JP4493748B2 - Epoxy resin, method for producing the same, epoxy resin composition and cured product thereof - Google Patents

Epoxy resin, method for producing the same, epoxy resin composition and cured product thereof Download PDF

Info

Publication number
JP4493748B2
JP4493748B2 JP19892799A JP19892799A JP4493748B2 JP 4493748 B2 JP4493748 B2 JP 4493748B2 JP 19892799 A JP19892799 A JP 19892799A JP 19892799 A JP19892799 A JP 19892799A JP 4493748 B2 JP4493748 B2 JP 4493748B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
epoxy
general formula
bisphenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19892799A
Other languages
Japanese (ja)
Other versions
JP2001026633A (en
Inventor
正史 梶
浩一郎 大神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP19892799A priority Critical patent/JP4493748B2/en
Publication of JP2001026633A publication Critical patent/JP2001026633A/en
Application granted granted Critical
Publication of JP4493748B2 publication Critical patent/JP4493748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、流動性、速硬化性、耐熱性、機械的特性に優れるとともに、半田耐熱性に優れた硬化物を与える半導体素子等の封止、積層板等に好適に使用されるエポキシ樹脂、およびその製造方法、並びにそれを用いたエポキシ樹脂組成物、さらには、それを硬化してなる硬化物に関するものである。
【0002】
【従来の技術】
従来から半導体封止材料や積層材料には、エポキシ樹脂を主剤とする樹脂組成物が広く用いられてきているが、近年、その要求性能は、年々高度化している。半導体封止材を例にとり以下に説明する。プリント基板への半導体部品の実装方法として、従来の挿入方式から表面実装方式への移行が進展している。表面実装方式においては、パッケージ全体が半田温度まで加熱され、吸湿した水分の急激な体積膨張により引き起こされるパッケージクラックが大きな問題点となってきている。さらに、近年、半導体素子の高集積化、素子サイズの大型化、配線幅の微細化が急速に進展しており、パッケージクラックの問題が一層深刻化してきている。パッケージクラックを防止する方法として樹脂構造の強靱化、無機フィラーの高充填化による高強度化、低吸水率化等の方法がある。
【0003】
なかでも無機フィラーの高充填率化が強く指向されており、そのためには低吸湿性、高耐熱性に優れ、かつ低粘度であるエポキシ樹脂が望まれている。低粘度エポキシ樹脂としては、従来よりビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等が一般に広く用いられているが、これらのエポキシ樹脂において低粘度のものは常温で液状であり、トランスファー成形用の樹脂組成物とすることは困難である。さらに、これらのエポキシ樹脂は耐熱性、機械的強度、耐湿性の点で十分ではない。
【0004】
上記背景から低吸湿性、高耐熱性に優れた結晶状のエポキシ樹脂の開発が望まれている。結晶状のエポキシ樹脂としては、ビフェニル系エポキシ樹脂(特開昭58−39677号公報)、ビスフェノール系エポキシ樹脂(特開平6−345850号公報)が提案されているが、耐熱性、耐湿性の点で十分ではない。さらに、これらのエポキシ樹脂は、低粘度性に優れるものの、硬化性が十分ではなく、得られた硬化物の硬度および強度が低く、離型性が悪い等の問題があった。また、低粘度であるためにエポキシ樹脂組成物とした際に、耐ブロッキング性が低下する等の作業性が低下する問題があった。また、これらのエポキシ樹脂は、耐ブロッキング性の向上を目的として、分子量を高くした場合、融点降下により結晶性が低下し、エポキシ樹脂自体の固体としてのハンドリング性が低下する問題があった。
【0005】
また、特開平5−304001号公報には、ジフェニルエーテル構造を有するエポキシ樹脂を用いたエポキシ樹脂組成物が提案されているが、当該発明に用いたエポキシ樹脂は、一般式(1)におけるn数が0である成分を主成分とした低分子量の化合物であり、低粘度性に優れる特徴はあるものの、依然、エポキシ樹脂組成物とした際の耐ブロッキング性が低下する問題があった。
【0006】
【発明が解決しようとする課題】
従って、本発明の目的は、流動性、速硬化性、耐熱性、機械的特性に優れるとともに、半田耐熱性に優れた硬化物を与える半導体素子等の封止、積層板等に好適に使用されるエポキシ樹脂、およびその製造方法、並びにそれを用いたエポキシ樹脂組成物、さらには、それを硬化してなる硬化物を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記問題点に鑑み鋭意検討の結果、特定のビスフェノール化合物より誘導されるエポキシ樹脂が、分子量を大きくし分子量分布を持たせた状態においても、結晶性を保持し高い軟化点、および高いガラス転移点を有することを見いだし、本発明に到達したものである。
【0008】
すなわち、本発明は、下記一般式(1)
【化4】

Figure 0004493748
(但し、R1およびR2は、それぞれ独立に水素原子または炭素数1から8の炭化水素基を表す。GPC測定により求められたnは平均値として0.5以上の有理数を示す。)で表され、エポキシ当量が220以上であり、結晶性を有し、さらに軟化点が90〜250℃であることを特徴とするエポキシ樹脂である。さらに本発明は、下記一般式(2)
【化5】
Figure 0004493748
(但し、R1およびR2は、それぞれ独立に水素原子または炭素数1から8の炭化水素基を表す。)で表されるエポキシ化合物と、下記一般式(3)
【化6】
Figure 0004493748
(但し、R1およびR2は、それぞれ独立に水素原子または炭素数1から8の炭化水素基を表す。)で表されるビスフェノール化合物を反応させることを特徴とするエポキシ樹脂の製造方法である。さらに、本発明は、エポキシ樹脂および硬化剤を含んでなるエポキシ樹脂組成物において、エポキシ樹脂成分として上記一般式(1)で表されるエポキシ樹脂を含んでなるエポキシ樹脂組成物であり、また、本発明はこのエポキシ樹脂組成物を硬化させて得られる硬化物である。
【0009】
本発明のエポキシ樹脂は、上記一般式(1)で表される構造を有する分子量分布を持ったオリゴマーまたはポリマーである。一般式(1)において、nは平均値として0.5以上の有理数である。分子量は、通常、数平均分子量で400から40,000であり、好ましくは、成形材料用途には400から2,000の範囲である。また、nは、通常、0.5から15であり、好ましくは0.5から10である。さらに、エポキシ当量は、220以上から20,000であり、好ましくは、220から1,000の範囲である。これより低いと、低分子量成分の割合が多くなり、エポキシ樹脂組成物とした際の耐ブロッキング性が低下する。また、これより高いと粘度、および軟化点が高くなり、エポキシ樹脂組成物としての成形作業性が低下する。
【0010】
本発明のエポキシ樹脂は、好ましくは、結晶性を有するものであり、軟化点が90℃以上のものであり、好ましくは、90℃から250℃、より好ましくは110℃から180℃のものである。これより低いと、エポキシ樹脂組成物とした際の耐ブロッキング性が低下し、また、あまりに高すぎると、エポキシ樹脂組成物としての成形作業性が低下する。一般式(1)において、R1およびR2は、それぞれ独立に水素原子または炭素数1から8の炭化水素基を表わし、炭化水素基としては、メチル基、エチル基、イソプロピル基、tert-ブチル基、フェニル基、ベンジル基等が例示されるが、好ましくは水素原子またはメチル基である。より好ましくは、R1およびR2ともに水素原子である。
【0011】
上記一般式(1)で表されるエポキシ樹脂の製造方法に特に制限はないが、例えば、上記一般式(3)で表されるビスフェノール化合物と過剰のエピクロルヒドリンとを反応させることによる方法が挙げられる。この反応には、ビスフェノール化合物中の水酸基に対して、通常、0.8から1.2倍当量の水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物が用いられる。これより少ないと残存加水分解性塩素の量が多くなり、これより多いとエポキシ樹脂の高分子量化が起こり、樹脂粘度が高くなるとともに、樹脂の結晶化が困難になり好ましくない。金属水酸化物としては、水溶液または固体状態で使用される。
【0012】
また、ビスフェノール化合物に対しては過剰量のエピクロルヒドリンが使用され、通常、ビスフェノール化合物中の水酸基1モルに対して、1.2から4倍モルのエピクロルヒドリンが使用される。これより多いと生産効率が低下するとともに、低分子量化合物生成量が多くなり、得られたエポキシ樹脂の軟化点が低下する。これより少ないとエポキシ樹脂の高分子量体の生成量が増えることで粘度が高くなり、成形作業性が低下する。
【0013】
通常、本反応は90℃以下の温度で行われる。反応の際、温度が高いと、いわゆる難加水分解性塩素量が多くなり高純度化が困難になる。好ましくは80℃以下であり、さらに好ましくは75℃以下の温度である。
【0014】
反応の際、四級アンモニウム塩や、あるいはジメチルスルホキシド、ジグライム等の極性溶媒を用いてもよい。四級アンモニウム塩としては、たとえばテトラメチルアンモニウムクロライド、テチラブチルアンモニウムクロライド、ベンジルトリエチルアンモニウムクロライド等があり、その添加量としては、ビスフェノール化合物に対して、0.1〜2.0wt%の範囲が好ましい。これより少ないと四級アンモニウム塩添加の効果が小さく、これより多いと難加水分解性性塩素の生成量が多くなり、高純度化が困難になる。また、極性溶媒の添加量としては、ビスフェノール化合物に対して、10〜200wt%の範囲が好ましい。これより少ないと添加の効果が小さく、これより多いと容積効率が低下し、経済上好ましくない。
【0015】
反応終了後、過剰のエピクロルヒドリンまたは溶媒を留去し、残留物をトルエン、メチルイソブチルケトン等の溶剤に溶解し、濾過および水洗を行い、無機塩または残存溶媒を除去し、次いで溶剤を留去することによりエポキシ樹脂とすることができる。さらに有利には、得られたエポキシ樹脂をさらに、残存する加水分解性塩素に対して、1〜30倍量の水酸化ナトリウム、または水酸化カリウム等のアルカリ金属水酸化物を加え、再閉環反応が行われる。この際の反応温度は、通常、100℃以下であり、好ましくは90℃以下である。
【0016】
本発明のエポキシ樹脂の製造方法は、上記一般式(1)で表されるエポキシ樹脂の好ましい製造方法である。この製造方法は、上記一般式(2)で表されるエポキシ化合物と一般式(3)で表されるビスフェノール化合物を反応させる方法である。一般式(2)および一般式(3)において、R1およびR2は、それぞれ独立に水素原子または炭素数1から8の炭化水素基を表わし、炭化水素基としては、メチル基、エチル基、イソプロピル基、tert-ブチル基、フェニル基、ベンジル基等が例示されるが、好ましくは水素原子またはメチル基である。より好ましくは、R1およびR2ともに水素原子である。
【0017】
反応させる際の両者のモル比は、通常、エポキシ化合物1モルに対して、ビスフェノール化合物が0.2から5.0モルの範囲であるが、好ましくは0.2から1.2モルの範囲であり、より好ましくは0.2から0.8モルの範囲である。モル比がこれより小さいと、低分子量成分の割合が多くなり、エポキシ樹脂組成物とした際の耐ブロッキング性が低下する。また、これより高いと粘度、および軟化点が高くなり、エポキシ樹脂組成物としての成形作業性が低下する。
【0018】
反応温度は、通常、80℃から200℃の範囲である。また、反応の際、触媒を用いてもよい。好ましい触媒としては、4級アンモニウム塩、有機ホスフィン類、有機ホスフォニウム塩、等が挙げられ、その使用量は、通常、0.1から2.0wt%の範囲である。反応に際しては、溶媒を用いてもよく、溶媒としては、トルエン、キシレン等の芳香族溶媒、メチルエチルケトン、メチルイソブチルケトン等のケトン類等が好適に用いられる。
【0019】
また、本発明はエポキシ樹脂および硬化剤を含んでなるエポキシ樹脂組成物であり、このエポキシ樹脂組成物に配合されるエポキシ樹脂の少なくとも一部が、上記一般式(1)で表されるエポキシ樹脂である。このエポキシ樹脂組成物は、エポキシ樹脂や硬化剤のように硬化後において樹脂となる成分や充填剤等が含まれうるが、樹脂となる成分の主剤がエポキシ樹脂やその硬化剤であることがよい。
【0020】
本発明のエポキシ樹脂組成物に使用する硬化剤としては、一般にエポキシ樹脂の硬化剤として知られているものはすべて使用できる。例えば、ジシアンジアミド、多価フェノール類、酸無水物類、芳香族および脂肪族アミン類等がある。具体的に例示すれば、多価フェノール類としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4’−ビフェノール、2,2’−ビフェノール、ハイドロキノン、レゾルシン、ナフタレンジオール等の2価のフェノール類、あるいは、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノールノボラック、o−クレゾールノボラック、ナフトールノボラック、ポリビニルフェノール等に代表される3価以上のフェノール類、さらにはフェノール類、ナフトール類または、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4’−ビフェノール、2,2’−ビフェノール、ハイドロキノン、レゾルシン、ナフタレンジオール等の2価のフェノール類のホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、p−キシリレングリコール、p−キシリレングリコールジメチルエーテル、4,4’−ジメトキシメチルビフェニル、ジビニルビフェニル類、ジメトキシメチルナフタレン類、ジビニルナフタレン類等の架橋剤により合成される多価フェノール性化合物、等があり、酸無水物としては、無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチル無水ハイミック酸、無水ナジック酸、無水トリメリット酸等がある。また、アミン類としては、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルスルホン、m−フェニレンジアミン、p−キシリレンジアミン等の芳香族アミン類、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等の脂肪族アミン類、あるいは一般式(3)で表される多価ヒドロキシ化合物がある。本発明の樹脂組成物には、これら硬化剤の1種または2種以上を混合して用いることができる。
【0021】
また、本発明のエポキシ樹脂組成物には、本発明の必須成分として使用されるエポキシ樹脂以外に、分子中にエポキシ基を2個以上有する通常のエポキシ樹脂を併用してもよい。例を挙げれば、ビスフェノールA、ビスフェノールS、フルオレンビスフェノール、4,4’−ビフェノール、2,2’−ビフェノール、ハイドロキノン、レゾルシン等の2価のフェノール類、あるいは、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノールノボラック、o−クレゾールノボラック等の3価以上のフェノール類、または、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類から誘導されるグルシジルエーテル化物等がある。これらのエポキシ樹脂は、1種または2種以上を混合して用いることができるが、本発明に関わるエポキシ樹脂の配合量はエポキシ樹脂全体中、5〜100%の範囲であるが、好ましくは、20〜100%の範囲である。これより少ないと、流動性、速硬化性、耐熱性、機械的特性等の効果が低減する。
【0022】
また、本発明のエポキシ樹脂組成物には、必要に応じて、無機充填剤を使用する。無機充填剤としては、例えば、球状あるいは破砕状の溶融シリカ、結晶シリカ等のシリカ粉末、アルミナ粉末、ガラス粉末等が挙げられる。半導体封止材に応用する場合、無機充填剤の使用量は、通常、75wt%以上であるが、低吸湿性、高半田耐熱性の点からは、80wt%以上であることが好ましい。
【0023】
本発明のエポキシ樹脂組成物には必要に応じて、従来より公知の硬化促進剤を用いることができる。例を挙げれば、アミン類、イミダゾール類、有機ホスフィン類、ルイス酸等がある。添加量としては、通常、エポキシ樹脂100重量部に対して、0.2〜5重量部の範囲である。
【0024】
さらに必要に応じて、本発明のエポキシ樹脂組成物には、カルナバワックス、OPワックス等の離型剤、γ−グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック等の着色剤、三酸化アンチモン等の難燃剤、シリコンオイル等の低応力化剤、ステアリン酸カルシウム等の滑剤等を使用できる。
【0025】
本発明のエポキシ樹脂組成物は、加熱することにより硬化させることができる。加熱条件は、通常、40〜280℃であり、好ましくは、80〜200℃の範囲である。これより低いと硬化させるのに長時間を要し、これより高いと成形性が低下する。また、硬化に際しては、トランスファー成形、圧縮成形等の方法が取られるが、特に制限はない。
【0026】
【実施例】
以下実施例により本発明をさらに具体的に説明する。
参考例
4,4’−ジヒドロキシジフェニルエーテル1,010gをエピクロルヒドリン7,000gに溶解し、減圧下(約120mmHg)、60℃にて48%水酸化ナトリウム水溶液808gを4時間かけて滴下した。この間、生成する水はエピクロルヒドリンとの共沸により系外に除き、溜出したエピクロルヒドリンは系内に戻した。滴下終了後、さらに1時間反応を継続した。その後、濾過により生成した塩を除き、さらに水洗したのち、エピクロルヒドリンを留去し、淡黄色液状の粗製エポキシ樹脂1,515gを得た。エポキシ当量は171であり、加水分解性塩素は4500ppmであった。得られたエポキシ樹脂1,500gをメチルイソブチルケトン6000mlに溶解し、20%水酸化ナトリウム水溶液76.5gを加え、80℃で2時間反応させた。反応後、濾過、水洗を行った後、溶媒であるメチルイソブチルケトンを減圧留去し、淡黄色液状のエポキシ樹脂1,380gを得た。得られたエポキシ化合物のエポキシ当量は163、加水分解性塩素は280ppm、融点は78から84℃、150℃での粘度は0.062ポイズであった。また、得られた樹脂のGPC測定より求められた一般式(1)における各成分比は、n=0が94%、n=2が6%であった。
【0027】
ここで、粘度はコントラバス社製レオマット115で測定し、軟化点はJIS K-6911に従い環球法で測定した。また、GPC測定は、装置;HLC-82A(東ソー(株)製)、カラム;TSK-GEL2000×3本およびTSK-GEL4000×1本(いずれも東ソー(株)製)、溶媒;テトラヒドロフラン、流量;1 ml/min、温度;38℃、検出器;RIの条件に従った。加水分解性塩素とは、試料0.5gをジオキサン30mlに溶解後、1N−KOH、10mlを加え30分間煮沸還流した後、室温まで冷却し、さらに80%アセトン水100mlを加えたものを、0.002N−AgNO3水溶液で電位差滴定を行うことにより測定された値である。また、融点とは、キャピラリー法により昇温速度2℃/分で得られる値である。
【0028】
実施例1
参考例で合成したエポキシ化合物163gと4,4’−ジヒドロキシジフェニルエーテル25.3gを150℃にて溶融混合した後、トリフェニルホスフィン0.075gを加え、窒素気流下、2時間反応を行った。反応後、室温に放冷することにより、得られた樹脂は結晶性を示し固化した。得られた樹脂のエポキシ当量は261、融点は100から122℃、軟化点は127℃、150℃での粘度は0.37ポイズであった。また、得られた樹脂のGPC測定より求められた一般式(1)における各成分比は、n=0が42.5%、n=2が29.2%、n=4が17.6%、n≧6が10.7%であった。
【0029】
実施例2
参考例で合成したエポキシ化合物163gおよび4,4’−ジヒドロキシジフェニルエーテル33.7gを用い、実施例1と同様に反応を行った。反応後、室温に放冷することにより、得られた樹脂は結晶性を示し固化した。得られた樹脂のエポキシ当量は324、融点は120から140℃、軟化点は137℃、150℃での粘度は0.99ポイズであった。また、得られた樹脂のGPC測定より求められた一般式(1)における各成分比は、n=0が29.7%、n=2が31.6%、n=4が20.2%、n≧6が18.5%であった。
【0030】
実施例3
参考例で合成したエポキシ化合物163gおよび4,4’−ジヒドロキシジフェニルエーテル50.5gを用い、実施例1と同様に反応を行った。反応後、室温に放冷することにより、得られた樹脂は結晶性を示し固化した。得られた樹脂のエポキシ当量は482、融点は145から165℃、軟化点は163℃あった。また、得られた樹脂のGPC測定より求められた一般式(1)における各成分比は、n=0が16.7%、n=2が22.1%、n=4が32.1%、n≧6が29.1%であった。
【0031】
実施例4〜6および比較例1
エポキシ樹脂成分として実施例1〜3および参考例で得られたエポキシ樹脂を用い、硬化剤としてフェノールノボラック樹脂(群栄化学製、PSF−4300)、充填剤として球状シリカ(平均粒径、22μm)、硬化促進剤としてトリフェニルホスフィン、シランカップリング剤としてγ−グリシドキシプロピルトリメトキシシラン、およびその他の表1に示す添加剤を用い、表1に示す配合で混練しエポキシ樹脂組成物を得た。このエポキシ樹脂組成物を用いて175℃にて成形し、175℃にて12時間ポストキュアを行い、硬化物試験片を得た後、各種物性測定に供した。さらに、本エポキシ樹脂組成物を用いて84ピンICを成形し、ポストキュア後85℃、85%RHの条件で24時間、48時間および72時間吸湿させ、260℃の半田浴に10秒間浸漬させパッケージのクラックを観察した。結果を表2に示す。また、本エポキシ樹脂組成物を粒径1mm以下に粉砕したものを23℃で1日放置した後、凝集したもののの重量割合をブロッキング率とした。
【0032】
比較例2
エポキシ樹脂成分としてo−クレゾールノボラック型エポキシ樹脂(エポキシ当量198、軟化点64℃、150℃での粘度4.7ポイズ)を用い、実施例1と同様にエポキシ樹脂組成物を得た後、成形を行い評価した。結果を表2に示す。
【0033】
【表1】
Figure 0004493748
【0034】
【表2】
Figure 0004493748
【0035】
【発明の効果】
本発明のエポキシ樹脂は高反応性であるとともに、オリゴマー化した状態においても結晶性を示すことから、常温では固体で存在する一方、溶融状態においては低粘度であるため充填材の高充填化が可能であり、半導体封止材に応用した場合、優れた取扱い作業性および成形性を有するとともに、耐クラック性を大幅に向上させることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention is excellent in fluidity, fast curability, heat resistance, mechanical properties, and epoxy resin suitably used for sealing a semiconductor element or the like that gives a cured product excellent in solder heat resistance, a laminated board, etc. And an epoxy resin composition using the same, and a cured product obtained by curing the epoxy resin composition.
[0002]
[Prior art]
Conventionally, a resin composition mainly composed of an epoxy resin has been widely used as a semiconductor encapsulating material or a laminated material, but in recent years, the required performance has been increasing year by year. A semiconductor encapsulant will be described below as an example. As a method for mounting a semiconductor component on a printed circuit board, a transition from a conventional insertion method to a surface mounting method is progressing. In the surface mounting method, the entire package is heated to the solder temperature, and a package crack caused by a rapid volume expansion of moisture absorbed has become a serious problem. Further, in recent years, high integration of semiconductor elements, enlargement of element size, and miniaturization of wiring width have rapidly progressed, and the problem of package cracks has become more serious. As a method for preventing package cracks, there are methods such as toughening the resin structure, increasing strength by increasing the filling of inorganic filler, and reducing water absorption.
[0003]
In particular, an increase in the filling rate of the inorganic filler is strongly directed, and for this purpose, an epoxy resin that is excellent in low hygroscopicity, high heat resistance and low viscosity is desired. As the low-viscosity epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins and the like have been widely used in the past, but these epoxy resins having a low viscosity are liquid at room temperature and are used for transfer molding. It is difficult to obtain a resin composition. Furthermore, these epoxy resins are not sufficient in terms of heat resistance, mechanical strength, and moisture resistance.
[0004]
In view of the above background, development of a crystalline epoxy resin excellent in low moisture absorption and high heat resistance is desired. As a crystalline epoxy resin, a biphenyl type epoxy resin (Japanese Patent Laid-Open No. 58-39677) and a bisphenol type epoxy resin (Japanese Patent Laid-Open No. 6-345850) have been proposed, but in terms of heat resistance and moisture resistance. Is not enough. Furthermore, although these epoxy resins are excellent in low-viscosity properties, they have problems such as insufficient curability, low hardness and strength of the obtained cured products, and poor releasability. Moreover, since it was low-viscosity, when it was set as the epoxy resin composition, there existed a problem that workability | operativity, such as a blocking resistance falling, fell. In addition, these epoxy resins have a problem that when the molecular weight is increased for the purpose of improving blocking resistance, the crystallinity is lowered due to a melting point drop, and the handling property of the epoxy resin itself as a solid is lowered.
[0005]
JP-A-5-304001 proposes an epoxy resin composition using an epoxy resin having a diphenyl ether structure. The epoxy resin used in the invention has an n number in the general formula (1). Although it is a low molecular weight compound having a component of 0 as a main component and is excellent in low viscosity, there still remains a problem that the blocking resistance when an epoxy resin composition is used is lowered.
[0006]
[Problems to be solved by the invention]
Therefore, the object of the present invention is excellent in fluidity, fast curability, heat resistance and mechanical properties, and is suitably used for sealing of semiconductor elements and the like which give a cured product excellent in solder heat resistance, laminates and the like. It is to provide an epoxy resin, a production method thereof, an epoxy resin composition using the epoxy resin, and a cured product obtained by curing the epoxy resin composition.
[0007]
[Means for Solving the Problems]
As a result of intensive studies in view of the above problems, the present inventors have found that an epoxy resin derived from a specific bisphenol compound retains crystallinity and has a high softening point even in a state where the molecular weight is increased and the molecular weight distribution is provided. And having a high glass transition point, the present invention has been achieved.
[0008]
That is, the present invention provides the following general formula (1)
[Formula 4]
Figure 0004493748
(However, R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms. N obtained by GPC measurement represents a rational number of 0.5 or more as an average value.) An epoxy resin having an epoxy equivalent of 220 or more, crystallinity, and a softening point of 90 to 250 ° C. Furthermore, the present invention provides the following general formula (2)
[Chemical formula 5]
Figure 0004493748
(Wherein R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms) and the following general formula (3)
[Chemical 6]
Figure 0004493748
Wherein R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms. . Furthermore, the present invention is an epoxy resin composition comprising an epoxy resin represented by the general formula (1) as an epoxy resin component in an epoxy resin composition comprising an epoxy resin and a curing agent, The present invention is a cured product obtained by curing this epoxy resin composition.
[0009]
The epoxy resin of the present invention is an oligomer or polymer having a molecular weight distribution having a structure represented by the general formula (1). In general formula (1), n is a rational number of 0.5 or more as an average value. The molecular weight is usually from 400 to 40,000 in number average molecular weight, preferably in the range from 400 to 2,000 for molding material applications. N is usually from 0.5 to 15, preferably from 0.5 to 10. Furthermore, the epoxy equivalent is from 220 to 20,000, preferably in the range of 220 to 1,000. When lower than this, the ratio of a low molecular weight component will increase and the blocking resistance at the time of setting it as an epoxy resin composition will fall. Moreover, when higher than this, a viscosity and a softening point will become high and the shaping | molding workability | operativity as an epoxy resin composition will fall.
[0010]
The epoxy resin of the present invention preferably has crystallinity and has a softening point of 90 ° C. or higher, preferably 90 ° C. to 250 ° C., more preferably 110 ° C. to 180 ° C. . If it is lower than this, the blocking resistance at the time of preparing the epoxy resin composition is lowered, and if too high, the molding workability as the epoxy resin composition is lowered. In the general formula (1), R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and examples of the hydrocarbon group include a methyl group, an ethyl group, an isopropyl group, and tert-butyl. Group, phenyl group, benzyl group and the like are exemplified, and preferably a hydrogen atom or a methyl group. More preferably, both R 1 and R 2 are hydrogen atoms.
[0011]
Although there is no restriction | limiting in particular in the manufacturing method of the epoxy resin represented by the said General formula (1), For example, the method by making the bisphenol compound represented by the said General formula (3) and excess epichlorohydrin react is mentioned. . In this reaction, 0.8 to 1.2 times equivalent of alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is usually used with respect to the hydroxyl group in the bisphenol compound. If it is less than this, the amount of residual hydrolyzable chlorine will increase, and if it is more than this, the high molecular weight of the epoxy resin will occur, the resin viscosity will increase, and crystallization of the resin will become difficult, which is not preferred. The metal hydroxide is used in an aqueous solution or a solid state.
[0012]
Further, an excess amount of epichlorohydrin is used for the bisphenol compound, and usually 1.2 to 4 times mole of epichlorohydrin is used for 1 mol of the hydroxyl group in the bisphenol compound. If it exceeds this, the production efficiency is lowered and the amount of low molecular weight compounds produced is increased, and the softening point of the obtained epoxy resin is lowered. If the amount is less than this, the amount of the high molecular weight polymer of the epoxy resin increases, resulting in an increase in viscosity and a decrease in molding workability.
[0013]
Usually, this reaction is performed at a temperature of 90 ° C. or lower. If the temperature is high during the reaction, the amount of so-called hardly hydrolyzable chlorine increases and it becomes difficult to achieve high purity. Preferably it is 80 degrees C or less, More preferably, it is the temperature of 75 degrees C or less.
[0014]
In the reaction, a quaternary ammonium salt, or a polar solvent such as dimethyl sulfoxide or diglyme may be used. Examples of the quaternary ammonium salt include tetramethylammonium chloride, tetirabutylammonium chloride, benzyltriethylammonium chloride, and the addition amount is preferably in the range of 0.1 to 2.0 wt% with respect to the bisphenol compound. . If the amount is less than this, the effect of adding a quaternary ammonium salt is small. Further, the addition amount of the polar solvent is preferably in the range of 10 to 200 wt% with respect to the bisphenol compound. If the amount is less than this, the effect of addition is small, and if it is more than this, the volumetric efficiency is lowered, which is not economical.
[0015]
After completion of the reaction, excess epichlorohydrin or the solvent is distilled off, the residue is dissolved in a solvent such as toluene or methyl isobutyl ketone, filtered and washed with water to remove the inorganic salt or residual solvent, and then the solvent is distilled off. It can be set as an epoxy resin. Further advantageously, the obtained epoxy resin is further added with an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide with respect to the remaining hydrolyzable chlorine, and a re-ring closure reaction Is done. The reaction temperature at this time is usually 100 ° C. or lower, preferably 90 ° C. or lower.
[0016]
The manufacturing method of the epoxy resin of this invention is a preferable manufacturing method of the epoxy resin represented by the said General formula (1). This production method is a method in which the epoxy compound represented by the general formula (2) is reacted with the bisphenol compound represented by the general formula (3). In General Formula (2) and General Formula (3), R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and examples of the hydrocarbon group include a methyl group, an ethyl group, Examples include isopropyl group, tert-butyl group, phenyl group, benzyl group and the like, preferably hydrogen atom or methyl group. More preferably, both R 1 and R 2 are hydrogen atoms.
[0017]
The molar ratio of the two in the reaction is usually in the range of 0.2 to 5.0 moles of bisphenol compound, preferably in the range of 0.2 to 1.2 moles per mole of epoxy compound. More preferably, it is in the range of 0.2 to 0.8 mol. When the molar ratio is smaller than this, the proportion of the low molecular weight component increases, and the blocking resistance when an epoxy resin composition is obtained is lowered. Moreover, when higher than this, a viscosity and a softening point will become high and the shaping | molding workability | operativity as an epoxy resin composition will fall.
[0018]
The reaction temperature is usually in the range of 80 ° C to 200 ° C. Moreover, you may use a catalyst in the case of reaction. Preferable catalysts include quaternary ammonium salts, organic phosphines, organic phosphonium salts, etc., and the amount used is usually in the range of 0.1 to 2.0 wt%. In the reaction, a solvent may be used. As the solvent, aromatic solvents such as toluene and xylene, ketones such as methyl ethyl ketone and methyl isobutyl ketone are preferably used.
[0019]
The present invention is also an epoxy resin composition comprising an epoxy resin and a curing agent, and at least a part of the epoxy resin blended in the epoxy resin composition is represented by the general formula (1). It is. This epoxy resin composition may contain a component or filler that becomes a resin after curing like an epoxy resin or a curing agent, but the main component of the component that becomes a resin is preferably an epoxy resin or its curing agent. .
[0020]
As the curing agent used in the epoxy resin composition of the present invention, all those generally known as epoxy resin curing agents can be used. Examples include dicyandiamide, polyhydric phenols, acid anhydrides, aromatic and aliphatic amines. Specifically, examples of the polyhydric phenols include bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4′-biphenol, 2,2′-biphenol, hydroquinone, resorcin, and naphthalenediol. Divalent phenols, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolac, o-cresol novolak, naphthol novolak, polyvinylphenol, etc. Typical trihydric or higher phenols, further phenols, naphthols, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4'-biphenol, 2,2'-biphenol, hydroxy Formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, p-xylylene glycol, p-xylylene glycol dimethyl ether, 4,4′-dimethoxymethylbiphenyl, divinylbiphenyls of divalent phenols such as non-resorcin and naphthalenediol Polyphenolic compounds synthesized by crosslinking agents such as dimethoxymethylnaphthalenes and divinylnaphthalene, etc., and acid anhydrides include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydroanhydride Examples include phthalic acid, methylhexahydrophthalic anhydride, methyl hymic anhydride, nadic anhydride, and trimellitic anhydride. Examples of amines include aromatic amines such as 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenylsulfone, m-phenylenediamine, and p-xylylenediamine. There are aliphatic amines such as ethylenediamine, hexamethylenediamine, diethylenetriamine, and triethylenetetramine, or polyvalent hydroxy compounds represented by the general formula (3). In the resin composition of the present invention, one or two or more of these curing agents can be mixed and used.
[0021]
Moreover, you may use together with the epoxy resin of this invention the normal epoxy resin which has 2 or more of epoxy groups in a molecule | numerator other than the epoxy resin used as an essential component of this invention. Examples include divalent phenols such as bisphenol A, bisphenol S, fluorene bisphenol, 4,4′-biphenol, 2,2′-biphenol, hydroquinone, resorcin, or tris- (4-hydroxyphenyl) methane. , 1,2,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolak, trivalent or higher phenols such as o-cresol novolak, or halogenated bisphenols such as tetrabromobisphenol A Examples include glycidyl etherified compounds. These epoxy resins can be used singly or in combination of two or more, but the compounding amount of the epoxy resin according to the present invention is in the range of 5 to 100% in the whole epoxy resin, preferably, It is in the range of 20 to 100%. If it is less than this, effects such as fluidity, fast curability, heat resistance and mechanical properties are reduced.
[0022]
Moreover, an inorganic filler is used for the epoxy resin composition of this invention as needed. Examples of the inorganic filler include silica powder such as spherical or crushed fused silica and crystalline silica, alumina powder, and glass powder. When applied to a semiconductor encapsulant, the amount of inorganic filler used is usually 75 wt% or more, but is preferably 80 wt% or more from the viewpoint of low hygroscopicity and high solder heat resistance.
[0023]
A conventionally well-known hardening accelerator can be used for the epoxy resin composition of this invention as needed. Examples include amines, imidazoles, organic phosphines, Lewis acids and the like. As addition amount, it is the range of 0.2-5 weight part normally with respect to 100 weight part of epoxy resins.
[0024]
Further, if necessary, the epoxy resin composition of the present invention includes a release agent such as carnauba wax and OP wax, a coupling agent such as γ-glycidoxypropyltrimethoxysilane, a colorant such as carbon black, and the like. A flame retardant such as antimony oxide, a low stress agent such as silicon oil, a lubricant such as calcium stearate, and the like can be used.
[0025]
The epoxy resin composition of the present invention can be cured by heating. The heating conditions are usually 40 to 280 ° C, preferably 80 to 200 ° C. If it is lower than this, it takes a long time to cure, and if it is higher than this, the moldability is lowered. In curing, methods such as transfer molding and compression molding are used, but there is no particular limitation.
[0026]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
Reference Example 4,4'-dihydroxydiphenyl ether (1,010 g) was dissolved in epichlorohydrin (7,000 g), and 808 g of a 48% aqueous sodium hydroxide solution was added dropwise at 60 ° C. over 4 hours under reduced pressure (about 120 mmHg). During this time, the generated water was removed from the system by azeotropy with epichlorohydrin, and the distilled epichlorohydrin was returned to the system. After completion of the dropwise addition, the reaction was continued for another hour. Thereafter, the salt produced by filtration was removed, and after further washing with water, epichlorohydrin was distilled off to obtain 1,515 g of a pale yellow liquid crude epoxy resin. Epoxy equivalent was 171 and hydrolyzable chlorine was 4500 ppm. 1,500 g of the obtained epoxy resin was dissolved in 6000 ml of methyl isobutyl ketone, 76.5 g of 20% aqueous sodium hydroxide solution was added, and the mixture was reacted at 80 ° C. for 2 hours. After the reaction, filtration and washing with water were performed, and then methyl isobutyl ketone as a solvent was distilled off under reduced pressure to obtain 1,380 g of a light yellow liquid epoxy resin. The epoxy equivalent of the obtained epoxy compound was 163, hydrolyzable chlorine was 280 ppm, the melting point was 78 to 84 ° C., and the viscosity at 150 ° C. was 0.062 poise. Moreover, as for each component ratio in General formula (1) calculated | required from GPC measurement of the obtained resin, n = 0 was 94% and n = 2 was 6%.
[0027]
Here, the viscosity was measured with Rheomat 115 manufactured by Contrabass, and the softening point was measured by the ring and ball method according to JIS K-6911. In addition, GPC measurement was performed by using an apparatus; HLC-82A (manufactured by Tosoh Corp.), column; TSK-GEL2000 × 3 and TSK-GEL4000 × 1 (both manufactured by Tosoh Corp.), solvent: tetrahydrofuran, flow rate; 1 ml / min, temperature; 38 ° C., detector; RI conditions were followed. Hydrolyzable chlorine is a sample obtained by dissolving 0.5 g of a sample in 30 ml of dioxane, adding 1N-KOH, 10 ml, boiling and refluxing for 30 minutes, cooling to room temperature, and adding 100 ml of 80% acetone water. It is a value measured by performing potentiometric titration with 0.002N-AgNO 3 aqueous solution. The melting point is a value obtained by a capillary method at a temperature rising rate of 2 ° C./min.
[0028]
Example 1
After melt-mixing 163 g of the epoxy compound synthesized in Reference Example and 25.3 g of 4,4′-dihydroxydiphenyl ether at 150 ° C., 0.075 g of triphenylphosphine was added, and the reaction was performed in a nitrogen stream for 2 hours. After the reaction, the resulting resin was crystallized and solidified by allowing to cool to room temperature. The resulting resin had an epoxy equivalent of 261, a melting point of 100 to 122 ° C., a softening point of 127 ° C., and a viscosity at 150 ° C. of 0.37 poise. In addition, each component ratio in the general formula (1) obtained by GPC measurement of the obtained resin is 42.5% for n = 0, 29.2% for n = 2, 17.6% for n = 4, and 10.7 for n ≧ 6. %Met.
[0029]
Example 2
The reaction was carried out in the same manner as in Example 1 using 163 g of the epoxy compound synthesized in Reference Example and 33.7 g of 4,4′-dihydroxydiphenyl ether. After the reaction, the resulting resin was crystallized and solidified by allowing to cool to room temperature. The resulting resin had an epoxy equivalent of 324, a melting point of 120 to 140 ° C., a softening point of 137 ° C., and a viscosity at 150 ° C. of 0.99 poise. The ratio of each component in the general formula (1) obtained by GPC measurement of the obtained resin is 29.7% for n = 0, 31.6% for n = 2, 20.2% for n = 4, and 18.5 for n ≧ 6. %Met.
[0030]
Example 3
The reaction was carried out in the same manner as in Example 1 using 163 g of the epoxy compound synthesized in Reference Example and 50.5 g of 4,4′-dihydroxydiphenyl ether. After the reaction, the resulting resin was crystallized and solidified by allowing to cool to room temperature. The obtained resin had an epoxy equivalent of 482, a melting point of 145 to 165 ° C., and a softening point of 163 ° C. In addition, each component ratio in the general formula (1) obtained by GPC measurement of the obtained resin is 16.7% for n = 0, 22.1% for n = 2, 32.1% for n = 4, and 29.1 for n ≧ 6. %Met.
[0031]
Examples 4 to 6 and Comparative Example 1
The epoxy resins obtained in Examples 1 to 3 and Reference Example were used as the epoxy resin component, phenol novolac resin (manufactured by Gunei Chemical Co., PSF-4300) as a curing agent, and spherical silica (average particle size, 22 μm) as a filler. Then, using triphenylphosphine as a curing accelerator, γ-glycidoxypropyltrimethoxysilane as a silane coupling agent, and other additives shown in Table 1, kneading with the formulation shown in Table 1 to obtain an epoxy resin composition It was. This epoxy resin composition was molded at 175 ° C. and post-cured at 175 ° C. for 12 hours to obtain a cured product test piece, which was then subjected to various physical property measurements. Further, an 84-pin IC was molded using this epoxy resin composition, post-cured and moisture-absorbed at 85 ° C. and 85% RH for 24, 48 and 72 hours, and immersed in a solder bath at 260 ° C. for 10 seconds. The package was observed for cracks. The results are shown in Table 2. Moreover, what pulverized this epoxy resin composition to the particle size of 1 mm or less was left at 23 degreeC for 1 day, Then, the weight ratio of what was aggregated was made into the blocking rate.
[0032]
Comparative Example 2
Using an o-cresol novolac type epoxy resin (epoxy equivalent 198, softening point 64 ° C., viscosity 4.7 poise at 150 ° C.) as an epoxy resin component, an epoxy resin composition was obtained in the same manner as in Example 1 and then molded. evaluated. The results are shown in Table 2.
[0033]
[Table 1]
Figure 0004493748
[0034]
[Table 2]
Figure 0004493748
[0035]
【The invention's effect】
Since the epoxy resin of the present invention is highly reactive and exhibits crystallinity even in an oligomerized state, it exists in a solid state at room temperature, while it has a low viscosity in a molten state, so that the filler can be highly filled. It is possible, and when applied to a semiconductor encapsulant, it has excellent handling workability and formability and can greatly improve crack resistance.

Claims (5)

下記一般式(1)
Figure 0004493748
(但し、R1およびR2は、それぞれ独立に水素原子または炭素数1から8の炭化水素基を表す。GPC測定により求められたnは平均値として0.5以上の有理数を示す。)で表され、エポキシ当量が220以上であり、結晶性を有し、さらに軟化点が90〜250℃であることを特徴とするエポキシ樹脂。
The following general formula (1)
Figure 0004493748
(However, R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms. N obtained by GPC measurement represents a rational number of 0.5 or more as an average value.) An epoxy resin having an epoxy equivalent of 220 or more, crystallinity, and a softening point of 90 to 250 ° C.
エポキシ樹脂の数平均分子量が400〜2,000の範囲であり、エポキシ当量が220〜1,000の範囲である請求項1に記載のエポキシ樹脂。The epoxy resin according to claim 1, wherein the number average molecular weight of the epoxy resin is in the range of 400 to 2,000, and the epoxy equivalent is in the range of 220 to 1,000. 下記一般式(2)The following general formula (2)
Figure 0004493748
Figure 0004493748
(但し、R(However, R 11 およびRAnd R 22 は、それぞれ独立に水素原子または炭素数1から8の炭化水素基を表す。)で表されるエポキシ化合物と、下記一般式(3)Each independently represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms. And an epoxy compound represented by the following general formula (3)
Figure 0004493748
Figure 0004493748
(但し、R(However, R 11 およびRAnd R 22 は、それぞれ独立に水素原子または炭素数1から8の炭化水素基を表す。)で表されるビスフェノール化合物を反応させることを特徴とする請求項1または2に記載のエポキシ樹脂の製造方法。Each independently represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms. The method for producing an epoxy resin according to claim 1, wherein a bisphenol compound represented by formula (1) is reacted.
エポキシ樹脂および硬化剤を含んでなるエポキシ樹脂組成物であって、請求項1または2に記載のエポキシ樹脂を該エポキシ樹脂の少なくとも一部として含んでなるエポキシ樹脂組成物。An epoxy resin composition comprising an epoxy resin and a curing agent, the epoxy resin composition comprising the epoxy resin according to claim 1 or 2 as at least a part of the epoxy resin. 請求項4に記載のエポキシ樹脂組成物を硬化させて得られる硬化物。A cured product obtained by curing the epoxy resin composition according to claim 4.
JP19892799A 1999-07-13 1999-07-13 Epoxy resin, method for producing the same, epoxy resin composition and cured product thereof Expired - Fee Related JP4493748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19892799A JP4493748B2 (en) 1999-07-13 1999-07-13 Epoxy resin, method for producing the same, epoxy resin composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19892799A JP4493748B2 (en) 1999-07-13 1999-07-13 Epoxy resin, method for producing the same, epoxy resin composition and cured product thereof

Publications (2)

Publication Number Publication Date
JP2001026633A JP2001026633A (en) 2001-01-30
JP4493748B2 true JP4493748B2 (en) 2010-06-30

Family

ID=16399290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19892799A Expired - Fee Related JP4493748B2 (en) 1999-07-13 1999-07-13 Epoxy resin, method for producing the same, epoxy resin composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP4493748B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101198632B (en) * 2005-05-10 2010-06-09 新日铁化学株式会社 Epoxy resin composition and curing product thereof
TWI444406B (en) * 2006-01-12 2014-07-11 Nippon Steel & Sumikin Chem Co An aromatic ether type polymer, a method for producing the same, and a polymer composition
JP5234962B2 (en) * 2006-08-07 2013-07-10 新日鉄住金化学株式会社 Prepreg, laminated board and printed wiring board
WO2008059755A1 (en) * 2006-11-13 2008-05-22 Nippon Steel Chemical Co., Ltd. Crystalline resin cured product, crystalline resin composite body and method for producing the same
EP3901191A4 (en) * 2018-12-21 2022-08-24 Nitto Shinko Corporation Resin composition

Also Published As

Publication number Publication date
JP2001026633A (en) 2001-01-30

Similar Documents

Publication Publication Date Title
JP5166610B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product using the same
JP5515058B2 (en) Epoxy resin, phenol resin, production method thereof, epoxy resin composition and cured product
JP5457304B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JPWO2008050879A1 (en) Epoxy resin composition and cured product
JP4493748B2 (en) Epoxy resin, method for producing the same, epoxy resin composition and cured product thereof
JP4188022B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product using them
JP5616234B2 (en) Epoxy resin composition, method for producing the epoxy resin composition, and cured product thereof
JPH111544A (en) Epoxy resin composition and electronic component
JP5139914B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product using them
JP5734603B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP3933763B2 (en) Epoxy resin composition and electronic component
JP3806222B2 (en) Epoxy resin composition and cured product thereof
JP3451104B2 (en) Epoxy resin composition
JP3875775B2 (en) Epoxy resin composition and electronic component
JP2001114863A (en) Epoxy resin composition and its cured material
JPWO2004069893A1 (en) Epoxy resin, method for producing the same, epoxy resin composition using the same, and cured product
JP4667753B2 (en) Epoxy resin production method, epoxy resin composition and cured product
JP3125059B2 (en) Epoxy resin composition for sealing electronic parts
JP2000119369A (en) Solid epoxy resin, epoxy resin composition and its cured product
JP4268829B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product
KR100300543B1 (en) Epoxy Resin Composition
JP2779297B2 (en) Epoxy resin composition for sealing electronic parts
JP2004010724A (en) Epoxy resin, method for producing the same, epoxy resin composition and cured product of the composition
JP4639412B2 (en) Epoxy resin composition and semiconductor device
JP5390491B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100407

R150 Certificate of patent or registration of utility model

Ref document number: 4493748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160416

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees