JPWO2008050879A1 - Epoxy resin composition and cured product - Google Patents

Epoxy resin composition and cured product Download PDF

Info

Publication number
JPWO2008050879A1
JPWO2008050879A1 JP2008541044A JP2008541044A JPWO2008050879A1 JP WO2008050879 A1 JPWO2008050879 A1 JP WO2008050879A1 JP 2008541044 A JP2008541044 A JP 2008541044A JP 2008541044 A JP2008541044 A JP 2008541044A JP WO2008050879 A1 JPWO2008050879 A1 JP WO2008050879A1
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
weight
parts
modifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008541044A
Other languages
Japanese (ja)
Inventor
山田 尚史
尚史 山田
秀安 朝蔭
秀安 朝蔭
梶 正史
正史 梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Tohto Kasei Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Tohto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd, Tohto Kasei Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Publication of JPWO2008050879A1 publication Critical patent/JPWO2008050879A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Abstract

エポキシ樹脂、エポキシ樹脂用硬化剤、改質剤を含有するエポキシ樹脂組成物において、改質剤成分として炭素数C10〜C20の芳香族骨格を含有し、且つ融点が40〜120℃である単官能結晶性エポキシ樹脂(B)をエポキシ樹脂(A)100重量部に対して、2〜50重量部含有することを特徴とするエポキシ樹脂組成物とすることにより、優れた流動性が発揮され、耐熱性、耐湿性、低熱膨張性、難燃性及び低応力性(低弾性)を示し、半導体封止材、成形材料、積層材料、粉体塗料及び接着材料等に有用なエポキシ樹脂組成物を得ることができる。In the epoxy resin composition containing an epoxy resin, a curing agent for epoxy resin, and a modifier, a monofunctional compound containing an aromatic skeleton having C10 to C20 carbon atoms as a modifier component and having a melting point of 40 to 120 ° C. By making the epoxy resin composition characterized by containing 2 to 50 parts by weight of the crystalline epoxy resin (B) with respect to 100 parts by weight of the epoxy resin (A), excellent fluidity is exhibited and heat resistance , Moisture resistance, low thermal expansion, flame retardancy, and low stress (low elasticity), and an epoxy resin composition useful for semiconductor sealing materials, molding materials, laminated materials, powder coating materials, adhesive materials, etc. is obtained. be able to.

Description

本発明は、成形時の流動性に優れるとともに、耐熱性、耐湿性、低熱膨張性、難燃性及び低応力性(低弾性)等に優れた硬化物を与えるエポキシ樹脂組成物及びその硬化物に関するものである。   The present invention provides an epoxy resin composition that gives excellent cured products with excellent fluidity during molding, and has excellent heat resistance, moisture resistance, low thermal expansion, flame retardancy, low stress (low elasticity), and the like, and cured products thereof It is about.

近年、特に先端材料分野の進歩にともない、より高性能なベース樹脂の開発が求められている。例えば、半導体封止の分野においては、近年の高密度実装化に対応したパッケージの薄形化、大面積化、更には表面実装方式の普及により、パッケージクラックの問題が深刻化しており、ベース樹脂には、耐湿性、耐熱性、金属基材との接着性等の向上が強く求められている。更に、環境負荷低減の観点から、ハロゲン系難燃剤排除の動きがあり、より難燃性に優れたベース樹脂が求められている。
しかしながら、従来のエポキシ樹脂系材料には、これらの要求を十分に満足するものは未だ知られていない。例えば、周知のビスフェノール型エポキシ樹脂は、常温で液状であり、作業性に優れていることや、硬化剤、添加剤等との混合が容易であることから広く使用されているが、耐熱性、耐湿性の点で問題がある。また、耐熱性を改良したものとして、フェノールノボラック型エポキシ樹脂が知られているが、耐湿性、耐衝撃性、難燃性に問題がある。
特許文献1にはフェニルフェノールとエピクロルヒドリンから得られるビフェニルグリシジルエーテルの製造方法が開示されているが用途に関する開示はない。また、o−フェニルフェノールのグリシジルエーテル化物は常温で液状であり、結晶性のp−フェニルフェノールのグリシジルエーテル化物と比較すると、半導体封止材料等の固形状態でのハンドリング性が必要とされる用途では問題がある。一方、耐熱性、耐湿性、低熱膨張性等を向上させるものとして、特許文献2、4、5には、ビフェニル構造を有するアラルキル型エポキシ樹脂を半導体封止材料に応用した例が開示されている。特許文献3にはナフタレン構造を有するアラルキル型エポキシ樹脂を使用する例が開示されている。しかしながら、特許文献2〜5に記載のエポキシ樹脂は耐熱性、耐湿性、低線膨張性等には優れるが、成形時の流動性において性能が十分ではない。
特開昭57−31679号公報 特開平11−140166号公報 特開2004−59792号公報 特開平4−173831号公報 特開2000−129092号公報
In recent years, particularly with the advancement of the advanced material field, development of higher performance base resins has been demanded. For example, in the field of semiconductor encapsulation, the problem of package cracking has become serious due to the reduction in the size and area of packages corresponding to recent high-density mounting, and the spread of surface mounting methods. There is a strong demand for improvement in moisture resistance, heat resistance, adhesion to metal substrates, and the like. Furthermore, from the viewpoint of reducing the environmental load, there is a movement to eliminate halogen-based flame retardants, and there is a demand for a base resin that is more excellent in flame retardancy.
However, it is not yet known that conventional epoxy resin-based materials sufficiently satisfy these requirements. For example, the well-known bisphenol type epoxy resin is in a liquid state at room temperature and is widely used because it is excellent in workability and easy to mix with a curing agent, an additive, etc. There is a problem in terms of moisture resistance. Further, phenol novolac type epoxy resins are known as improved heat resistance, but there are problems in moisture resistance, impact resistance and flame retardancy.
Patent Document 1 discloses a method for producing biphenyl glycidyl ether obtained from phenylphenol and epichlorohydrin, but there is no disclosure regarding use. In addition, the glycidyl etherified product of o-phenylphenol is in a liquid state at room temperature, and is required to be handled in a solid state such as a semiconductor encapsulating material as compared with a crystalline p-phenylphenol glycidyl etherified product. Then there is a problem. On the other hand, Patent Documents 2, 4, and 5 disclose examples in which an aralkyl type epoxy resin having a biphenyl structure is applied to a semiconductor sealing material as a material that improves heat resistance, moisture resistance, low thermal expansion, and the like. . Patent Document 3 discloses an example in which an aralkyl type epoxy resin having a naphthalene structure is used. However, the epoxy resins described in Patent Documents 2 to 5 are excellent in heat resistance, moisture resistance, low linear expansion, and the like, but their performance is not sufficient in flowability at the time of molding.
JP 57-31679 A JP-A-11-140166 JP 2004-57992 A Japanese Patent Laid-Open No. 4-173831 JP 2000-129092 A

本発明の目的は、成形時の流動性に優れるとともに、耐熱性、耐湿性、低熱膨張性、難燃性、低応力性(低弾性)等にも優れた硬化物を与えるエポキシ樹脂組成物及びその硬化物を提供することにある。
すなわち、本発明は、エポキシ樹脂(A)、エポキシ樹脂用硬化剤、及び改質剤を含有するエポキシ樹脂組成物において、改質剤成分として炭素数C10〜C20の芳香族骨格を含有し、且つ融点が40〜120℃である単官能結晶性エポキシ樹脂(B)をエポキシ樹脂(A)100重量部に対して、2〜50重量部含有することを特徴とするエポキシ樹脂組成物である。
また、本発明は、炭素数C10〜C20の芳香族骨格を含有し、且つ融点が40〜120℃である単官能結晶性エポキシ樹脂(B)が、下記一般式(1)、(2)又は(3)

Figure 2008050879
(ここで、R、Rは水素原子及び炭素数1〜4の炭化水素基から選ばれ、全てが同一でも異なっていてもよい。Gはグリシジル基を示す。)
から選ばれる少なくとも1種であることを特徴とする前記のエポキシ樹脂組成物である。
更に、本発明は、無機充填材の含有率が全体中の80〜95重量%である上記のエポキシ樹脂組成物及びこれらのエポキシ樹脂組成物を硬化してなるエポキシ樹脂硬化物である。An object of the present invention is to provide an epoxy resin composition that gives a cured product that is excellent in fluidity during molding and also excellent in heat resistance, moisture resistance, low thermal expansion, flame retardancy, low stress (low elasticity), and the like. It is to provide the cured product.
That is, the present invention is an epoxy resin (A), the epoxy resin curing agent, and the epoxy resin composition containing a modifier, containing an aromatic skeleton carbon number C 10 -C 20 as a modifier component And an epoxy resin composition comprising 2 to 50 parts by weight of a monofunctional crystalline epoxy resin (B) having a melting point of 40 to 120 ° C. with respect to 100 parts by weight of the epoxy resin (A). .
In the present invention, the monofunctional crystalline epoxy resin (B) containing an aromatic skeleton having C 10 to C 20 and having a melting point of 40 to 120 ° C. is represented by the following general formulas (1) and (2 Or (3)
Figure 2008050879
(Here, R 1 and R 2 are selected from a hydrogen atom and a hydrocarbon group having 1 to 4 carbon atoms, and all may be the same or different. G represents a glycidyl group.)
It is the said epoxy resin composition characterized by being at least 1 sort (s) chosen from these.
Furthermore, this invention is the epoxy resin hardened | cured material formed by hardening | curing said epoxy resin composition and these epoxy resin compositions whose content rate of an inorganic filler is 80 to 95 weight% in the whole.

以下、本発明について詳細に説明する。
本発明のエポキシ樹脂組成物は、エポキシ樹脂成分、エポキシ樹脂用硬化剤成分、及び改質剤を必須成分とし、且つこれら必須成分を主成分とする。
本発明に用いる改質剤成分は、炭素数C10〜C20の芳香族骨格を含有し、且つ融点が40〜120℃である単官能結晶性エポキシ樹脂(B)であり、エポキシ樹脂(A)100重量部に対して、2〜50重量部含有することが好ましく、3〜30重量部がより好ましい。50重量部より多いと耐熱性は低下し、また2重量部より少ないと本発明の目的とする成形時の流動性が十分に発現されない。
また、本発明に用いる改質剤成分は、結晶性の単官能エポキシ樹脂であることが望ましい。半導体封止材料等の用途では、固形状態で紛体混合した後、ロール混錬等を行いエポキシ樹脂組成物とするが、固形状態での紛体混合の際には固形樹脂を用いることがハンドリング性の観点で望ましい。さらには、結晶性樹脂は溶融時の低粘度性に優れることから、本発明に用いる改質剤成分は、結晶性の単官能エポキシ樹脂であることが最も望ましい。
また、上記単官能結晶性エポキシ樹脂(B)の融点は、40〜120℃であり、好ましくは50〜100℃である。融点が120℃を超える場合、成形加工温度を高温にしなければ低粘度性を実現できないため、エネルギーコスト的に不利になる。また、融点が40℃よりも低い場合、室温下一部の結晶が融解し、融着を起こして取り扱い上の問題が起こる。
また、上記単官能結晶性エポキシ樹脂(B)の120℃における溶融粘度は、0.001〜0.05Pa・sであり、好ましくは0.001〜0.03Pa・sである。溶融粘度が0.001Pa・sより低いと結晶化し難い傾向にあり生産上工業的に不利である。また0.05Pa・sより高いと無機充填材の高充填率化において不利になり、耐湿性、低線膨張性、難燃性等の性能の向上が望めない。
炭素数C10〜C20の芳香族骨格を含有する単官能結晶性エポキシ樹脂(B)として、ビフェニル骨格、ナフタレン骨格、アントラセン骨格、ターフェニル骨格、アセナフテン骨格、フルオレン骨格、カルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格等を有するエポキシ樹脂が挙げられる。
単官能結晶性エポキシ樹脂(B)は、単独で用いても2種類以上組み合わせてもよい。これらのエポキシ樹脂の中で、ハンドリング性、流動性、耐熱性、低線膨張性、難燃性の観点からは、特にビフェニル型モノエポキシ樹脂、ナフタレン型モノエポキシ樹脂及びカルバゾール型モノエポキシ樹脂を用いることが好ましい。
上記のような単官能結晶性エポキシ樹脂(B)は、フェノール性水酸基を有する化合物とエピクロロヒドリンとを反応させることにより合成することができる。この反応は、通常のエポキシ化反応と同様に行うことができる。例えば、モノフェノール化合物を過剰のエピクロルヒドリンに溶解した後、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物の存在下に、50〜150℃、好ましくは60〜120℃で1〜10時間反応させる方法が挙げられる。この際、アルカリ金属水酸化物の使用量は、モノフェノール化合物の水酸基1モルに対し0.8〜2モル、好ましくは0.9〜1.2モルである。反応終了後、過剰のエピクロルヒドリンを留去し、残留物をトルエン、メチルイソブチルケトン等の溶剤に溶解し、濾過し、水洗して無機塩を除去し、次いで溶剤を留去することにより、所望のエポキシ樹脂とすることができる。
また、反応の際、四級アンモニウム塩等を添加することができる。四級アンモニウム塩としては、例えばテトラメチルアンモニウムクロライド、テトラブチルアンモニウムクロライド、ベンジルトリエチルアンモニウムクロライド等が挙げられ、その添加量は、モノヒドロキシ化合物に対し0.1〜2.0重量%が好ましい。これより少ないと四級アンモニウム塩添加の効果が小さく、これより多いと難加水分解性塩素の生成が多くなり、高純度化が困難になる。更には、ジメチルスルホキシド、ジグライム等の極性溶媒を用いてもよく、その添加量は、芳香族窒素系樹脂に対し10〜200重量%が好ましい。これより少ないと添加の効果が小さく、これより多いと容積効率が低下し経済上好ましくない。反応終了後、過剰のエピクロルヒドリンを留去し、残留物をトルエン、メチルイソブチルケトン等の溶剤に溶解、濾過した後、水洗して無機塩を除去し、次いで溶剤を留去することにより単官能結晶性エポキシ樹脂(B)を得ることができる。
このようにして得られた単官能結晶性エポキシ樹脂(B)は、反応原料に由来する不純物や反応副生物に由来する不純物を少量含んでいてもよいが、それらを20重量%以下、好ましくは10重量%以下にとどめることがよい。また、単官能結晶性エポキシ樹脂(B)は樹脂中のエポキシ基がエーテル結合としてオリゴマー化したものが含まれても差し支えない。
本発明に用いるエポキシ樹脂及び単官能結晶性エポキシ樹脂(B)の加水分解性塩素量は、封止する電子部品の信頼性向上の観点から少ないものがよい。特に限定するものではないが、1000ppm以下が好ましく、更に好ましくは500ppm以下である。なお、本発明でいう加水分解性塩素とは、以下の方法により測定された値をいう。すなわち、試料0.5gをジオキサン30mlに溶解後、1N−KOHを10ml加え30分間煮沸還流した後、室温まで冷却し、さらに80%アセトン水100mlを加え、0.002N−AgNO水溶液で電位差滴定を行い得られる値である。
本発明で用いるエポキシ樹脂(A)は公知慣用のエポキシ樹脂を使用することができ、例えばビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、2,2’−ビフェノール、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシビフェノール、レゾルシン、ナフタレンジオール類等の2価のフェノール類のエポキシ化物、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノールノボラック、o−クレゾールノボラック等の3価以上のフェノール類のエポキシ化物、ジシクロペンタジエンとフェノール類の共縮合樹脂のエポキシ化物、フェノール類とパラキシリレンジクロライド等から合成されるフェノールアラルキル樹脂類のエポキシ化物、フェノール類とビスクロロメチルビフェニル等から合成されるビフェニルアラルキル型フェノール樹脂のエポキシ化物、ナフトール類とパラキシリレンジクロライド等から合成されるナフトールアラルキル樹脂類のエポキシ化物等が挙げられる。これらのエポキシ樹脂は、単独でもよいし、2種以上を併用してもよい。より好ましいエポキシ樹脂(A)は2,2’−ビフェノール、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシビフェノール等から得られる結晶性エポキシ樹脂、フェノールノボラック、o−クレゾールノボラック等の多官能樹脂から得られるエポキシ樹脂、フェノールアラルキル樹脂類、ナフトールアラルキル樹脂類から得られるエポキシ樹脂等の常温で固体状エポキシ樹脂が挙げられる。
本発明のエポキシ樹脂組成物に用いるエポキシ樹脂用硬化剤としては、通常のエポキシ樹脂の硬化剤として常用されている化合物はすべて使用することができ、ジエチレントリアミン、トリエチレンテトラミンなどの脂肪族アミン類、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホンなどの芳香族アミン類、フェノールノボラック樹脂、オルソクレゾールノボラック樹脂、ナフトールノボラック樹脂、フェノールアラルキル樹脂などの芳香族炭化水素−ホルムアルデヒド樹脂、およびこれらの変性物、無水フタル酸、無水マレイン酸、無水ヘキサヒドロフタル酸、無水ピロメリット酸などの酸無水物系硬化剤、ジシアンジアミド、イミダゾール、BF−アミン錯体、グアニジン誘導体等の潜在性硬化剤が挙げられる。半導体封止材料に好適なフェノール系硬化剤を具体的に例示すれば、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4’−ビフェノール、2,2’−ビフェノール、ハイドロキノン、レゾルシン、カテコール、ナフタレンジオール類等の2価のフェノール類、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノールノボラック、o−クレゾールノボラック、ナフトールノボラック、ポリビニルフェノール等に代表される3価以上のフェノール類、更にはフェノール類、ナフトール類又は、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4’−ビフェノール、2,2’−ビフェノール、ハイドロキノン、レゾルシン、カテコール、ナフタレンジオール類等の2価のフェノール類とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、p−キシリレングリコール、p−キシリレングリコールジメチルエーテル、ジビニルベンゼン、ジイソプロペニルベンゼン、ジメトキシメチルビフェニル類、ジビニルビフェニル、ジイソプロペニルビフェニル類等の架橋剤との反応により合成される多価フェノール性化合物などが挙げられる。
フェノール系硬化剤の軟化点範囲は、好ましくは40〜150℃、より好ましくは50〜120℃である。40℃より低いと保存時のブロッキングの問題があり、150℃より高いとエポキシ樹脂組成物調製時の混練性と成形性に問題がある。また、好ましい150℃における溶融粘度は1Pa・s以下であり、より好ましくは0.5Pa・s以下である。1Pa・sより高いとエポキシ樹脂組成物の調製時の混練性、及び成形性に問題がある。
本発明に用いることができる無機充填材としては、例えばシリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、ムライト、チタニアなどがあり、これらの1種又は2種以上ものを組み合わせてもよいが、溶融シリカを主成分とすることが好ましく、その形態としては破砕状、または球形状のものが挙げられる。通常、シリカは、数種類の粒径分布を持ったものを組み合わせて使用される。組み合わせるシリカの平均粒径の範囲は、0.5〜100μmがよい。無機充填材の含有率は全体中の80〜95重量%が好ましく、より好ましくは83〜90重量%である。80重量%より少ないと有機成分の含有率が高くなり耐湿性、低線膨張性が十分に発揮されない。また反対に95重量%より多くなると、成形物時の流動性が発揮され難くなる。
また、本発明のエポキシ樹脂組成物中には、必要に応じて、ポリエステル、ポリアミド、ポリイミド、ポリエーテル、ポリウレタン、石油樹脂、インデンクマロン樹脂、フェノキシ樹脂等のオリゴマーや高分子化合物を適宜配合することができ、顔料、難燃剤、揺変性付与剤、カップリング剤、流動性向上剤等の添加剤を配合することができる。顔料としては、有機系又は無機系の体質顔料、鱗片状顔料等がある。揺変性付与剤としては、シリコン系、ヒマシ油系、脂肪族アマイドワックス、酸化ポリエチレンワックス、有機ベントナイト系、等を挙げることができる。また必要に応じて、アミン類、イミダゾール類、有機ホスフィン類、ルイス酸等の硬化促進剤を配合することができる。配合量としては、通常、エポキシ樹脂100重量部に対し、0.2〜5重量部が好ましい。更に必要に応じて、本発明の樹脂組成物には、カルナバワックス、OPワックス等の離型剤、γ−グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック等の着色剤、三酸化アンチモン等の難燃剤、シリコンオイル等の低応力化剤、ステアリン酸カルシウム等の滑剤等を配合できる。
本発明の硬化物は、上記エポキシ樹脂組成物を、注型、圧縮成形、トランスファー成形等の成形方法で硬化させることにより得ることができる。硬化物が生成する際の温度は、通常、120〜220℃である。
本発明のエポキシ樹脂組成物は、改質剤として低粘度性に優れた単官能結晶性エポキシ樹脂(B)を用いることにより成形時の優れた流動性が発揮される。更には、単官能結晶性エポキシ樹脂(B)の多環芳香族構造並びに単官能性に起因して、優れた耐熱性、耐湿性、低熱膨張性、難燃性及び低応力性(低弾性)が発揮される。また、硬化物の耐熱性が低下することなく低弾性率となることから、低応力化を図ることができ、耐応力性に優れる硬化物を得ることができる。以上の優れた流動性、耐熱性、耐湿性、低熱膨張性、難燃性及び低応力性(低弾性)により、半導体封止材、各種成形材料、積層材料、粉体塗料及び接着材料等に好適に用いることができる。特に、電子部品封止用として優れる。
Hereinafter, the present invention will be described in detail.
The epoxy resin composition of the present invention contains an epoxy resin component, a curing agent component for epoxy resin, and a modifier as essential components, and contains these essential components as main components.
The modifier component used in the present invention is a monofunctional crystalline epoxy resin (B) containing an aromatic skeleton having a carbon number of C 10 to C 20 and having a melting point of 40 to 120 ° C. ) It is preferable to contain 2 to 50 parts by weight with respect to 100 parts by weight, and more preferably 3 to 30 parts by weight. When it is more than 50 parts by weight, the heat resistance is lowered, and when it is less than 2 parts by weight, the fluidity at the time of molding, which is the object of the present invention, is not sufficiently expressed.
Further, the modifier component used in the present invention is desirably a crystalline monofunctional epoxy resin. In applications such as semiconductor sealing materials, after mixing powder in a solid state, roll kneading etc. to make an epoxy resin composition, but when mixing powder in the solid state it is easy to handle using solid resin Desirable from the viewpoint. Furthermore, since the crystalline resin is excellent in low viscosity at the time of melting, the modifier component used in the present invention is most preferably a crystalline monofunctional epoxy resin.
Moreover, melting | fusing point of the said monofunctional crystalline epoxy resin (B) is 40-120 degreeC, Preferably it is 50-100 degreeC. When the melting point exceeds 120 ° C., low viscosity cannot be realized unless the molding temperature is raised, which is disadvantageous in terms of energy cost. On the other hand, when the melting point is lower than 40 ° C., some crystals are melted at room temperature, causing fusion and causing a problem in handling.
The melt viscosity at 120 ° C. of the monofunctional crystalline epoxy resin (B) is 0.001 to 0.05 Pa · s, preferably 0.001 to 0.03 Pa · s. If the melt viscosity is lower than 0.001 Pa · s, it tends to be difficult to crystallize, which is industrially disadvantageous. On the other hand, if it is higher than 0.05 Pa · s, it is disadvantageous in increasing the filling rate of the inorganic filler, and improvement in performance such as moisture resistance, low linear expansion and flame retardancy cannot be expected.
Monofunctional crystalline epoxy resin containing an aromatic skeleton carbon number C 10 ~C 20 (B), biphenyl skeleton, naphthalene skeleton, an anthracene skeleton, a terphenyl skeleton, acenaphthene skeleton, a fluorene skeleton, a carbazole skeleton, dibenzofuran skeleton, An epoxy resin having a dibenzothiophene skeleton or the like can be given.
The monofunctional crystalline epoxy resin (B) may be used alone or in combination of two or more. Among these epoxy resins, biphenyl type monoepoxy resin, naphthalene type monoepoxy resin and carbazole type monoepoxy resin are particularly used from the viewpoint of handling property, fluidity, heat resistance, low linear expansion property and flame retardancy. It is preferable.
The monofunctional crystalline epoxy resin (B) as described above can be synthesized by reacting a compound having a phenolic hydroxyl group with epichlorohydrin. This reaction can be performed in the same manner as a normal epoxidation reaction. For example, a monophenol compound is dissolved in excess epichlorohydrin, and then reacted in the presence of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide at 50 to 150 ° C., preferably 60 to 120 ° C. for 1 to 10 hours. The method of letting it be mentioned. Under the present circumstances, the usage-amount of an alkali metal hydroxide is 0.8-2 mol with respect to 1 mol of hydroxyl groups of a monophenol compound, Preferably it is 0.9-1.2 mol. After completion of the reaction, excess epichlorohydrin is distilled off, the residue is dissolved in a solvent such as toluene, methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then the solvent is distilled off to obtain the desired It can be an epoxy resin.
Moreover, a quaternary ammonium salt etc. can be added in the case of reaction. Examples of the quaternary ammonium salt include tetramethylammonium chloride, tetrabutylammonium chloride, benzyltriethylammonium chloride and the like, and the addition amount is preferably 0.1 to 2.0% by weight with respect to the monohydroxy compound. If the amount is less than this, the effect of adding a quaternary ammonium salt is small, and if the amount is more than this, the production of hardly hydrolyzable chlorine increases and it becomes difficult to achieve high purity. Furthermore, you may use polar solvents, such as a dimethylsulfoxide and a diglyme, and the addition amount has preferable 10-200 weight% with respect to aromatic nitrogen-type resin. If it is less than this, the effect of addition is small, and if it is more than this, the volumetric efficiency is lowered, which is not economical. After completion of the reaction, excess epichlorohydrin is distilled off, the residue is dissolved in a solvent such as toluene and methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then the monofunctional crystal is removed by distilling off the solvent. -Soluble epoxy resin (B) can be obtained.
The monofunctional crystalline epoxy resin (B) thus obtained may contain a small amount of impurities derived from the reaction raw materials and reaction by-products, but these are 20% by weight or less, preferably It is better to keep it below 10% by weight. In addition, the monofunctional crystalline epoxy resin (B) may include an epoxy group in the resin oligomerized as an ether bond.
The amount of hydrolyzable chlorine in the epoxy resin and monofunctional crystalline epoxy resin (B) used in the present invention is preferably small from the viewpoint of improving the reliability of the electronic component to be sealed. Although it does not specifically limit, 1000 ppm or less is preferable, More preferably, it is 500 ppm or less. In addition, the hydrolyzable chlorine as used in the field of this invention means the value measured by the following method. Specifically, 0.5 g of sample was dissolved in 30 ml of dioxane, 10 ml of 1N-KOH was added and the mixture was boiled and refluxed for 30 minutes, cooled to room temperature, 100 ml of 80% acetone water was further added, and potentiometric titration with 0.002N-AgNO 3 aqueous solution. Is a value obtained by performing
As the epoxy resin (A) used in the present invention, known and commonly used epoxy resins can be used. For example, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 2,2′-biphenol, 3,3 ′, 5,5 Epoxidized products of divalent phenols such as'-tetramethyl-4,4'-dihydroxybiphenol, resorcin, naphthalenediols, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4 -Hydroxyphenyl) ethane, phenol novolak, o-cresol novolak and other epoxidized products of trivalent or higher phenols, epoxidized products of co-condensation resins of dicyclopentadiene and phenols, phenols and paraxylylene dichloride, etc. Epoxy of phenol aralkyl resins And epoxidized products of biphenyl aralkyl type phenol resins synthesized from phenols and bischloromethylbiphenyl, epoxides of naphthol aralkyl resins synthesized from naphthols and paraxylylene dichloride, and the like. These epoxy resins may be used alone or in combination of two or more. More preferred epoxy resins (A) are crystalline epoxy resins obtained from 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxybiphenol, phenol novolac, o-cresol, and the like. Examples thereof include solid state epoxy resins such as epoxy resins obtained from polyfunctional resins such as novolak, phenol aralkyl resins, and epoxy resins obtained from naphthol aralkyl resins.
As the curing agent for epoxy resin used in the epoxy resin composition of the present invention, all compounds that are commonly used as curing agents for ordinary epoxy resins can be used, aliphatic amines such as diethylenetriamine and triethylenetetramine, Aromatic amines such as metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, aromatic hydrocarbon-formaldehyde resins such as phenol novolac resin, orthocresol novolac resin, naphthol novolak resin, phenol aralkyl resin, and modified products thereof, anhydrous phthalic acid, maleic anhydride, hexahydrophthalic anhydride, acid anhydride curing agents such as pyromellitic anhydride, dicyandiamide, imidazoles, BF 3 - amine complex latent curing agent such as guanidine derivatives And the like. Specific examples of phenolic curing agents suitable for semiconductor encapsulating materials include bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4'-biphenol, 2,2'-biphenol, hydroquinone, resorcin, and catechol. Divalent phenols such as naphthalenediols, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolak, o-cresol novolak, naphthol novolak, Trihydric or higher phenols typified by polyvinylphenol, etc., further phenols, naphthols, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4′-biphenol, 2,2′-biphenol, Divalent phenols such as idroquinone, resorcin, catechol, naphthalenediol and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, p-xylylene glycol, p-xylylene glycol dimethyl ether, divinylbenzene, diisopropenylbenzene, dimethoxy Examples thereof include polyhydric phenolic compounds synthesized by a reaction with a crosslinking agent such as methylbiphenyls, divinylbiphenyl, diisopropenylbiphenyls, and the like.
The softening point range of the phenolic curing agent is preferably 40 to 150 ° C, more preferably 50 to 120 ° C. If it is lower than 40 ° C., there is a problem of blocking during storage, and if it is higher than 150 ° C., there is a problem in kneadability and moldability during preparation of the epoxy resin composition. Further, the melt viscosity at 150 ° C. is preferably 1 Pa · s or less, and more preferably 0.5 Pa · s or less. If it is higher than 1 Pa · s, there is a problem in kneadability and moldability during preparation of the epoxy resin composition.
Examples of inorganic fillers that can be used in the present invention include silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, mullite, and titania. There may be one or a combination of two or more of these, but it is preferable to use fused silica as the main component, and examples of the form include crushed or spherical ones. Usually, silica is used in combination with those having several kinds of particle size distributions. The range of the average particle diameter of the silica to be combined is preferably 0.5 to 100 μm. The content of the inorganic filler is preferably 80 to 95% by weight, more preferably 83 to 90% by weight based on the whole. If it is less than 80% by weight, the organic component content is increased, and the moisture resistance and low linear expansion properties are not sufficiently exhibited. On the other hand, if it exceeds 95% by weight, the fluidity at the time of molding is hardly exhibited.
Moreover, in the epoxy resin composition of the present invention, an oligomer or a polymer compound such as polyester, polyamide, polyimide, polyether, polyurethane, petroleum resin, indene coumarone resin, or phenoxy resin is appropriately blended as necessary. And additives such as pigments, flame retardants, thixotropic agents, coupling agents, fluidity improvers and the like can be blended. Examples of the pigment include organic or inorganic extender pigments and scaly pigments. Examples of the thixotropic agent include silicon-based, castor oil-based, aliphatic amide wax, oxidized polyethylene wax, and organic bentonite-based. If necessary, curing accelerators such as amines, imidazoles, organic phosphines, and Lewis acids can be blended. As a compounding quantity, 0.2-5 weight part is preferable normally with respect to 100 weight part of epoxy resins. Furthermore, if necessary, the resin composition of the present invention includes a release agent such as carnauba wax and OP wax, a coupling agent such as γ-glycidoxypropyltrimethoxysilane, a colorant such as carbon black, and trioxide. Flame retardants such as antimony, low stress agents such as silicone oil, lubricants such as calcium stearate, and the like can be blended.
The cured product of the present invention can be obtained by curing the epoxy resin composition by a molding method such as casting, compression molding, transfer molding or the like. The temperature at which the cured product is generated is usually 120 to 220 ° C.
The epoxy resin composition of the present invention exhibits excellent fluidity during molding by using a monofunctional crystalline epoxy resin (B) having excellent low viscosity as a modifier. Furthermore, due to the polycyclic aromatic structure and monofunctionality of the monofunctional crystalline epoxy resin (B), excellent heat resistance, moisture resistance, low thermal expansion, flame retardancy and low stress (low elasticity) Is demonstrated. Moreover, since it becomes a low elasticity modulus, without reducing the heat resistance of hardened | cured material, low stress can be achieved and the hardened | cured material excellent in stress resistance can be obtained. With the above excellent fluidity, heat resistance, moisture resistance, low thermal expansion, flame retardancy and low stress (low elasticity), it can be used for semiconductor encapsulants, various molding materials, laminated materials, powder paints, adhesive materials, etc. It can be used suitably. In particular, it is excellent for electronic component sealing.

以下、合成例、実施例及び比較例に基づき、本発明を具体的に説明する。
合成例1
四つ口セパラブルフラスコにp−フェニルフェノール320重量部、エピクロルヒドリン871重量部、ジエチレングリコールジメチルエーテル131重量部を入れ撹拌溶解させた。均一に溶解後、130mmHgの減圧下65℃に保ち、48%水酸化ナトリウム水溶液157重量部を4時間かけて滴下し、この滴下中に還流留出した水とエピクロルヒドリンを分離槽で分離しエピクロルヒドリンは反応容器に戻し、水は系外に除いて反応した。反応終了後、濾過により生成した塩を除き、更に水洗したのちエピクロルヒドリンを留去し、単官能結晶性エポキシ樹脂391重量部を得た(改質剤A)。得られた樹脂の融点は79℃、100℃における溶融粘度は0.007Pa・s、エポキシ当量は258g/eq.であった。
合成例2
2−ナフトール450重量部、エピクロルヒドリン1443重量部、ジエチレングリコールジメチルエーテル216重量部を用い、48%水酸化ナトリウム水溶液260重量部を滴下し、合成例1と同様に反応を行い単官能結晶性エポキシ樹脂575重量部を得た(改質剤B)。得られた樹脂の融点は61℃、100℃における溶融粘度は0.005Pa・s、エポキシ当量は221g/eq.であった。
合成例3
カルバゾール350重量部、エピクロルヒドリン1443重量部、ジエチレングリコールジメチルエーテル216重量部を用い、48%水酸化ナトリウム水溶液175重量部を滴下し、合成例1と同様に反応を行い単官能結晶性エポキシ樹脂430重量部を得た(改質剤C)。得られた樹脂の融点は90℃、100℃における溶融粘度は0.010Pa・s、エポキシ当量は268g/eq.であった。
実施例1〜7、比較例1〜4
下記に示すエポキシ樹脂、硬化剤、上記の合成例で得られた改質剤A〜C及び無機充填材と、硬化促進剤としてトリフェニルホスフィンを用い、表1〜3に示す配合割合で混練してエポキシ樹脂組成物を調製した。
エポキシ樹脂成分として、エポキシ樹脂a:o−クレゾールノボラック型エポキシ樹脂(エポキシ当量200g/eq.、軟化点65℃)、エポキシ樹脂b:3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシビフェニルのエポキシ化物(エポキシ当量195g/eq.、融点105℃、150℃での溶融粘度0.011Pa・s)、エポキシ樹脂c:ビフェニルアラルキル型エポキシ樹脂(エポキシ当量274g/eq.、軟化点57℃、150℃での溶融粘度0.12Pa・s)、エポキシ樹脂d:2−ナフトールアラルキル型エポキシ樹脂(ESN−175;東都化成製 エポキシ当量253g/eq.、軟化点69℃、150℃での溶融粘度0.15Pa.s)を用いた。
硬化剤成分として、フェノールアラルキル樹脂(PA;明和化成製、MEH−7800SS;OH当量175、軟化点67℃)を用いた。
フィラーとして、電気化学工業(株)製の球状溶融シリカFB−60(平均粒径21μm)及び FB−35(平均粒径12μm)、(株)アドマテックス製の球状溶融シリカSO−C3(平均粒径0.9μm)及びSO−C2(平均粒径0.5μm)を使用した。
得られたエポキシ樹脂組成物についてスパイラルフロー及びゲルタイムについて測定した。スパイラルフローについては、規格(EMMI−1−66)に準拠したスパイラルフロー測定用金型でエポキシ樹脂組成物をスパイラルフローの注入圧力(150Kgf/cm)、硬化時間3分の条件で成形して流動長を調べた。ゲルタイムについては、予め175℃に加熱しておいたゲル化試験機(日新科学(株)製)の凹部にエポキシ樹脂組成物を流し込み、テフロン棒を用いて一秒間に2回転の速度で攪拌し、エポキシ樹脂組成物が硬化するまでに要したゲル化時間を調べた。
次に、これらのエポキシ樹脂組成物を175℃で成形し、175℃で12時間ポストキュアを行い、硬化物試験片を得た後、各種物性測定に供した。ガラス転移点は、熱機械測定装置により、昇温速度7℃/分の条件で求めた。曲げ試験は、曲げ強度、曲げ弾性率を3点曲げ法により行った。接着強度は、42又は194アロイ板2枚の間に25mm×12.5mm×0.5mmの成形物を圧縮成型機により175℃で成形し、175℃、12時間ポストキュアを行った後、引張剪断強度を求めることにより評価した。吸水率は、本エポキシ樹脂組成物を用いて、直径50mm、厚さ3mmの円盤を成形し、ポストキュア後85℃、85%RHの条件で100時間吸湿させた時のものである。結果をまとめて表1〜3に示す。難燃性は、厚さ1/16インチの試験片を成形し、UL94V−0規格によって評価し、n=5の試験での合計燃焼時間で表した。

Figure 2008050879
Figure 2008050879
Figure 2008050879
上記から、本発明のエポキシ樹脂組成物は、成形性時の流動性が良好であり、かつ耐熱性、耐湿性、低熱膨張性、難燃性及び低応力性(低弾性)等に優れた硬化物を与えることがわかる。Hereinafter, based on a synthesis example, an Example, and a comparative example, this invention is demonstrated concretely.
Synthesis example 1
In a four-necked separable flask, 320 parts by weight of p-phenylphenol, 871 parts by weight of epichlorohydrin, and 131 parts by weight of diethylene glycol dimethyl ether were stirred and dissolved. After uniformly dissolving, maintaining at 65 ° C. under a reduced pressure of 130 mmHg, 157 parts by weight of 48% aqueous sodium hydroxide solution was added dropwise over 4 hours, and water and epichlorohydrin refluxed during this addition were separated in a separation tank, and epichlorohydrin was The mixture was returned to the reaction vessel, and water was removed from the system to react. After completion of the reaction, the salt produced by filtration was removed, and after further washing with water, epichlorohydrin was distilled off to obtain 391 parts by weight of a monofunctional crystalline epoxy resin (Modifier A). The melting point of the obtained resin was 79 ° C., the melt viscosity at 100 ° C. was 0.007 Pa · s, and the epoxy equivalent was 258 g / eq. Met.
Synthesis example 2
Using 450 parts by weight of 2-naphthol, 1443 parts by weight of epichlorohydrin and 216 parts by weight of diethylene glycol dimethyl ether, 260 parts by weight of a 48% aqueous sodium hydroxide solution was added dropwise, and the reaction was carried out in the same manner as in Synthesis Example 1, and 575 weights of a monofunctional crystalline epoxy resin. Part was obtained (modifier B). The melting point of the obtained resin was 61 ° C., the melt viscosity at 100 ° C. was 0.005 Pa · s, and the epoxy equivalent was 221 g / eq. Met.
Synthesis example 3
Using 350 parts by weight of carbazole, 1443 parts by weight of epichlorohydrin, and 216 parts by weight of diethylene glycol dimethyl ether, 175 parts by weight of a 48% aqueous sodium hydroxide solution was added dropwise and reacted in the same manner as in Synthesis Example 1 to 430 parts by weight of a monofunctional crystalline epoxy resin. Obtained (Modifier C). The melting point of the obtained resin was 90 ° C., the melt viscosity at 100 ° C. was 0.010 Pa · s, and the epoxy equivalent was 268 g / eq. Met.
Examples 1-7, Comparative Examples 1-4
The following epoxy resins, curing agents, modifiers A to C and inorganic fillers obtained in the above synthesis examples, and triphenylphosphine as a curing accelerator, are kneaded at the blending ratios shown in Tables 1 to 3. Thus, an epoxy resin composition was prepared.
As an epoxy resin component, epoxy resin a: o-cresol novolac type epoxy resin (epoxy equivalent 200 g / eq., Softening point 65 ° C.), epoxy resin b: 3,3 ′, 5,5′-tetramethyl-4,4 Epoxidized product of '-dihydroxybiphenyl (epoxy equivalent 195 g / eq., Melting point 105 ° C., melt viscosity 0.011 Pa · s at 150 ° C.), epoxy resin c: biphenyl aralkyl type epoxy resin (epoxy equivalent 274 g / eq., Softened) 57 ° C., melt viscosity at 150 ° C. 0.12 Pa · s), epoxy resin d: 2-naphthol aralkyl epoxy resin (ESN-175; manufactured by Tohto Kasei, epoxy equivalent 253 g / eq., Softening point 69 ° C., 150 ° C. Melt viscosity of 0.15 Pa.s) was used.
A phenol aralkyl resin (PA; manufactured by Meiwa Kasei Co., Ltd., MEH-7800SS; OH equivalent 175, softening point 67 ° C.) was used as a curing agent component.
As fillers, spherical fused silica FB-60 (average particle size 21 μm) and FB-35 (average particle size 12 μm) manufactured by Denki Kagaku Kogyo Co., Ltd., spherical fused silica SO-C3 (average particle size) manufactured by Admatechs Co., Ltd. Diameter 0.9 μm) and SO-C2 (average particle size 0.5 μm) were used.
The resulting epoxy resin composition was measured for spiral flow and gel time. For spiral flow, an epoxy resin composition is molded with a spiral flow measurement mold in accordance with the standard (EMMI-1-66) under conditions of spiral flow injection pressure (150 kgf / cm 2 ) and curing time of 3 minutes. The flow length was examined. Regarding the gel time, the epoxy resin composition was poured into the concave portion of a gelation tester (Nisshin Kagaku Co., Ltd.) that had been heated to 175 ° C., and stirred at a rate of 2 revolutions per second using a Teflon rod. The gelation time required for the epoxy resin composition to cure was examined.
Next, these epoxy resin compositions were molded at 175 ° C. and post-cured at 175 ° C. for 12 hours to obtain a cured product test piece, which was then subjected to various physical property measurements. The glass transition point was calculated | required on the conditions of the temperature increase rate of 7 degrees C / min with the thermomechanical measuring apparatus. The bending test was performed by a three-point bending method for bending strength and bending elastic modulus. Adhesive strength is 25mm x 12.5mm x 0.5mm molded product between two 42 or 194 alloy plates, molded at 175 ° C with a compression molding machine, post-cured at 175 ° C for 12 hours, then tensile Evaluation was made by determining the shear strength. The water absorption rate is obtained when a disk having a diameter of 50 mm and a thickness of 3 mm is formed using the epoxy resin composition, and moisture is absorbed for 100 hours under conditions of 85 ° C. and 85% RH after post-curing. The results are summarized in Tables 1 to 3. Flame retardance was measured by molding a 1/16 inch thick test piece, evaluated according to the UL94V-0 standard, and expressed as the total burning time in a test with n = 5.
Figure 2008050879
Figure 2008050879
Figure 2008050879
From the above, the epoxy resin composition of the present invention has good fluidity at the time of moldability, and is excellent in heat resistance, moisture resistance, low thermal expansion, flame retardancy, low stress (low elasticity) and the like. I know that I give things.

本発明のエポキシ樹脂組成物に改質剤として添加される単官能結晶性エポキシ樹脂(B)は多環芳香族構造ならびに単官能性でありながらこれを適量配合したエポキシ樹脂組成物は硬化物のTgが下がらずに低弾性率となり低応力化が図れ、成形性時の流動性が良好であり、かつ耐熱性、耐湿性、低熱膨張性、難燃性及び低応力性(低弾性)等に優れた硬化物を与えることができ、特に半導体封止材料として好適である。   The monofunctional crystalline epoxy resin (B) added as a modifier to the epoxy resin composition of the present invention is a polycyclic aromatic structure and monofunctional, but an epoxy resin composition containing an appropriate amount thereof is a cured product. Tg does not decrease, low elastic modulus and low stress can be achieved, fluidity during molding is good, and heat resistance, moisture resistance, low thermal expansion, flame retardancy, low stress (low elasticity), etc. An excellent cured product can be provided and is particularly suitable as a semiconductor sealing material.

Claims (4)

エポキシ樹脂(A)、エポキシ樹脂用硬化剤、及び改質剤を含有するエポキシ樹脂組成物において、改質剤成分として炭素数C10〜C20の芳香族骨格を含有し、且つ融点が40〜120℃である単官能結晶性エポキシ樹脂(B)を、エポキシ樹脂(A)100重量部に対して、2〜50重量部含有することを特徴とするエポキシ樹脂組成物。Epoxy resin (A), the epoxy resin curing agent, and the epoxy resin composition containing a modifier, containing an aromatic skeleton carbon number C 10 -C 20 as a modifier component, and a melting point of 40 An epoxy resin composition comprising 2 to 50 parts by weight of the monofunctional crystalline epoxy resin (B) at 120 ° C. with respect to 100 parts by weight of the epoxy resin (A). 炭素数C10〜C20の芳香族骨格を含有し、且つ融点が40〜120℃である単官能結晶性エポキシ樹脂(B)が、下記一般式(1)、(2)又は(3)
Figure 2008050879
(ここで、R、Rは水素原子及び炭素数1〜4の炭化水素基から選ばれ、全てが同一でも異なっていてもよい。Gはグリシジル基を示す。)
から選ばれる少なくとも1種であることを特徴とする請求項1に記載のエポキシ樹脂組成物。
A monofunctional crystalline epoxy resin (B) containing an aromatic skeleton having a carbon number of C 10 to C 20 and having a melting point of 40 to 120 ° C. is represented by the following general formula (1), (2) or (3)
Figure 2008050879
(Here, R 1 and R 2 are selected from a hydrogen atom and a hydrocarbon group having 1 to 4 carbon atoms, and all may be the same or different. G represents a glycidyl group.)
The epoxy resin composition according to claim 1, wherein the epoxy resin composition is at least one selected from the group consisting of:
無機充填材の含有率が全体中の80〜95重量%である請求項1又は2に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1 or 2, wherein the content of the inorganic filler is 80 to 95% by weight in the whole. 請求項1〜3のいずれかに記載のエポキシ樹脂組成物を硬化してなるエポキシ樹脂硬化物。 The epoxy resin hardened | cured material formed by hardening | curing the epoxy resin composition in any one of Claims 1-3.
JP2008541044A 2006-10-24 2007-10-22 Epoxy resin composition and cured product Withdrawn JPWO2008050879A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006289068 2006-10-24
JP2006289068 2006-10-24
PCT/JP2007/070968 WO2008050879A1 (en) 2006-10-24 2007-10-22 Epoxy resin composition and cured product

Publications (1)

Publication Number Publication Date
JPWO2008050879A1 true JPWO2008050879A1 (en) 2010-02-25

Family

ID=39324660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008541044A Withdrawn JPWO2008050879A1 (en) 2006-10-24 2007-10-22 Epoxy resin composition and cured product

Country Status (3)

Country Link
JP (1) JPWO2008050879A1 (en)
TW (1) TW200823244A (en)
WO (1) WO2008050879A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113461909A (en) * 2021-07-21 2021-10-01 中国科学院兰州化学物理研究所 Intelligent lubricating material and preparation method and application thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5507162B2 (en) * 2009-09-01 2014-05-28 京セラケミカル株式会社 Electric double layer capacitor
CN102108184B (en) * 2009-12-24 2015-04-22 汉高股份有限及两合公司 Epoxy resin composition and application thereof
JP5679248B1 (en) * 2013-06-26 2015-03-04 Dic株式会社 Epoxy compound, epoxy resin, curable composition, cured product thereof, semiconductor sealing material, and printed wiring board
JP2017155127A (en) * 2016-03-01 2017-09-07 三菱ケミカル株式会社 Curable epoxy resin composition and cured product of the same, and electric/electronic component
MY198033A (en) * 2017-03-31 2023-07-27 Resonac Corp Epoxy resin composition, curable resin composition and electronic component device
WO2019142646A1 (en) * 2018-01-16 2019-07-25 日立化成株式会社 Curable resin composition, semiconductor device, and method for producing semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159819A (en) * 1983-03-02 1984-09-10 Hitachi Chem Co Ltd Epoxy resin composition
JPS6183217A (en) * 1984-09-29 1986-04-26 Sumitomo Bakelite Co Ltd Epoxy resin composition for semiconductor sealing
JP2705493B2 (en) * 1992-11-09 1998-01-28 信越化学工業株式会社 Liquid epoxy resin composition and semiconductor device
JPH10147631A (en) * 1996-11-15 1998-06-02 Nippon Kayaku Co Ltd Epoxy compound, epoxy resin composition and its cured material
JP3555930B2 (en) * 1999-08-17 2004-08-18 住友ベークライト株式会社 Resin paste for semiconductor and semiconductor device using the same
JP4779221B2 (en) * 2001-03-29 2011-09-28 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113461909A (en) * 2021-07-21 2021-10-01 中国科学院兰州化学物理研究所 Intelligent lubricating material and preparation method and application thereof

Also Published As

Publication number Publication date
TW200823244A (en) 2008-06-01
WO2008050879A1 (en) 2008-05-02

Similar Documents

Publication Publication Date Title
WO2015146606A1 (en) Epoxy resin, epoxy resin composition, and cured product of same
KR101809464B1 (en) Polyhydroxy resin, epoxy resin, method for manufacturing the same, epoxy resin composition and cured product using the same
JP6605828B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JPWO2008050879A1 (en) Epoxy resin composition and cured product
JP5515058B2 (en) Epoxy resin, phenol resin, production method thereof, epoxy resin composition and cured product
JP6139997B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP2017066268A (en) Polyhydric hydroxy resin, epoxy resin, methods of producing them, epoxy resin composition and cured article thereof
JP4188022B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product using them
JP5139914B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product using them
JP2019214736A (en) Polyvalent hydroxy resins, epoxy resins, methods for producing them, epoxy resin compositions, and cured products thereof
JP5841947B2 (en) Epoxy resin composition and cured product
JP5734603B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP2010155796A (en) Naphthol resin, epoxy resin, epoxy resin composition and cured product thereof
JP6292925B2 (en) Epoxy resin composition and cured product thereof
JP3933763B2 (en) Epoxy resin composition and electronic component
JP2004123859A (en) Polyhydric hydroxy resin, epoxy resin, method for producing the same, epoxy resin composition using the same and cured product
JP4493748B2 (en) Epoxy resin, method for producing the same, epoxy resin composition and cured product thereof
JP4667753B2 (en) Epoxy resin production method, epoxy resin composition and cured product
JP2007297539A (en) Epoxy resin composition and cured product
JP5276031B2 (en) Crystalline epoxy resin, method for producing the same, epoxy resin composition using the same, and cured product
JP3806217B2 (en) Novel polyvalent hydroxy compound, novel epoxy resin, production method thereof, epoxy resin composition using them, and cured product thereof
JPH11158255A (en) Novel polyhydroxy compound, novel epoxy resin, their production, and epoxy resin composition and cured article prepared by using them
JP2008231071A (en) New polyvalent hydroxy compound, and epoxy resin composition and its cured product
JPH11255688A (en) New polyhydric hydroxy compound, new epoxy compound, their production, epoxy resin composition and cured product using the same
JPH09255758A (en) New epoxy resin, its intermediate, production thereof, epoxy resin composition made using the same, and cured item thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090508

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100421

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110104