examples 1-3 and Comparative Examples 1-3)
As shown in Table 1, in Examples 1 and 2, the epoxy resin produced in Production Examples 1 and 2 was used as the epoxy resin component, and in Comparative Example 3, the epoxy resin produced in Production Example 4 was used. 1 uses an ortho-cresol novolac type epoxy resin, Comparative Example 2 uses a tetramethylbiphenol type epoxy resin, and in addition, brominated epoxy resin (as a flame retardant) and phenol novolak as a curing agent, respectively. Resin, phenol aralkyl resin, epoxy resin and curing agent are mixed in an equivalent amount, fused silica powder as inorganic filler, triphenylphosphine as curing accelerator, antimony trioxide as flame retardant aid, carnauba as mold release agent Epoxy silane as a wax and silane coupling agent, and each epoxy resin assembly for semiconductor encapsulation It was compounded things.

各配合物をミキシングロールを用いて70〜130℃の温度で5分間溶融混合し、得られた各溶融混合物をシート状に取り出し、室温以下(おおよそ5〜35℃)で冷却固化した後、粉砕して各成形材料を得た。なお、製造例4のエポキシ樹脂を使用した比較例3のエポキシ樹脂組成物は硬化剤等との相溶性が悪く均一な材料が得られなかったため、その後の評価を行わなかった。これらの各成形材料を用い、低圧トランスファー成形機で金型温度175℃、成形時間90秒で成形して、各試験片及び160ピンTQFP型樹脂封止半導体装置を得、さらに、175℃で5時間ポストキュアさせた。
各成形材料の成形性の指標となる硬化性及び流動性を調べるために、脱型熱時硬度及びスパイラルフローをそれぞれ測定した。また、各成形材料のポストキュア後のガラス転移温度、吸湿率、難燃性を試験した結果を表1に示した。さらに、各樹脂封止型半導体装置の吸湿後の耐ハンダクラック性を試験した。それらの結果を表1に示した。
Each compound is melt-mixed at a temperature of 70 to 130 ° C. for 5 minutes using a mixing roll, and the resulting molten mixture is taken out into a sheet, cooled and solidified at room temperature or lower (approximately 5 to 35 ° C.), and then pulverized. Thus, each molding material was obtained. In addition, since the epoxy resin composition of the comparative example 3 which uses the epoxy resin of manufacture example 4 was not compatible with the hardening | curing agent etc. and a uniform material was not obtained, subsequent evaluation was not performed. Using each of these molding materials, molding was performed at a mold temperature of 175 ° C. and a molding time of 90 seconds with a low-pressure transfer molding machine to obtain each test piece and a 160-pin TQFP type resin-encapsulated semiconductor device. Time post-cure.
In order to examine curability and fluidity, which are indicators of moldability of each molding material, the demolding heat hardness and spiral flow were measured, respectively. Table 1 shows the results of testing the glass transition temperature, moisture absorption rate, and flame retardancy of each molding material after post-curing. Furthermore, the solder crack resistance after moisture absorption of each resin-encapsulated semiconductor device was tested. The results are shown in Table 1.

Figure 0004655490
Figure 0004655490

実施例1〜3の各組成物は、比較例1及び2の組成物に較べて、難燃剤としてハロゲン化合物(臭素化エポキシ樹脂)及びアンチモン化合物(三酸化アンチモン)を含まずとも難燃性に優れると同時に低粘度であり、流動性に優れ、吸湿性が低かった。また、それらを用いて封止した半導体装置は耐ハンダクラック性に優れていた。   The compositions of Examples 1 to 3 are more flame retardant than the compositions of Comparative Examples 1 and 2 without containing halogen compounds (brominated epoxy resins) and antimony compounds (antimony trioxide) as flame retardants. At the same time, it had low viscosity, excellent fluidity, and low hygroscopicity. Moreover, the semiconductor device sealed using them was excellent in solder crack resistance.

(実施例4、5及び比較例4、5)
表2に示したように、実施例4では、エポキシ樹脂成分として製造例3で製造したエポキシ樹脂を用い、実施例5では製造例3で製造したエポキシ樹脂とクレゾールノボラック型エポキシ樹脂を用い、比較例4では臭素化ビスフェノールA型エポキシ樹脂とクレゾールノボラック型エポキシ樹脂を用い、比較例5ではビスフェノールA型エポキシ樹脂とクレゾールノボラック型エポキシ樹脂を用い、
他に、それぞれに対して、硬化剤としてジシアンジアミド又はビスフェノールAノボラック樹脂、硬化促進剤として2−エチル−4−メチルイミダゾール、溶剤としてメチルエチルケトン及びエチレングリコールモノメチルエーテルを用いて、各プリント配線板用エポキシ樹脂組成物(ワニス)を配合した。
次いで、各ワニスをガラスクロスに含浸し、130℃で7分間乾燥して、樹脂分約45重量%のプリプレグを得た。このプリプレグを8枚と両面に厚さ35ミクロンの銅箔を重ね、170℃圧力40kg/cmで1時間プレス成型して厚さ1.6mmの銅張りガラスエポキシ積層板を作成した。これらの積層板の難燃性、吸湿率及びハンダ耐熱性を試験した結果を表2に示した。
(Examples 4 and 5 and Comparative Examples 4 and 5)
As shown in Table 2, in Example 4, the epoxy resin produced in Production Example 3 was used as the epoxy resin component, and in Example 5, the epoxy resin produced in Production Example 3 and the cresol novolac type epoxy resin were used for comparison. In Example 4, brominated bisphenol A type epoxy resin and cresol novolac type epoxy resin were used, and in Comparative Example 5, bisphenol A type epoxy resin and cresol novolak type epoxy resin were used,
In addition, for each printed circuit board epoxy resin, using dicyandiamide or bisphenol A novolak resin as a curing agent, 2-ethyl-4-methylimidazole as a curing accelerator, methyl ethyl ketone and ethylene glycol monomethyl ether as solvents A composition (varnish) was blended.
Next, each varnish was impregnated into a glass cloth and dried at 130 ° C. for 7 minutes to obtain a prepreg having a resin content of about 45% by weight. Eight prepregs and 35 micron thick copper foils were stacked on both sides, and press molded at 170 ° C. and 40 kg / cm 2 for 1 hour to prepare a 1.6 mm thick copper-clad glass epoxy laminate. Table 2 shows the results of testing the flame retardancy, moisture absorption rate, and solder heat resistance of these laminates.

Figure 0004655490
Figure 0004655490

表2の結果から、実施例4及び5の各組成物は、比較例4及び5の組成物に較べて、難燃性、吸湿率及びハンダ耐熱性のいずれにおいても優れていることが明らかである。
From the results in Table 2, it is clear that each of the compositions of Examples 4 and 5 is superior in flame retardancy, moisture absorption, and solder heat resistance compared to the compositions of Comparative Examples 4 and 5. is there.

Claims (7)

(a)その全部又は少なくとも一部が一般式(1)
Figure 0004655490
(式中、Rは同一でも異なってもよく炭素数1〜10の炭化水素基を示す。pは同一でも異なってもよく0〜8の整数を示す。nは平均値で0.05〜100の数を示す。)
で表されるアントラハイドロキノン型エポキシ樹脂よりなるエポキシ樹脂成分、及び
(b)エポキシ樹脂用硬化剤成分
を必須成分とするエポキシ樹脂組成物(ただし、以下の「アルカリ現像型感光性樹脂組成物」を除く。
(a)同一分子内に不飽和基とカルボキシル基を有するアルカリ現像可能な不飽和基含有ポリカルボン酸及び
(b)エポキシ樹脂
を必須成分として配合してなるアルカリ現像型感光性樹脂組成物であって、(b)成分のエポキシ樹脂の全部又は一部が、一般式(I)で表されるアントラハイドロキノン型エポキシ樹脂又はジヒドロアントラハイドロキノン型エポキシ樹脂であって、該式(I)中のn=0の成分の含有量が50質量%以上であり、かつ融点が50〜150℃の結晶エポキシ樹脂からなることを特徴とするアルカリ現像型感光性樹脂組成物。
Figure 0004655490
〔式中、Xは同一でも異なってもよく、一般式(II)又は一般式(III)で表される基であり、nは0〜10の整数である。
Figure 0004655490
(式中、R は同一でも異なってもよく、炭素数1〜10までの炭化水素基であり、pは0〜8の整数である。)
Figure 0004655490
(式中、R は同一でも異なってもよく、炭素数1〜10までの炭化水素基であり、qは0〜10の整数である。)〕。
(A) All or at least a part of the general formula (1)
Figure 0004655490
(In the formula, R may be the same or different and represents a hydrocarbon group having 1 to 10 carbon atoms. P may be the same or different and represents an integer of 0 to 8. n is an average value of 0.05 to 100. Indicates the number of
An epoxy resin component comprising an anthrahydroquinone type epoxy resin represented by the formula (b) and an epoxy resin composition (b) an epoxy resin curing agent component as an essential component (however, the following “alkali development type photosensitive resin composition” except.
(A) an alkali-developable unsaturated group-containing polycarboxylic acid having an unsaturated group and a carboxyl group in the same molecule;
(B) Epoxy resin
Is an alkali-developable photosensitive resin composition that is blended as an essential component, wherein all or part of the component (b) epoxy resin is an anthrahydroquinone type epoxy resin or dihydrosilane represented by the general formula (I) An anthrahydroquinone type epoxy resin, characterized in that the content of the component of n = 0 in the formula (I) is 50% by mass or more and a crystalline epoxy resin having a melting point of 50 to 150 ° C. Alkali development type photosensitive resin composition.
Figure 0004655490
[In the formula, X may be the same or different, and is a group represented by the general formula (II) or the general formula (III), and n is an integer of 0 to 10.
Figure 0004655490
(In the formula, R 1 may be the same or different, is a hydrocarbon group having 1 to 10 carbon atoms, p is an integer from 0-8.)
Figure 0004655490
(In the formula, R 2 may be the same or different, and is a hydrocarbon group having 1 to 10 carbon atoms, and q is an integer of 0 to 10).].
前記一般式(1)で表されるアントラハイドロキノン型エポキシ樹脂が、一般式(1)においてp=0である化学構造を持ち、エポキシ当量が163〜200g/eq.であり、融点が112〜130℃の結晶性エポキシ樹脂であることを特徴とする請求項1記載のエポキシ樹脂組成物。   The anthrahydroquinone type epoxy resin represented by the general formula (1) has a chemical structure in which p = 0 in the general formula (1), and an epoxy equivalent is 163 to 200 g / eq. The epoxy resin composition according to claim 1, which is a crystalline epoxy resin having a melting point of 112 to 130 ° C. 前記 (a)エポキシ樹脂成分が、
(a−1)前記一般式(1)で表されるアントラハイドロキノン型エポキシ樹脂:10〜95質量%、及び、(a−2)その他のエポキシ樹脂:5〜90質量%、からなることを特徴とする請求項1又は請求項2に記載のエポキシ樹脂組成物。
Said (a) epoxy resin component is
(A-1) Anthrahydroquinone type epoxy resin represented by the general formula (1): 10 to 95% by mass, and (a-2) other epoxy resin: 5 to 90% by mass, The epoxy resin composition according to claim 1 or 2.
前記(b)エポキシ樹脂用硬化剤成分が、フェノールアラルキル樹脂、ナフトールノボラック樹脂、ナフトールアラルキル樹脂、フェノールジシクロペンタジエン樹脂及びフェノールヒドロキシベンズアルデヒド樹脂から選ばれる少なくとも一種類のフェノール樹脂である請求項1〜請求項3のいずれか1項に記載のエポキシ樹脂組成物。   The (b) epoxy resin curing agent component is at least one phenol resin selected from a phenol aralkyl resin, a naphthol novolak resin, a naphthol aralkyl resin, a phenol dicyclopentadiene resin, and a phenol hydroxybenzaldehyde resin. Item 4. The epoxy resin composition according to any one of Items 3. 前記(a)成分及び(b)成分に加えて、(c)無機充填材成分として、組成物全体の60〜95質量%の破砕型及び/又は球状の、溶融及び/又は結晶シリカ粉末充填剤を含有することを特徴とする請求項1〜請求項4のいずれか1項に記載のエポキシ樹脂組成物。   In addition to the component (a) and the component (b), (c) 60 to 95% by mass of the crushed mold and / or spherical fused and / or crystalline silica powder filler as the inorganic filler component The epoxy resin composition according to any one of claims 1 to 4, characterized by comprising: 前記一般式(1)で表されるエポキシ樹脂が、下記一般式(2)
Figure 0004655490
(ただし、Aは同一でも異なってもよくカリウム原子又はナトリウム原子を示し、Rは同一でも異なってもよく炭素数1〜10の炭化水素基を示す。pは同一でも異なってもよく0〜8の整数を示す。)
で表されるアントラハイドロキノン化合物のアルカリ金属塩をエピハロヒドリンと反応させて得られるエポキシ樹脂であることを特徴とする請求項1〜請求項5のいずれか1項に記載のエポキシ樹脂組成物。
The epoxy resin represented by the general formula (1) is represented by the following general formula (2)
Figure 0004655490
(However, A may be the same or different and represents a potassium atom or a sodium atom, R represents the same or different, and represents a hydrocarbon group having 1 to 10 carbon atoms. Indicates an integer.)
The epoxy resin composition according to any one of claims 1 to 5, which is an epoxy resin obtained by reacting an alkali metal salt of an anthrahydroquinone compound represented by formula (II) with epihalohydrin.
請求項1〜請求項6のいずれか1項に記載のエポキシ樹脂組成物の硬化体。   The hardened | cured material of the epoxy resin composition of any one of Claims 1-6.
JP2004068393A 2004-03-11 2004-03-11 Epoxy resin composition and cured product thereof Expired - Lifetime JP4655490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004068393A JP4655490B2 (en) 2004-03-11 2004-03-11 Epoxy resin composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004068393A JP4655490B2 (en) 2004-03-11 2004-03-11 Epoxy resin composition and cured product thereof

Publications (2)

Publication Number Publication Date
JP2005255813A JP2005255813A (en) 2005-09-22
JP4655490B2 true JP4655490B2 (en) 2011-03-23

Family

ID=35081868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004068393A Expired - Lifetime JP4655490B2 (en) 2004-03-11 2004-03-11 Epoxy resin composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP4655490B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249145A (en) * 2005-03-08 2006-09-21 Japan Epoxy Resin Kk Epoxy resin, its manufacturing method and epoxy resin composition
JP4742625B2 (en) * 2005-03-08 2011-08-10 三菱化学株式会社 Hydrogenated epoxy resin, method for producing the same, and epoxy resin composition
CN101432330B (en) 2006-04-28 2011-08-03 日立化成工业株式会社 Resin composition, prepreg, laminate, and wiring board
JP4973444B2 (en) * 2006-10-24 2012-07-11 住友ベークライト株式会社 Semiconductor sealing resin composition and semiconductor device
JP5297725B2 (en) * 2008-09-01 2013-09-25 旭化成イーマテリアルズ株式会社 Quinoxaline skeleton-containing compound and process for producing the same
JP6308344B2 (en) * 2013-04-08 2018-04-11 味の素株式会社 Curable resin composition
JP7172019B2 (en) * 2017-02-01 2022-11-16 昭和電工マテリアルズ株式会社 Encapsulating resin composition and semiconductor device
JP7016226B2 (en) * 2017-05-17 2022-02-04 川崎化成工業株式会社 Polymer photopolymerization sensitizer
JPWO2019142646A1 (en) * 2018-01-16 2021-01-14 昭和電工マテリアルズ株式会社 Curable resin composition, semiconductor device, and method for manufacturing the semiconductor device
JP6579500B2 (en) * 2018-03-16 2019-09-25 味の素株式会社 Curable resin composition
WO2023286081A1 (en) 2021-07-13 2023-01-19 Elantas Beck India Limited Epoxy modified resin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005202023A (en) * 2004-01-14 2005-07-28 Japan Epoxy Resin Kk Alkali-developable photosensitive resin composition and cured product of same
JP4237600B2 (en) * 2003-10-10 2009-03-11 ジャパンエポキシレジン株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP4354242B2 (en) * 2003-09-26 2009-10-28 ジャパンエポキシレジン株式会社 Novel crystalline epoxy resin, curable epoxy resin composition and cured product thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140266A (en) * 1991-11-22 1993-06-08 Shin Kobe Electric Mach Co Ltd Preparation of resin composition for laminated board and laminated board
JPH06233486A (en) * 1993-01-29 1994-08-19 Hitachi Ltd Insulated electric coil, rotating electric machine and their manufacture
JPH0883860A (en) * 1994-09-09 1996-03-26 Nippon Carbide Ind Co Inc Inorganic package
JPH0982136A (en) * 1995-09-11 1997-03-28 Hitachi Ltd High heat conduction semiconductive prepreg sheet, stator coil, and dynamo-electric machine using the same, and manufacture of dynamo-electric machine stator
JPH10114815A (en) * 1996-10-11 1998-05-06 Toshiba Chem Corp Epoxy resin composition and sealed semiconductor device
JPH11158353A (en) * 1997-11-25 1999-06-15 Toshiba Chem Corp Epoxy resin composition and device for sealing semiconductor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4354242B2 (en) * 2003-09-26 2009-10-28 ジャパンエポキシレジン株式会社 Novel crystalline epoxy resin, curable epoxy resin composition and cured product thereof
JP4237600B2 (en) * 2003-10-10 2009-03-11 ジャパンエポキシレジン株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP2005202023A (en) * 2004-01-14 2005-07-28 Japan Epoxy Resin Kk Alkali-developable photosensitive resin composition and cured product of same
JP4387207B2 (en) * 2004-01-14 2009-12-16 ジャパンエポキシレジン株式会社 Alkali development type photosensitive resin composition and cured product thereof

Also Published As

Publication number Publication date
JP2005255813A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
US7304120B2 (en) Epoxy compound, preparation method thereof, and use thereof
WO2015037584A1 (en) Epoxy resin mixture, epoxy resin composition, cured product and semiconductor device
JP3497560B2 (en) Method for producing modified epoxy resin, modified epoxy resin produced, and composition of this epoxy resin
JP3734602B2 (en) Epoxy resin composition and epoxy resin composition for semiconductor encapsulation
JP4655490B2 (en) Epoxy resin composition and cured product thereof
WO2008020594A1 (en) Modified liquid epoxy resin, epoxy resin composition using the same, and cured product thereof
JP2009051937A (en) Epoxy resin composition, cured product thereof, and new epoxy resin
KR20160055125A (en) Epoxy resin mixture, epoxy resin composition, cured product and semiconductor device
JP5127164B2 (en) Modified epoxy resin, epoxy resin composition, and cured product thereof
JP5875030B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP2004137425A (en) Epoxy resin composition and its molded and cured product
EP1352008B1 (en) Epoxy resin composition for semiconductor encapsulation
JP5153000B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product
JP4354242B2 (en) Novel crystalline epoxy resin, curable epoxy resin composition and cured product thereof
JP5127160B2 (en) Epoxy resin, curable resin composition, and cured product thereof
JP2002128861A (en) Epoxy resin composition and method for producing the same
JP4363048B2 (en) Epoxy resin composition and cured product thereof
JP3992181B2 (en) Production method of epoxy resin
JP5051150B2 (en) Method for producing crystalline epoxy resin
JP5579300B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP2010053293A (en) Epoxy resin composition
JP4776446B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP2004315831A (en) Method for producing epoxy resin composition
JP2008255367A (en) Epoxy resin composition and molded and cured form thereof
JP2004083783A (en) Epoxy resin composition, its molding-cured product and semiconductor-sealing material and resin composition for electronic circuit board containing it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4655490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350