JP4742625B2 - Hydrogenated epoxy resin, method for producing the same, and epoxy resin composition - Google Patents
Hydrogenated epoxy resin, method for producing the same, and epoxy resin composition Download PDFInfo
- Publication number
- JP4742625B2 JP4742625B2 JP2005064082A JP2005064082A JP4742625B2 JP 4742625 B2 JP4742625 B2 JP 4742625B2 JP 2005064082 A JP2005064082 A JP 2005064082A JP 2005064082 A JP2005064082 A JP 2005064082A JP 4742625 B2 JP4742625 B2 JP 4742625B2
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- hydrogenated
- general formula
- hydrogen atom
- represented
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 0 CC(C)(c(c1c2C(*)C(*)C(*)C1*)c(C(*)C(*)C(*)C1*)c1c2OCC1OC1)OCC(COc1c(C(*)C(*)C(*)C2*)c2c2c3c1C(*)C(*)C(*)C3*C2(C)OCC1OC1)O Chemical compound CC(C)(c(c1c2C(*)C(*)C(*)C1*)c(C(*)C(*)C(*)C1*)c1c2OCC1OC1)OCC(COc1c(C(*)C(*)C(*)C2*)c2c2c3c1C(*)C(*)C(*)C3*C2(C)OCC1OC1)O 0.000 description 1
- QDLBPKJAQGVTJA-UHFFFAOYSA-N OC(COc(c1c2cccc1)c(cccc1)c1c2OCC1OC1)COc(c1ccccc11)c(cccc2)c2c1OCC1OC1 Chemical compound OC(COc(c1c2cccc1)c(cccc1)c1c2OCC1OC1)COc(c1ccccc11)c(cccc2)c2c1OCC1OC1 QDLBPKJAQGVTJA-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Epoxy Resins (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Description
本発明は、新規な水素化エポキシ樹脂、及びその製造方法と、この水素化エポキシ樹脂とエポキシ樹脂用硬化剤が配合されたエポキシ樹脂組成物に関するものである。 The present invention relates to a novel hydrogenated epoxy resin, a method for producing the same, and an epoxy resin composition in which the hydrogenated epoxy resin and an epoxy resin curing agent are blended.
本発明の水素化エポキシ樹脂により得られる硬化物は、難燃性、耐湿性に優れるため、半導体封止材料、レジスト材料、電気絶縁材料及び積層板等の用途に有用である。 Since the cured product obtained from the hydrogenated epoxy resin of the present invention is excellent in flame retardancy and moisture resistance, it is useful for applications such as semiconductor sealing materials, resist materials, electrical insulating materials, and laminates.
エポキシ樹脂は、耐熱性、接着性、耐水性、機械的強度及び電気特性等に優れていることから、接着剤、塗料、土木建築用材料、電気・電子部品の絶縁材料等、様々の分野で使用されている。常温又は加熱硬化型のエポキシ樹脂としては、従来、ビスフェノ−ルAのジグリシジルエ−テル、ビスフェノ−ルFのジグリシジルエ−テル、フェノ−ル又はクレゾールノボラック型エポキシ樹脂等の芳香族エポキシ樹脂が一般的に使用されている。 Epoxy resins are excellent in heat resistance, adhesion, water resistance, mechanical strength, electrical properties, etc., so they are used in various fields such as adhesives, paints, materials for civil engineering and construction, insulating materials for electrical and electronic parts, etc. in use. As normal temperature or heat-curing type epoxy resins, conventionally, aromatic epoxy resins such as diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, phenol or cresol novolac type epoxy resin are generally used. in use.
しかしながら、技術の進歩に伴い、エポキシ樹脂への高性能化に対する要求が高まってきており、上記のような従来のエポキシ樹脂ではその要求に対応できなくなってきているのが現状である。例えば、電気・電子用途の分野においては、電子部品の小型化、薄型化技術の進展に伴い、小型化した部品内部の狭い隙間にも十分に樹脂が入り込む必要があり、更に、電子部品からの発生する熱にも耐える、低溶融粘度で耐熱性の高いエポキシ樹脂が望まれている。 However, with the advancement of technology, there is an increasing demand for higher performance of epoxy resins, and the current situation is that conventional epoxy resins as described above cannot meet the demands. For example, in the field of electrical and electronic applications, with the progress of miniaturization and thinning technology of electronic components, it is necessary for resin to sufficiently enter into narrow gaps inside the miniaturized components. An epoxy resin having low melt viscosity and high heat resistance that can withstand the generated heat is desired.
これらの問題を解決するため、常温以上で結晶性を有するエポキシ樹脂を用いる技術が提案されている。例えば、テトラメチルビフェニル型エポキシ樹脂(特許文献1)、スチルベン型エポキシ樹脂(特許文献2)などである。しかし、これらの化合物はエポキシ基の近くに嵩高い置換基がついているので、溶融粘度が高く、更に硬化性の点で十分といえない。また、これらのエポキシ樹脂を用いた硬化物は難燃性や耐湿性の面で不十分である。 In order to solve these problems, a technique using an epoxy resin having crystallinity at room temperature or higher has been proposed. For example, tetramethylbiphenyl type epoxy resin (Patent Document 1), stilbene type epoxy resin (Patent Document 2), and the like. However, since these compounds have a bulky substituent near the epoxy group, they have a high melt viscosity and are not sufficient in terms of curability. Moreover, the hardened | cured material using these epoxy resins is inadequate in terms of a flame retardance and moisture resistance.
そこで、一分子中の芳香環の数を増やし、従来のエポキシ樹脂と比べて難燃性を向上させた新しいエポキシ樹脂を含むエポキシ樹脂組成物が提案されている(特許文献3)。しかし、この芳香族エポキシ樹脂を硬化させた硬化物は、分子内に多くの芳香環を持っているため、難燃性は向上するが、溶融粘度が上がり、更に耐湿性が低下してしまい、作業性や信頼特性が要求される用途へは適用できないという問題を抱えている。
本発明は、常温で固体であり取り扱い性に優れ、かつ溶融粘度も極めて低く、硬化剤との反応性に優れ、難燃性、耐湿性に優れた硬化物を与える新規な水素化エポキシ樹脂、その製造方法及びエポキシ樹脂組成物を提供するものである。 The present invention is a novel hydrogenated epoxy resin that is solid at room temperature, has excellent handleability, has extremely low melt viscosity, has excellent reactivity with a curing agent, and provides a cured product with excellent flame retardancy and moisture resistance, The manufacturing method and the epoxy resin composition are provided.
本発明は、以下の各発明を包含する。 The present invention includes the following inventions.
[1] 下記一般式(1)で示され、エポキシ当量が170〜250であることを特徴とする水素化エポキシ樹脂。
[2] 上記一般式(1)で示され、エポキシ当量が170〜250である水素化エポキシ樹脂を製造する方法であって、下記一般式(2)で示されるアントラセン型エポキシ樹脂及び/又は下記一般式(3)で示されるジヒドロアントラセン型エポキシ樹脂を水素化触媒の存在下に直接水素化する方法であり、該水素化触媒が、炭素系担体に担持されたロジウム系触媒及び/又はルテニウム系触媒であり、該水素化触媒の使用量が原料エポキシ樹脂100質量部に対して5〜10質量部であり、反応圧力が1〜30MPa、反応温度が30〜150℃、反応時間が0.5〜20時間であることを特徴とする[1]に記載の水素化エポキシ樹脂の製造方法。
[3] 前記アントラセン型エポキシ樹脂及び/又はジヒドロアントラセン型エポキシ樹脂を溶媒の存在下に水素化することを特徴とする[2]に記載の水素化エポキシ樹脂の製造方法。 [3] The anthracene-type epoxy resin and / or manufacturing method of the hydrogenated epoxy resin according to dihydroanthracene type epoxy resin, characterized in that hydrogenation in the presence of Solvent [2].
[4] [1]に記載の水素化エポキシ樹脂と、エポキシ樹脂用硬化剤とが配合されていることを特徴とするエポキシ樹脂組成物。 [ 4 ] An epoxy resin composition comprising the hydrogenated epoxy resin according to [1] and an epoxy resin curing agent.
[5] エポキシ樹脂用硬化剤が、アミン類、酸無水物類、多価フェノール類、イミダゾール類、ブレンステッド酸塩類、ジシアンジアミド類、アミンのBF3錯体化合物、有機酸ヒドラジッド類及びポリカルボン酸類よりなる群から選ばれる1種又は2種以上であることを特徴とする[4]に記載のエポキシ樹脂組成物。 [ 5 ] The epoxy resin curing agent is composed of amines, acid anhydrides, polyhydric phenols, imidazoles, Bronsted acid salts, dicyandiamides, BF 3 complex compounds of amines, organic acid hydrazides and polycarboxylic acids. The epoxy resin composition according to [ 4 ], which is one or more selected from the group consisting of:
本発明の水素化エポキシ樹脂は、溶融時の粘度が低く、その硬化物は難燃性、耐湿性に優れた材料となるため、半導体封止材料、レジスト材料、電気絶縁材料や積層板用エポキシ樹脂として有利に使用できる。 The hydrogenated epoxy resin of the present invention has a low viscosity at the time of melting, and the cured product becomes a material excellent in flame retardancy and moisture resistance. Therefore, a semiconductor encapsulating material, a resist material, an electrical insulating material, and an epoxy for laminates It can be advantageously used as a resin.
以下に、本発明の水素化エポキシ樹脂、その製造方法及びエポキシ樹脂組成物の実施の形態を詳細に説明する。 Below, the hydrogenated epoxy resin of this invention, its manufacturing method, and embodiment of an epoxy resin composition are described in detail.
(水素化エポキシ樹脂)
本発明の水素化エポキシ樹脂は、下記一般式(1)で示され、好ましくは下記一般式(2)で示されるアントラセン型エポキシ樹脂及び/又は下記一般式(3)で示されるジヒドロアントラセン型エポキシ樹脂を直接水素化することにより得られる。
(Hydrogenated epoxy resin)
The hydrogenated epoxy resin of the present invention is represented by the following general formula (1), preferably an anthracene type epoxy resin represented by the following general formula (2) and / or a dihydroanthracene type epoxy represented by the following general formula (3). Obtained by direct hydrogenation of the resin.
上記アントラセン型エポキシ樹脂は、下記一般式(4)で示されるジヒドロキシアントラセンとエピクロルヒドリンとを水酸化ナトリウム等のアルカリの存在下に脱塩酸反応を行う公知の方法により製造することができる。 The anthracene type epoxy resin can be produced by a known method in which a dihydroxyanthracene represented by the following general formula (4) and epichlorohydrin are dehydrochlorinated in the presence of an alkali such as sodium hydroxide.
上記ジヒドロアントラセン型エポキシ樹脂は、下記一般式(5)で示されるジヒドロアントラハイドロキノンとエピクロルヒドリンとを水酸化ナトリウム等のアルカリの存在下、脱塩酸反応を行う公知の方法により製造することができる。 The dihydroanthracene-type epoxy resin can be produced by a known method in which a dihydroanthrahydroquinone represented by the following general formula (5) and epichlorohydrin are dehydrochlorinated in the presence of an alkali such as sodium hydroxide.
上記の脱塩酸によるエポキシ化反応を行うことにより得られた、前記一般式(2)で示されるアントラセン型エポキシ樹脂及び一般式(3)で示されるジヒドロアントラセン型エポキシ樹脂の中で、R1〜R6が水素原子、R7及びR8が水素原子又はメチル基(この場合、R7及びR8のいずれか一方が水素原子で、他方がメチル基であるよりも、R7及びR8の両方が共に水素原子又はメチル基であることが好ましい。)であるエポキシ樹脂を水素化して得られる水素化エポキシ樹脂が、硬化物の耐熱性と耐湿性のバランスに優れる点で好ましい。更に、ジヒドロアントラセン型エポキシ樹脂を原料として用いる方が、水素化反応の容易さの点で特に好ましい。 Among the anthracene type epoxy resin represented by the general formula (2) and the dihydroanthracene type epoxy resin represented by the general formula (3) obtained by performing the epoxidation reaction by dehydrochlorination, R 1 to R 6 is a hydrogen atom, R 7 and R 8 is a hydrogen atom or a methyl group (in this case, either one of R 7 and R 8 are hydrogen atoms, than the other is a methyl group, R 7 and R 8 Both are preferably hydrogen atoms or methyl groups.) A hydrogenated epoxy resin obtained by hydrogenating an epoxy resin is preferable in terms of excellent balance between heat resistance and moisture resistance of a cured product. Furthermore, it is particularly preferable to use a dihydroanthracene type epoxy resin as a raw material from the viewpoint of easy hydrogenation reaction.
本発明の水素化エポキシ樹脂は、上記アントラセン型エポキシ樹脂及び/又はジヒドロアントラセン型エポキシ樹脂を溶媒及び水素化触媒の存在下で炭素−炭素二重結合及び芳香核を水素化することにより得られる。この場合、原料としては、アントラセン型エポキシ樹脂とジヒドロアントラセン型エポキシ樹脂のいずれか一方を用いても良く、またアントラセン型エポキシ樹脂とジヒドロアントラセン型エポキシ樹脂の両方を用いても良い。また、異なるアントラセン型エポキシ樹脂の2種以上を用いても良く、異なるジヒドロアントラセン型エポキシ樹脂の2種以上を用いても良い。ただし、上述の如く、原料としてはジヒドロアントラセン型エポキシ樹脂を用いるのが好ましい。 The hydrogenated epoxy resin of the present invention can be obtained by hydrogenating a carbon-carbon double bond and an aromatic nucleus in the presence of a solvent and a hydrogenation catalyst with the anthracene type epoxy resin and / or dihydroanthracene type epoxy resin. In this case, as the raw material, either an anthracene type epoxy resin or a dihydroanthracene type epoxy resin may be used, or both an anthracene type epoxy resin and a dihydroanthracene type epoxy resin may be used. Two or more different anthracene type epoxy resins may be used, or two or more different dihydroanthracene type epoxy resins may be used. However, as described above, it is preferable to use a dihydroanthracene type epoxy resin as a raw material.
水素化触媒としては、各種の不均一系触媒あるいは均一系触媒を使用することができ、その中でも触媒分離が容易である事から不均一系触媒が好ましく、ニッケル系触媒、白金族触媒が好ましく使用される。ニッケル系触媒は、ラネー触媒として、又は珪藻土やアルミナなどの担体に担持されたものなどとして使用することができる。また、白金族触媒は主として担体に担持されたものとして使用される。 As the hydrogenation catalyst, various heterogeneous catalysts or homogeneous catalysts can be used. Among them, heterogeneous catalysts are preferable because of easy catalyst separation, and nickel-based catalysts and platinum group catalysts are preferably used. Is done. The nickel-based catalyst can be used as a Raney catalyst or supported on a carrier such as diatomaceous earth or alumina. The platinum group catalyst is mainly used as supported on a carrier.
これの水素化触媒の中で、特に白金族触媒が好ましく、なかでもロジウム又はルテニウム系触媒は、含有されるエポキシ基の水素化分解を抑制して炭素−炭素二重結合及び芳香核を穏和な条件で水素化することができるため好ましい。触媒の担体としては、活性炭、グラファイト等の炭素系担体、シリカ、アルミナなどの無機担体が好ましく使用される。触媒は1種を単独で用いても良く、2種以上を併用しても良い。このような水素化触媒の使用量は原料エポキシ樹脂100質量部に対して0.1〜10質量部程度とすることが好ましい。 Among these hydrogenation catalysts, platinum group catalysts are particularly preferable, and among them, rhodium or ruthenium-based catalysts moderate carbon-carbon double bonds and aromatic nuclei by suppressing hydrogenolysis of the contained epoxy groups. Since it can hydrogenate on conditions, it is preferable. As the catalyst carrier, carbon-based carriers such as activated carbon and graphite, and inorganic carriers such as silica and alumina are preferably used. A catalyst may be used individually by 1 type and may use 2 or more types together. The amount of the hydrogenation catalyst used is preferably about 0.1 to 10 parts by mass with respect to 100 parts by mass of the raw material epoxy resin.
水素化反応溶媒は、エポキシ樹脂を溶解して反応をスムーズに進行させるために使用されるが、エポキシ樹脂の溶解性及び水素化反応で影響をうけにくいことからエーテル系溶媒又はエステル系溶媒が好ましく使用される。エーテル系溶媒としては、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン等が、エステル系溶媒としては酢酸エチル、酢酸ブチル、プロピオン酸メチルなどの各種溶媒を使用することができる。水素化反応溶媒は、これらのうちの1種を単独で用いても良く、2種以上を混合して用いても良い。溶媒の使用量は原料エポキシ樹脂に対して20〜90質量%程度とすることが好ましい。 The hydrogenation reaction solvent is used to dissolve the epoxy resin and allow the reaction to proceed smoothly. However, an ether solvent or an ester solvent is preferable because the solubility of the epoxy resin and the hydrogenation reaction hardly affect the reaction. used. As the ether solvent, tetrahydrofuran, methyltetrahydrofuran, dioxane and the like can be used, and as the ester solvent, various solvents such as ethyl acetate, butyl acetate and methyl propionate can be used. As the hydrogenation reaction solvent, one of these may be used alone, or two or more may be mixed and used. It is preferable that the usage-amount of a solvent shall be about 20-90 mass% with respect to raw material epoxy resin.
本発明の水素化エポキシ樹脂の反応条件としては、触媒や原料エポキシ樹脂の水素化の程度にもよるが、圧力は1〜30MPa、温度は30〜150℃程度の条件を選ぶと良い。反応時間は、製造のしやすいように0.5〜20時間程度になるように調整するのが一般的である。 The reaction conditions for the hydrogenated epoxy resin of the present invention may be selected so that the pressure is 1 to 30 MPa and the temperature is about 30 to 150 ° C., depending on the degree of hydrogenation of the catalyst and the raw material epoxy resin. In general, the reaction time is adjusted to be about 0.5 to 20 hours so that the production is easy.
より好ましい反応方法の例としては、ジヒドロアントラセン型エポキシ樹脂をエステル系溶媒及び/又はエーテル系溶媒に溶解し、白金系触媒、より好ましくはロジウム及び/又はルテニウムをグラファイト及び/又は活性炭に担持した触媒を用い、水素化する方法が挙げられる。反応終了後は、反応生成液から触媒を濾過により除去し、有機溶媒を減圧で実質的に無くなるまで留去することにより、本発明の水素化エポキシ樹脂を得ることができる。 As an example of a more preferred reaction method, a dihydroanthracene type epoxy resin is dissolved in an ester solvent and / or an ether solvent, and a platinum catalyst, more preferably a catalyst in which rhodium and / or ruthenium is supported on graphite and / or activated carbon. The method of hydrogenating using is mentioned. After completion of the reaction, the hydrogenated epoxy resin of the present invention can be obtained by removing the catalyst from the reaction product solution by filtration and distilling off the organic solvent under reduced pressure until it substantially disappears.
このようにして製造される本発明の水素化エポキシ樹脂は、分子量の大きさによって異なるが、通常、エポキシ当量が170〜250で、融点が70〜150℃、コーンプレート型粘度計で測定した150℃での溶融粘度が2〜50mPa・sであることが好ましい。 The hydrogenated epoxy resin of the present invention thus produced varies depending on the molecular weight, but usually has an epoxy equivalent of 170 to 250, a melting point of 70 to 150 ° C., and 150 measured with a cone plate viscometer. The melt viscosity at ° C is preferably 2 to 50 mPa · s.
(エポキシ樹脂用硬化剤)
本発明のエポキシ樹脂組成物は、上述のような本発明の水素化エポキシ樹脂とエポキシ樹脂用硬化剤とを配合してなるものである。エポキシ樹脂用硬化剤としては一般のエポキシ樹脂用硬化剤が用いられ、例えば次のものが挙げられる。
(Curing agent for epoxy resin)
The epoxy resin composition of the present invention comprises the above-described hydrogenated epoxy resin of the present invention and a curing agent for epoxy resin. As the curing agent for epoxy resin, a general curing agent for epoxy resin is used, and examples thereof include the following.
(1) アミン類:ビス(4−アミノシクロヘキシル)メタン、ビス(アミノメチル)シクロヘキサン、m−キシリレンジアミン、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラスピロ[5,5]ウンデカン等の脂肪族及び脂環族アミン類、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族アミン類、ベンジルジメチルアミン、2,4,6−トリス(ジメチルアミノメチル)フェノ−ル、1,8−ジアザビシクロ−(5,4,0)−ウンデセン−7、1,5−アザビシクロ−(4,3,0)−ノネン−7等の3級アミン類及びその塩類。 (1) Amines: bis (4-aminocyclohexyl) methane, bis (aminomethyl) cyclohexane, m-xylylenediamine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraspiro [ 5,5] Aliphatic and alicyclic amines such as undecane, aromatic amines such as metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) pheno And tertiary amines such as 1,8-diazabicyclo- (5,4,0) -undecene-7, 1,5-azabicyclo- (4,3,0) -nonene-7 and salts thereof.
(2) 酸無水物類:無水フタル酸、無水トリメリット酸、無水ピロメリット酸等の芳香族酸無水物類、無水テトラヒドロフタル酸、無水メチルテトラヒドロフタル酸、無水ヘキサヒドロフタル酸、無水メチルヘキサヒドロフタル酸、無水メチルエンドメチレンテトラヒドロフタル酸、無水ドデセニルコハク酸、無水トリアルキルテトラヒドロフタル酸等の環状脂肪族酸無水物類。 (2) Acid anhydrides: aromatic anhydrides such as phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, tetrahydrophthalic anhydride, methyl tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyl hexahexan anhydride Cyclic aliphatic acid anhydrides such as hydrophthalic acid, methylendomethylenetetrahydrophthalic anhydride, dodecenyl succinic anhydride, and trialkyltetrahydrophthalic anhydride.
(3) 多価フェノ−ル類:カテコ−ル、レゾルシン、ハイドロキノン、ビスフェノ−ルF、ビスフェノ−ルA、ビスフェノ−ルS、ビフェノ−ル、フェノ−ルノボラック類、クレゾ−ルノボラック類、ビスフェノ−ルA等の2価フェノ−ルのノボラック化物類、トリスヒドロキシフェニルメタン類、アラルキルポリフェノ−ル類、ジシクロペンタジエンポリフェノ−ル類等。 (3) Multivalent phenols: catechol, resorcin, hydroquinone, bisphenol F, bisphenol A, bisphenol S, biphenol, phenol novolacs, cresol novolacs, bisphenol Divalent phenol novolacs such as A, trishydroxyphenylmethanes, aralkylpolyphenols, dicyclopentadiene polyphenols and the like.
(4) その他:2−メチルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾール類;上述のようなアミンのBF3錯体化合物;脂肪族スルホニウム塩、芳香族スルホニウム塩、ヨードニウム塩及びホスホニウム塩等のブレンステッド酸塩類;アジピン酸ジヒドラジッド及びフタル酸ジヒドラジッド等の有機酸ヒドラジッド類;ジシアンジアミド類;アジピン酸、セバシン酸、テレフタル酸、トリメリット酸及びカルボキシル基含有ポリエステル等のポリカルボン酸類等。 (4) Others: Imidazoles such as 2-methylimidazole and 2-ethyl-4-methylimidazole; BF 3 complex compounds of amines as described above; aliphatic sulfonium salts, aromatic sulfonium salts, iodonium salts, phosphonium salts, etc. Bronsted acid salts of: organic acid hydrazides such as adipic acid dihydrazide and phthalic acid dihydrazide; dicyandiamides; polycarboxylic acids such as adipic acid, sebacic acid, terephthalic acid, trimellitic acid, and carboxyl group-containing polyester.
これらのエポキシ樹脂用硬化剤は、1種を単独で使用しても良いが、2種以上を併用して使用することも可能である。 These epoxy resin curing agents may be used alone or in combination of two or more.
エポキシ樹脂用硬化剤の配合量は、用いるエポキシ樹脂用硬化剤の種類によっても異なるが、通常、水素化エポキシ樹脂100質量部に対して0.01〜200質量部、好ましくは0.1〜150質量部の範囲内である。 Although the compounding quantity of the hardening | curing agent for epoxy resins changes also with the kind of hardening | curing agent for epoxy resins to be used, it is 0.01-200 mass parts normally with respect to 100 mass parts of hydrogenated epoxy resins, Preferably it is 0.1-150. Within the range of parts by mass.
(任意成分)
本発明のエポキシ樹脂組成物には、必要に応じて次の成分を添加配合することができる。
(Optional component)
In the epoxy resin composition of the present invention, the following components can be added and blended as necessary.
(a)硬化促進剤:ホスフィン化合物、イミダゾール化合物、ジアザビシクロ化合物、及びそれらの塩。
硬化促進剤は、水素化エポキシ樹脂100質量部に対して、0.1〜10質量部配合することができる。
(A) Curing accelerator: phosphine compound, imidazole compound, diazabicyclo compound, and salts thereof.
The curing accelerator can be blended in an amount of 0.1 to 10 parts by mass with respect to 100 parts by mass of the hydrogenated epoxy resin.
(b)粉末状の補強剤や充填剤;例えば酸化アルミニウム、酸化マグネシウムなどの金属酸化物、微粉末シリカ、溶融シリカ、結晶シリカなどのケイ素化合物、ガラスビーズ等の透明フィラー、水酸化アルミニウムなどの金属水酸化物、その他、カオリン、マイカ、石英粉末、グラファイト、二硫化モリブデン等の1種又は2種以上。
これらは、通常水素化エポキシ樹脂100質量部に対して、10〜1000質量部の範囲が適当である。
(B) Powdery reinforcing agents and fillers; for example, metal oxides such as aluminum oxide and magnesium oxide, silicon compounds such as fine powder silica, fused silica and crystalline silica, transparent fillers such as glass beads, and aluminum hydroxide One or more of metal hydroxide, other, kaolin, mica, quartz powder, graphite, molybdenum disulfide and the like.
These are usually in the range of 10 to 1000 parts by mass with respect to 100 parts by mass of the hydrogenated epoxy resin.
(c)着色剤又は顔料;例えば二酸化チタン、モリブデン赤、紺青、群青、カドミウム黄、カドミウム赤、有機色素等の1種又は2種以上。
(d)難燃剤;例えば、三酸化アンチモン、ブロム化合物及びリン化合物等の1種又は2種以上。
(e)イオン吸着体。
(f)カップリング剤、酸化防止剤、紫外線吸収剤等の特性向上剤。
上記(c)〜(f)は、通常水素化エポキシ樹脂100質量部に対して、各々0.01〜30質量部、合計で0.1〜30質量部配合することができる。
(C) Colorant or pigment; for example, one or more of titanium dioxide, molybdenum red, bitumen, ultramarine blue, cadmium yellow, cadmium red, organic dye, and the like.
(D) Flame retardant; for example, one or more of antimony trioxide, bromine compound and phosphorus compound.
(E) Ion adsorbent.
(F) Property improvers such as coupling agents, antioxidants, ultraviolet absorbers and the like.
Said (c)-(f) can mix | blend 0.01-30 mass parts normally with respect to 100 mass parts of hydrogenated epoxy resins, respectively, and 0.1-30 mass parts in total.
さらに、本発明のエポキシ樹脂組成物には、硬化物の性質を改善する目的で種々の硬化性モノマ−、オリゴマ−及び合成樹脂等を配合することができる。
例えば、本発明の水素化エポキシ樹脂以外のエポキシ樹脂として、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビフェノール、テトラメチルビフェノール、テルペンジフェノール、ハイドロキノン、メチルハイドロキノン、ジブチルハイドロキノン、レゾルシン、メチルレゾルシン、ビスフェノールS、チオジフェノール、ジヒドロキシジフェニルエーテル、ジヒドロキシナフタレン、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂、ジシクロペンタジエンフェノール樹脂、テルペンフェノール樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ナフトールノボラック樹脂などの種々のフェノール類や、種々のフェノール類と、ヒドロキシベンズアルデヒド、クロトンアルデヒド、グリオキザールなどの種々のアルデヒド類との縮合反応で得られる多価フェノール樹脂、石油系重質油又はピッチ類とホルムアルデヒド重合物とフェノール類とを酸触媒の存在下に重縮合させた変性フェノール樹脂等の各種のフェノール化合物と、エピハロヒドリンとから製造されるエポキシ樹脂や、ジアミノジフェニルメタン、アミノフェノール、キシレンジアミンなどの種々のアミン化合物と、エピハロヒドリンとから製造されるエポキシ樹脂、メチルヘキサヒドロキシフタル酸、ダイマー酸などの種々のカルボン酸類と、エピハロヒドリンとから製造されるエポキシ樹脂などの1種又は2種以上を配合することができる。この他に脂肪族アルコールのグリシジルエーテル等のエポキシ樹脂用希釈剤、ジオール又はトリオール類、ビニルエーテル類、オキセタン化合物、フッ素樹脂、アクリル樹脂、シリコ−ン樹脂等の1種又は2種以上の組み合わせを挙げることができる。
Furthermore, various curable monomers, oligomers, synthetic resins and the like can be blended with the epoxy resin composition of the present invention for the purpose of improving the properties of the cured product.
For example, as an epoxy resin other than the hydrogenated epoxy resin of the present invention, bisphenol A, bisphenol F, bisphenol AD, biphenol, tetramethylbiphenol, terpene diphenol, hydroquinone, methylhydroquinone, dibutylhydroquinone, resorcin, methylresorcin, bisphenol S, Various phenols such as thiodiphenol, dihydroxydiphenyl ether, dihydroxynaphthalene, phenol novolak resin, cresol novolak resin, bisphenol A novolak resin, dicyclopentadiene phenol resin, terpene phenol resin, phenol aralkyl resin, biphenyl aralkyl resin, naphthol novolak resin And various phenols, hydroxybenzaldehyde, croto Modified phenol obtained by polycondensation of polyhydric phenol resin, petroleum heavy oil or pitches, formaldehyde polymer and phenols obtained by condensation reaction with various aldehydes such as aldehyde and glyoxal in the presence of an acid catalyst Epoxy resins produced from various phenolic compounds such as resins and epihalohydrin, epoxy resins produced from various amine compounds such as diaminodiphenylmethane, aminophenol and xylenediamine, and epihalohydrin, methylhexahydroxyphthalic acid, One type or two or more types of epoxy resins produced from various carboxylic acids such as dimer acid and epihalohydrin can be blended. In addition to these, diluents for epoxy resins such as glycidyl ethers of aliphatic alcohols, diols or triols, vinyl ethers, oxetane compounds, fluororesins, acrylic resins, silicone resins, and the like may be used. be able to.
これらの化合物及び樹脂類は、本発明のエポキシ樹脂組成物の本来の性質を損なわない範囲で配合され、通常、本発明の水素化エポキシ樹脂100質量部に対して、合計で50質量部以下とすることが好ましい。 These compounds and resins are blended within a range that does not impair the original properties of the epoxy resin composition of the present invention, and are generally 50 parts by mass or less with respect to 100 parts by mass of the hydrogenated epoxy resin of the present invention. It is preferable to do.
以下に、実施例及び比較例を挙げて本発明をさらに詳しく説明する。
なお、以下において「部」は「質量部」を意味する。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
In the following, “part” means “part by mass”.
[水素化エポキシ樹脂の製造例]
以下に本発明の水素化エポキシ樹脂を製造する実施例を示す。なお、以下の実施例において、得られた水素化エポキシ樹脂の各種分析法は次の通りである。
[Production example of hydrogenated epoxy resin]
The Example which manufactures the hydrogenated epoxy resin of this invention below is shown. In the following examples, various analysis methods for the obtained hydrogenated epoxy resin are as follows.
1) エポキシ当量
JIS K7236−1955に準拠し、酢酸と臭化セチルトリメチルアンモニウムの存在下、過塩素酸で滴定し、発生する臭化水素をエポキシ基に付加させ、終点を電位差で判定した。
2) 1H核磁気共鳴スペクトル
サンプル約0.02gを重水素化クロロホルムに溶解し、400MHzで測定した。
3) 13C−NMR核磁気共鳴スペクトル
サンプル約0.1gを重水素化クロロホルムに溶解し、100MHzで測定した。
4) 赤外吸収スペクトル
サンプルをアセトンで溶解して、KBr板に塗布し、ドライヤーにて乾燥してから、透過測定した。
1) Epoxy equivalent In accordance with JIS K7236-1955, titration was performed with perchloric acid in the presence of acetic acid and cetyltrimethylammonium bromide, hydrogen bromide generated was added to the epoxy group, and the end point was determined by the potential difference.
2) 1 H nuclear magnetic resonance spectrum About 0.02 g of a sample was dissolved in deuterated chloroform and measured at 400 MHz.
3) 13 C-NMR nuclear magnetic resonance spectrum About 0.1 g of a sample was dissolved in deuterated chloroform and measured at 100 MHz.
4) Infrared absorption spectrum The sample was dissolved in acetone, applied to a KBr plate, dried with a dryer, and then measured for transmission.
実施例1
1Lオートクレーブ中に、下記構造式(3A)で表されるジヒドロアントラセン型エポキシ樹脂(エポキシ当量;178)150g、酢酸エチル300g、触媒として5重量%ロジウム/グラファイト触媒7.5gを仕込み、110℃、8MPaの条件で水素化反応を行った。反応開始から30分ほど水素吸収がみられたが、水素吸収が極端に低下したので、さらに30分攪拌後、冷却し、脱圧、ガス置換し、反応液を抜き出した。
Example 1
In a 1 L autoclave, 150 g of dihydroanthracene type epoxy resin (epoxy equivalent; 178) represented by the following structural formula (3A), 300 g of ethyl acetate, and 7.5 g of 5 wt% rhodium / graphite catalyst as a catalyst were charged at 110 ° C. The hydrogenation reaction was performed under the condition of 8 MPa. Although hydrogen absorption was observed for about 30 minutes from the start of the reaction, the hydrogen absorption was extremely reduced. Therefore, after stirring for another 30 minutes, the mixture was cooled, depressurized and replaced with gas, and the reaction solution was extracted.
反応液に酢酸エチル及び酸化マグネシウム粉末(富田製薬社製「AD100P」)及び濾過助剤を添加し、濾過を実施した。濾液を減圧下、150℃で溶媒を留去し、缶液を冷やして固めて、結晶性の固体エポキシ樹脂を得た。 Ethyl acetate and magnesium oxide powder (“AD100P” manufactured by Tomita Pharmaceutical Co., Ltd.) and a filter aid were added to the reaction solution, followed by filtration. The solvent was distilled off from the filtrate at 150 ° C. under reduced pressure, and the can liquid was cooled and solidified to obtain a crystalline solid epoxy resin.
得られたエポキシ樹脂を1H−NMRで分析したところ、δが5ppmより低磁場側のプロトンは観察されず外核の不飽和結合は水素化されていたが、13C−NMRでの分析により内核の芳香環は残存しており、下記構造式(1A)で表される水素化エポキシ樹脂であることが確認された。 When the obtained epoxy resin was analyzed by 1 H-NMR, protons at a magnetic field lower than 5 ppm were not observed, and the unsaturated bond of the outer core was hydrogenated, but analysis by 13 C-NMR The aromatic ring of the inner core remained and was confirmed to be a hydrogenated epoxy resin represented by the following structural formula (1A).
また、得られた水素化エポキシ樹脂のエポキシ当量は201であり、融点は111℃であった。また、コーンプレート型粘度計で測定した150℃での溶融粘度は10mPa・sであった。 Moreover, the epoxy equivalent of the obtained hydrogenated epoxy resin was 201, and melting | fusing point was 111 degreeC. The melt viscosity at 150 ° C. measured with a cone plate viscometer was 10 mPa · s.
この水素化エポキシ樹脂の核磁気共鳴スペクトルを図1に、赤外吸収スペクトルを図2にそれぞれ示す。 The nuclear magnetic resonance spectrum of this hydrogenated epoxy resin is shown in FIG. 1, and the infrared absorption spectrum is shown in FIG.
実施例2
1Lオートクレーブ中に、下記構造式(2A)で表されるアントラセン型エポキシ樹脂(エポキシ当量;177)150g、酢酸エチル300g、触媒として5重量%ロジウム/グラファイト触媒10.5gを仕込み、110℃、8MPaの条件で水素化反応を行った。90分ほど水素吸収がみられたが、水素吸収が極端に低下したので、さらに30分攪拌後、冷却し、脱圧、ガス置換し、反応液を抜き出した。
Example 2
In a 1 L autoclave, 150 g of anthracene type epoxy resin (epoxy equivalent; 177) represented by the following structural formula (2A), 300 g of ethyl acetate and 10.5 g of 5 wt% rhodium / graphite catalyst as a catalyst were charged at 110 ° C. and 8 MPa. The hydrogenation reaction was carried out under the following conditions. Although hydrogen absorption was observed for about 90 minutes, the hydrogen absorption was extremely reduced. After stirring for another 30 minutes, the mixture was cooled, depressurized and replaced with gas, and the reaction solution was extracted.
反応液に酢酸エチル及び酸化マグネシウム粉末(富田製薬社製「AD100P」)及び濾過助剤を添加し、濾過を実施した。濾液を減圧下、150℃で溶媒留去し、缶液を冷やして固めて、結晶性の固体を得た。 Ethyl acetate and magnesium oxide powder (“AD100P” manufactured by Tomita Pharmaceutical Co., Ltd.) and a filter aid were added to the reaction solution, followed by filtration. The filtrate was evaporated at 150 ° C. under reduced pressure, and the can liquid was cooled and solidified to obtain a crystalline solid.
得られた製品を1H−NMRで分析したところ、δが5ppmより低磁場側のプロトンは観察されず外核の不飽和結合はほぼ完全に水素化されていたが、13C−NMRでの分析により内核の芳香環は残存しており、前記構造式(1A)で表される水素化エポキシ樹脂であることが確認された。得られたエポキシ樹脂のエポキシ当量は205であり、融点は109℃であった。 Where the resulting product analyzed by 1 H-NMR a, [delta] is but unsaturated bonds outside the nucleus not observed downfield proton from 5ppm had been almost completely hydrogenated, in the 13 C-NMR Analysis confirmed that the aromatic ring of the inner core remained and was a hydrogenated epoxy resin represented by the structural formula (1A). The epoxy equivalent of the obtained epoxy resin was 205, and melting | fusing point was 109 degreeC.
[エポキシ樹脂組成物の製造例及び硬化例]
以下に本発明のエポキシ樹脂組成物を製造し、製造されたエポキシ樹脂組成物から硬化体を得る実施例と比較例を挙げる。
[Production Example and Curing Example of Epoxy Resin Composition]
Below, the Example and comparative example which manufacture the epoxy resin composition of this invention, and obtain a hardening body from the manufactured epoxy resin composition are given.
なお、以下において用いた本発明の水素化エポキシ樹脂以外の原材料は次の通りである。
〈その他の水素化エポキシ樹脂〉
ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製「E828US」)
〈エポキシ樹脂用硬化剤〉
a;無水メチルヘキサヒドロフタル酸(新日本理化社製「MH−700」)
b;無水トリアルキルテトラヒドロフタル酸(ジャパンエポキシレジン社製「YH306」)
〈硬化促進剤〉
トリフェニルホスフィン
The raw materials other than the hydrogenated epoxy resin of the present invention used in the following are as follows.
<Other hydrogenated epoxy resins>
Bisphenol A type epoxy resin (“E828US” manufactured by Japan Epoxy Resin Co., Ltd.)
<Curing agent for epoxy resin>
a: Methyl hexahydrophthalic anhydride (“MH-700” manufactured by Shin Nippon Rika Co., Ltd.)
b: Trialkyltetrahydrophthalic anhydride (“YH306” manufactured by Japan Epoxy Resin Co., Ltd.)
<Curing accelerator>
Triphenylphosphine
また、エポキシ樹脂組成物又は硬化物の各種物性ないし特性の測定方法は次の通りである。
〈ゲル化時間〉
安田精機社製ゲルタイムテスターを用い、100℃で測定した。
〈ガラス転移温度Tg〉
TMA法(5℃/分で昇温)により測定した。
〈吸湿率〉
厚さ3mm、直径50mmの円盤状硬化物について、121℃、24時間後の吸湿率を測定した。この値が小さいほど耐湿性に優れる。
Moreover, the measuring method of various physical properties thru | or a characteristic of an epoxy resin composition or hardened | cured material is as follows.
<Gelification time>
The measurement was performed at 100 ° C. using a gel time tester manufactured by Yasuda Seiki.
<Glass transition temperature Tg>
It was measured by the TMA method (temperature rising at 5 ° C./min).
<Hygroscopic rate>
About the disk-shaped hardened | cured material of thickness 3mm and diameter 50mm, the moisture absorption after 121 degreeC and 24 hours was measured. The smaller this value, the better the moisture resistance.
実施例3〜5、比較例1
表1に示す配合で、硬化促進剤以外の成分を温度70℃で均一になるまで混合した後、硬化促進剤を添加し、攪拌、溶解してエポキシ樹脂組成物を得た。
このエポキシ樹脂組成物の物性は表1に示す通りであった。
Examples 3-5, Comparative Example 1
In the formulation shown in Table 1, components other than the curing accelerator were mixed at a temperature of 70 ° C. until uniform, then the curing accelerator was added, stirred and dissolved to obtain an epoxy resin composition.
The physical properties of this epoxy resin composition were as shown in Table 1.
このエポキシ樹脂組成物を減圧下で脱泡した後、金属型の中に流し込み、オーブン中にて100℃で3時間、次いで、140℃で3時間加熱硬化して硬化物を得た。
この得られたエポキシ硬化物の物性値は表1に示す通りであった。
After defoaming this epoxy resin composition under reduced pressure, it was poured into a metal mold and cured in an oven at 100 ° C. for 3 hours and then at 140 ° C. for 3 hours to obtain a cured product.
The physical property values of the obtained epoxy cured product were as shown in Table 1.
表1より、本発明の水素化エポキシ樹脂は溶融粘度が低く、しかもこの水素化エポキシ樹脂によれば、耐湿性に優れた硬化物を得ることができることが分かる。
なお、上記評価では難燃性についての評価は行っていないが、本発明の水素化エポキシ樹脂は、芳香環が残存しており、特にグリシジルエーテル基が芳香環と結合しているため難燃性にも優れる。
From Table 1, it can be seen that the hydrogenated epoxy resin of the present invention has a low melt viscosity, and according to this hydrogenated epoxy resin, a cured product excellent in moisture resistance can be obtained.
In addition, although the evaluation about flame retardance is not performed in the above evaluation, the hydrogenated epoxy resin of the present invention has an aromatic ring remaining, and in particular, the glycidyl ether group is bonded to the aromatic ring so that it is flame retardant. Also excellent.
Claims (5)
下記一般式(2)で示されるアントラセン型エポキシ樹脂及び/又は下記一般式(3)で示されるジヒドロアントラセン型エポキシ樹脂を水素化触媒の存在下に直接水素化する方法であり、
該水素化触媒が、炭素系担体に担持されたロジウム系触媒及び/又はルテニウム系触媒であり、
該水素化触媒の使用量が原料エポキシ樹脂100質量部に対して5〜10質量部であり、
反応圧力が1〜30MPa、反応温度が30〜150℃、反応時間が0.5〜20時間であることを特徴とする水素化エポキシ樹脂の製造方法。
An anthracene type epoxy resin represented by the following general formula (2) and / or a dihydroanthracene type epoxy resin represented by the following general formula (3) is directly hydrogenated in the presence of a hydrogenation catalyst ,
The hydrogenation catalyst is a rhodium catalyst and / or a ruthenium catalyst supported on a carbon carrier;
The amount of the hydrogenation catalyst used is 5 to 10 parts by mass with respect to 100 parts by mass of the raw material epoxy resin,
The reaction pressure is 1 to 30 MPa, the reaction temperature is 30 to 150 ° C., method of producing a water-fluorinated epoxy resin you wherein the reaction time is 0.5 to 20 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005064082A JP4742625B2 (en) | 2005-03-08 | 2005-03-08 | Hydrogenated epoxy resin, method for producing the same, and epoxy resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005064082A JP4742625B2 (en) | 2005-03-08 | 2005-03-08 | Hydrogenated epoxy resin, method for producing the same, and epoxy resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006249144A JP2006249144A (en) | 2006-09-21 |
JP4742625B2 true JP4742625B2 (en) | 2011-08-10 |
Family
ID=37089972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005064082A Active JP4742625B2 (en) | 2005-03-08 | 2005-03-08 | Hydrogenated epoxy resin, method for producing the same, and epoxy resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4742625B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006249145A (en) * | 2005-03-08 | 2006-09-21 | Japan Epoxy Resin Kk | Epoxy resin, its manufacturing method and epoxy resin composition |
CN103342876A (en) | 2006-04-28 | 2013-10-09 | 日立化成工业株式会社 | Resin composition, prepreg, laminated board and wiring board |
JP4952084B2 (en) * | 2006-06-22 | 2012-06-13 | 川崎化成工業株式会社 | 1,4-Dihydro-anthracene derivative and process for producing the same |
KR100814705B1 (en) | 2006-12-28 | 2008-03-18 | 제일모직주식회사 | Epoxy resin composition for encapsulating semiconductor device and semiconductor device using the same |
WO2012165240A1 (en) | 2011-05-27 | 2012-12-06 | 三菱瓦斯化学株式会社 | Resin composition, prepreg and laminate |
JP2012054589A (en) * | 2011-10-31 | 2012-03-15 | Hitachi Chem Co Ltd | Semiconductor package |
JP2012124479A (en) * | 2011-11-24 | 2012-06-28 | Hitachi Chem Co Ltd | Semiconductor package |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05283560A (en) * | 1991-10-04 | 1993-10-29 | Nitto Denko Corp | Semiconductor sealing epoxy resin composition and semiconductor device using it |
DE4414090A1 (en) * | 1994-04-22 | 1995-10-26 | Basf Ag | Process for the selective hydrogenation of aromatic groups in the presence of epoxy groups |
JP4237600B2 (en) * | 2003-10-10 | 2009-03-11 | ジャパンエポキシレジン株式会社 | Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same |
JP4354242B2 (en) * | 2003-09-26 | 2009-10-28 | ジャパンエポキシレジン株式会社 | Novel crystalline epoxy resin, curable epoxy resin composition and cured product thereof |
JP4655490B2 (en) * | 2004-03-11 | 2011-03-23 | 三菱化学株式会社 | Epoxy resin composition and cured product thereof |
JP2006249145A (en) * | 2005-03-08 | 2006-09-21 | Japan Epoxy Resin Kk | Epoxy resin, its manufacturing method and epoxy resin composition |
-
2005
- 2005-03-08 JP JP2005064082A patent/JP4742625B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2006249144A (en) | 2006-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5754731B2 (en) | Epoxy resin, method for producing epoxy resin, and use thereof | |
JP4742625B2 (en) | Hydrogenated epoxy resin, method for producing the same, and epoxy resin composition | |
JP5741742B2 (en) | Curable resin composition, cured product thereof and thermally conductive adhesive | |
WO2004035558A1 (en) | Process for preparation of alicyclic diepoxy compounds, curable epoxy resin compositions, epoxy resin compositions for the encapsulation of electronic components, stabilizers for electrical insulating oils, and casting epoxy resin compositions for electrical insulation | |
JP5000053B2 (en) | Liquid epoxy resin composition and cured epoxy resin | |
TWI425019B (en) | Liquid epoxy resin, epoxy resin composition and hardened product | |
KR101640856B1 (en) | Naphtol resin, epoxy resin, epoxy resin composition and cured product thereof | |
JPWO2008050879A1 (en) | Epoxy resin composition and cured product | |
JP2006249145A (en) | Epoxy resin, its manufacturing method and epoxy resin composition | |
JP2017105891A (en) | Phenol aralkyl resin, manufacturing method therefor, epoxy resin, and thermosetting molding material | |
JP4779362B2 (en) | Hydrogenated epoxy resin and epoxy resin composition | |
JP6508921B2 (en) | Method for producing fluorene skeleton-containing epoxy resin, epoxy resin composition, and cured product | |
JP6570176B2 (en) | Polyvalent carboxylic acid and polyvalent carboxylic acid composition, epoxy resin composition, thermosetting resin composition, cured product thereof, and optical semiconductor device containing the same | |
JP2006348064A (en) | Epoxy resin, method for producing the same, epoxy resin composition using the same and its cured material | |
JP3894628B2 (en) | Modified epoxy resin, epoxy resin composition and cured product thereof | |
JP5402955B2 (en) | Hydrogenated epoxy resin, method for producing the same, and epoxy resin composition | |
JPWO2011125962A1 (en) | Epoxy resin composition and cured product thereof | |
JP4509715B2 (en) | Diglycidyl ether, curable composition and cured product | |
JP4142155B2 (en) | Epoxy resin and method for producing the same | |
WO2019171993A1 (en) | Epoxy resin composition and cured product of same | |
JP6427116B2 (en) | Epoxy resin mixture, epoxy resin composition, cured product thereof, and semiconductor device | |
JP4857598B2 (en) | Epoxy compound, method for producing the same, and epoxy resin composition | |
JP6386386B2 (en) | Epoxy compound having fluorene skeleton and method for producing the same | |
JP5579300B2 (en) | Epoxy resin, epoxy resin composition and cured product thereof | |
JP2010053314A (en) | Thermosetting resin, thermosetting composition, laminate film, and laminate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070904 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100415 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100420 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100610 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100616 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110412 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110425 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140520 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4742625 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |