JP4667753B2 - Epoxy resin production method, epoxy resin composition and cured product - Google Patents

Epoxy resin production method, epoxy resin composition and cured product Download PDF

Info

Publication number
JP4667753B2
JP4667753B2 JP2004036995A JP2004036995A JP4667753B2 JP 4667753 B2 JP4667753 B2 JP 4667753B2 JP 2004036995 A JP2004036995 A JP 2004036995A JP 2004036995 A JP2004036995 A JP 2004036995A JP 4667753 B2 JP4667753 B2 JP 4667753B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
naphthol
epichlorohydrin
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004036995A
Other languages
Japanese (ja)
Other versions
JP2005226004A (en
Inventor
秀安 朝蔭
宣久 齋藤
和彦 中原
正史 梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2004036995A priority Critical patent/JP4667753B2/en
Priority to PCT/JP2005/001763 priority patent/WO2005078001A1/en
Publication of JP2005226004A publication Critical patent/JP2005226004A/en
Application granted granted Critical
Publication of JP4667753B2 publication Critical patent/JP4667753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/063Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols with epihalohydrins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O

Description

本発明は電気・電子部品類の封止、回路基板材料、接着剤、塗料等に有用なエポキシ樹脂、エポキシ樹脂組成物、更にはその硬化物に関するものである。   The present invention relates to an epoxy resin, an epoxy resin composition, and a cured product thereof useful for sealing electric and electronic parts, circuit board materials, adhesives, paints, and the like.

近年、特に先端材料分野の進歩にともない、より高性能なベース樹脂の開発が求められている。例えば、半導体封止の分野においては、近年の高密度実装化に対応したパッケージの薄形化、大面積化、更には表面実装方式の普及により、パッケージクラックの問題が深刻化しており、これらのベース樹脂としては、耐湿性、耐熱性、金属基材との接着性等の向上が強く求められている。更に最近では、環境負荷低減の観点から、ハロゲン系難燃剤排除の動きがあり、より難燃性に優れたベース樹脂が求められている。   In recent years, particularly with the advancement of the advanced material field, development of higher performance base resins has been demanded. For example, in the field of semiconductor encapsulation, the problem of package cracking has become serious due to the thinning and large area of packages corresponding to recent high-density mounting and the spread of surface mounting methods. As a base resin, improvement in moisture resistance, heat resistance, adhesion to a metal substrate, and the like is strongly demanded. More recently, from the viewpoint of reducing environmental impact, there has been a movement to eliminate halogen-based flame retardants, and there is a demand for base resins that are more excellent in flame retardancy.

しかしながら、従来より知られているエポキシ樹脂には、これらの要求を満足するものは未だ知られていない。例えば、特許文献1や2には低吸湿性、高耐熱性に優れるものとして、ナフタレン型のエポキシ樹脂が提案されているが、ナフタレン構造を有するエポキシ樹脂は粘度の高いものが多く、成形性に劣る欠点があった。   However, no conventionally known epoxy resins satisfy these requirements. For example, Patent Documents 1 and 2 propose naphthalene-type epoxy resins that are excellent in low hygroscopicity and high heat resistance. However, many epoxy resins having a naphthalene structure have a high viscosity and are easy to mold. There were inferior drawbacks.

特開平3−717号公報JP-A-3-717 特開平3−90075号公報Japanese Patent Laid-Open No. 3-90075

従って、本発明の目的は、耐湿性、耐熱性、難燃性及び金属基材との接着性等に優れるとともに、良好な成形性を有する積層、成形、注型、接着等の用途に有用なエポキシ樹脂、その製造方法、それらを用いたエポキシ樹脂組成物並びにその硬化物を提供することにある。   Therefore, the object of the present invention is excellent in moisture resistance, heat resistance, flame retardancy, adhesion to a metal substrate and the like, and useful for applications such as lamination, molding, casting, adhesion, etc. having good moldability. An object of the present invention is to provide an epoxy resin, a production method thereof, an epoxy resin composition using them, and a cured product thereof.

すなわち、本発明は、下記一般式(1)、

Figure 0004667753
(但し、nは平均値で1.1から4.0の数を示す。)で表されるナフトール樹脂100重量部に対して、下記一般式(2)、
Figure 0004667753
(但し、R1、R2は水素原子又は炭素数1〜8の炭化水素基を示し、Xは直接結合又はメチレン基を示す。)で表されるビスフェノール化合物10〜60重量部を混合したのち、エピクロロヒドリンと反応させることを特徴とするエポキシ樹脂の製造方法である。
ここで、ビスフェノール化合物としては、4,4'−ジヒドロキシビフェニル又は3,3',5,5'−テトラメチル−4,4'−ジヒドロキシジフェニルメタンが好ましく例示される。 That is, the present invention provides the following general formula (1),
Figure 0004667753
(Where n is an average value and represents a number from 1.1 to 4.0), with respect to 100 parts by weight of naphthol resin, the following general formula (2),
Figure 0004667753
(However, R 1 and R 2 represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and X represents a direct bond or a methylene group. ) After mixing 10 to 60 parts by weight of a bisphenol compound represented by And an epoxy resin production method characterized by reacting with epichlorohydrin.
Here, as the bisphenol compound, 4,4′-dihydroxybiphenyl or 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxydiphenylmethane is preferably exemplified.

また、本発明は前記のエポキシ樹脂の製造方法によって得られたエポキシ樹脂である。このエポキシ樹脂は、軟化点が50〜110℃であることが好ましい。更に、本発明は、前記のエポキシ樹脂及び硬化剤を配合してなるエポキシ樹脂組成物及びこれを硬化してなるエポキシ樹脂硬化物である。   Moreover, this invention is an epoxy resin obtained by the manufacturing method of the said epoxy resin. This epoxy resin preferably has a softening point of 50 to 110 ° C. Furthermore, this invention is the epoxy resin composition formed by mix | blending the said epoxy resin and a hardening | curing agent, and an epoxy resin hardened | cured material formed by hardening | curing this.

以下、本発明を詳細に説明する。
本発明のエポキシ樹脂は、上記一般式(1)で表されるナフトール樹脂と一般式(2)で表されるビスフェノール化合物の混合物をエピクロルヒドリンと反応させることにより得ることができる。ナフトール樹脂のエポキシ化物が高粘度であっても、低粘性のビスフェノール化合物のエポキシ化物と組み合わせることにより、流動性に優れたエポキシ樹脂とすることができる。ナフトール樹脂とビスフェノール化合物の混合割合は、ナフトール樹脂100重量部に対してビスフェノール化合物10〜60重量部の範囲であり、好ましくは15〜40重量部の範囲である。これより少ないと流動性の向上効果が小さく、これより多いと耐熱性、耐湿性及び難燃性が低下する。
Hereinafter, the present invention will be described in detail.
The epoxy resin of the present invention can be obtained by reacting a mixture of the naphthol resin represented by the general formula (1) and the bisphenol compound represented by the general formula (2) with epichlorohydrin. Even if the epoxidized product of naphthol resin has a high viscosity, an epoxy resin excellent in fluidity can be obtained by combining with an epoxidized product of a low-viscosity bisphenol compound. The mixing ratio of the naphthol resin and the bisphenol compound is in the range of 10 to 60 parts by weight, preferably in the range of 15 to 40 parts by weight with respect to 100 parts by weight of the naphthol resin. If it is less than this, the improvement effect of fluidity | liquidity is small, and when more than this, heat resistance, moisture resistance, and a flame retardance will fall.

本発明に用いるナフトール樹脂は、上記一般式(1)で表される構造を有しており、ここで繰り返し単位nは、平均値として1.1から4.0の数であるが、好ましくは1.2から3.0である。これより小さいと耐熱性及び耐湿性が低下し、これより大きいと粘度が高くなり成形性が低下する。   The naphthol resin used in the present invention has a structure represented by the above general formula (1), wherein the repeating unit n is an average value of 1.1 to 4.0, preferably 1.2 to 3.0. If it is smaller than this, the heat resistance and moisture resistance are lowered, and if it is larger than this, the viscosity is increased and the moldability is lowered.

このナフトール樹脂の軟化点範囲は、通常、50〜150℃であるが、好ましくは、60〜120℃の範囲であり、更に好ましくは60〜90℃である。これより低いと耐熱性が低下し、これより高いと流動性が低下する。また、水酸基当量は、通常、180〜240の範囲であり、好ましくは190〜230の範囲である。   The softening point range of the naphthol resin is usually 50 to 150 ° C, preferably 60 to 120 ° C, and more preferably 60 to 90 ° C. When it is lower than this, the heat resistance is lowered, and when it is higher than this, the fluidity is lowered. The hydroxyl equivalent is usually in the range of 180 to 240, preferably in the range of 190 to 230.

本発明に用いるナフトール樹脂は、例えば、ナフトール類とp−キシリレングリコール等の芳香族架橋剤を酸性触媒の存在下に反応させることにより得ることができる。この反応に際しては、ナフトール類1モルに対して、通常、0.1から0.9モルの芳香族架橋剤が用いられる。反応終了後、過剰に残存するナフトール類は、通常、減圧蒸留等の方法で系外に除去される。また、過剰に残存するナフトール類を系外に除くことなく、例えば、特開平5-148333号公報に記載のように、残存するナフトール類とパラホルムアルデヒド等のホルムアルデヒドとを反応させることによりナフトール類の2量体として系内に残し、見かけ上、残存するナフトール類を低減させる方法を用いてもよい。ナフトール類は、通常、ナフトール樹脂中に残存する量が5wt%以下となるまで、好ましくは2wt%以下となるまで除去される。   The naphthol resin used in the present invention can be obtained, for example, by reacting naphthols with an aromatic crosslinking agent such as p-xylylene glycol in the presence of an acidic catalyst. In this reaction, 0.1 to 0.9 mol of an aromatic crosslinking agent is usually used for 1 mol of naphthols. After completion of the reaction, excess naphthols are usually removed out of the system by a method such as vacuum distillation. Further, without removing excess naphthols out of the system, for example, as described in JP-A-5-148333, by reacting the remaining naphthols with formaldehyde such as paraformaldehyde, A method of remaining in the system as a dimer and apparently reducing the remaining naphthols may be used. Naphthol is usually removed until the amount remaining in the naphthol resin is 5 wt% or less, preferably 2 wt% or less.

本発明に用いるナフトール樹脂を製造する際に用いるナフトール類としては1−ナフトール又は2−ナフトールがあり、これらは単独で用いてもよいし、混合物として用いてもよい。芳香族架橋剤としては、p−キシリレングリコール、1,4−ジクロロメチルベンゼン、1,4−ジメトキシメチルベンゼン、1,4−ジエトキシメチルベンゼン等を例示することができる。   The naphthols used in producing the naphthol resin used in the present invention include 1-naphthol and 2-naphthol, and these may be used alone or as a mixture. Examples of the aromatic crosslinking agent include p-xylylene glycol, 1,4-dichloromethylbenzene, 1,4-dimethoxymethylbenzene, 1,4-diethoxymethylbenzene and the like.

本発明に用いるビスフェノール化合物は、上記式(2)で表される構造を有している。式中、R1、R2は水素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、アリル基、プロパルギル基、ブチル基、n−アミル基、sec−アミル基、tert−アミル基、シクロヘキシル基、フェニル基又はベンジル基等の炭素数が1〜8の炭化水素基であるが、好ましくは、水素原子又はメチル基である。
また、Xは直接結合、エーテル基、スルフィド基、スルホン基、ケトン基、メチレン基又はイソプロピリデン基を示すが、好ましくは、直接結合又はメチレン基である。ビスフェノール化合物の具体例としては、4,4’−ジヒドロキシビフェニル、3,3’,5,5’−テトラメチル−4,4’ −ジヒドロキシビフェニル、4,4’−ジヒドロキシジフェニルメタン、3,3’−ジメチル−4,4’−ジヒドロキシジフェニルメタン、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルメタン、4,4’−ジヒドロキシジフェニルエーテル、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシジフェニルスルフィド、3,3’−ジメチル−4,4’−ジヒドロキシジフェニルスルフィド、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルスルフィド、4,4’−ジヒドロキシジフェニルスルホン、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシジフェニルケトン、ビスフェノールA等が挙げられる。
The bisphenol compound used in the present invention has a structure represented by the above formula (2). In the formula, R 1 and R 2 are hydrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group, allyl group, propargyl group, butyl group, n-amyl group, sec-amyl group, tert-amyl group, Although it is a C1-C8 hydrocarbon group, such as a cyclohexyl group, a phenyl group, or a benzyl group, Preferably they are a hydrogen atom or a methyl group.
X represents a direct bond, an ether group, a sulfide group, a sulfone group, a ketone group, a methylene group or an isopropylidene group, preferably a direct bond or a methylene group. Specific examples of the bisphenol compound include 4,4′-dihydroxybiphenyl, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxybiphenyl, 4,4′-dihydroxydiphenylmethane, and 3,3′-. Dimethyl-4,4′-dihydroxydiphenylmethane, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenyl ether, 3,3 ′, 5,5′-tetra Methyl-4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenyl sulfide, 3,3′-dimethyl-4,4′-dihydroxydiphenyl sulfide, 3,3 ′, 5,5′-tetramethyl-4, 4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl sulfone, 3,3 ', 5,5'-tetramethyl-4 4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxydiphenyl ketone, bisphenol A, and the like.

本発明のエポキシ樹脂は、上記一般式(1)のナフトール樹脂と一般式(2)のビスフェノール化合物の混合物をエピクロルヒドリンと反応させることにより製造することができるが、この反応は通常のエポキシ化反応と同様に行うことができる。   The epoxy resin of the present invention can be produced by reacting a mixture of the naphthol resin of the general formula (1) and the bisphenol compound of the general formula (2) with epichlorohydrin. The same can be done.

例えば、上記混合物を過剰のエピクロルヒドリンに溶解した後、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物の存在下に、20〜150℃、好ましくは、30〜80℃の範囲で1〜10時間反応させる方法が挙げられる。この際のアルカリ金属水酸化物の使用量は、ナフトール樹脂とビスフェノール化合物の水酸基の合計1モルに対して、0.8〜1.2モル、好ましくは、0.9〜1.0モルの範囲である。また、エピクロルヒドリンはナフトール樹脂とビスフェノール化合物中の水酸基の合計に対して過剰に用いられるが、通常、合計の水酸基1モルに対して、1.5〜30モル、好ましくは、2〜15モルの範囲である。   For example, after the above mixture is dissolved in excess epichlorohydrin, in the presence of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, 20 to 150 ° C., preferably 30 to 80 ° C. in the range of 1 to 10 The method of making it react for time is mentioned. The amount of the alkali metal hydroxide used in this case is in the range of 0.8 to 1.2 mol, preferably 0.9 to 1.0 mol, with respect to 1 mol in total of the naphthol resin and the hydroxyl group of the bisphenol compound. It is. Epichlorohydrin is used in an excess amount relative to the total number of hydroxyl groups in the naphthol resin and bisphenol compound, but is usually in the range of 1.5 to 30 mol, preferably 2 to 15 mol, based on 1 mol of the total hydroxyl group. It is.

この反応に際しては、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル等の溶媒を共存させてもよい。   In this reaction, a solvent such as dimethyl sulfoxide, diethylene glycol dimethyl ether, or triethylene glycol dimethyl ether may coexist.

反応終了後、過剰のエピクロルヒドリンを留去し、残留物をトルエン、メチルイソブチルケトン等の溶剤に溶解し、濾過、水洗して無機塩を除去し、次いで溶剤を留去することにより目的のエポキシ樹脂を得ることができる。   After completion of the reaction, excess epichlorohydrin is distilled off, the residue is dissolved in a solvent such as toluene and methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then the target epoxy resin is distilled off. Can be obtained.

本発明のエポキシ樹脂は、上記製造方法で得られたものであり、一般式(1)と(2)で表されるナフトール樹脂とビスフェノール化合物中の水酸基が、グリシジルエーテル基に変化したものを主とし(好ましくは90wt%以上)、エポキシ基の一部が開烈してオリゴマー化したものを少量含む。したがって、本発明のエポキシ樹脂は、一般式(1)と(2)で表されるナフトール樹脂とビスフェノール化合物から生じるエポキシ樹脂の混合物でもある。このエポキシ樹脂は、軟化点が50〜110℃であることが望ましい。   The epoxy resin of the present invention is obtained by the above-described production method, and is mainly one in which the naphthol resin represented by the general formulas (1) and (2) and the hydroxyl group in the bisphenol compound are changed to a glycidyl ether group. (Preferably 90 wt% or more), and a small amount of oligomers formed by partial cleavage of epoxy groups. Therefore, the epoxy resin of the present invention is also a mixture of an epoxy resin produced from a naphthol resin represented by the general formulas (1) and (2) and a bisphenol compound. The epoxy resin preferably has a softening point of 50 to 110 ° C.

本発明のエポキシ樹脂は、加水分解性塩素を低減させるために、上記反応で得られたエポキシ樹脂をさらに塩基性物質と接触させる方法をとることができる。この反応は、通常、トルエン、キシレン、n−ブタノール、メチルイソブチルケトン等の溶媒中で行われる。塩基性物質としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物を例示することができる。   The epoxy resin of this invention can take the method of making the epoxy resin obtained by the said reaction contact a basic substance further in order to reduce hydrolysable chlorine. This reaction is usually carried out in a solvent such as toluene, xylene, n-butanol, methyl isobutyl ketone. Examples of the basic substance include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide.

本発明のエポキシ樹脂の加水分解性塩素量は、封止する電子部品の信頼性向上の観点から少ないものがよい。特に限定するものではないが、1000ppm以下が好ましく、更に好ましくは500ppm以下である。なお、本発明でいう加水分解性塩素とは、以下の方法により測定された値をいう。すなわち、試料0.5gをジオキサン30mlに溶解後、1N−KOH、10mlを加え30分間煮沸還流した後、室温まで冷却し、さらに80%アセトン水100mlを加え、0.002N−AgNO3 水溶液で電位差滴定を行い得られる値である。   The amount of hydrolyzable chlorine in the epoxy resin of the present invention is preferably small from the viewpoint of improving the reliability of the electronic component to be sealed. Although it does not specifically limit, 1000 ppm or less is preferable, More preferably, it is 500 ppm or less. In addition, the hydrolyzable chlorine as used in the field of this invention means the value measured by the following method. That is, 0.5 g of sample was dissolved in 30 ml of dioxane, 1N-KOH, 10 ml was added, and the mixture was boiled and refluxed for 30 minutes, cooled to room temperature, further added with 100 ml of 80% acetone water, and potentiometric titration with 0.002N-AgNO3 aqueous solution. Is a value obtained by performing

本発明のエポキシ樹脂組成物はエポキシ樹脂及び硬化剤よりなり、エポキシ樹脂成分として本発明のエポキシ樹脂を必須成分として配合したものである。   The epoxy resin composition of this invention consists of an epoxy resin and a hardening | curing agent, and mix | blends the epoxy resin of this invention as an essential component as an epoxy resin component.

本発明のエポキシ樹脂組成物には、本発明のエポキシ樹脂以外に、分子中にエポキシ基を2個以上有する通常のエポキシ樹脂を配合してもよい。このようなエポキシ樹脂としては、例えばビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4' −ビフェノール、2,2' −ビフェノール、ハイドロキノン、レゾルシン等の2価のフェノール類、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノールノボラック、o−クレゾールノボラック等の3価以上のフェノール類、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類から誘導されるグリシジルエーテル化物などが挙げられる。これらのエポキシ樹脂は、単独でもよいし、2種以上を併用してもよい。これらの配合量は、本発明の目的を損なわない範囲であればよいが、通常、本発明のエポキシ樹脂に対して50重量%以内がよい。   In addition to the epoxy resin of the present invention, a normal epoxy resin having two or more epoxy groups in the molecule may be blended with the epoxy resin composition of the present invention. Examples of such an epoxy resin include divalent phenols such as bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4′-biphenol, 2,2′-biphenol, hydroquinone, and resorcin, tris- (4 -Hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolak, trivalent or higher phenols such as o-cresol novolak, and halogenated bisphenols such as tetrabromobisphenol A Examples thereof include glycidyl etherification products derived. These epoxy resins may be used alone or in combination of two or more. These blending amounts may be in a range that does not impair the object of the present invention, but are usually within 50% by weight with respect to the epoxy resin of the present invention.

本発明のエポキシ樹脂組成物に用いる硬化剤としては、一般にエポキシ樹脂の硬化剤として知られているものはすべて使用できる。例えば、ジシアンジアミド、多価フェノール類、酸無水物類、芳香族及び脂肪族アミン類等がある。   As the curing agent used in the epoxy resin composition of the present invention, any one generally known as an epoxy resin curing agent can be used. Examples include dicyandiamide, polyhydric phenols, acid anhydrides, aromatic and aliphatic amines.

具体的に例示すれば、多価フェノール類としては、例えばビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4' −ビフェノール、2,2' −ビフェノール、ハイドロキノン、レゾルシン、カテコール、ナフタレンジオール類等の2価のフェノール類、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノールノボラック、o−クレゾールノボラック、ナフトールノボラック、ポリビニルフェノール等に代表される3価以上のフェノール類、更にはフェノール類、ナフトール類又は、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4' −ビフェノール、2,2' −ビフェノール、ハイドロキノン、レゾルシン、カテコール、ナフタレンジオール類等の2価のフェノール類とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、p−キシリレングリコール、p−キシリレングリコールジメチルエーテル、ジビニルベンゼン、ジイソプロペニルベンゼン、ジメトキシメチルビフェニル類、ジビニルビフェニル、ジイソプロペニルビフェニル類等の架橋剤との反応により合成される多価フェノール性化合物などが挙げられる。   Specifically, as polyhydric phenols, for example, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4′-biphenol, 2,2′-biphenol, hydroquinone, resorcin, catechol, naphthalenediols Divalent phenols such as tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolac, o-cresol novolak, naphthol novolak, polyvinylphenol, etc. Representative trihydric or higher phenols, further phenols, naphthols, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4'-biphenol, 2,2'-biphenol, hydro Divalent phenols such as non-resorcin, catechol, naphthalenediol and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, p-xylylene glycol, p-xylylene glycol dimethyl ether, divinylbenzene, diisopropenylbenzene, dimethoxy Examples thereof include polyhydric phenolic compounds synthesized by a reaction with a crosslinking agent such as methylbiphenyls, divinylbiphenyl, diisopropenylbiphenyls, and the like.

フェノール系硬化剤の軟化点範囲は、好ましくは40〜150℃、より好ましくは50〜120℃である。これより低いと保存時のブロッキングの問題があり、これより高いとエポキシ樹脂組成物調製時の混練性と成形性に問題がある。また、好ましい150℃における溶融粘度は20ポイズ以下であり、より好ましくは5ポイズ以下である。これより高いとエポキシ樹脂組成物の調製時の混練性、及び成形性に問題がある。   The softening point range of the phenolic curing agent is preferably 40 to 150 ° C, more preferably 50 to 120 ° C. If it is lower than this, there is a problem of blocking during storage, and if it is higher than this, there is a problem in kneadability and moldability during preparation of the epoxy resin composition. Further, the melt viscosity at 150 ° C. is preferably 20 poises or less, more preferably 5 poises or less. When higher than this, there exists a problem in the kneadability at the time of preparation of an epoxy resin composition, and a moldability.

酸無水物としては、無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチル無水ハイミック酸、無水ナジック酸、無水トリメリット酸等がある。   Examples of the acid anhydride include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl hymic anhydride, nadic anhydride, and trimellitic anhydride.

アミン類としては、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルスルホン、m−フェニレンジアミン、p−キシリレンジアミン等の芳香族アミン類、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等の脂肪族アミン類がある。   Examples of amines include aromatic amines such as 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenylsulfone, m-phenylenediamine, and p-xylylenediamine, ethylenediamine, There are aliphatic amines such as hexamethylenediamine, diethylenetriamine, and triethylenetetramine.

本発明の樹脂組成物には、これら硬化剤の1種又は2種以上を混合して用いることができる。   In the resin composition of the present invention, one or more of these curing agents can be mixed and used.

本発明のエポキシ樹脂組成物は封止用として有用である。封止用のエポキシ樹脂組成物に配合する無機充填材としては、例えばシリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、ムライト、チタニアなどの1種又は2種以上が挙げられ、その形態は粉体、球形化したビーズなどが挙げられる。これらの内、無機充填材の高充填化の観点から球状の溶融シリカが好ましい。通常、シリカは、数種類の粒径分布を持ったものを組み合わせて使用される。組み合わせるシリカの平均粒径の範囲は、0.5〜100μmがよい。   The epoxy resin composition of the present invention is useful for sealing. Examples of the inorganic filler compounded in the epoxy resin composition for sealing include silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, mullite. 1 type or 2 or more types such as titania, and the form includes powder, spherical beads and the like. Among these, spherical fused silica is preferable from the viewpoint of increasing the filling of the inorganic filler. Usually, silica is used in combination with those having several kinds of particle size distributions. The range of the average particle diameter of the silica to be combined is preferably 0.5 to 100 μm.

この無機充填材の配合量は、エポキシ樹脂組成物全体の75重量%以上、好ましくは80重量%以上である。これより少ないと半田耐熱性、難燃性の向上効果が小さい。   The blending amount of the inorganic filler is 75% by weight or more, preferably 80% by weight or more of the entire epoxy resin composition. If it is less than this, the effect of improving solder heat resistance and flame retardancy is small.

本発明のエポキシ樹脂組成物には、従来より公知の硬化促進剤、例えばアミン類、イミダゾール類、有機ホスフィン類、ルイス酸などを添加してもよい。具体的には、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン類、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−へプタデシルイミダゾール等のイミダゾール類、トリブチルホスフィン、メチルジフェニルホスフイン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート、テトラブチルホスホニウム・テトラブチルボレート等のテトラ置換ホスホニウム・テトラ置換ボレート、2−エチル−4−メチルイミダゾール・テトラフェニルボレート、N−メチルモルホリン・テトラフェニルボレート等のテトラフェニルボロン塩などが挙げられる。添加量としては、通常、エポキシ樹脂100重量部に対して0.2〜10重量部である。   Conventionally known curing accelerators such as amines, imidazoles, organic phosphines, Lewis acids and the like may be added to the epoxy resin composition of the present invention. Specifically, tertiary amines such as 1,8-diazabicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, Organic compounds such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, imidazoles such as 2-heptadecylimidazole, tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, and phenylphosphine Tetra-substituted phosphonium such as phosphines, tetraphenylphosphonium / tetraphenylborate, tetraphenylphosphonium / ethyltriphenylborate, tetrabutylphosphonium / tetrabutylborate · Tetra-substituted borate, 2-ethyl-4-methylimidazole · tetraphenyl borate, etc. tetraphenyl boron salts such as N- methylmorpholine tetraphenylborate and the like. As addition amount, it is 0.2-10 weight part normally with respect to 100 weight part of epoxy resins.

また、本発明のエポキシ樹脂組成物には、カルナバワックス、エステル系ワックス等の離型剤、エポキシシラン、アミノシラン、ウレイドシラン、ビニルシラン、アルキルシラン、有機チタネート、アルミニウムアルコレート等のカップリング剤、カーボンブラック等の着色剤、三酸化アンチモン等の難燃助剤、シリコンオイル等の低応力化剤、高級脂肪酸、高級脂肪酸金属塩等の滑剤などを配合してもよい。   The epoxy resin composition of the present invention includes a release agent such as carnauba wax and ester wax, a coupling agent such as epoxy silane, amino silane, ureido silane, vinyl silane, alkyl silane, organic titanate, and aluminum alcoholate, carbon A colorant such as black, a flame retardant aid such as antimony trioxide, a low stress agent such as silicone oil, a lubricant such as a higher fatty acid and a higher fatty acid metal salt may be blended.

一般的には、以上のような原材料を所定の配合量でミキサーなどによって十分混合した後、ミキシングロール、押し出し機などによって混練し、冷却、粉砕することによって、電子部品封止用に適したエポキシ樹脂組成物を調製することができる。   Generally, an epoxy suitable for sealing electronic components is prepared by thoroughly mixing the above raw materials in a predetermined blending amount with a mixer or the like, then kneading with a mixing roll, an extruder, etc., cooling and pulverizing. A resin composition can be prepared.

このエポキシ樹脂組成物用いて、電子部品を封止する場合の方法としては、低圧トランスファー成形法が最も一般的であるが、射出成形法、圧縮成形法によっても可能である。   As a method for sealing an electronic component using this epoxy resin composition, a low-pressure transfer molding method is most common, but an injection molding method or a compression molding method is also possible.

本発明のエポキシ樹脂組成物は、耐湿性、耐熱性、難燃性及び金属基材との接着性等に優れるとともに、良好な成形性を有しており、電子・電気部品の封止材として好適に使用することができる。また、本発明のエポキシ樹脂硬化物及びこれで封止された電子部品は耐熱性、電気絶縁性が優れる。   The epoxy resin composition of the present invention is excellent in moisture resistance, heat resistance, flame retardancy, adhesion to a metal substrate, etc., and has good moldability, and is used as a sealing material for electronic and electrical parts. It can be preferably used. In addition, the cured epoxy resin of the present invention and the electronic component sealed with the epoxy resin are excellent in heat resistance and electrical insulation.

以下、実施例により本発明をさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

合成例1(ナフトール樹脂の合成例)
2000mlの4口フラスコに2-ナフトール1000g(6.94モル)、パラキシリレングリコール144g(1.04モル)、トルエン550gを装入し、その後、触媒としてp−トルエンスルホン酸0.44gを添加し、攪拌しながら昇温し130℃で2時間反応させ、生成する水は系外に除いた。反応後、炭酸ナトリウムにより中和を行い、未反応分の2−ナフトールを減圧留去し、茶褐色状樹脂380gを得た。得られたナフトール樹脂の水酸基当量は205、軟化点は97℃、150℃での溶融粘度は0.31Pa・sであった。
Synthesis example 1 (Synthesis example of naphthol resin)
To a 2000 ml 4-neck flask was charged 1000 g (6.94 mol) of 2-naphthol, 144 g (1.04 mol) of paraxylylene glycol and 550 g of toluene, and then 0.44 g of p-toluenesulfonic acid was added as a catalyst. The mixture was heated with stirring and reacted at 130 ° C. for 2 hours, and the generated water was removed from the system. After the reaction, the reaction mixture was neutralized with sodium carbonate, and unreacted 2-naphthol was distilled off under reduced pressure to obtain 380 g of a brown resin. The obtained naphthol resin had a hydroxyl group equivalent of 205, a softening point of 97 ° C., and a melt viscosity at 150 ° C. of 0.31 Pa · s.

合成例2(ナフトール樹脂の合成例)
2000mlの4口フラスコに2-ナフトール564g(3.92モル)、パラキシリレングリコール200g(1.46モル)を装入し、その後、触媒としてp−トルエンスルホン酸0.68gを添加し、攪拌しながら昇温し150℃で2時間反応させ、生成する水は系外に除いた。反応後、炭酸ナトリウムにより中和を行った。150℃に保持した後、92%パラホルムアルデヒド32.6g(1.0モル)を装入し生成する水を系外に除きながら1時間後、茶褐色状樹脂706gを得た。得られたナフトール樹脂の水酸基当量は205、軟化点は105℃、150℃での溶融粘度は1.05Pa・sであった。
Synthesis Example 2 (Synthesis example of naphthol resin)
To a 2000 ml four-necked flask was charged 564 g of 2-naphthol (3.92 mol) and 200 g (1.46 mol) of paraxylylene glycol, and then 0.68 g of p-toluenesulfonic acid was added as a catalyst and stirred. The temperature was raised while the reaction was carried out at 150 ° C. for 2 hours, and the produced water was removed from the system. After the reaction, neutralization was performed with sodium carbonate. After maintaining at 150 ° C., 12.6 hours after removing 32.6 g (1.0 mol) of 92% paraformaldehyde and removing generated water out of the system, 706 g of a brown resin was obtained. The obtained naphthol resin had a hydroxyl group equivalent of 205, a softening point of 105 ° C., and a melt viscosity at 150 ° C. of 1.05 Pa · s.

実施例1
合成例2で得たナフトール樹脂170g、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルメタン30gをエピクロロヒドリン590g、ジエチレングリコールジメチルエーテル88.6gに溶解した。減圧下(約140mmHg)、65℃にて48%水酸化ナトリウム水溶液86.8gを4時間かけて滴下した。この間、生成する水はエピクロロヒドリンとの共沸により系外に除き、溜出したエピクロロヒドリンは系内に戻した。滴下終了後、更に30分間反応を継続した。その後、水洗により生成した塩を除き、エピクロロヒドリンを留去し、粗製エポキシ樹脂を得た。得られた粗製エポキシ樹脂をメチルイソブチルケトン760mlに溶解した後、80℃に加熱し、撹拌しながら10%水酸化ナトリウム17.6gを加え、2時間反応させた。反応後、イオン交換水にて水洗を行った後、メチルイソブチルケトンを留去し、茶褐色のエポキシ樹脂234gを得た(エポキシ樹脂A)。エポキシ当量は248であり、軟化点は72℃、ICIコーンプレート法に基づく150℃での溶融粘度は0.13Pa・s、加水分解性塩素は320ppmであった。得られた樹脂のGPCチャートを図1に示す。ここでGPC測定は、装置:HLC-82A(東ソー(株)製)及びカラム:TSK-GEL 2000 × 3本及びTSK-GEL4000 × 1本(何れも東ソー(株)製)を用い、溶媒:テトラヒドロフラン、流速:1.0ml/分、温度:38℃、検出器:RIの条件で行った。また、加水分解性塩素は、樹脂試料0.5gを1,4−ジオキサン30mlに溶解させたものを1N KOH/メタノール溶液5mlで30分間煮沸還流したものを、硝酸銀溶液で電位差滴定を行うことにより求めた。
Example 1
170 g of the naphthol resin obtained in Synthesis Example 2 and 30 g of 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxydiphenylmethane were dissolved in 590 g of epichlorohydrin and 88.6 g of diethylene glycol dimethyl ether. Under reduced pressure (about 140 mmHg), 86.8 g of 48% aqueous sodium hydroxide solution was added dropwise at 65 ° C. over 4 hours. During this time, the generated water was removed from the system by azeotropy with epichlorohydrin, and the distilled epichlorohydrin was returned to the system. After completion of the dropwise addition, the reaction was continued for another 30 minutes. Then, the epichlorohydrin was distilled off except the salt produced | generated by water washing, and the crude epoxy resin was obtained. The obtained crude epoxy resin was dissolved in 760 ml of methyl isobutyl ketone, then heated to 80 ° C., 17.6 g of 10% sodium hydroxide was added with stirring, and the mixture was reacted for 2 hours. After the reaction, after washing with ion exchange water, methyl isobutyl ketone was distilled off to obtain 234 g of a brown epoxy resin (epoxy resin A). The epoxy equivalent was 248, the softening point was 72 ° C., the melt viscosity at 150 ° C. based on the ICI corn plate method was 0.13 Pa · s, and the hydrolyzable chlorine was 320 ppm. A GPC chart of the obtained resin is shown in FIG. Here, the GPC measurement uses an apparatus: HLC-82A (manufactured by Tosoh Corporation) and a column: TSK-GEL 2000 × 3 and TSK-GEL4000 × 1 (both manufactured by Tosoh Corporation), and a solvent: tetrahydrofuran. Flow rate: 1.0 ml / min, temperature: 38 ° C., detector: RI. Hydrolyzable chlorine is obtained by performing potentiometric titration with a silver nitrate solution of 0.5 g of a resin sample dissolved in 30 ml of 1,4-dioxane and boiled for 30 minutes with 5 ml of 1N KOH / methanol solution. Asked.

実施例2
合成例2で得たナフトール樹脂170g、4,4’−ジヒドロキシビフェニル30gをエピクロロヒドリン640g、ジエチレングリコールジメチルエーテル96.0gに溶解し、減圧下(約140mmHg)、65℃にて48%水酸化ナトリウム水溶液94.0gを4時間かけて滴下した。この間、生成する水はエピクロロヒドリンとの共沸により系外に除き、溜出したエピクロロヒドリンは系内に戻した。滴下終了後、さらに30分間反応を継続した。その後、水洗により生成した塩を除き、エピクロロヒドリンを留去し、粗製エポキシ樹脂を得た。得られた粗製エポキシ樹脂をメチルイソブチルケトン770mlに溶解した後、80℃に加熱し、撹拌しながら10%水酸化ナトリウム17.8gを加え、2時間反応させた。反応後、イオン交換水にて水洗を行った後、メチルイソブチルケトンを留去し、茶褐色のエポキシ樹脂238gを得た(エポキシ樹脂B)。エポキシ当量は240であり、軟化点は91℃、ICIコーンプレート法に基づく150℃での溶融粘度は0.10Pa・s、加水分解性塩素は320ppmであった。
Example 2
170 g of naphthol resin obtained in Synthesis Example 2 and 30 g of 4,4′-dihydroxybiphenyl were dissolved in 640 g of epichlorohydrin and 96.0 g of diethylene glycol dimethyl ether, and 48% sodium hydroxide at 65 ° C. under reduced pressure (about 140 mmHg). 94.0 g of an aqueous solution was added dropwise over 4 hours. During this time, the generated water was removed from the system by azeotropy with epichlorohydrin, and the distilled epichlorohydrin was returned to the system. After completion of the dropping, the reaction was continued for another 30 minutes. Then, the epichlorohydrin was distilled off except the salt produced | generated by water washing, and the crude epoxy resin was obtained. The obtained crude epoxy resin was dissolved in 770 ml of methyl isobutyl ketone, then heated to 80 ° C., and 17.8 g of 10% sodium hydroxide was added with stirring to react for 2 hours. After the reaction, after washing with ion exchange water, methyl isobutyl ketone was distilled off to obtain 238 g of brown epoxy resin (epoxy resin B). The epoxy equivalent was 240, the softening point was 91 ° C., the melt viscosity at 150 ° C. based on the ICI cone plate method was 0.10 Pa · s, and the hydrolyzable chlorine was 320 ppm.

実施例3
合成例1で得たナフトール樹脂170g、4,4’−ジヒドロキシビフェニル30gをエピクロロヒドリン640g、ジエチレングリコールジメチルエーテル96.0gに溶解し、減圧下(約140mmHg)、65℃にて48%水酸化ナトリウム水溶液94.0gを4時間かけて滴下した。この間、生成する水はエピクロロヒドリンとの共沸により系外に除き、溜出したエピクロロヒドリンは系内に戻した。滴下終了後、さらに30分間反応を継続した。その後、水洗により生成した塩を除き、エピクロロヒドリンを留去し、粗製エポキシ樹脂を得た。得られた粗製エポキシ樹脂をメチルイソブチルケトン770mlに溶解した後、80℃に加熱し、撹拌しながら10%水酸化ナトリウム17.8gを加え、2時間反応させた。反応後、イオン交換水にて水洗を行った後、メチルイソブチルケトンを留去し、茶褐色のエポキシ樹脂246gを得た(エポキシ樹脂C)。エポキシ当量は235であり、軟化点は86℃、ICIコーンプレート法に基づく150℃での溶融粘度は0.08Pa・s、加水分解性塩素は270ppmであった。
Example 3
170 g of naphthol resin obtained in Synthesis Example 1 and 30 g of 4,4′-dihydroxybiphenyl were dissolved in 640 g of epichlorohydrin and 96.0 g of diethylene glycol dimethyl ether, and 48% sodium hydroxide at 65 ° C. under reduced pressure (about 140 mmHg). 94.0 g of an aqueous solution was added dropwise over 4 hours. During this time, the generated water was removed from the system by azeotropy with epichlorohydrin, and the distilled epichlorohydrin was returned to the system. After completion of the dropping, the reaction was continued for another 30 minutes. Then, the epichlorohydrin was distilled off except the salt produced | generated by water washing, and the crude epoxy resin was obtained. The obtained crude epoxy resin was dissolved in 770 ml of methyl isobutyl ketone, then heated to 80 ° C., and 17.8 g of 10% sodium hydroxide was added with stirring to react for 2 hours. After the reaction, washing with ion-exchanged water was performed, and then methyl isobutyl ketone was distilled off to obtain 246 g of a brown epoxy resin (epoxy resin C). Epoxy equivalent was 235, softening point was 86 ° C., melt viscosity at 150 ° C. based on ICI corn plate method was 0.08 Pa · s, and hydrolyzable chlorine was 270 ppm.

比較合成例1
合成例1で得たナフトール樹脂200gをエピクロロヒドリン640g、ジエチレングリコールジメチルエーテル96.0gに溶解し、減圧下(約140mmHg)、65℃にて48%水酸化ナトリウム水溶液77.2gを4時間かけて滴下した。この間、生成する水はエピクロロヒドリンとの共沸により系外に除き、溜出したエピクロロヒドリンは系内に戻した。滴下終了後、さらに30分間反応を継続した。その後、水洗により生成した塩を除き、エピクロロヒドリンを留去し、粗製エポキシ樹脂を得た。得られた粗製エポキシ樹脂をメチルイソブチルケトン770mlに溶解した後、80℃に加熱し、撹拌しながら10%水酸化ナトリウム21.5gを加え、2時間反応させた。反応後、イオン交換水にて水洗を行った後、メチルイソブチルケトンを留去し、茶褐色のエポキシ樹脂237gを得た(エポキシ樹脂D)。エポキシ当量は283であり、軟化点は85℃、ICIコーンプレート法に基づく150℃での溶融粘度は0.36Pa・s、加水分解性塩素は340ppmであった。
Comparative Synthesis Example 1
200 g of the naphthol resin obtained in Synthesis Example 1 was dissolved in 640 g of epichlorohydrin and 96.0 g of diethylene glycol dimethyl ether, and 77.2 g of 48% sodium hydroxide aqueous solution was added over 4 hours at 65 ° C. under reduced pressure (about 140 mmHg). It was dripped. During this time, the generated water was removed from the system by azeotropy with epichlorohydrin, and the distilled epichlorohydrin was returned to the system. After completion of the dropping, the reaction was continued for another 30 minutes. Then, the epichlorohydrin was distilled off except the salt produced | generated by water washing, and the crude epoxy resin was obtained. The obtained crude epoxy resin was dissolved in 770 ml of methyl isobutyl ketone, and then heated to 80 ° C., 21.5 g of 10% sodium hydroxide was added with stirring and reacted for 2 hours. After the reaction, washing with ion-exchanged water was performed, and then methyl isobutyl ketone was distilled off to obtain 237 g of a brown epoxy resin (epoxy resin D). The epoxy equivalent was 283, the softening point was 85 ° C., the melt viscosity at 150 ° C. based on the ICI corn plate method was 0.36 Pa · s, and hydrolyzable chlorine was 340 ppm.

比較合成例2
合成例2で得たナフトール樹脂200gを用い、比較合成例1と同様に反応を行い、茶褐色のエポキシ樹脂232gを得た(エポキシ樹脂E)。エポキシ当量は281であり、軟化点は83℃、ICIコーンプレート法に基づく150℃での溶融粘度は0.33Pa・s、加水分解性塩素は380ppmであった。
Comparative Synthesis Example 2
Using 200 g of the naphthol resin obtained in Synthesis Example 2, the reaction was performed in the same manner as in Comparative Synthesis Example 1 to obtain 232 g of a brown epoxy resin (Epoxy Resin E). The epoxy equivalent was 281, the softening point was 83 ° C., the melt viscosity at 150 ° C. based on the ICI cone plate method was 0.33 Pa · s, and hydrolyzable chlorine was 380 ppm.

実施例4〜8、比較例1〜4
実施例1〜3、比較合成例1,2で合成したエポキシ樹脂、o-クレゾールノボラック型エポキシ樹脂(エポキシ当量 197、軟化点54℃、150℃での溶融粘度90mPa・s;EOCN-1020、日本化薬製;エポキシ樹脂F)、フェノールノボラック(OH当量104、軟化点46℃、150℃での溶融粘度20mPa・s;フェノール樹脂A)及びフェノールアラルキル樹脂(OH当量175、軟化点75℃、150℃での溶融粘度0.32Pa・s;MEH-7800S、明和化成製;フェノール樹脂B)を用い、硬化促進剤としてトリフェニルホスフィン、シランカップリング剤としてγ−グリシドキシプロピルトリメトキシシランを用い、表1に示す配合で樹脂組成物を得た。
Examples 4-8, Comparative Examples 1-4
Epoxy resins synthesized in Examples 1 to 3 and Comparative Synthesis Examples 1 and 2, o-cresol novolak type epoxy resin (epoxy equivalent 197, softening point 54 ° C., melt viscosity 90 ° C. at 150 ° C .; EOCN-1020, Japan Epoxy resin F), phenol novolak (OH equivalent 104, softening point 46 ° C., melt viscosity 20 mPa · s at 150 ° C .; phenol resin A) and phenol aralkyl resin (OH equivalent 175, softening point 75 ° C., 150 Melt viscosity at ° C. 0.32 Pa · s; MEH-7800S, manufactured by Meiwa Kasei; phenol resin B) , triphenylphosphine as curing accelerator, and γ-glycidoxypropyltrimethoxysilane as silane coupling agent A resin composition was obtained with the formulation shown in Table 1.

このエポキシ樹脂組成物を用いて175℃で成形し、175℃で12時間ポストキュアを行い、硬化物試験片を得た後、各種物性測定に供した。ガラス転移点は、熱機械測定装置により、昇温速度7℃/分の条件で求めた。曲げ試験は、常温及び240℃での高温曲げ強度、曲げ弾性率を3点曲げ法により行った。接着強度は、銅板又は鉄板2枚の間に25mm×12.5mm×0.5mmの成形物を圧縮成型機により175℃で成形し、175℃、12時間ポストキュアを行った後、引張剪断強度を求めることにより評価した。吸水率は、本エポキシ樹脂組成物を用いて、直径50mm、厚さ3mmの円盤を成形し、ポストキュア後85℃、85%RHの条件で100時間吸湿させた時のものであり、クラック発生率は、QFP−80pin(14mm×20mm×2.5mm、194アロイ)を成形し、ポストキュア後、85℃、85%RHの条件で所定の時間吸湿後、260℃の半田浴に10秒間浸漬させた後、パッケージの状態を観察し求めた。結果をまとめて表2に示す。   The epoxy resin composition was molded at 175 ° C., post-cured at 175 ° C. for 12 hours to obtain a cured product test piece, and subjected to various physical property measurements. The glass transition point was calculated | required on the conditions of the temperature increase rate of 7 degree-C / min with the thermomechanical measuring apparatus. The bending test was performed by a three-point bending method for high-temperature bending strength and bending elastic modulus at room temperature and 240 ° C. The adhesive strength is a 25 mm × 12.5 mm × 0.5 mm molded product between two copper plates or iron plates, molded at 175 ° C. with a compression molding machine, post-cured at 175 ° C. for 12 hours, and then tensile shear strength Was evaluated. The water absorption rate is obtained when a disc having a diameter of 50 mm and a thickness of 3 mm is formed using this epoxy resin composition, and after post-curing and absorbing moisture for 100 hours under the conditions of 85 ° C. and 85% RH, cracks are generated. The rate is QFP-80pin (14 mm x 20 mm x 2.5 mm, 194 alloy), post-cured, moisture-absorbed for a specified time at 85 ° C and 85% RH, and then immersed in a solder bath at 260 ° C for 10 seconds. Then, the state of the package was observed and determined. The results are summarized in Table 2.

なお、ブロッキング試験の結果は、エポキシ樹脂組成物の1mmパスの粉体を用い、25℃で24時間放置後のブロッキング率を重量%で表した。また、保存安定性は、エポキシ樹脂組成物を25℃、1週間放置後のスパイラルフロー残存率で表した。   As a result of the blocking test, the blocking rate after standing for 24 hours at 25 ° C. using a 1 mm pass powder of the epoxy resin composition was expressed in weight%. In addition, the storage stability was expressed as a residual rate of spiral flow after leaving the epoxy resin composition at 25 ° C. for 1 week.

Figure 0004667753
Figure 0004667753

Figure 0004667753
Figure 0004667753

実施例1で得たエポキシ樹脂AのGPCチャートGPC chart of epoxy resin A obtained in Example 1

Claims (6)

下記一般式(1)、
Figure 0004667753
(但し、nは平均値で1.1から4.0の数を示す。)で表されるナフトール樹脂100重量部に対して、下記一般式(2)、
Figure 0004667753
(但し、R1、R2は水素原子又は炭素数1〜8の炭化水素基を示し、Xは直接結合又はメチレン基を示す。)で表されるビスフェノール化合物10〜60重量部を混合したのち、エピクロロヒドリンと反応させることを特徴とするエポキシ樹脂の製造方法。
The following general formula (1),
Figure 0004667753
(Where n is an average value and represents a number from 1.1 to 4.0), with respect to 100 parts by weight of naphthol resin, the following general formula (2),
Figure 0004667753
(However, R 1 and R 2 represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and X represents a direct bond or a methylene group. ) After mixing 10 to 60 parts by weight of a bisphenol compound represented by A method for producing an epoxy resin, characterized by reacting with epichlorohydrin.
ビスフェノール化合物が、4,4’−ジヒドロキシビフェニル又は3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルメタンである請求項1に記載のエポキシ樹脂の製造方法。   The method for producing an epoxy resin according to claim 1, wherein the bisphenol compound is 4,4'-dihydroxybiphenyl or 3,3 ', 5,5'-tetramethyl-4,4'-dihydroxydiphenylmethane. 請求項1又は2に記載のエポキシ樹脂の製造方法によって得られたエポキシ樹脂。   The epoxy resin obtained by the manufacturing method of the epoxy resin of Claim 1 or 2. 軟化点が50〜110℃である請求項3に記載のエポキシ樹脂。   The epoxy resin according to claim 3, which has a softening point of 50 to 110 ° C. 請求項3に記載のエポキシ樹脂及び硬化剤を配合してなるエポキシ樹脂組成物。   An epoxy resin composition comprising the epoxy resin according to claim 3 and a curing agent. 請求項5に記載のエポキシ樹脂組成物を硬化してなるエポキシ樹脂硬化物。   An epoxy resin cured product obtained by curing the epoxy resin composition according to claim 5.
JP2004036995A 2004-02-13 2004-02-13 Epoxy resin production method, epoxy resin composition and cured product Expired - Fee Related JP4667753B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004036995A JP4667753B2 (en) 2004-02-13 2004-02-13 Epoxy resin production method, epoxy resin composition and cured product
PCT/JP2005/001763 WO2005078001A1 (en) 2004-02-13 2005-02-07 Process for producing epoxy resin, epoxy resin composition, and cured article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004036995A JP4667753B2 (en) 2004-02-13 2004-02-13 Epoxy resin production method, epoxy resin composition and cured product

Publications (2)

Publication Number Publication Date
JP2005226004A JP2005226004A (en) 2005-08-25
JP4667753B2 true JP4667753B2 (en) 2011-04-13

Family

ID=34857739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004036995A Expired - Fee Related JP4667753B2 (en) 2004-02-13 2004-02-13 Epoxy resin production method, epoxy resin composition and cured product

Country Status (2)

Country Link
JP (1) JP4667753B2 (en)
WO (1) WO2005078001A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008020594A1 (en) * 2006-08-17 2010-01-07 日本化薬株式会社 Modified liquid epoxy resin, and epoxy resin composition and cured product using the same
KR101407434B1 (en) 2007-05-24 2014-06-13 니폰 가야꾸 가부시끼가이샤 Liquid Epoxy Resin, Epoxy Resin Composition, and Cured Product
WO2011148620A1 (en) * 2010-05-26 2011-12-01 京セラケミカル株式会社 Sheet-like resin composition, circuit component using the sheet-like resin composition, method for sealing electronic component, method for connecting electronic component, method for affixing electronic component, composite sheet, electronic component using the composite sheet, electronic device, and method for producing composite sheet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230619A (en) * 1988-03-11 1989-09-14 Yuka Shell Epoxy Kk Epoxy resin composition for sealing
JPH02219812A (en) * 1989-02-21 1990-09-03 Hitachi Ltd Thermosetting resin composition and coil and panel produced by using same
JPH03716A (en) * 1989-05-30 1991-01-07 Nippon Steel Chem Co Ltd New epoxy compound and preparation thereof
JPH069595A (en) * 1992-06-19 1994-01-18 Yuka Shell Epoxy Kk Production of epoxy resin containing biphenyl skeleton
JPH0625385A (en) * 1992-07-08 1994-02-01 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JPH0925334A (en) * 1995-07-13 1997-01-28 Hitachi Ltd Epoxy resin composition
JPH111546A (en) * 1997-04-18 1999-01-06 Nippon Steel Chem Co Ltd Epoxy resin composition and electronic component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230619A (en) * 1988-03-11 1989-09-14 Yuka Shell Epoxy Kk Epoxy resin composition for sealing
JPH02219812A (en) * 1989-02-21 1990-09-03 Hitachi Ltd Thermosetting resin composition and coil and panel produced by using same
JPH03716A (en) * 1989-05-30 1991-01-07 Nippon Steel Chem Co Ltd New epoxy compound and preparation thereof
JPH069595A (en) * 1992-06-19 1994-01-18 Yuka Shell Epoxy Kk Production of epoxy resin containing biphenyl skeleton
JPH0625385A (en) * 1992-07-08 1994-02-01 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JPH0925334A (en) * 1995-07-13 1997-01-28 Hitachi Ltd Epoxy resin composition
JPH111546A (en) * 1997-04-18 1999-01-06 Nippon Steel Chem Co Ltd Epoxy resin composition and electronic component

Also Published As

Publication number Publication date
JP2005226004A (en) 2005-08-25
WO2005078001A1 (en) 2005-08-25

Similar Documents

Publication Publication Date Title
JP5320130B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP5166610B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product using the same
JP5931234B2 (en) Method for producing epoxy resin composition
JP5000191B2 (en) Carbazole skeleton-containing resin, carbazole skeleton-containing epoxy resin, epoxy resin composition and cured product thereof
JP5548562B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JPWO2008050879A1 (en) Epoxy resin composition and cured product
JP2017066268A (en) Polyhydric hydroxy resin, epoxy resin, methods of producing them, epoxy resin composition and cured article thereof
JPWO2003068837A1 (en) Indole resins, epoxy resins and resin compositions containing these resins
JP4188022B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product using them
JP2007297538A (en) Resin containing indole skeleton, epoxy resin containing indole skeleton, epoxy resin composition and cured product thereof
JP4667753B2 (en) Epoxy resin production method, epoxy resin composition and cured product
JP5734603B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP4067639B2 (en) Epoxy resin composition and cured product
JP3806222B2 (en) Epoxy resin composition and cured product thereof
JP3933763B2 (en) Epoxy resin composition and electronic component
JP4493748B2 (en) Epoxy resin, method for producing the same, epoxy resin composition and cured product thereof
JP2001114863A (en) Epoxy resin composition and its cured material
JP4163281B2 (en) Epoxy resin composition and cured product
JP3875775B2 (en) Epoxy resin composition and electronic component
JP5548792B2 (en) Polyvalent hydroxy resin, production method thereof, epoxy resin composition and cured product thereof
JP2008231071A (en) New polyvalent hydroxy compound, and epoxy resin composition and its cured product
JP2010235823A (en) Epoxy resin, epoxy resin composition and cured product of the same
JP5390491B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product
JP2022016887A (en) Epoxy resin composition and cured product
JP2004010724A (en) Epoxy resin, method for producing the same, epoxy resin composition and cured product of the composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061211

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees