WO2019171993A1 - Epoxy resin composition and cured product of same - Google Patents

Epoxy resin composition and cured product of same Download PDF

Info

Publication number
WO2019171993A1
WO2019171993A1 PCT/JP2019/006964 JP2019006964W WO2019171993A1 WO 2019171993 A1 WO2019171993 A1 WO 2019171993A1 JP 2019006964 W JP2019006964 W JP 2019006964W WO 2019171993 A1 WO2019171993 A1 WO 2019171993A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
component
composition according
cured product
Prior art date
Application number
PCT/JP2019/006964
Other languages
French (fr)
Japanese (ja)
Inventor
昌己 大村
健 廣田
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Priority to SG11202008706UA priority Critical patent/SG11202008706UA/en
Priority to CN201980017522.3A priority patent/CN111819242B/en
Priority to JP2020504928A priority patent/JP7252196B2/en
Priority to KR1020207028594A priority patent/KR20200130372A/en
Publication of WO2019171993A1 publication Critical patent/WO2019171993A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • the present invention relates to an epoxy resin composition, an epoxy resin cured product, and a semiconductor device, and more specifically, an epoxy resin cured product excellent in heat resistance and thermal decomposition stability is obtained, and is excellent in tracking resistance.
  • the present invention relates to an epoxy resin composition suitable for semiconductor encapsulation, a cured epoxy resin, and a semiconductor device.
  • Epoxy resins are used in a wide range of industrial applications.
  • there is an application as a sealing material in a semiconductor device but the required performance in the semiconductor device has become increasingly sophisticated in recent years, and the required power density has become a region that is difficult to reach with conventional Si devices. .
  • SiC power devices can be cited as devices that are expected to have higher power density and are being developed in recent years.
  • the temperature of the chip surface during operation Reaches 200 ° C or more. Therefore, development of a sealing material that can withstand the temperature and maintain the physical properties for 1000 hours or more is desired.
  • the circuit pitch width and the distance between lead terminals are reduced not only in power semiconductor devices used at high voltages such as in-vehicle, train, wind power generation, and solar power generation, but also in semiconductor packages that are becoming smaller and thinner.
  • the sealing material and the substrate material are required to have a tracking resistance of 600 V or more.
  • Methods for improving tracking resistance include 1) suppression of thermal / oxidative decomposition (increase of thermal decomposition start temperature, suppression of volatile gas content), 2) improvement of electrical insulation at high temperature (increase of glass transition temperature) 3) It is said that suppressing carbonization (reducing the residual carbon ratio, blending inorganic fillers) is effective, and various methods have been proposed.
  • a semiconductor device encapsulated with a silicone resin as a sealing material having high tracking resistance and excellent processability on the surface, the content of halogen and antimony compounds is 0.1% by weight or less
  • a flame retardant non-halogen epoxy resin composition excellent in tracking resistance in which at least one of the curing agents is a polycondensate of a phenol, a compound having a triazine ring or an aldehyde (Patent Document 2), an epoxidized cyclic conjugate
  • a semiconductor chip sealing material Patent Document 3 which contains a diene polymer as a resin component and may contain an inorganic filler conductive filler.
  • a resin composition for semiconductor encapsulation having excellent tracking resistance a resin composition for semiconductor encapsulation containing an alicyclic epoxy resin system having a cyclohexane polyether skeleton and a dicyclopentadiene type phenol resin, which does not contain a benzene skeleton.
  • the epoxy resin composition for semiconductor sealing (patent document 5) which mix
  • an epoxy resin composition for semiconductor encapsulation containing an epoxy resin, a curing agent, an inorganic filler, and a spherical silicone powder (Patent Document 6) is disclosed, but this resin composition attempts to improve tracking resistance. It is not a thing. Furthermore, the sealing resin composition containing the silicone rubber powder (Patent Document 7) is excellent in tracking properties but is not sufficient in heat resistance. Further, there is a concern that the silicone rubber powder may cause contact failure when a low molecular component is volatilized. As a structure having excellent heat resistance, an epoxy resin, an epoxy resin composition and a cured product having a biphenol-biphenylaralkyl structure have already been disclosed, but no tracking resistance has been described (Patent Document 8, Patent Document). 9).
  • Japanese Patent Laid-Open No. 3-151674 Japanese Patent Laid-Open No. 11-209569 JP 2003-20325 A JP 2005-213299 A JP 2008-143950 A JP 2009-275146 A JP2013-203865A WO2011 / 074517 JP 2013-209503 A
  • the present invention provides an epoxy resin cured product that is particularly excellent in tracking resistance, excellent in balance with heat resistance, and in thermal decomposition stability. It is intended to provide a cured resin and a semiconductor.
  • the present invention provides the following components (A) to (D); (A) an aromatic epoxy resin represented by the following general formula (1), (B) A modification selected from a non-aromatic epoxy resin or a non-silicone rubber having a 5% weight reduction temperature of 260 ° C. or higher obtained from a TG / DTA measurement at a heating rate of 10 ° C./min under a nitrogen stream.
  • A an aromatic epoxy resin represented by the following general formula (1)
  • B A modification selected from a non-aromatic epoxy resin or a non-silicone rubber having a 5% weight reduction temperature of 260 ° C. or higher obtained from a TG / DTA measurement at a heating rate of 10 ° C./min under a nitrogen stream.
  • An epoxy resin composition containing (C) a curing agent and (D) a curing accelerator as essential components, and containing 1 to 50% by weight of component (B) with respect to the total of components (A) to (D)
  • An epoxy resin composition characterized by:
  • n represents a number from 0 to 20
  • G represents a glycidyl group.
  • the component (B) includes at least one epoxy resin selected from glycidyl esters of divalent aliphatic carboxylic acids having 15 to 64 carbon atoms or glycidyl ethers of divalent aliphatic alcohols having 15 to 64 carbon atoms.
  • examples thereof include a modifier composed of a bifunctional epoxy resin, or a rubber modifier composed of styrene rubber or acrylic rubber.
  • R represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms
  • m represents a number of 0 or 1.
  • the present invention is a cured epoxy resin obtained by curing the above epoxy resin composition. Furthermore, this invention is a semiconductor device which sealed the semiconductor element with said epoxy resin composition.
  • an epoxy resin composition is excellent in fluidity
  • the epoxy resin composition of the present invention contains the following components (A) to (D) as essential components.
  • Component (A) is an epoxy resin represented by the general formula (1), and is also called a biphenyl aralkyl type epoxy resin because it has a biphenyl structure.
  • n represents a number from 0 to 20
  • G represents a glycidyl group.
  • n is the number of repetitions and represents a number of 0 or more
  • the average value (number average) is 1.3 to 20, preferably 1.5 to 15, more preferably 1.7 to 10, more preferably 2 to 6 Is more preferable.
  • GPC gel permeation chromatography
  • the content of n 5 components or more is 15 area% or more from the viewpoint of improving heat resistance, and preferably 20 area% or more.
  • the weight average molecular weight (Mw) measured by GPC is preferably 1,000 to 8,000, more preferably 2,000 to 7,000, and further preferably 2,000 to 5,000.
  • the epoxy resin can be produced by reacting a polyvalent hydroxy resin represented by the following general formula (3) with epichlorohydrin. Since this polyvalent hydroxy resin has a biphenyl structure, it is also called a biphenyl aralkyl type droxy resin. And this biphenyl aralkyl type hydroxy resin is obtained by reacting biphenols with a biphenyl condensing agent represented by the following general formula (4).
  • n represents a number from 0 to 20.
  • X represents a hydroxyl group, a halogen atom or an alkoxy group having 1 to 6 carbon atoms.
  • biphenols used as a raw material for synthesizing biphenyl aralkyl type hydroxy resins include 4,4'-dihydroxybiphenyls.
  • biphenyl condensing agent examples include 4,4′-bishydroxymethylbiphenyl, 4,4′-bischloromethylbiphenyl, 4,4′-bisbromomethylbiphenyl, 4,4′-bismethoxymethylbiphenyl. 4,4′-bisethoxymethylbiphenyl. From the viewpoint of reactivity, 4,4′-bishydroxymethylbiphenyl and 4,4′-bischloromethylbiphenyl are preferable. From the viewpoint of reducing ionic impurities, 4,4′-bishydroxymethylbiphenyl, 4 4,4'-bismethoxymethylbiphenyl is preferred.
  • the molar ratio in the reaction is preferably 1 mol or less for the biphenyl condensing agent to 1 mol of 4,4′-dihydroxybiphenyl, and generally ranges from 0.1 to 0.7 mol.
  • the range is preferably 0.2 to 0.5 mol. If it is less than this, the crystallinity becomes strong, the solubility in epichlorohydrin when synthesizing the epoxy resin is lowered, the melting point of the obtained epoxy resin is increased, and the handleability is lowered. On the other hand, if the amount is larger than this, the crystallinity of the resin is lowered and the softening point and the melt viscosity are increased, which hinders handling workability and moldability.
  • the reaction can be carried out in the absence of a catalyst, but usually the condensation reaction is carried out in the presence of an acidic catalyst.
  • the acidic catalyst can be appropriately selected from known inorganic acids and organic acids.
  • mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, oxalic acid, trifluoroacetic acid, p-toluenesulfonic acid, metasulfone
  • organic acids such as acid and trifluorometasulfonic acid
  • Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride, and solid acids.
  • This reaction is carried out at 10 to 250 ° C. for 1 to 30 hours.
  • alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol, methyl cellosolve, ethyl cellosolve, diethylene glycol dimethyl ether, triglyme, and aromatic compounds such as benzene, toluene, chlorobenzene and dichlorobenzene are used as solvents. Can be used.
  • the solvent or water and alcohol produced by the condensation reaction are removed as necessary.
  • a method for producing the biphenyl aralkyl type epoxy resin represented by the general formula (1) by the reaction of the biphenyl aralkyl type hydroxy resin and epichlorohydrin will be described. This reaction can be performed in the same manner as a well-known epoxidation reaction.
  • the temperature ranges from 50 to 150 ° C., preferably from 60 to 120 ° C.
  • an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide
  • the amount of epichlorohydrin used is in the range of 0.8 to 2.0 mol, preferably 0.9 to 1.2 mol, relative to 1 mol of hydroxyl group in the polyvalent hydroxy resin.
  • the target epoxy resin represented by 1) can be obtained.
  • a catalyst such as a quaternary ammonium salt may be used.
  • the purity of the biphenyl aralkyl type epoxy resin, in particular the amount of hydrolyzable chlorine, is better from the viewpoint of improving the reliability of the applied electronic component.
  • it does not specifically limit, Preferably it is 1000 ppm or less, More preferably, it is 500 ppm or less.
  • the hydrolyzable chlorine as used in the field of this invention means the value measured by the following method.
  • an epoxy resin as another component may be blended in the epoxy resin composition of the present invention.
  • the epoxy resin as the other component is also referred to as component (F).
  • the component (F) is preferably an aromatic epoxy resin obtained by epoxidizing a phenolic hydroxyl group. As such an epoxy resin, all normal aromatic epoxy resins having two or more epoxy groups in the molecule can be used.
  • Examples include bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4′-biphenol, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxybiphenyl, resorcin, naphthalenediols Trivalent or more epoxides of divalent phenols such as tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolak, o-cresol novolak, etc.
  • the compounding amount of the epoxy resin represented by the general formula (1) is in the range of 5 to 100 wt%, preferably 60 to 100 wt% in the whole epoxy resin. .
  • Component (B) is a non-silicone-based modifier selected from non-aromatic epoxy resins or non-silicone rubbers, and this modifier is heated at a rate of temperature increase of 10 ° C./min under a nitrogen stream.
  • the 5% weight loss temperature obtained from the TG / DTA measurement is 260 ° C or higher.
  • this modifier acts as a modifier for improving tracking resistance.
  • the modifier When the modifier is blended, it is considered that the modifier is phase-separated in the resin, thereby suppressing the aggregation of the carbonized layer that occurs during the thermal decomposition, and an improvement in tracking resistance can be expected.
  • Non-silicone modifier as the modifier has the following advantages. Silicone-based modifiers such as silicone rubber have the potential to cause contact failure when low-molecular components volatilize, and it is difficult to obtain a uniform composition that is easily phase-separated from the epoxy resin. However, such a problem is solved. Further, the non-silicone system is more advantageous in terms of cost.
  • the content of the modifier is 1 to 50% by weight, preferably 2 to 30% by weight, based on the total of the components (A) to (D). From another viewpoint, the range of 1 to 50 parts by weight is preferable with respect to 100 parts by weight of the total amount of the resin components in the epoxy resin composition, but preferably 2 to 30 parts by weight. If it is smaller than this, the effect of suppressing the aggregation of the carbonized layer is low. Conversely, if it is larger than this, the glass transition temperature Tg of the cured product is lowered and the mechanical strength is also lowered.
  • the modifier is dispersed in a phase separated state of 10 ⁇ m or less or in the form of particles.
  • the particle diameter (median average diameter) is preferably 0.01 ⁇ m to 10 ⁇ m, more preferably 0.05 ⁇ m to 5 ⁇ m, and particularly preferably 0.1 ⁇ m to 1 ⁇ m.
  • the modifier having excellent thermal stability is at least one selected from glycidyl esters of divalent aliphatic carboxylic acids having 15 to 64 carbon atoms or glycidyl ethers of divalent aliphatic alcohols having 15 to 64 carbon atoms.
  • a bifunctional epoxy resin containing an epoxy resin as an essential component is preferred. Rubbers made of styrene rubber or acrylic rubber are also excellent as modifiers.
  • divalent aliphatic carboxylic acid having 15 to 64 carbon atoms examples include 2-dodecyl succinic acid, hexadecanedioic acid, 8-hexadecenedioic acid, 8,9-diethylhexadecanedioic acid, eicosanedioic acid, and 7-vinyl.
  • Aliphatic dicarboxylic acids such as tetradecanedioic acid, 1,16- (6-ethylhexadecane) dicarboxylic acid, 1,18- (7,12-octadecadiene) dicarboxylic acid, 1,12- (diethyldodecane) dicarboxylic acid, Dimer acid whose main component is a dibasic acid having 36 carbon atoms obtained by an intermolecular reaction of unsaturated fatty acids (linoleic acid, oleic acid, etc.) or water obtained by hydrogenating the dimer acid. Examples thereof include, but are not particularly limited to, dimer acid.
  • Epoxy resins of glycidyl esters of divalent aliphatic carboxylic acids having 15 to 64 carbon atoms can be obtained by diglycidyl esterifying these divalent aliphatic carboxylic acids using a known epoxidation technique.
  • divalent aliphatic alcohol having 15 to 64 carbon atoms examples include long chain aliphatics such as 1,15-pentadecanediol, 1,16-hexadecanediol, 1,18-octadecanediol, and 1,19-nonadecanediol.
  • Polyethylene glycol such as diol, octaethylene glycol and nonaethylene glycol, polypropylene glycol such as pentapropylene glycol and hexapropylene glycol, and cyclo rings such as 4,4 ′-(propane-2,2-diyl) bis (cyclohexanol)
  • diol include dimer diol and hydrogenated dimer diol obtained by reducing the carboxyl group of the dimer acid or hydrogenated dimer acid to a hydroxyl group, but are not particularly limited.
  • Epoxy resins of glycidyl ethers of divalent aliphatic alcohols having 15 to 64 carbon atoms can be obtained by diglycidyl etherifying these divalent aliphatic alcohols using a known epoxidation technique.
  • styrene rubber and acrylic rubber As styrene rubber and acrylic rubber, styrene (including substituted styrene), acrylics (acrylic acid, methacrylic acid, acrylic ester, methacrylic ester, rubber component (monomer) or part of raw material, Those containing acrylonitrile and the like) can be used.
  • Non-silicone natural rubber and diene rubber such as butadiene rubber can also be used.
  • styrene rubber examples include acrylonitrile butadiene styrene copolymer (ABS), acrylonitrile chlorinated polyethylene styrene copolymer (ACS), acrylonitrile ethylene propylene rubber styrene copolymer (AES), and acrylonitrile styrene acrylate copolymer (ASA).
  • ABS acrylonitrile butadiene styrene copolymer
  • ACS acrylonitrile chlorinated polyethylene styrene copolymer
  • AES acrylonitrile ethylene propylene rubber styrene copolymer
  • ASA acrylonitrile styrene acrylate copolymer
  • Methyl methacrylate acrylonitrile butadiene styrene copolymer MABS
  • MBS methyl methacrylate butadiene styrene copolymer
  • SB styrene butadiene copolymer
  • SAN acrylonitrile styrene copolymer
  • SBS styrene butadiene styrene block copolymer
  • SEBS styrene ethylene butylene styrene block copolymer
  • SEPS styrene ethylene propylene styrene block copolymer
  • SIS Chi Ren isoprene styrene block copolymer
  • SIS acrylonitrile-styrene dimethylsiloxane alkyl acrylate copolymer and the like.
  • SB styrene butadiene copolymer
  • MVS methyl methacrylate butadiene styrene copolymer
  • a rubber obtained by copolymerization with a monomer having a saturated double bond is preferred.
  • the acrylic rubber include those obtained by copolymerizing one or more alkyl (meth) acrylates and one or more vinyl monomers copolymerizable therewith, and alkyl (meth) acrylates.
  • a vinyl monomer copolymerizable with for example, a crosslinkable monomer is preferable, and aromatic polyfunctional vinyl monomers such as divinylbenzene and divinyltoluene; ethylene glycol di (meth) acrylate, propylene glycol di Di- or tri (meth) acrylates of polyhydric alcohols such as (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate; allyl (meth) acrylate, Diallyl phthalate, diallyl sebacate, triallyl triazine, triallyl cyanurate , Can be mentioned di- or triallyl compounds such as triallyl isocyanur
  • Component (C) is a curing agent for epoxy resin.
  • the curing agent a known curing agent for epoxy resins can be used, but in a field where high electrical insulation properties such as a semiconductor sealing material are required, polyhydric phenols are preferably used as the curing agent. . Below, the specific example of a hardening
  • polyhydric phenols examples include divalent phenols such as bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, hydroquinone, resorcin, catechol, biphenols, naphthalenediols, and tris- (4-hydroxyphenyl).
  • divalent phenols such as bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, hydroquinone, resorcin, catechol, biphenols, naphthalenediols, and tris- (4-hydroxyphenyl).
  • Trivalent or higher typified by methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolak, o-cresol novolak, naphthol novolak, dicyclopentadiene type phenol resin, phenol aralkyl resin, etc.
  • Phenols further phenols, naphthols, or bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4 '-biphenol, 2,2' -biphenol, hydride
  • Divalent phenols such as quinone, resorcin, catechol, naphthalene diol and the like, formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, p-xylylene glycol, p-xylylene glycol dimethyl ether, divinylbenzene, diisopropenylbenzene, dimethoxy
  • Polyphenolic compounds synthesized by reaction with crosslinkers such as methyl biphenyls, divinyl biphenyls, diisopropenyl biphenyls, biphenyl aralkyl type phenol resins obtained from phenols and bischloromethyl biphenyls, naphthol
  • R is a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • m represents a number of 0 or 1.
  • the aralkyl type phenol resin represented by the general formula (2) can be produced by reacting salicylaldehyde or p-hydroxyaldehyde with a phenolic hydroxyl group-containing compound.
  • the blending amount of the curing agent is blended in consideration of the equivalent balance between the epoxy group in the epoxy resin and the active hydrogen (hydroxyl group in the case of polyhydric phenols) in the curing agent.
  • the equivalent ratio of the epoxy resin and the curing agent is usually in the range of 0.2 to 5.0, preferably in the range of 0.5 to 2.0, and more preferably in the range of 0.8 to 1.5. It is. If it is larger or smaller than this, the curability of the epoxy resin composition is lowered, and the heat resistance, mechanical strength and the like of the cured product are lowered.
  • curing agent in this epoxy resin composition, you may mix
  • the curing agent in this case include dicyandiamide, acid anhydrides, aromatic and aliphatic amines.
  • one or more of these curing agents can be mixed and used.
  • Examples of the acid anhydride curing agent include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl hymic anhydride, dodecynyl succinic anhydride, nadic anhydride, There are trimellitic anhydride and the like.
  • amines examples include aromatic amines such as 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenylsulfone, m-phenylenediamine, and p-xylylenediamine, ethylenediamine, There are aliphatic amines such as hexamethylenediamine, diethylenetriamine, and triethylenetetramine.
  • Component (D) is a curing accelerator for the epoxy resin composition.
  • the curing accelerator may be known in the technical field of epoxy resins and is not particularly limited. Examples include amines, imidazoles, organic phosphines, Lewis acids and the like. Specifically, tertiary amines such as 1,8-diazabicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, -Imidazoles such as methylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole, tributylphosphine, methyldiphenylphosphine, triphenylphosphine, Organic phosphines such as diphenylphosphine and phenylphos
  • an oligomer or a polymer compound such as polyester, polyamide, polyimide, polyether, polyurethane, petroleum resin, indene resin, indene-coumarone resin, phenoxy resin, etc. is used as another modifier. You may mix
  • the addition amount is usually in the range of 2 to 30 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • the epoxy resin composition of the present invention can contain additives such as inorganic fillers, pigments, retardants, thixotropic agents, coupling agents, fluidity improvers and the like.
  • additives such as inorganic fillers, pigments, retardants, thixotropic agents, coupling agents, fluidity improvers and the like.
  • the inorganic filler include silica powder such as spherical or crushed fused silica and crystalline silica, alumina powder, glass powder, mica, talc, calcium carbonate, alumina, hydrated alumina, and the like.
  • a preferable blending amount when used for a stopper is 70% by weight or more, and more preferably 80% by weight or more.
  • soot pigment examples include organic or inorganic extender pigments and scaly pigments.
  • examples of the thixotropic agent include castor oil, aliphatic amide wax, oxidized polyethylene wax, and organic bentonite.
  • the resin composition of the present invention includes a release agent such as carnauba wax and OP wax, a coupling agent such as ⁇ -glycidoxypropyltrimethoxysilane, a colorant such as carbon black, and trioxide. Flame retardants such as antimony and lubricants such as calcium stearate can be used.
  • the epoxy resin composition of the present invention is a solvent after impregnating a fibrous material such as a glass cloth, an aramid nonwoven fabric, a polyester nonwoven fabric such as a liquid crystal polymer, etc. after making it partially or completely dissolved in an organic solvent. It can be removed to form a prepreg.
  • a solvent-insoluble component such as an inorganic filler is included, it is not necessary to dissolve it, but it is desirable to make it a suspended state to obtain a uniform solution.
  • it can be set as a laminated body by apply
  • the epoxy resin composition of the present invention is cured by heating, an epoxy resin cured product can be obtained, and this cured product is excellent in terms of low hygroscopicity, high heat resistance, adhesion, flame retardancy, and the like.
  • the cured product can be obtained by molding the epoxy resin composition by a method such as casting, compression molding or transfer molding. The temperature at this time is usually in the range of 120 to 220 ° C.
  • the epoxy resin composition of the present invention is particularly excellent for a sealing material.
  • the semiconductor device of this invention is obtained by sealing a semiconductor element with this epoxy resin composition.
  • Tg Glass transition point
  • Td5 5% weight loss temperature
  • Td5 residual charcoal rate Thermogravimetric / differential thermal analyzer (EXSTAR 6000TG / DTA6200, manufactured by SII NanoTechnology Co., Ltd.) 5% weight loss temperature (Td5) was measured.
  • decrease in 700 degreeC was measured on the said conditions, and it computed as a residual carbon rate of the resin component in 700 degreeC by converting into the resin component except an inorganic filler.
  • PTI value 600V
  • a cured resin (20 ⁇ 20 ⁇ 3 mm) was used as a test piece.
  • the electrode was platinum with a tip angle of 30 degrees, and the electrode arrangement was 4.0 mm and the facing angle was 60 degrees.
  • the electrolyte used was a 0.1% ammonium chloride solution.
  • a voltage of 600 V was applied in an environment of 23 ° C. and 50% RH, and the electrolyte was dropped, and the test surface caused tracking failure. The number of drops was determined.
  • the test was implemented 5 times and the number which does not produce tracking destruction even if it exceeded 50 drops at 600V was measured.
  • HAT-112-3 manufactured by Yamayo Tester Co., Ltd. was used.
  • Synthesis example 1 In a 1000 ml four-necked flask, 75.0 g of 4,4′-dihydroxybiphenyl, 115.5 g of diethylene glycol dimethyl ether and 40.5 g of 4,4′-bischloromethylbiphenyl were charged, and the temperature was raised to 170 ° C. with stirring in a nitrogen stream. The reaction was allowed to warm for 20 hours. After the reaction, 46.4 g of diethylene glycol dimethyl ether was recovered. To this reaction mixture, 446.5 g of epichlorohydrin was added, and 69.4 g of a 48% aqueous sodium hydroxide solution was added dropwise over 4 hours at 62 ° C. under reduced pressure (about 130 Torr).
  • Synthesis example 2 A 1 L 4-necked flask was charged with 500 g of phenol (8.0 moles relative to dicyclopentadiene) and 9.5 g of boron trifluoride ether complex as an acid catalyst, and the temperature was raised to 120 ° C. Next, while stirring at 120 ° C., 88 g of dicyclopentadiene was added dropwise over 6 hours to react, and after aging at 130 ° C. for 4 hours, neutralization was performed and phenol was recovered. Subsequently, the product was dissolved in 300 g of MIBK, washed with water 4 times at 80 ° C., and MIBK was distilled off under reduced pressure to obtain 179 g of a polyvalent hydroxy compound. Its hydroxyl equivalent is 178 g / eq. The softening point was 93 ° C. and the weight average molecular weight was 422.
  • Synthesis example 3 In a four-neck separable flask, 150 g of the resin obtained in Synthesis Example 2, 398 g of epichlorohydrin, and 59 g of diethylene glycol dimethyl ether were added and dissolved by stirring. After uniform dissolution, the mixture was kept at 65 ° C. under a reduced pressure of 130 mmHg, and 68.2 g of 48% aqueous sodium hydroxide solution was added dropwise over 4 hours, and water and epichlorohydrin refluxed during the addition were separated in a separation tank, and epichlorohydrin was The mixture was returned to the reaction vessel, and water was removed from the system to react.
  • Synthesis example 4 In a 2000 ml four-necked flask, dimer diol (Pripol 20 manufactured by CRODA) was added. 33, hydroxyl group equivalent 270 g / eq. ) 300.0 g, epichlorohydrin 308.3 g, toluene 120.0 g, and water 6.2 g were charged, and the mixture was heated to 50 ° C. with stirring in a nitrogen stream and dissolved. After dissolution, 6.0 g of benzyltrimethylammonium chloride was added, and 13.6 g of 95.5% solid potassium hydroxide was divided and added over 2 hours.
  • Epoxy resin Epoxy resin 1; epoxy resin obtained in Synthesis Example 1 epoxy resin 2; o-cresol novolac type epoxy resin (epoxy equivalent 200, softening point 65 ° C., manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) Epoxy resin 3; epoxy resin obtained in Synthesis Example 3 (modifier) Modifier a: Modifier obtained in Synthesis Example 4 Modifier b: ABA-structured radically controlled acrylic block copolymer (NANOSTRENGTH M51, polybutyl acrylate as a soft component and polymethylene methacrylate as a hard component, Arkema Co., Ltd., Td5; 291 ° C) Modifier c: Indene oligomer (IP-100; manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., softening point 101 ° C., 150 ° C., melt viscosity 1.3 Pa ⁇ s, Td 5;
  • Example 1 As the epoxy resin component, epoxy resin 1 obtained in Synthesis Example 1; 64.0 g, modifier a; 5.1 g, and curing agent 1 32.9 g were used. Further, 1.0 g of a curing accelerator was used, and 498 g of silica filler was used as an inorganic filler. Furthermore, 0.5 g of carnauba wax as a release agent and 0.5 g of carbon black as a colorant were added, and these were kneaded to obtain an epoxy resin composition. Using this epoxy resin composition, a molding temperature of 175 ° C. for 3 minutes. A cured product test piece was obtained at a post-cure temperature of 200 ° C. for 5 hours.
  • Examples 2-5, Comparative Examples 1-5 Similarly to Example 1, an epoxy resin, a modifier, a curing agent, an inorganic filler, a curing accelerator, and other additives were kneaded at a blending ratio shown in Table 1 to prepare an epoxy resin composition. And molding temperature 175 ° C., 3 minutes. A cured product test piece was obtained at a post-cure temperature of 200 ° C. for 5 hours. In addition, the numerical value in a table
  • the epoxy resin compositions obtained in the examples had both heat resistance having a glass transition temperature (Tg) of 200 ° C. or higher and high tracking resistance.
  • an epoxy resin cured product having excellent tracking resistance, a balance with heat resistance and excellent thermal decomposition stability can be obtained, and it is suitable as a semiconductor sealing material, particularly as an automotive power semiconductor sealing material. is there.

Abstract

Provided are: an epoxy resin composition which enables the achievement of an epoxy resin cured product that has excellent tracking resistance and excellent thermal decomposition stability, while having a good balance between the tracking resistance and heat resistance, and which is suitable especially for power semiconductor sealing; an epoxy resin cured product; and a semiconductor. An epoxy resin composition which contains, as essential components, (A) an epoxy resin represented by general formula (1), (B) a non-aromatic epoxy resin or a non-silicone rubber, which has a 5% weight loss temperature of 260°C or more, (C) a curing agent and (D) a curing accelerator, and which is characterized in that the component (B) is contained in an amount of 1-50% by weight relative to the total amount of the components (A)-(D). In the formula, n represents a number of 0-20; and G represents a glycidyl group.

Description

エポキシ樹脂組成物及びその硬化物Epoxy resin composition and cured product thereof
 本発明は、エポキシ樹脂組成物、エポキシ樹脂硬化物、及び半導体装置に関し、詳しくは、耐熱性、熱分解安定性に優れたエポキシ樹脂硬化物が得られると共に、耐トラッキング性に優れ、特に、パワー半導体封止用として好適なエポキシ樹脂組成物、エポキシ樹脂硬化物、及び半導体装置に関する。 The present invention relates to an epoxy resin composition, an epoxy resin cured product, and a semiconductor device, and more specifically, an epoxy resin cured product excellent in heat resistance and thermal decomposition stability is obtained, and is excellent in tracking resistance. The present invention relates to an epoxy resin composition suitable for semiconductor encapsulation, a cured epoxy resin, and a semiconductor device.
 エポキシ樹脂は工業的に幅広い用途で使用されている。その一例として、半導体装置における封止材としての用途があるが、半導体装置における要求性能は近年ますます高度化しており、要求されるパワー密度は従来のSiデバイスでは到達困難な領域になっている。この様な中で、更なる高パワー密度化が期待され、近年開発が進められているデバイスとしてSiCパワーデバイスが挙げられるが、高パワー密度化を達成するためには動作時のチップ表面の温度が200℃以上にも達する。そのため、その温度に耐え、1000時間以上その物性を維持できる封止材料の開発が望まれている。 Epoxy resins are used in a wide range of industrial applications. As an example, there is an application as a sealing material in a semiconductor device, but the required performance in the semiconductor device has become increasingly sophisticated in recent years, and the required power density has become a region that is difficult to reach with conventional Si devices. . Under such circumstances, SiC power devices can be cited as devices that are expected to have higher power density and are being developed in recent years. To achieve higher power density, the temperature of the chip surface during operation Reaches 200 ° C or more. Therefore, development of a sealing material that can withstand the temperature and maintain the physical properties for 1000 hours or more is desired.
 特に、車載用の半導体装置においては、安全制御に対応した各種センサーや電子制御ユニットの集積化が進んでおり、エンジンおよびパワーモジュールの発熱もしくは集積化による発熱に長時間曝されることからも、高温環境に耐え得る材料の要求が強まっている。 In particular, in vehicle-mounted semiconductor devices, integration of various sensors and electronic control units that support safety control is progressing, and because it is exposed to heat generation due to heat generation or integration of engines and power modules for a long time, There is a growing demand for materials that can withstand high-temperature environments.
 さらに、熱的な耐久性だけでなく、高電圧化、大電流化に伴う絶縁性能の要求も増大している。車載、電車、風力発電、太陽光発電等の高電圧で使用されるパワー系の半導体デバイスだけでなく、小型、薄型化の進む半導体パッケージにおいても、回路ピッチ幅やリード端子間距離が小さくなっており、それらを電気的に絶縁するための空間距離および沿面距離を確保するため、封止材料及び基板材料には、600V以上の耐トラッキング特性が求められている。 Furthermore, in addition to thermal durability, there is an increasing demand for insulation performance with higher voltages and higher currents. The circuit pitch width and the distance between lead terminals are reduced not only in power semiconductor devices used at high voltages such as in-vehicle, train, wind power generation, and solar power generation, but also in semiconductor packages that are becoming smaller and thinner. In order to secure a spatial distance and a creepage distance for electrically insulating them, the sealing material and the substrate material are required to have a tracking resistance of 600 V or more.
 耐トラッキング性を改良する手法としては、1)熱/酸化分解性の抑制(熱分解開始温度の上昇、揮発ガス分の抑制)、2)高温時電気絶縁性の向上(ガラス転移温度の向上)、3)炭化性の抑制(残炭率の低減、無機充填剤の配合)等が効果的であると言われており、様々な手法が提案されてきた。例えば、表面に耐トラッキング性が高く、易加工性に優れた封止材料としてシリコーン樹脂を用いて封止した半導体装置(特許文献1)、ハロゲン及びアンチモン化合物の含有量が0.1重量%以下で、硬化剤の少なくとも1つがフェノール類、トリアジン環を有する化合物又はアルデヒド類の重縮合物とした耐トラッキング性に優れた難燃性非ハロゲンエポキシ樹脂組成物(特許文献2)、エポキシ化環状共役ジエン系重合体を樹脂成分として含有し、無機充填剤導電フィラーを含有しても良い半導体チップ用封止材料(特許文献3)が提案されている。また、耐トラッキング性に優れた半導体封止用樹脂組成物としてベンゼン骨格を含まず、シクロヘキサンポリエーテル骨格を有する脂環式エポキシ樹脂系およびジシクロペンタジエン型フェノール樹脂等を含む半導体封止用樹脂組成物(特許文献4)、エポキシ樹脂に無機質充填剤として金属水酸化物を配合した半導体封止用エポキシ樹脂組成物(特許文献5)が提案されているが、耐熱性が低下してしまう。他方、エポキシ樹脂、硬化剤、無機充填剤および球状シリコーンパウダーを含む半導体封止用エポキシ樹脂組成物(特許文献6)が開示されているが、この樹脂組成物は耐トラッキング性を改善しようとするものではない。さらに、シリコーンゴム粉を含有する封止用樹脂組成物(特許文献7)は、トラッキング性には優れているが、耐熱性が十分ではない。また、シリコーン系ゴム粉は低分子成分が揮発した場合、接点障害を引き起こす可能性が懸念される。なお、耐熱性に優れる構造として、ビフェノール-ビフェニルアラルキル構造を有するエポキシ樹脂、エポキシ樹脂組成物及び硬化物は既に開示されているが、耐トラッキング性については述べられていない(特許文献8、特許文献9)。 Methods for improving tracking resistance include 1) suppression of thermal / oxidative decomposition (increase of thermal decomposition start temperature, suppression of volatile gas content), 2) improvement of electrical insulation at high temperature (increase of glass transition temperature) 3) It is said that suppressing carbonization (reducing the residual carbon ratio, blending inorganic fillers) is effective, and various methods have been proposed. For example, a semiconductor device (Patent Document 1) encapsulated with a silicone resin as a sealing material having high tracking resistance and excellent processability on the surface, the content of halogen and antimony compounds is 0.1% by weight or less In addition, a flame retardant non-halogen epoxy resin composition excellent in tracking resistance, in which at least one of the curing agents is a polycondensate of a phenol, a compound having a triazine ring or an aldehyde (Patent Document 2), an epoxidized cyclic conjugate There has been proposed a semiconductor chip sealing material (Patent Document 3) which contains a diene polymer as a resin component and may contain an inorganic filler conductive filler. Also, as a resin composition for semiconductor encapsulation having excellent tracking resistance, a resin composition for semiconductor encapsulation containing an alicyclic epoxy resin system having a cyclohexane polyether skeleton and a dicyclopentadiene type phenol resin, which does not contain a benzene skeleton. Although the epoxy resin composition for semiconductor sealing (patent document 5) which mix | blended the metal hydroxide as an inorganic filler with the thing (patent document 4) and an epoxy resin is proposed, heat resistance will fall. On the other hand, an epoxy resin composition for semiconductor encapsulation containing an epoxy resin, a curing agent, an inorganic filler, and a spherical silicone powder (Patent Document 6) is disclosed, but this resin composition attempts to improve tracking resistance. It is not a thing. Furthermore, the sealing resin composition containing the silicone rubber powder (Patent Document 7) is excellent in tracking properties but is not sufficient in heat resistance. Further, there is a concern that the silicone rubber powder may cause contact failure when a low molecular component is volatilized. As a structure having excellent heat resistance, an epoxy resin, an epoxy resin composition and a cured product having a biphenol-biphenylaralkyl structure have already been disclosed, but no tracking resistance has been described (Patent Document 8, Patent Document). 9).
特開平3-151674号公報Japanese Patent Laid-Open No. 3-151674 特開平11-209569号公報Japanese Patent Laid-Open No. 11-209569 特開2003-20325号公報JP 2003-20325 A 特開2005-213299号公報JP 2005-213299 A 特開2008-143950号公報JP 2008-143950 A 特開2009-275146号公報JP 2009-275146 A 特開2013-203865号公報JP2013-203865A WO2011/074517号公報WO2011 / 074517 特開2013-209503号公報JP 2013-209503 A
 従来の技術では、耐トラッキング性と耐熱性及び難燃性はトレードオフの関係であることから、200℃以上の耐熱性と600Vの耐トラッキング性の両立は困難であった。そこで、本発明は、特に耐トラッキング性に優れ、耐熱性とのバランスおよび熱分解安定性にも優れたエポキシ樹脂硬化物が得られ、特にパワー半導体封止用として好適なエポキシ樹脂組成物、エポキシ樹脂硬化物、及び半導体を提供しようとするものである。 In the conventional technology, since tracking resistance, heat resistance, and flame retardancy are in a trade-off relationship, it is difficult to achieve both heat resistance of 200 ° C. or higher and tracking resistance of 600V. Accordingly, the present invention provides an epoxy resin cured product that is particularly excellent in tracking resistance, excellent in balance with heat resistance, and in thermal decomposition stability. It is intended to provide a cured resin and a semiconductor.
 本発明は、下記成分(A)~(D);
(A)下記一般式(1)で表される芳香族系エポキシ樹脂、
(B)窒素気流下、10℃/分の昇温速度におけるTG/DTA測定から求めた5%重量減少温度が260℃以上である非芳香族性エポキシ樹脂または非シリコーン系のゴムから選ばれる改質剤、
(C)硬化剤、及び
(D)硬化促進剤
を必須成分とするエポキシ樹脂組成物であって、成分(A)~(D)の合計に対し、成分(B)を1~50重量%含有することを特徴とするエポキシ樹脂組成物である。
Figure JPOXMLDOC01-appb-C000003
 但し、nは0~20の数を示し、Gはグリシジル基を示す。
The present invention provides the following components (A) to (D);
(A) an aromatic epoxy resin represented by the following general formula (1),
(B) A modification selected from a non-aromatic epoxy resin or a non-silicone rubber having a 5% weight reduction temperature of 260 ° C. or higher obtained from a TG / DTA measurement at a heating rate of 10 ° C./min under a nitrogen stream. Texture agent,
An epoxy resin composition containing (C) a curing agent and (D) a curing accelerator as essential components, and containing 1 to 50% by weight of component (B) with respect to the total of components (A) to (D) An epoxy resin composition characterized by:
Figure JPOXMLDOC01-appb-C000003
Here, n represents a number from 0 to 20, and G represents a glycidyl group.
 前記成分(B)としては、炭素数15~64の2価脂肪族カルボン酸のグリシジルエステル類または炭素数15~64の2価脂肪族アルコールのグリシジルエーテル類より選ばれる少なくとも1種類のエポキシ樹脂を含む2官能エポキシ樹脂からなる改質剤、又はスチレン系ゴムまたはアクリル系ゴムからなるゴム系の改質剤が挙げられる。 The component (B) includes at least one epoxy resin selected from glycidyl esters of divalent aliphatic carboxylic acids having 15 to 64 carbon atoms or glycidyl ethers of divalent aliphatic alcohols having 15 to 64 carbon atoms. Examples thereof include a modifier composed of a bifunctional epoxy resin, or a rubber modifier composed of styrene rubber or acrylic rubber.
 前記成分(C)としては、下記一般式(2)で表されるフェノール樹脂を含む硬化剤が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 但し、Rは水素原子又は炭素数1~6の炭化水素基を示し、mは0又は1の数を示す。
As said component (C), the hardening | curing agent containing the phenol resin represented by following General formula (2) is mentioned.
Figure JPOXMLDOC01-appb-C000004
R represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and m represents a number of 0 or 1.
 また、本発明は上記のエポキシ樹脂組成物を硬化してなるエポキシ樹脂硬化物である。更に、本発明は上記のエポキシ樹脂組成物で、半導体素子を封止した半導体装置である。 Further, the present invention is a cured epoxy resin obtained by curing the above epoxy resin composition. Furthermore, this invention is a semiconductor device which sealed the semiconductor element with said epoxy resin composition.
 本発明によれば、従来の技術では困難な耐トラッキング性と耐熱性を両立するエポキシ樹脂組成物、エポキシ樹脂硬化物、及び半導体装置を提供することができる。また、エポキシ樹脂組成物は流動性、成形性に優れ、その硬化物は200℃以上のガラス転移温度と長期熱安定性及び、難燃性に優れる。さらに、非シリコーン系であることから車載用途に適する。 According to the present invention, it is possible to provide an epoxy resin composition, a cured epoxy resin, and a semiconductor device that have both tracking resistance and heat resistance, which are difficult with conventional techniques. Moreover, an epoxy resin composition is excellent in fluidity | liquidity and a moldability, and the hardened | cured material is excellent in the glass transition temperature of 200 degreeC or more, long-term thermal stability, and a flame retardance. Furthermore, since it is non-silicone, it is suitable for in-vehicle use.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明のエポキシ樹脂組成物は、下記成分(A)~(D)を必須成分とする。(A)上記一般式(1)で表される芳香族系エポキシ樹脂、(B)非芳香族性エポキシ樹脂または非シリコーン系のゴムから選ばれる改質剤、(C)硬化剤、及び(D)硬化促進剤。 The epoxy resin composition of the present invention contains the following components (A) to (D) as essential components. (A) an aromatic epoxy resin represented by the above general formula (1), (B) a modifier selected from a non-aromatic epoxy resin or a non-silicone rubber, (C) a curing agent, and (D ) Cure accelerator.
 成分(A)は、一般式(1)で表されるエポキシ樹脂であり、ビフェニル構造を有するのでビフェニルアラルキル型エポキシ樹脂ともいう。式中、nは0~20の数を示し、Gはグリシジル基を示す。nは繰り返し数であって0以上の数を示し、その平均値(数平均)は1.3~20であり、1.5~15が好ましく、1.7~10がより好ましく、2~6がさらに好ましい。また、上記nが0であるn=0成分の含有量は、反応性および流動性の観点から、ゲルパーミエイションクロマトグラフ(GPC)測定で30面積%以下が好ましい。それよりも多いと、結晶性が強くなり取扱いが困難となる。また、積層板用途等で有機溶媒に溶解して使用する場合は、溶剤溶解性の観点から15面積%未満であることがよく、10面積%以下が好ましい。n=5成分以上の含有量は、耐熱性向上の観点から15面積%以上であり、20面積%以上が好ましい。また、GPCで測定した重量平均分子量(Mw)は1,000~8,000が好ましく、2,000~7,000がより好ましく、2,000~5,000がさらに好ましい。 Component (A) is an epoxy resin represented by the general formula (1), and is also called a biphenyl aralkyl type epoxy resin because it has a biphenyl structure. In the formula, n represents a number from 0 to 20, and G represents a glycidyl group. n is the number of repetitions and represents a number of 0 or more, and the average value (number average) is 1.3 to 20, preferably 1.5 to 15, more preferably 1.7 to 10, more preferably 2 to 6 Is more preferable. In addition, the content of the n = 0 component in which n is 0 is preferably 30% by area or less in terms of gel permeation chromatography (GPC) from the viewpoint of reactivity and fluidity. If it is more than that, the crystallinity becomes strong and handling becomes difficult. Moreover, when using it by melt | dissolving in an organic solvent for laminated board use etc., it is preferable that it is less than 15 area% from a solvent solubility viewpoint, and 10 area% or less is preferable. The content of n = 5 components or more is 15 area% or more from the viewpoint of improving heat resistance, and preferably 20 area% or more. The weight average molecular weight (Mw) measured by GPC is preferably 1,000 to 8,000, more preferably 2,000 to 7,000, and further preferably 2,000 to 5,000.
 上記エポキシ樹脂は、下記一般式(3)で表される多価ヒドロキシ樹脂とエピクロロヒドリンとを反応させることにより製造することができる。この多価ヒドロキシ樹脂は、ビフェニル構造を有するのでビフェニルアラルキル型のドロキシ樹脂ともいう。そして、このビフェニルアラルキル型ヒドロキシ樹脂は、ビフェノール類と下記一般式(4)で表されるビフェニル系縮合剤を反応させることにより得られる。
Figure JPOXMLDOC01-appb-C000005
 但し、nは0~20の数を示す。
Figure JPOXMLDOC01-appb-C000006
 但し、Xは水酸基、ハロゲン原子又は炭素数1~6のアルコキシ基を示す。
The epoxy resin can be produced by reacting a polyvalent hydroxy resin represented by the following general formula (3) with epichlorohydrin. Since this polyvalent hydroxy resin has a biphenyl structure, it is also called a biphenyl aralkyl type droxy resin. And this biphenyl aralkyl type hydroxy resin is obtained by reacting biphenols with a biphenyl condensing agent represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000005
Here, n represents a number from 0 to 20.
Figure JPOXMLDOC01-appb-C000006
X represents a hydroxyl group, a halogen atom or an alkoxy group having 1 to 6 carbon atoms.
 ビフェニルアラルキル型ヒドロキシ樹脂の合成原料のビフェノール類としては、例えば4,4’-ジヒドロキシビフェニル類が挙げられる。 Examples of biphenols used as a raw material for synthesizing biphenyl aralkyl type hydroxy resins include 4,4'-dihydroxybiphenyls.
 ビフェニル系縮合剤として、具体例には、4,4’-ビスヒドロキシメチルビフェニル、4,4’-ビスクロロメチルビフェニル、4,4’-ビスブロモメチルビフェニル、4,4’-ビスメトキシメチルビフェニル、4,4’‐ビスエトキシメチルビフェニルが挙げられる。反応性の観点からは、4,4’-ビスヒドロキシメチルビフェニル、4,4’-ビスクロロメチルビフェニルが好ましく、イオン性不純分低減の観点からは、4,4’-ビスヒドロキシメチルビフェニル、4,4’-ビスメトキシメチルビフェニルが好ましい。 Specific examples of the biphenyl condensing agent include 4,4′-bishydroxymethylbiphenyl, 4,4′-bischloromethylbiphenyl, 4,4′-bisbromomethylbiphenyl, 4,4′-bismethoxymethylbiphenyl. 4,4′-bisethoxymethylbiphenyl. From the viewpoint of reactivity, 4,4′-bishydroxymethylbiphenyl and 4,4′-bischloromethylbiphenyl are preferable. From the viewpoint of reducing ionic impurities, 4,4′-bishydroxymethylbiphenyl, 4 4,4'-bismethoxymethylbiphenyl is preferred.
 反応させる際のモル比は、4,4’-ジヒドロキシビフェニル1モルに対して、ビフェニル系縮合剤は1モル以下が好ましく、一般的には0.1~0.7モルの範囲であり、より好ましくは0.2~0.5モルの範囲である。これより少ないと結晶性が強くなり、エポキシ樹脂を合成する際のエピクロロヒドリンへの溶解性が低下するとともに、得られたエポキシ樹脂の融点が高くなり、取扱い性が低下する。また、これより多いと樹脂の結晶性が低下するとともに軟化点および溶融粘度が高くなり、取扱い作業性、成形性に支障をきたす。 The molar ratio in the reaction is preferably 1 mol or less for the biphenyl condensing agent to 1 mol of 4,4′-dihydroxybiphenyl, and generally ranges from 0.1 to 0.7 mol. The range is preferably 0.2 to 0.5 mol. If it is less than this, the crystallinity becomes strong, the solubility in epichlorohydrin when synthesizing the epoxy resin is lowered, the melting point of the obtained epoxy resin is increased, and the handleability is lowered. On the other hand, if the amount is larger than this, the crystallinity of the resin is lowered and the softening point and the melt viscosity are increased, which hinders handling workability and moldability.
 また、縮合剤としてクロロメチルビフェニルを用いる際には、無触媒下で反応させることもできるが、通常は、本縮合反応は酸性触媒の存在下に行う。この酸性触媒としては、周知の無機酸、有機酸より適宜選択することができ、例えば、塩酸、硫酸、燐酸等の鉱酸や、ギ酸、シュウ酸、トリフルオロ酢酸、p-トルエンスルホン酸、メタスルホン酸、トリフルオロメタスルホン酸等の有機酸や、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、あるいは固体酸等が挙げられる。 In addition, when chloromethylbiphenyl is used as the condensing agent, the reaction can be carried out in the absence of a catalyst, but usually the condensation reaction is carried out in the presence of an acidic catalyst. The acidic catalyst can be appropriately selected from known inorganic acids and organic acids. For example, mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, oxalic acid, trifluoroacetic acid, p-toluenesulfonic acid, metasulfone Examples thereof include organic acids such as acid and trifluorometasulfonic acid, Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride, and solid acids.
 この反応は10~250℃で1~30時間行われる。また、反応の際にメタノール、エタノール、プロパノール、ブタノール、エチレングリコール、メチルセロソルブ、エチルセロソルブ、ジエチレングリコールジメチルエーテル、トリグライム等のアルコール類や、ベンゼン、トルエン、クロロベンゼン、ジクロロベンゼン等の芳香族化合物等を溶媒として使用することができる。反応終了後、必要に応じて溶媒、又は縮合反応により生成する水、アルコール類は除去される。 This reaction is carried out at 10 to 250 ° C. for 1 to 30 hours. In the reaction, alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol, methyl cellosolve, ethyl cellosolve, diethylene glycol dimethyl ether, triglyme, and aromatic compounds such as benzene, toluene, chlorobenzene and dichlorobenzene are used as solvents. Can be used. After completion of the reaction, the solvent or water and alcohol produced by the condensation reaction are removed as necessary.
 上記ビフェニルアラルキル型ヒドロキシ樹脂とエピクロルヒドリンとの反応によって一般式(1)で表されるビフェニルアラルキル型エポキシ樹脂を製造する方法について説明する。この反応は周知のエポキシ化反応と同様に行うことができる。 A method for producing the biphenyl aralkyl type epoxy resin represented by the general formula (1) by the reaction of the biphenyl aralkyl type hydroxy resin and epichlorohydrin will be described. This reaction can be performed in the same manner as a well-known epoxidation reaction.
 例えば、ビフェニルアラルキル型ヒドロキシ樹脂を過剰のエピクロルヒドリンに溶解した後、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物の存在下に50~150℃、好ましくは60~120℃の範囲で1~10時間反応させる方法が挙げられる。この際のエピクロルヒドリンの使用量は、多価ヒドロキシ樹脂中の水酸基1モルに対して0.8~2.0モル、好ましくは0.9~1.2モルの範囲である。反応終了後過剰のエピクロルヒドリンを留去し、残留物をトルエン、メチルイソブチルケトン等の溶媒に溶解し、濾過し、水洗して無機塩を除去し、次いで溶媒を留去することにより前記一般式(1)で表される目的のエポキシ樹脂を得ることができる。エポキシ化反応を行う際に、四級アンモニウム塩等の触媒を用いてもよい。 For example, after a biphenylaralkyl type hydroxy resin is dissolved in an excess of epichlorohydrin, in the presence of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, the temperature ranges from 50 to 150 ° C., preferably from 60 to 120 ° C. The method of making it react for 10 hours is mentioned. In this case, the amount of epichlorohydrin used is in the range of 0.8 to 2.0 mol, preferably 0.9 to 1.2 mol, relative to 1 mol of hydroxyl group in the polyvalent hydroxy resin. Excess epichlorohydrin was distilled off after completion of the reaction, the residue was dissolved in a solvent such as toluene and methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then the solvent was distilled off to remove the general formula ( The target epoxy resin represented by 1) can be obtained. When performing the epoxidation reaction, a catalyst such as a quaternary ammonium salt may be used.
 ビフェニルアラルキル型エポキシ樹脂の純度、特に加水分解性塩素量は、適用する電子部品の信頼性向上の観点より少ない方がよい。特に限定するものではないが、好ましくは1000ppm以下、さらに好ましくは500ppm以下である。なお、本発明でいう加水分解性塩素とは、以下の方法により測定された値をいう。すなわち、試料0.5gをジオキサン30mlに溶解後、1N-KOH、10mlを加え30分間煮沸還流した後、室温まで冷却し、さらに80%アセトン水100mlを加え、0.002N-AgNO水溶液で電位差滴定を行い得られる値である。 The purity of the biphenyl aralkyl type epoxy resin, in particular the amount of hydrolyzable chlorine, is better from the viewpoint of improving the reliability of the applied electronic component. Although it does not specifically limit, Preferably it is 1000 ppm or less, More preferably, it is 500 ppm or less. In addition, the hydrolyzable chlorine as used in the field of this invention means the value measured by the following method. Specifically, 0.5 g of a sample was dissolved in 30 ml of dioxane, 10 ml of 1N KOH was added, boiled and refluxed for 30 minutes, cooled to room temperature, 100 ml of 80% acetone water was further added, and a potential difference was added with 0.002 N-AgNO 3 aqueous solution. This is a value obtained by titration.
 本発明のエポキシ樹脂組成物中には、成分(A)のエポキシ樹脂の他に、他の成分としてのエポキシ樹脂を配合してもよい。他の成分としてのエポキシ樹脂を、成分(F)ともいう。
 成分(F)は、フェノール性水酸基をエポキシ化した芳香族性のエポキシ樹脂であることが好ましい。
 かかるエポキシ樹脂としては、分子中にエポキシ基を2個以上有する通常の芳香族性のエポキシ樹脂はすべて使用できる。例を挙げれば、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4' -ビフェノール、3,3',5,5'-テトラメチル-4,4'-ジヒドロキシビフェニル、レゾルシン、ナフタレンジオール類等の2価のフェノール類のエポキシ化物、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノールノボラック、o-クレゾールノボラック等の3価以上のフェノール類のエポキシ化物、ジシクロペンタジエンとフェノール類から得られる共縮合樹脂のエポキシ化物、クレゾール類とホルムアルデヒドとアルコキシ基置換ナフタレン類から得られる共縮合樹脂のエポキシ化物、フェノール類とパラキシリレンジクロライド等から得られるフェノールアラルキル樹脂のエポキシ化物、フェノール類とビスクロロメチルビフェニル等から得られるビフェニルアラルキル型フェノール樹脂のエポキシ化物、ナフトール類とパラキシリレンジクロライド等から合成されるナフトールアラルキル樹脂類のエポキシ化物等がある。これらのエポキシ樹脂は、1種又は2種以上を混合して用いることができる。そして、本発明のエポキシ樹脂組成物には、一般式(1)で表されるエポキシ樹脂の配合量がエポキシ樹脂全体中、5~100wt%、好ましくは60~100wt%の範囲であることがよい。
In addition to the component (A) epoxy resin, an epoxy resin as another component may be blended in the epoxy resin composition of the present invention. The epoxy resin as the other component is also referred to as component (F).
The component (F) is preferably an aromatic epoxy resin obtained by epoxidizing a phenolic hydroxyl group.
As such an epoxy resin, all normal aromatic epoxy resins having two or more epoxy groups in the molecule can be used. Examples include bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4′-biphenol, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxybiphenyl, resorcin, naphthalenediols Trivalent or more epoxides of divalent phenols such as tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolak, o-cresol novolak, etc. Epoxidized products of phenols, epoxidized products of cocondensation resins obtained from dicyclopentadiene and phenols, epoxidized products of cocondensation resins obtained from cresols, formaldehyde and alkoxy-substituted naphthalenes, phenols and paraxylylene dichloride Obtained from etc. E Nord aralkyl resin epoxidized product, there phenols and bis-chloromethyl biphenyl biphenyl aralkyl type phenolic resins obtained from the epoxy compound, epoxidized naphthol aralkyl resin and the like which are synthesized from naphthols and para-xylylene dichloride and the like. These epoxy resins can be used alone or in combination of two or more. In the epoxy resin composition of the present invention, the compounding amount of the epoxy resin represented by the general formula (1) is in the range of 5 to 100 wt%, preferably 60 to 100 wt% in the whole epoxy resin. .
 成分(B)は、非芳香族性エポキシ樹脂または非シリコーン系のゴムから選ばれる非シリコーン系の改質剤であり、この改質剤は、窒素気流下、10℃/分の昇温速度におけるTG/DTA測定から求めた5%重量減少温度が260℃以上である。そして、この改質剤は、耐トラッキング性を向上させるための改質剤として作用する。 Component (B) is a non-silicone-based modifier selected from non-aromatic epoxy resins or non-silicone rubbers, and this modifier is heated at a rate of temperature increase of 10 ° C./min under a nitrogen stream. The 5% weight loss temperature obtained from the TG / DTA measurement is 260 ° C or higher. And this modifier acts as a modifier for improving tracking resistance.
 上記改質剤を配合すると、改質剤が樹脂中で相分離することにより、熱分解の際に生じる炭化層の凝集を抑制すると考えられ、耐トラッキング性の向上が期待できる。 When the modifier is blended, it is considered that the modifier is phase-separated in the resin, thereby suppressing the aggregation of the carbonized layer that occurs during the thermal decomposition, and an improvement in tracking resistance can be expected.
 改質剤として5%重量減少温度が260℃以上であるものを用いることにより、200℃以上での高温使用時においても機械強度の劣化が防止できる。 By using a modifier having a 5% weight loss temperature of 260 ° C. or higher, deterioration of mechanical strength can be prevented even when used at a high temperature of 200 ° C. or higher.
 上記改質剤として、非シリコーン系の改質剤を使用することにより、次のような利点がある。シリコーンゴム等のシリコーン系改質剤は、低分子成分が揮発した場合に接点障害を引き起こす可能性が懸念される点、エポキシ樹脂と相分離しやすく均一な組成物を得ることが難しい点が挙げられるが、そのような問題が解消される。また、コスト面でも非シリコーン系の方が有利である。 The use of a non-silicone modifier as the modifier has the following advantages. Silicone-based modifiers such as silicone rubber have the potential to cause contact failure when low-molecular components volatilize, and it is difficult to obtain a uniform composition that is easily phase-separated from the epoxy resin. However, such a problem is solved. Further, the non-silicone system is more advantageous in terms of cost.
 改質剤の含有量は、上記成分(A)~(D)の合計に対し1~50重量%であり、好ましくは2~30重量%である。
 別の観点からは、エポキシ樹脂組成物中の樹脂成分全量の100重量部に対し、1~50重量部の範囲がよいが、好ましくは2~30重量部である。これより小さいと炭化層の凝集の抑制効果が低く、また反対にこれより大きくなると、硬化物のガラス転移温度Tgが低くなるとともに機械強度も低下する。
The content of the modifier is 1 to 50% by weight, preferably 2 to 30% by weight, based on the total of the components (A) to (D).
From another viewpoint, the range of 1 to 50 parts by weight is preferable with respect to 100 parts by weight of the total amount of the resin components in the epoxy resin composition, but preferably 2 to 30 parts by weight. If it is smaller than this, the effect of suppressing the aggregation of the carbonized layer is low. Conversely, if it is larger than this, the glass transition temperature Tg of the cured product is lowered and the mechanical strength is also lowered.
 改質剤は10μm以下の相分離状態もしくは粒子状で分散されていることが好ましい。その粒子径(メディアン平均径)は0.01μm~10μmが好ましく、更に好ましくは0.05μm~5μm、特に好ましくは0.1μm~1μmの範囲である。 It is preferable that the modifier is dispersed in a phase separated state of 10 μm or less or in the form of particles. The particle diameter (median average diameter) is preferably 0.01 μm to 10 μm, more preferably 0.05 μm to 5 μm, and particularly preferably 0.1 μm to 1 μm.
 これらの改質剤は、当技術分野において周知のものであってよく、特に限定されるものではない。熱安定性に優れる改質剤としては、炭素数15~64の2価脂肪族カルボン酸のグリシジルエステル類または炭素数15~64の2価脂肪族アルコールのグリシジルエーテル類より選ばれる少なくとも1種類のエポキシ樹脂を必須成分として含有する2官能エポキシ樹脂が好ましい。
 また、スチレン系ゴムまたはアクリル系ゴムからなるゴム類も改質剤として優れる。
These modifiers may be well known in the art and are not particularly limited. The modifier having excellent thermal stability is at least one selected from glycidyl esters of divalent aliphatic carboxylic acids having 15 to 64 carbon atoms or glycidyl ethers of divalent aliphatic alcohols having 15 to 64 carbon atoms. A bifunctional epoxy resin containing an epoxy resin as an essential component is preferred.
Rubbers made of styrene rubber or acrylic rubber are also excellent as modifiers.
 上記炭素数15~64の2価脂肪族カルボン酸としては、例えば、2-ドデシルこはく酸、ヘキサデカン二酸、8-ヘキサデセン二酸、8,9-ジエチルヘキサデカン二酸、エイコサン二酸、7‐ビニルテトラデカン二酸、1,16-(6-エチルヘキサデカン)ジカルボン酸、1,18-(7,12-オクタデカジエン)ジカルボン酸、1,12-(ジエチルドデカン)ジカルボン酸等の脂肪族ジカルボン酸や、不飽和脂肪酸(リノール酸、オレイン酸等)の2個ないしそれ以上の分子間反応により得られる主成分が炭素数36の二塩基酸であるダイマー酸やそのダイマー酸を水素化して得られる水添ダイマー酸等が挙げられるが、特に限定されるものではない。これらの2価脂肪族カルボン酸を公知のエポキシ化技術を用いてジグリシジルエステル化することによって炭素数15~64の2価脂肪族カルボン酸のグリシジルエステル類のエポキシ樹脂が得られる。 Examples of the divalent aliphatic carboxylic acid having 15 to 64 carbon atoms include 2-dodecyl succinic acid, hexadecanedioic acid, 8-hexadecenedioic acid, 8,9-diethylhexadecanedioic acid, eicosanedioic acid, and 7-vinyl. Aliphatic dicarboxylic acids such as tetradecanedioic acid, 1,16- (6-ethylhexadecane) dicarboxylic acid, 1,18- (7,12-octadecadiene) dicarboxylic acid, 1,12- (diethyldodecane) dicarboxylic acid, Dimer acid whose main component is a dibasic acid having 36 carbon atoms obtained by an intermolecular reaction of unsaturated fatty acids (linoleic acid, oleic acid, etc.) or water obtained by hydrogenating the dimer acid. Examples thereof include, but are not particularly limited to, dimer acid. Epoxy resins of glycidyl esters of divalent aliphatic carboxylic acids having 15 to 64 carbon atoms can be obtained by diglycidyl esterifying these divalent aliphatic carboxylic acids using a known epoxidation technique.
 炭素数15~64の2価脂肪族アルコールとしては、例えば、1,15‐ペンタデカンジオール、1,16‐ヘキサデカンジオール、1,18‐オクタデカンジオール、1,19‐ノナデカンジオール等の長鎖脂肪族ジオールやオクタエチレングリコール、ノナエチレングリコール等のポリエチレングリコールや、ペンタプロピレングリコール、ヘキサプロピレングリコール等のポリプロピレングリコールや4,4’-(プロパン-2,2-ジイル)ビス(シクロヘキサノール)等のシクロ環含有ジオールや、前述のダイマー酸や水添ダイマー酸のカルボキシル基を水酸基にまで還元したダイマージオールや水添ダイマージオール等が挙げられるが、特に限定されるものではない。これらの2価脂肪族アルコールを公知のエポキシ化技術を用いてジグリシジルエーテル化することによって炭素数15~64の2価脂肪族アルコールのグリシジルエーテル類のエポキシ樹脂が得られる。 Examples of the divalent aliphatic alcohol having 15 to 64 carbon atoms include long chain aliphatics such as 1,15-pentadecanediol, 1,16-hexadecanediol, 1,18-octadecanediol, and 1,19-nonadecanediol. Polyethylene glycol such as diol, octaethylene glycol and nonaethylene glycol, polypropylene glycol such as pentapropylene glycol and hexapropylene glycol, and cyclo rings such as 4,4 ′-(propane-2,2-diyl) bis (cyclohexanol) Examples of the diol include dimer diol and hydrogenated dimer diol obtained by reducing the carboxyl group of the dimer acid or hydrogenated dimer acid to a hydroxyl group, but are not particularly limited. Epoxy resins of glycidyl ethers of divalent aliphatic alcohols having 15 to 64 carbon atoms can be obtained by diglycidyl etherifying these divalent aliphatic alcohols using a known epoxidation technique.
 スチレン系ゴム、アクリル系ゴムとしては、ゴムの成分(モノマー)又は原料の一部としてスチレン類(置換スチレンを含む)、アクリル類(アクリル酸、メタアクリル酸、アクリル酸エステル、メタアクリル酸エステル、アクリロニトリル等)を含むものが使用できる。また、非シリコーン系の天然ゴム、ブタジエンゴム等のジエン系ゴムも使用可能である。 As styrene rubber and acrylic rubber, styrene (including substituted styrene), acrylics (acrylic acid, methacrylic acid, acrylic ester, methacrylic ester, rubber component (monomer) or part of raw material, Those containing acrylonitrile and the like) can be used. Non-silicone natural rubber and diene rubber such as butadiene rubber can also be used.
 スチレン系ゴムとしては、例えば、アクリロニトリルブタジエンスチレン共重合体(ABS)、アクリロニトリル塩素化ポリエチレンスチレン共重合体(ACS)、アクリロニトリルエチレンプロピレンゴムスチレン共重合体(AES)、アクリロニトリルスチレンアクリレート共重合体(ASA)、メチルメタクリレートアクリロニトリルブタジエンスチレン共重合体(MABS)、メチルメタクリレートブタジエンスチレン共重合体(MBS)、スチレンブタジエン共重合体(SB)、アクリロニトリルスチレン共重合体(SAN)、スチレンブタジエンスチレンブロック共重合体(SBS)、スチレンエチレンブチレンスチレンブロック共重合体(SEBS)、スチレンエチレンプロピレンスチレンブロック共重合体(SEPS)、スチレンイソプレンスチレンブロック共重合体(SIS)、アクリロニトリルスチレンジメチルシロキサンアクリル酸アルキル共重合体等が挙げられる。なかでも弾性率低減、耐衝撃性向上の観点からは、スチレンブタジエン共重合体(SB)、メチルメタクリレートブタジエンスチレン共重合体(MBS)、アクリロニトリルスチレンジメチルシロキサンアクリル酸アルキル共重合体等のスチレンと不飽和二重結合を有するモノマーとの共重合によって得られるゴムが好ましい。 Examples of the styrene rubber include acrylonitrile butadiene styrene copolymer (ABS), acrylonitrile chlorinated polyethylene styrene copolymer (ACS), acrylonitrile ethylene propylene rubber styrene copolymer (AES), and acrylonitrile styrene acrylate copolymer (ASA). ), Methyl methacrylate acrylonitrile butadiene styrene copolymer (MABS), methyl methacrylate butadiene styrene copolymer (MBS), styrene butadiene copolymer (SB), acrylonitrile styrene copolymer (SAN), styrene butadiene styrene block copolymer (SBS), styrene ethylene butylene styrene block copolymer (SEBS), styrene ethylene propylene styrene block copolymer (SEPS), Chi Ren isoprene styrene block copolymer (SIS), acrylonitrile-styrene dimethylsiloxane alkyl acrylate copolymer and the like. Among these, from the viewpoint of reducing elastic modulus and improving impact resistance, styrene butadiene copolymer (SB), methyl methacrylate butadiene styrene copolymer (MBS), acrylonitrile styrene dimethylsiloxane alkyl acrylate copolymer, etc. A rubber obtained by copolymerization with a monomer having a saturated double bond is preferred.
 アクリル系ゴムとしては、例えば、1種以上のアルキル(メタ)アクリレート及びこれと共重合可能な1種以上のビニル単量体を共重合して得られるものが好ましく挙げられ、アルキル(メタ)アクリレートと共重合可能なビニル単量体としては、例えば、架橋性の単量体が好ましく、ジビニルベンゼン、ジビニルトルエン等の芳香族多官能ビニル単量体;エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート等の多価アルコールのジ又はトリ(メタ)アクリル酸エステル;アリル(メタ)アクリレート、ジアリルフタレート、ジアリルセバケート、トリアリルトリアジン、トリアリルシアヌレート、トリアリルイソシアヌレート等のジ又はトリアリル化合物を挙げることができ、これらの1種を単独で用いてもよく、2種以上を組み合わせて使用してもよい。 Preferred examples of the acrylic rubber include those obtained by copolymerizing one or more alkyl (meth) acrylates and one or more vinyl monomers copolymerizable therewith, and alkyl (meth) acrylates. As a vinyl monomer copolymerizable with, for example, a crosslinkable monomer is preferable, and aromatic polyfunctional vinyl monomers such as divinylbenzene and divinyltoluene; ethylene glycol di (meth) acrylate, propylene glycol di Di- or tri (meth) acrylates of polyhydric alcohols such as (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate; allyl (meth) acrylate, Diallyl phthalate, diallyl sebacate, triallyl triazine, triallyl cyanurate , Can be mentioned di- or triallyl compounds such as triallyl isocyanurate, may be used those alone, it may be used in combination of two or more.
 成分(C)は、エポキシ樹脂用の硬化剤である。硬化剤としては、公知のエポキシ樹脂用硬化剤を使用することが出来るが、半導体封止材等の高い電気絶縁性が要求される分野においては、多価フェノール類を硬化剤として用いることが好ましい。以下に、硬化剤の具体例を示す。 Component (C) is a curing agent for epoxy resin. As the curing agent, a known curing agent for epoxy resins can be used, but in a field where high electrical insulation properties such as a semiconductor sealing material are required, polyhydric phenols are preferably used as the curing agent. . Below, the specific example of a hardening | curing agent is shown.
 多価フェノール類としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、ハイドロキノン、レゾルシン、カテコール、ビフェノール類、ナフタレンジオール類等の2価のフェノール類、更にはトリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノールノボラック、o-クレゾールノボラック、ナフトールノボラック、ジシクロペンタジエン型フェノール樹脂、フェノールアラルキル樹脂等に代表される3価以上のフェノール類、更にはフェノール類、ナフトール類又は、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4' -ビフェノール、2,2' -ビフェノール、ハイドロキノン、レゾルシン、カテコール、ナフタレンジオール類等の2価のフェノール類とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、p-キシリレングリコール、p-キシリレングリコールジメチルエーテル、ジビニルベンゼン、ジイソプロペニルベンゼン、ジメトキシメチルビフェニル類、ジビニルビフェニル、ジイソプロペニルビフェニル類等の架橋剤との反応により合成される多価フェノール性化合物、フェノール類とビスクロロメチルビフェニル等から得られるビフェニルアラルキル型フェノール樹脂、ナフトール類とパラキシリレンジクロライド等から合成されるナフトールアラルキル樹脂類等が挙げられる。 Examples of the polyhydric phenols include divalent phenols such as bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, hydroquinone, resorcin, catechol, biphenols, naphthalenediols, and tris- (4-hydroxyphenyl). ) Trivalent or higher typified by methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolak, o-cresol novolak, naphthol novolak, dicyclopentadiene type phenol resin, phenol aralkyl resin, etc. Phenols, further phenols, naphthols, or bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4 '-biphenol, 2,2' -biphenol, hydride Divalent phenols such as quinone, resorcin, catechol, naphthalene diol and the like, formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, p-xylylene glycol, p-xylylene glycol dimethyl ether, divinylbenzene, diisopropenylbenzene, dimethoxy Polyphenolic compounds synthesized by reaction with crosslinkers such as methyl biphenyls, divinyl biphenyls, diisopropenyl biphenyls, biphenyl aralkyl type phenol resins obtained from phenols and bischloromethyl biphenyls, naphthols and para Examples thereof include naphthol aralkyl resins synthesized from xylylene dichloride and the like.
 このうち、好ましいフェノール系硬化剤としては、上記一般式(2)で表されるアラルキル型フェノール樹脂がある。
 一般式(2)において、Rは水素原子又は炭素数1~6の炭化水素基であるが、好ましくは水素原子又は炭素数1~3のアルキル基である。mは0又は1の数を示す。
Among these, as a preferable phenol-based curing agent, there is an aralkyl type phenol resin represented by the general formula (2).
In the general formula (2), R is a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. m represents a number of 0 or 1.
 上記アラルキル型フェノール樹脂又はこれを含む硬化剤を使用することで、パワーデバイス封止材に求められる200℃以上の高Tg性が見出され、長期耐熱試験時にガラス状態を保つことで長期熱安定性が発現される。 By using the above aralkyl-type phenolic resin or a curing agent containing the same, a high Tg property of 200 ° C. or higher required for a power device sealing material is found, and long-term heat stability is maintained by maintaining a glass state during a long-term heat test. Sex is expressed.
 一般式(2)で表されるアラルキル型フェノール樹脂は、サリチルアルデヒド又はp-ヒドロキシアルデヒドとフェノール性水酸基含有化合物とを反応させることにより製造できる。 The aralkyl type phenol resin represented by the general formula (2) can be produced by reacting salicylaldehyde or p-hydroxyaldehyde with a phenolic hydroxyl group-containing compound.
 硬化剤の配合量は、エポキシ樹脂中のエポキシ基と硬化剤中の活性水素(多価フェノール類の場合は、水酸基)との当量バランスを考慮して配合する。エポキシ樹脂及び硬化剤の当量比は、通常、0.2~5.0の範囲であり、好ましくは0.5~2.0の範囲であり、さらに好ましくは0.8~1.5の範囲である。これより大きくても小さくても、エポキシ樹脂組成物の硬化性が低下するとともに、硬化物の耐熱性、機械強度等が低下する。 The blending amount of the curing agent is blended in consideration of the equivalent balance between the epoxy group in the epoxy resin and the active hydrogen (hydroxyl group in the case of polyhydric phenols) in the curing agent. The equivalent ratio of the epoxy resin and the curing agent is usually in the range of 0.2 to 5.0, preferably in the range of 0.5 to 2.0, and more preferably in the range of 0.8 to 1.5. It is. If it is larger or smaller than this, the curability of the epoxy resin composition is lowered, and the heat resistance, mechanical strength and the like of the cured product are lowered.
 また、このエポキシ樹脂組成物中には、硬化剤成分として、芳香族ヒドロキシ化合物以外に別種の硬化剤を配合してもよい。この場合の硬化剤としては、例えば、ジシアンジアミド、酸無水物類、芳香族及び脂肪族アミン類等がある。本発明のエポキシ樹脂組成物には、これら硬化剤の1種又は2種以上を混合して用いることができる。 Moreover, in this epoxy resin composition, you may mix | blend another kind of hardening | curing agent other than an aromatic hydroxy compound as a hardening | curing agent component. Examples of the curing agent in this case include dicyandiamide, acid anhydrides, aromatic and aliphatic amines. In the epoxy resin composition of the present invention, one or more of these curing agents can be mixed and used.
 酸無水物硬化剤としては、例えば、無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチル無水ハイミック酸、無水ドデシニルコハク酸、無水ナジック酸、無水トリメリット酸等がある。 Examples of the acid anhydride curing agent include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl hymic anhydride, dodecynyl succinic anhydride, nadic anhydride, There are trimellitic anhydride and the like.
 アミン類としては、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルスルホン、m-フェニレンジアミン、p-キシリレンジアミン等の芳香族アミン類、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等の脂肪族アミン類がある。 Examples of amines include aromatic amines such as 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenylsulfone, m-phenylenediamine, and p-xylylenediamine, ethylenediamine, There are aliphatic amines such as hexamethylenediamine, diethylenetriamine, and triethylenetetramine.
 成分(D)は、エポキシ樹脂組成物の硬化促進剤である。硬化促進剤としては、エポキシ樹脂の技術分野において周知のものであってよく、特に限定されるものではない。例を挙げれば、アミン類、イミダゾール類、有機ホスフィン類、ルイス酸等がある。
 具体的には、1,8-ジアザビシクロ(5,4,0)ウンデセン-7、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノールなどの三級アミン、2-メチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、2-へプタデシルイミダゾールなどのイミダゾール類、トリブチルホスフィン、メチルジフェニルホスフイン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィンなどの有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート、テトラブチルホスホニウム・テトラブチルボレートなどのテトラ置換ホスホニウム・テトラ置換ボレート、2-エチル-4-メチルイミダゾール・テトラフェニルボレート、N-メチルモルホリン・テトラフェニルボレートなどのテトラフェニルボロン塩などがある。添加量としては、通常、エポキシ樹脂100重量部に対して、0.2~5重量部の範囲である。
Component (D) is a curing accelerator for the epoxy resin composition. The curing accelerator may be known in the technical field of epoxy resins and is not particularly limited. Examples include amines, imidazoles, organic phosphines, Lewis acids and the like.
Specifically, tertiary amines such as 1,8-diazabicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, -Imidazoles such as methylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole, tributylphosphine, methyldiphenylphosphine, triphenylphosphine, Organic phosphines such as diphenylphosphine and phenylphosphine, tetraphenylphosphonium / tetraphenylborate, tetraphenylphosphonium / ethyltriphenylborate, tetrabutylphosphonium / teto Tetra-substituted phosphonium tetra-substituted borate such as borate, 2-ethyl-4-methylimidazole · tetraphenyl borate, and the like tetraphenyl boron salts such as N- methylmorpholine tetraphenylborate. The addition amount is usually in the range of 0.2 to 5 parts by weight with respect to 100 parts by weight of the epoxy resin.
 本発明のエポキシ樹脂組成物中には、ポリエステル、ポリアミド、ポリイミド、ポリエーテル、ポリウレタン、石油樹脂、インデン樹脂、インデン・クマロン樹脂、フェノキシ樹脂等のオリゴマー又は高分子化合物を他の改質剤等として適宜配合してもよい。添加量は、通常、エポキシ樹脂100重量部に対して、2~30重量部の範囲である。 In the epoxy resin composition of the present invention, an oligomer or a polymer compound such as polyester, polyamide, polyimide, polyether, polyurethane, petroleum resin, indene resin, indene-coumarone resin, phenoxy resin, etc. is used as another modifier. You may mix | blend suitably. The addition amount is usually in the range of 2 to 30 parts by weight with respect to 100 parts by weight of the epoxy resin.
  また、本発明のエポキシ樹脂組成物には、無機充填剤、顔料、難然剤、揺変性付与剤、カップリング剤、流動性向上剤等の添加剤を配合できる。無機充填剤としては、例えば、球状あるいは、破砕状の溶融シリカ、結晶シリカ等のシリカ粉末、アルミナ粉末、ガラス粉末、又はマイカ、タルク、炭酸カルシウム、アルミナ、水和アルミナ等が挙げられ、半導体封止材に用いる場合の好ましい配合量は70重量%以上であり、更に好ましくは80重量%以上である。 In addition, the epoxy resin composition of the present invention can contain additives such as inorganic fillers, pigments, retardants, thixotropic agents, coupling agents, fluidity improvers and the like. Examples of the inorganic filler include silica powder such as spherical or crushed fused silica and crystalline silica, alumina powder, glass powder, mica, talc, calcium carbonate, alumina, hydrated alumina, and the like. A preferable blending amount when used for a stopper is 70% by weight or more, and more preferably 80% by weight or more.
  顔料としては、有機系又は、無機系の体質顔料、鱗片状顔料等がある。揺変性付与剤としては、ヒマシ油系、脂肪族アマイドワックス、酸化ポリエチレンワックス、有機ベントナイト系等を挙げることができる。 Examples of the soot pigment include organic or inorganic extender pigments and scaly pigments. Examples of the thixotropic agent include castor oil, aliphatic amide wax, oxidized polyethylene wax, and organic bentonite.
 更に必要に応じて、本発明の樹脂組成物には、カルナバワックス、OPワックス等の離型剤、γ‐グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック等の着色剤、三酸化アンチモン等の難燃剤、ステアリン酸カルシウム等の滑剤等を使用できる。 Further, if necessary, the resin composition of the present invention includes a release agent such as carnauba wax and OP wax, a coupling agent such as γ-glycidoxypropyltrimethoxysilane, a colorant such as carbon black, and trioxide. Flame retardants such as antimony and lubricants such as calcium stearate can be used.
 本発明のエポキシ樹脂組成物は、有機溶剤に一部または全部を溶解させたワニス状態とした後に、ガラスクロス、アラミド不織布、液晶ポリマー等のポリエステル不織布、等の繊維状物に含浸させた後に溶剤除去を行い、プリプレグとすることができる。無機充填材等の溶剤不溶分を含む場合は、それを溶解させる必要はないが、懸濁状態にして、可級的に均一の溶液とすることが望ましい。また、場合により銅箔、ステンレス箔、ポリイミドフィルム、ポリエステルフィルム等のシート状物上に塗布することにより積層物とすることができる。 The epoxy resin composition of the present invention is a solvent after impregnating a fibrous material such as a glass cloth, an aramid nonwoven fabric, a polyester nonwoven fabric such as a liquid crystal polymer, etc. after making it partially or completely dissolved in an organic solvent. It can be removed to form a prepreg. When a solvent-insoluble component such as an inorganic filler is included, it is not necessary to dissolve it, but it is desirable to make it a suspended state to obtain a uniform solution. Moreover, it can be set as a laminated body by apply | coating on sheet-like materials, such as copper foil, stainless steel foil, a polyimide film, and a polyester film depending on the case.
 本発明のエポキシ樹脂組成物を加熱硬化させれば、エポキシ樹脂硬化物とすることができ、この硬化物は低吸湿性、高耐熱性、密着性、難燃性等の点で優れたものとなる。硬化物は、エポキシ樹脂組成物を注型、圧縮成形、トランスファー成形等の方法により、成形加工して得ることができる。この際の温度は通常、120~220℃の範囲である。本発明のエポキシ樹脂組成物は封止材用として特に優れる。また、本発明の半導体装置は、このエポキシ樹脂組成物で半導体素子を封止することにより得られる。 If the epoxy resin composition of the present invention is cured by heating, an epoxy resin cured product can be obtained, and this cured product is excellent in terms of low hygroscopicity, high heat resistance, adhesion, flame retardancy, and the like. Become. The cured product can be obtained by molding the epoxy resin composition by a method such as casting, compression molding or transfer molding. The temperature at this time is usually in the range of 120 to 220 ° C. The epoxy resin composition of the present invention is particularly excellent for a sealing material. Moreover, the semiconductor device of this invention is obtained by sealing a semiconductor element with this epoxy resin composition.
 合成例、実施例及び比較例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。特に断りがない限り「部」は重量部を表し、「%」は重量%を表す。また、測定方法はそれぞれ以下の方法により測定した。 The present invention will be specifically described with reference to synthesis examples, examples and comparative examples. However, the present invention is not limited to these. Unless otherwise specified, “parts” represents parts by weight, and “%” represents% by weight. Moreover, the measuring method was measured with the following method, respectively.
1)エポキシ当量の測定
 電位差滴定装置を用い、溶剤としてクロロホルムを使用し、臭素化テトラエチルアンモニウム酢酸溶液を加え、電位差滴定装置にて0.1mol/L過塩素酸-酸溶液を用いて測定した。
1) Measurement of epoxy equivalent Using a potentiometric titrator, chloroform was used as a solvent, a brominated tetraethylammonium acetic acid solution was added, and the potential was measured using a 0.1 mol / L perchloric acid-acid solution.
2)融点
 示差走査熱量分析装置(エスアイアイ・ナノテクノロジー社製 EXSTAR6000 DSC/6200)により、昇温速度5℃/分の条件で、DSCピーク温度を求めた。すなわち、このDSCピーク温度をエポキシ樹脂の融点とした。
2) Melting | fusing point DSC peak temperature was calculated | required on the conditions of the temperature increase rate of 5 degree-C / min with the differential scanning calorimetry apparatus (SII nanotechnology company EXSTAR6000 DSC / 6200). That is, this DSC peak temperature was taken as the melting point of the epoxy resin.
3)溶融粘度
 BROOKFIELD製、CAP2000H型回転粘度計を用いて、150℃にて測定した。
3) Melt viscosity The viscosity was measured at 150 ° C. using a CAP2000H rotational viscometer manufactured by BROOKFIELD.
4)全塩素
 試料1.0gをブチルカルビトール25mlに溶解後、1N-KOHプロピレングリコール溶液25mlを加え10分間加熱還流した後、室温まで冷却し、さらに80%アセトン水100mlを加え、0.002N-AgNO水溶液で電位差滴定を行うことにより測定した。
4) Total chlorine 1.0 g of sample was dissolved in 25 ml of butyl carbitol, 25 ml of 1N-KOH propylene glycol solution was added and heated to reflux for 10 minutes, then cooled to room temperature, and further 100 ml of 80% acetone water was added, and 0.002N -Measured by potentiometric titration with AgNO 3 aqueous solution.
5)GPC測定
 本体(東ソー株式会社製、HLC-8220GPC)にカラム(東ソー株式会社製、TSKgelG4000HXL、TSKgelG3000HXL、TSKgelG2000HXL)を直列に備えたものを使用し、カラム温度は40℃にした。また、溶離液にはテトラヒドロフラン(THF)を使用し、1mL/分の流速とし、検出器は示差屈折率検出器を使用した。測定試料はサンプル0.1gを10mLのTHFに溶解し、マイクロフィルターで濾過したものを50μL使用した。データ処理は、東ソー株式会社製GPC-8020モデルIIバージョン6.00を使用した。
5) GPC measurement A column (Tosoh Corporation, TSKgel G4000HXL, TSKgel G3000HXL, TSKgel G2000HXL) was used in series with the main body (Tosoh Corporation, HLC-8220GPC), and the column temperature was 40 ° C. Tetrahydrofuran (THF) was used as the eluent, the flow rate was 1 mL / min, and a differential refractive index detector was used as the detector. As a measurement sample, 50 μL of 0.1 g of sample dissolved in 10 mL of THF and filtered through a microfilter was used. For data processing, GPC-8020 Model II version 6.00 manufactured by Tosoh Corporation was used.
6)ガラス転移点(Tg)
 熱機械測定装置(エスアイアイ・ナノテクノロジー社製 EXSTAR6000TMA/6100)により、昇温速度10℃/分の条件でTgを求めた。
6) Glass transition point (Tg)
Tg was determined under the condition of a temperature increase rate of 10 ° C./min using a thermomechanical measuring device (EXSTAR 6000TMA / 6100 manufactured by SII Nano Technology).
7)5%重量減少温度(Td5)、残炭率
 熱重量/示差熱分析装置(エスアイアイ・ナノテクノロジー社製 EXSTAR6000TG/DTA6200)を用いて、窒素雰囲気下、昇温速度10℃/分の条件において、5%重量減少温度(Td5)を測定した。
 また、上記条件で、700℃での重量減少を測定し、無機フィラーを除いた樹脂成分に換算することで、700℃における樹脂成分の残炭率として算出した。
7) 5% weight loss temperature (Td5), residual charcoal rate Thermogravimetric / differential thermal analyzer (EXSTAR 6000TG / DTA6200, manufactured by SII NanoTechnology Co., Ltd.) 5% weight loss temperature (Td5) was measured.
Moreover, the weight reduction | decrease in 700 degreeC was measured on the said conditions, and it computed as a residual carbon rate of the resin component in 700 degreeC by converting into the resin component except an inorganic filler.
8)PTI値(600V)
 IEC60112に準拠し、樹脂硬化物(20×20×3mm)を試験片とし実施した。電極は白金で、先端角30度のものを使用し、電極配置は、4.0mm、対向角度60度とした。電解液は0.1%塩化アンモニウム溶液を使用した。試験片の状態調整を23℃、50%RHで8時間行った後に、23℃、50%RHの環境下で、600Vの電圧を印加し、電解液を滴下し、試験面がトラッキング破壊を生ずるまでの滴下数を求めた。また、5回試験を実施し、600Vにて50滴を超えてもトラッキング破壊を生じない数を測定した。測定装置は、ヤマヨ試験器(有)製HAT-112-3を用いた。
8) PTI value (600V)
In accordance with IEC60112, a cured resin (20 × 20 × 3 mm) was used as a test piece. The electrode was platinum with a tip angle of 30 degrees, and the electrode arrangement was 4.0 mm and the facing angle was 60 degrees. The electrolyte used was a 0.1% ammonium chloride solution. After adjusting the condition of the test piece for 8 hours at 23 ° C. and 50% RH, a voltage of 600 V was applied in an environment of 23 ° C. and 50% RH, and the electrolyte was dropped, and the test surface caused tracking failure. The number of drops was determined. Moreover, the test was implemented 5 times and the number which does not produce tracking destruction even if it exceeded 50 drops at 600V was measured. As a measuring device, HAT-112-3 manufactured by Yamayo Tester Co., Ltd. was used.
合成例1
 1000mlの4口フラスコに、4,4’-ジヒドロキシビフェニル75.0g、ジエチレングリコールジメチルエーテル115.5g、4,4’-ビスクロロメチルビフェニル40.5gを仕込み、窒素気流下、攪拌しながら170℃まで昇温して20時間反応させた。反応後、ジエチレングリコールジメチルエーテルを46.4g回収した。この反応混合物に、エピクロルヒドリン446.5gを追加し、減圧下(約130Torr)、62℃にて48%水酸化ナトリウム水溶液69.4gを4時間かけて滴下した。この間、生成する水はエピクロルヒドリンとの共沸により系外に除き、留出したエピクロルヒドリンは系内に戻した。滴下終了後、さらに1時間反応を継続した。その後、エピクロルヒドリンを留去し、メチルイソブチルケトンを加えた後、水洗により塩を除き、濾過、水洗を行なった後、メチルイソブチルケトンを減圧留去し、エポキシ樹脂141gを得た(エポキシ樹脂1)。このエポキシ樹脂のエポキシ当量は198であった。また、このエポキシ樹脂のDSC測定結果におけるピーク温度は126℃であり、更には、150℃における溶融粘度は0.25Pa・sであった。
Synthesis example 1
In a 1000 ml four-necked flask, 75.0 g of 4,4′-dihydroxybiphenyl, 115.5 g of diethylene glycol dimethyl ether and 40.5 g of 4,4′-bischloromethylbiphenyl were charged, and the temperature was raised to 170 ° C. with stirring in a nitrogen stream. The reaction was allowed to warm for 20 hours. After the reaction, 46.4 g of diethylene glycol dimethyl ether was recovered. To this reaction mixture, 446.5 g of epichlorohydrin was added, and 69.4 g of a 48% aqueous sodium hydroxide solution was added dropwise over 4 hours at 62 ° C. under reduced pressure (about 130 Torr). During this time, the generated water was removed from the system by azeotropy with epichlorohydrin, and the distilled epichlorohydrin was returned to the system. After completion of the dropwise addition, the reaction was continued for another hour. Thereafter, epichlorohydrin was distilled off, methyl isobutyl ketone was added, the salt was removed by washing with water, filtration and washing were performed, and then methyl isobutyl ketone was distilled off under reduced pressure to obtain 141 g of epoxy resin (epoxy resin 1). . The epoxy equivalent of this epoxy resin was 198. Moreover, the peak temperature in the DSC measurement result of this epoxy resin was 126 ° C., and the melt viscosity at 150 ° C. was 0.25 Pa · s.
合成例2
 1Lの4口フラスコに、フェノールを500g(ジシクロペンタジエンに対して8.0倍モル)、酸触媒として三フッ化ホウ素エーテル錯体9.5gを仕込み120℃に昇温した。次に、120℃にて攪拌しながら、ジシクロペンタジエン88gを6時間かけて滴下し反応させ、さらに130℃にて4時間熟成を行った後、中和を行い、フェノール回収を行った。続いて、MIBK300gに溶解させ、80℃にて4回水洗を行い、MIBKを減圧留去した後、多価ヒドロキシ化合物179gを得た。その水酸基当量は178g/eq.、軟化点は93℃、重量平均分子量は422であった。 
Synthesis example 2
A 1 L 4-necked flask was charged with 500 g of phenol (8.0 moles relative to dicyclopentadiene) and 9.5 g of boron trifluoride ether complex as an acid catalyst, and the temperature was raised to 120 ° C. Next, while stirring at 120 ° C., 88 g of dicyclopentadiene was added dropwise over 6 hours to react, and after aging at 130 ° C. for 4 hours, neutralization was performed and phenol was recovered. Subsequently, the product was dissolved in 300 g of MIBK, washed with water 4 times at 80 ° C., and MIBK was distilled off under reduced pressure to obtain 179 g of a polyvalent hydroxy compound. Its hydroxyl equivalent is 178 g / eq. The softening point was 93 ° C. and the weight average molecular weight was 422.
合成例3
 四つ口セパラブルフラスコに合成例2で得た樹脂150g、エピクロルヒドリン398g、ジエチレングリコールジメチルエーテル59gを入れ撹拌溶解させた。均一に溶解後、130mmHgの減圧下65℃に保ち、48%水酸化ナトリウム水溶液68.2gを4時間かけて滴下し、この滴下中に還流留出した水とエピクロルヒドリンを分離槽で分離しエピクロルヒドリンは反応容器に戻し、水は系外に除いて反応した。反応終了後、濾過により生成した塩を除き、更に水洗したのちエピクロルヒドリンを留去し、エポキシ樹脂157gを得た(エポキシ樹脂2)。得られた樹脂のエポキシ当量は243g/eq.、軟化点は84℃であった。
Synthesis example 3
In a four-neck separable flask, 150 g of the resin obtained in Synthesis Example 2, 398 g of epichlorohydrin, and 59 g of diethylene glycol dimethyl ether were added and dissolved by stirring. After uniform dissolution, the mixture was kept at 65 ° C. under a reduced pressure of 130 mmHg, and 68.2 g of 48% aqueous sodium hydroxide solution was added dropwise over 4 hours, and water and epichlorohydrin refluxed during the addition were separated in a separation tank, and epichlorohydrin was The mixture was returned to the reaction vessel, and water was removed from the system to react. After completion of the reaction, the salt produced by filtration was removed, and after further washing with water, epichlorohydrin was distilled off to obtain 157 g of epoxy resin (epoxy resin 2). The epoxy equivalent of the obtained resin was 243 g / eq. The softening point was 84 ° C.
合成例4
 2000mlの4口フラスコに、ダイマージオール(CRODA社製Pripol 20
33、水酸基当量270g/eq.)300.0g、エピクロルヒドリン308.3g、トルエン120.0g、水6.2gを仕込み、窒素気流下、撹拌しながら50℃まで昇温して溶解させた。溶解後、ベンジルトリメチルアンモニウムクロリド6.0gを追加し、95.5%固形水酸化カリウムを13.6g、分割して2時間かけて投入した。更に2.5時間反応後、トルエン300g、水387.5g追加し、分液により生成した塩を除き、エピクロルヒドリン、トルエン、水を留去し、トルエン543.2gを加えて80℃にて溶解した。その後、48.8%水酸化カリウム水溶液12.3gを加え精製反応を行い、中和、水洗、濾過の後、トルエンを留去して液状エポキシ樹脂である改質剤aを325.9g得た。改質剤aのエポキシ当量は360g/eq.、25℃での粘度は243Pa・sであった。また、Td5は、324℃であった。
Synthesis example 4
In a 2000 ml four-necked flask, dimer diol (Pripol 20 manufactured by CRODA) was added.
33, hydroxyl group equivalent 270 g / eq. ) 300.0 g, epichlorohydrin 308.3 g, toluene 120.0 g, and water 6.2 g were charged, and the mixture was heated to 50 ° C. with stirring in a nitrogen stream and dissolved. After dissolution, 6.0 g of benzyltrimethylammonium chloride was added, and 13.6 g of 95.5% solid potassium hydroxide was divided and added over 2 hours. After a further 2.5 hours of reaction, 300 g of toluene and 387.5 g of water were added, the salt produced by the liquid separation was removed, epichlorohydrin, toluene and water were distilled off, and 543.2 g of toluene was added and dissolved at 80 ° C. . Thereafter, 12.3 g of a 48.8% potassium hydroxide aqueous solution was added to carry out a purification reaction. After neutralization, washing with water and filtration, toluene was distilled off to obtain 325.9 g of modifier a which is a liquid epoxy resin. . The epoxy equivalent of modifier a is 360 g / eq. The viscosity at 25 ° C. was 243 Pa · s. Moreover, Td5 was 324 degreeC.
 実施例で使用した略号の説明は以下のとおりである。
(エポキシ樹脂)
 エポキシ樹脂1;合成例1で得たエポキシ樹脂
 エポキシ樹脂2;o-クレゾールノボラック型エポキシ樹脂(エポキシ当量200、軟化点65℃、新日鉄住金化学株式会社製)
 エポキシ樹脂3;合成例3で得たエポキシ樹脂
(改質剤)
 改質剤a;合成例4で得た改質剤
 改質剤b;ポリブチルアクリレートをソフト成分とし、ポリメチレンメタクリレートをハード成分とするABA構造のラジカル制御重合アクリルブロック共重合体(NANOSTRENGTH M51、アルケマ株式会社製、Td5;291℃)
 改質剤c;インデンオリゴマー(IP-100;新日鉄住金化学株式会社製、軟化点101℃、150℃、溶融粘度1.3Pa・s、Td5;243℃)
(硬化剤)
 硬化剤1;トリフェノールメタン型多価ヒドロキシ樹脂(TPM-100、群栄化学工業製、OH当量 97.5、軟化点 105℃)
 硬化剤2;フェノールノボラック型多価ヒドロキシ樹脂(BRG-557、群栄化学工業製、OH当量 105、軟化点 80℃)
(硬化促進剤)
 2-フェニル-4,5-ジヒドロキシメチルイミダゾール(2PHZ-PW、四国化成製)
(その他)
シリカフィラー;球状シリカ(FB-8S、電気化学工業株式会社製)
カルナバワックス;(TOWAX171、東亜化成株式会社製)
カーボンブラック;(MA-100、三菱化学株式会社製)
The abbreviations used in the examples are as follows.
(Epoxy resin)
Epoxy resin 1; epoxy resin obtained in Synthesis Example 1 epoxy resin 2; o-cresol novolac type epoxy resin (epoxy equivalent 200, softening point 65 ° C., manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.)
Epoxy resin 3; epoxy resin obtained in Synthesis Example 3 (modifier)
Modifier a: Modifier obtained in Synthesis Example 4 Modifier b: ABA-structured radically controlled acrylic block copolymer (NANOSTRENGTH M51, polybutyl acrylate as a soft component and polymethylene methacrylate as a hard component, Arkema Co., Ltd., Td5; 291 ° C)
Modifier c: Indene oligomer (IP-100; manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., softening point 101 ° C., 150 ° C., melt viscosity 1.3 Pa · s, Td 5; 243 ° C.)
(Curing agent)
Curing agent 1: Triphenolmethane type polyvalent hydroxy resin (TPM-100, manufactured by Gunei Chemical Industry Co., Ltd., OH equivalent 97.5, softening point 105 ° C.)
Curing agent 2; phenol novolac type polyvalent hydroxy resin (BRG-557, manufactured by Gunei Chemical Industry Co., Ltd., OH equivalent 105, softening point 80 ° C.)
(Curing accelerator)
2-Phenyl-4,5-dihydroxymethylimidazole (2PHZ-PW, manufactured by Shikoku Chemicals)
(Other)
Silica filler; spherical silica (FB-8S, manufactured by Denki Kagaku Kogyo Co., Ltd.)
Carnauba wax; (TOWAX171, manufactured by Toa Kasei Co., Ltd.)
Carbon black; (MA-100, manufactured by Mitsubishi Chemical Corporation)
実施例1
 エポキシ樹脂成分として、合成例1で得られたエポキシ樹脂1;64.0g、改質剤a;5.1g、硬化剤1 32.9gを用いた。また、硬化促進剤1.0gを用い、無機充填剤としてシリカフィラー498gを用いた。更に、離型剤としてカルナバワックス0.5g、着色剤としてカーボンブラック0.5gを加え、これらを混練してエポキシ樹脂組成物を得た。このエポキシ樹脂組成物を用いて、成形温度175℃、3分。ポストキュア温度200℃、5時間の条件にて硬化物試験片を得た。
Example 1
As the epoxy resin component, epoxy resin 1 obtained in Synthesis Example 1; 64.0 g, modifier a; 5.1 g, and curing agent 1 32.9 g were used. Further, 1.0 g of a curing accelerator was used, and 498 g of silica filler was used as an inorganic filler. Furthermore, 0.5 g of carnauba wax as a release agent and 0.5 g of carbon black as a colorant were added, and these were kneaded to obtain an epoxy resin composition. Using this epoxy resin composition, a molding temperature of 175 ° C. for 3 minutes. A cured product test piece was obtained at a post-cure temperature of 200 ° C. for 5 hours.
実施例2~5、比較例1~5
 実施例1と同様に、エポキシ樹脂、改質剤、硬化剤、無機充填剤及び硬化促進剤とその他の添加剤を表1に示す配合割合で混練してエポキシ樹脂組成物を調製した。そして、成形温度175℃、3分。ポストキュア温度200℃、5時間の条件にて硬化物試験片を得た。なお、表中の数値は配合における重量部を示す。
Examples 2-5, Comparative Examples 1-5
Similarly to Example 1, an epoxy resin, a modifier, a curing agent, an inorganic filler, a curing accelerator, and other additives were kneaded at a blending ratio shown in Table 1 to prepare an epoxy resin composition. And molding temperature 175 ° C., 3 minutes. A cured product test piece was obtained at a post-cure temperature of 200 ° C. for 5 hours. In addition, the numerical value in a table | surface shows the weight part in a mixing | blending.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 これらの結果から明らかなとおり、実施例で得られるエポキシ樹脂組成物は、200℃以上のガラス転移温度(Tg)を有する耐熱性と高い耐トラッキング性を併せ持つことが分かった。 As is clear from these results, it was found that the epoxy resin compositions obtained in the examples had both heat resistance having a glass transition temperature (Tg) of 200 ° C. or higher and high tracking resistance.
 本発明によれば、耐トラッキング性に優れ、耐熱性とのバランスおよび熱分解安定性にも優れたエポキシ樹脂硬化物が得られ、半導体封止材料、特に車載用パワー半導体封止材料として好適である。  According to the present invention, an epoxy resin cured product having excellent tracking resistance, a balance with heat resistance and excellent thermal decomposition stability can be obtained, and it is suitable as a semiconductor sealing material, particularly as an automotive power semiconductor sealing material. is there.

Claims (6)

  1.  下記成分(A)~(D);
    (A)下記一般式(1)で表される芳香族系エポキシ樹脂、
    (B)窒素気流下、10℃/分の昇温速度におけるTG/DTA測定から求めた5%重量減少温度が260℃以上である非芳香族性エポキシ樹脂または非シリコーン系のゴムから選ばれる改質剤、
    (C)硬化剤、及び
    (D)硬化促進剤
    を必須成分とするエポキシ樹脂組成物であって、成分(A)~(D)の合計に対し、成分(B)を1~50重量%含有することを特徴とするエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     但し、nは0~20の数を示し、Gはグリシジル基を示す。
    The following components (A) to (D);
    (A) an aromatic epoxy resin represented by the following general formula (1),
    (B) A modification selected from a non-aromatic epoxy resin or a non-silicone rubber having a 5% weight reduction temperature of 260 ° C. or higher obtained from a TG / DTA measurement at a heating rate of 10 ° C./min under a nitrogen stream. Texture agent,
    An epoxy resin composition containing (C) a curing agent and (D) a curing accelerator as essential components, and containing 1 to 50% by weight of component (B) with respect to the total of components (A) to (D) An epoxy resin composition characterized by comprising:
    Figure JPOXMLDOC01-appb-C000001
    Here, n represents a number from 0 to 20, and G represents a glycidyl group.
  2.  前記成分(B)が、炭素数15~64の2価脂肪族カルボン酸のグリシジルエステル類または炭素数15~64の2価脂肪族アルコールのグリシジルエーテル類より選ばれる少なくとも1種類のエポキシ樹脂を含む2官能エポキシ樹脂からなる改質剤である請求項1に記載のエポキシ樹脂組成物。 The component (B) contains at least one epoxy resin selected from glycidyl esters of divalent aliphatic carboxylic acids having 15 to 64 carbon atoms or glycidyl ethers of divalent aliphatic alcohols having 15 to 64 carbon atoms. The epoxy resin composition according to claim 1, which is a modifier composed of a bifunctional epoxy resin.
  3.  前記成分(B)が、スチレン系ゴムまたはアクリル系ゴムからなるゴム系の改質剤である請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the component (B) is a rubber-based modifier made of styrene rubber or acrylic rubber.
  4.  前記成分(C)が、下記一般式(2)で表されるフェノール樹脂を含む硬化剤である請求項2または請求項3に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
     但し、Rは水素原子又は炭素数1~6の炭化水素基を示し、mは0又は1の数を示す。
    The epoxy resin composition according to claim 2 or 3, wherein the component (C) is a curing agent containing a phenol resin represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002
    R represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and m represents a number of 0 or 1.
  5.  請求項1~4のいずれか一項に記載のエポキシ樹脂組成物を硬化してなるエポキシ樹脂硬化物。 An epoxy resin cured product obtained by curing the epoxy resin composition according to any one of claims 1 to 4.
  6.  請求項1~4のいずれか一項に記載のエポキシ樹脂組成物で、半導体素子を封止した半導体装置。   A semiconductor device in which a semiconductor element is sealed with the epoxy resin composition according to any one of claims 1 to 4.
PCT/JP2019/006964 2018-03-09 2019-02-25 Epoxy resin composition and cured product of same WO2019171993A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11202008706UA SG11202008706UA (en) 2018-03-09 2019-02-25 Epoxy resin composition and cured product of same
CN201980017522.3A CN111819242B (en) 2018-03-09 2019-02-25 Epoxy resin composition, cured product thereof, and semiconductor device
JP2020504928A JP7252196B2 (en) 2018-03-09 2019-02-25 Epoxy resin composition and cured product thereof
KR1020207028594A KR20200130372A (en) 2018-03-09 2019-02-25 Epoxy resin composition and cured product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018042759 2018-03-09
JP2018-042759 2018-03-09

Publications (1)

Publication Number Publication Date
WO2019171993A1 true WO2019171993A1 (en) 2019-09-12

Family

ID=67845643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006964 WO2019171993A1 (en) 2018-03-09 2019-02-25 Epoxy resin composition and cured product of same

Country Status (6)

Country Link
JP (1) JP7252196B2 (en)
KR (1) KR20200130372A (en)
CN (1) CN111819242B (en)
SG (1) SG11202008706UA (en)
TW (1) TWI806976B (en)
WO (1) WO2019171993A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074517A1 (en) * 2009-12-14 2011-06-23 新日鐵化学株式会社 Epoxy resin, process for production thereof, epoxy resin composition using same, and cured product
JP2013209503A (en) * 2012-03-30 2013-10-10 Nippon Steel & Sumikin Chemical Co Ltd Epoxy resin composition and cured product thereof
JP2016074805A (en) * 2014-10-06 2016-05-12 新日鉄住金化学株式会社 Resin composition for sealing semiconductor and semiconductor device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03151674A (en) 1989-11-08 1991-06-27 Sharp Corp Semiconductor device
JP4029456B2 (en) 1998-01-29 2008-01-09 日立化成工業株式会社 Flame-retardant non-halogen epoxy resin composition, prepreg using the same, and laminate for electric wiring board
JP2003020325A (en) 2001-07-06 2003-01-24 Asahi Kasei Corp Semiconductor chip sealing medium
JP2005194384A (en) * 2004-01-07 2005-07-21 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JP2005213299A (en) 2004-01-27 2005-08-11 Matsushita Electric Works Ltd Resin composition for sealing semiconductor and semiconductor device using the same
JP2008143950A (en) 2006-12-06 2008-06-26 Nitto Denko Corp Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP2009275146A (en) 2008-05-15 2009-11-26 Nitto Denko Corp Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP5507477B2 (en) * 2011-01-20 2014-05-28 パナソニック株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2013203865A (en) 2012-03-28 2013-10-07 Kyocera Chemical Corp Resin composition for sealing semiconductor and semiconductor device
JP6161505B2 (en) * 2013-10-16 2017-07-12 株式会社クラレ Adhesive composition, and adhesive and adhesive processed product using the same
JP6406847B2 (en) * 2014-03-26 2018-10-17 新日鉄住金化学株式会社 Modified polyvalent hydroxy resin, epoxy resin, epoxy resin composition and cured product thereof
JP2017095524A (en) * 2014-03-28 2017-06-01 新日鉄住金化学株式会社 Epoxy resin, epoxy resin composition and cured article
JP6808318B2 (en) * 2015-12-28 2021-01-06 日鉄ケミカル&マテリアル株式会社 Manufacturing method of multivalent hydroxy resin and epoxy resin
TWI728084B (en) * 2016-03-30 2021-05-21 日商日鐵化學材料股份有限公司 Polyvalent hydroxy resin, its manufacturing method, epoxy resin, epoxy resin composition and its hardened product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074517A1 (en) * 2009-12-14 2011-06-23 新日鐵化学株式会社 Epoxy resin, process for production thereof, epoxy resin composition using same, and cured product
JP2013209503A (en) * 2012-03-30 2013-10-10 Nippon Steel & Sumikin Chemical Co Ltd Epoxy resin composition and cured product thereof
JP2016074805A (en) * 2014-10-06 2016-05-12 新日鉄住金化学株式会社 Resin composition for sealing semiconductor and semiconductor device

Also Published As

Publication number Publication date
JP7252196B2 (en) 2023-04-04
SG11202008706UA (en) 2020-10-29
KR20200130372A (en) 2020-11-18
JPWO2019171993A1 (en) 2021-02-18
CN111819242A (en) 2020-10-23
TWI806976B (en) 2023-07-01
CN111819242B (en) 2023-09-26
TW201938681A (en) 2019-10-01

Similar Documents

Publication Publication Date Title
JP5320130B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
TWI642690B (en) Epoxy resin and method for manufacturing the same, epoxy resin composition, and prepreg and cured product thereof
JP2013209503A (en) Epoxy resin composition and cured product thereof
WO2017170703A1 (en) Polyhydroxy resin, method for producing same, epoxy resin, epoxy resin composition and cured product of epoxy resin composition
JP5548562B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP2015003972A (en) Epoxy resin, epoxy resin composition and hardened product of the composition
JP7320942B2 (en) Epoxy resin, epoxy resin composition and cured product
KR101640856B1 (en) Naphtol resin, epoxy resin, epoxy resin composition and cured product thereof
JP2019214736A (en) Polyvalent hydroxy resins, epoxy resins, methods for producing them, epoxy resin compositions, and cured products thereof
WO2021201046A1 (en) Polyhydric hydroxy resin, epoxy resin, method for producing same, epoxy resin composition using same and cured product
JP5734603B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP7252196B2 (en) Epoxy resin composition and cured product thereof
JP2006348064A (en) Epoxy resin, method for producing the same, epoxy resin composition using the same and its cured material
JP7277136B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP2023033883A (en) Epoxy resin, its composition and cured product
JP2022007036A (en) Epoxy resin composition and cured product thereof
WO2023276851A1 (en) Epoxy resin, epoxy resin composition, and cured product of same
JP5548792B2 (en) Polyvalent hydroxy resin, production method thereof, epoxy resin composition and cured product thereof
WO2022186292A1 (en) Epoxy resin, method for producing same, epoxy resin composition using same, and cured product
JP2008231071A (en) New polyvalent hydroxy compound, and epoxy resin composition and its cured product
TW202337945A (en) Epoxy resin, epoxy resin composition, and epoxy resin cured product
TW202340293A (en) Epoxy resin, polyhydric hydroxy resin, epoxy resin composition, cured epoxy resin product, and method for producing polyhydric hydroxy resin
JP2022154693A (en) Epoxy resin, epoxy resin composition, and cured material
JP2022093044A (en) Polyhydric hydroxy resin, epoxy resin, production methods of them, and epoxy resin composition and cured product that employ them
JP2022011688A (en) Resin composition and cured product thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19763269

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504928

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207028594

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19763269

Country of ref document: EP

Kind code of ref document: A1