JP5234962B2 - Prepreg, laminated board and printed wiring board - Google Patents

Prepreg, laminated board and printed wiring board Download PDF

Info

Publication number
JP5234962B2
JP5234962B2 JP2008528796A JP2008528796A JP5234962B2 JP 5234962 B2 JP5234962 B2 JP 5234962B2 JP 2008528796 A JP2008528796 A JP 2008528796A JP 2008528796 A JP2008528796 A JP 2008528796A JP 5234962 B2 JP5234962 B2 JP 5234962B2
Authority
JP
Japan
Prior art keywords
epoxy resin
prepreg
general formula
curing agent
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008528796A
Other languages
Japanese (ja)
Other versions
JPWO2008018364A1 (en
Inventor
正史 梶
浩一郎 大神
智美 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2008528796A priority Critical patent/JP5234962B2/en
Publication of JPWO2008018364A1 publication Critical patent/JPWO2008018364A1/en
Application granted granted Critical
Publication of JP5234962B2 publication Critical patent/JP5234962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/504Amines containing an atom other than nitrogen belonging to the amine group, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Description

本発明は、高熱伝導性、低熱膨張性、高耐熱性および低吸湿性に優れたエポキシ樹脂組成物およびそれを適用したプリプレグ、当該プリプレグを用いた積層板ないしはプリント配線板に関する。   The present invention relates to an epoxy resin composition excellent in high thermal conductivity, low thermal expansion, high heat resistance and low hygroscopicity, a prepreg to which the epoxy resin composition is applied, and a laminate or printed wiring board using the prepreg.

高熱伝導性に優れたエポキシ樹脂組成物としては、メソゲン構造を有するエポキシ樹脂を用いたものが知られており、例えば、特開平7−90052号公報には、ビフェノール型エポキシ樹脂と多価フェノール樹脂硬化剤を必須成分としたエポキシ樹脂組成物が示され、高温下での安定性と強度に優れ、接着、注型、封止、成型、積層等の広い分野で使用できることが開示されている。また、特開平9−118673号公報には、屈曲鎖で連結された二つのメソゲン構造を分子内に有するエポキシ化合物の開示がある。さらに、特開平11−323162号公報には、メソゲン基を有するエポキシ化合物を含む樹脂組成物の開示がある。   As an epoxy resin composition excellent in high thermal conductivity, one using an epoxy resin having a mesogenic structure is known. For example, JP-A-7-90052 discloses a biphenol type epoxy resin and a polyhydric phenol resin. An epoxy resin composition containing a curing agent as an essential component is shown, and it is disclosed that it is excellent in stability and strength at high temperatures and can be used in a wide range of fields such as adhesion, casting, sealing, molding and lamination. Japanese Patent Application Laid-Open No. 9-118673 discloses an epoxy compound having two mesogenic structures connected by a bent chain in the molecule. Further, JP-A-11-323162 discloses a resin composition containing an epoxy compound having a mesogenic group.

特開平7−90052号公報Japanese Patent Laid-Open No. 7-90052 特開平9−118673号公報JP-A-9-118673 特開平11−323162号公報JP-A-11-323162 特開2004−123847号公報JP 2004-123847 A

しかし、このようなメソゲン構造を有するエポキシ樹脂は融点が高く、有機溶剤に非常に溶けにくいという特徴を有する。このようなエポキシ樹脂を硬化剤と均一に混合するには、高温が必要である。高温では、エポキシ樹脂の硬化反応が急速に進みゲル化時間が短くなるため、混合処理は厳しく制限され取り扱いが難しい。さらに、有機溶剤に溶けないエポキシ樹脂混合物は繊維基材に含浸し難く、プリプレグおよび積層板の製造が困難であるという問題があった。そして、その欠点を補うために溶解性の第3成分を添加すると、樹脂の融点が低下して有機溶剤に溶けやすくなるが、その硬化物は熱伝導率が低下するという問題を生じた。   However, an epoxy resin having such a mesogenic structure has a high melting point and is extremely insoluble in an organic solvent. High temperature is required to uniformly mix such an epoxy resin with a curing agent. At high temperatures, the curing reaction of the epoxy resin proceeds rapidly and the gelation time is shortened, so the mixing process is severely limited and difficult to handle. Furthermore, there is a problem that an epoxy resin mixture that is insoluble in an organic solvent is difficult to impregnate a fiber base material, and it is difficult to produce a prepreg and a laminate. When a soluble third component is added to compensate for the drawback, the melting point of the resin is lowered and the resin is easily dissolved in an organic solvent, but the cured product has a problem that the thermal conductivity is lowered.

また、メソゲン構造を有するエポキシ樹脂より得られた硬化物は、結晶化の進行が十分ではなく、結晶化度の向上によって発現される高熱伝導性、低熱膨張性、高耐熱性および低吸湿性等の効果が十分ではなかった。特許文献4にはビフェニルエーテル型エポキシ樹脂を使用した封止剤が記載されているが、封止剤への適用を教えるにとどまる。   In addition, the cured product obtained from the epoxy resin having a mesogenic structure is not sufficiently advanced in crystallization, and exhibits high thermal conductivity, low thermal expansion, high heat resistance, low hygroscopicity, etc. that are manifested by improvement in crystallinity. The effect of was not enough. Patent Document 4 describes a sealant using a biphenyl ether type epoxy resin, but only teaches application to a sealant.

本発明は、有機溶剤への溶解性に加え、高熱伝導性、低熱膨張性、高耐熱性および低吸湿性に優れたエポキシ樹脂組成物を適用したプリプレグ、積層板ないしはプリント配線板を提供することにある。   The present invention provides a prepreg, a laminate or a printed wiring board to which an epoxy resin composition excellent in high thermal conductivity, low thermal expansion, high heat resistance and low hygroscopicity in addition to solubility in an organic solvent is applied. It is in.

本発明者らは、ジフェニルエーテル構造を有するエポキシ樹脂が、硬化反応後の三次元架橋状態においても結晶化するという極めて特異的現象の発現を見出した。本発明は、本現象をプリプレグへ適用することにより初めて到達し得たものであり、硬化状態における結晶性の発現により、積層板としての高い熱伝導性、低熱膨張性、高耐熱性および低吸湿性が確保された優れた特性を有する積層板を製造することが可能となる。   The present inventors have found an extremely specific phenomenon that an epoxy resin having a diphenyl ether structure crystallizes even in a three-dimensional crosslinked state after the curing reaction. The present invention can be achieved for the first time by applying this phenomenon to a prepreg, and exhibits high thermal conductivity, low thermal expansion, high heat resistance and low moisture absorption as a laminated board due to the development of crystallinity in a cured state. It is possible to manufacture a laminated board having excellent characteristics with secured properties.

すなわち、本発明は、エポキシ樹脂と硬化剤を含むエポキシ樹脂組成物をシート状の繊維基材に含浸し半硬化状態としてなるプリプレグにおいて、当該エポキシ樹脂の一部または全部として、下記一般式(1)で示すエポキシ樹脂を用い、当該硬化剤の一部または全部として、後記する一般式(3)で示され、m=1であるフェノール性樹脂を用いたことを特徴とするプリプレグである。

Figure 0005234962
(ここで、mは1であり、nは0以上の数を示す。)
That is, the present invention relates to a prepreg in which a sheet-like fiber base material is impregnated with an epoxy resin composition containing an epoxy resin and a curing agent to be in a semi-cured state. ), And a phenolic resin represented by the following general formula (3) and m = 1 is used as part or all of the curing agent .
Figure 0005234962
(Here, m is 1 and n represents a number of 0 or more.)

一般式(1)で示すエポキシ樹脂としては、下記一般式(2)で示すエポキシ樹脂がある。

Figure 0005234962

(ここで、nは0以上の数の数を示す。)Examples of the epoxy resin represented by the general formula (1) include an epoxy resin represented by the following general formula (2).
Figure 0005234962

(Here, n represents a number of 0 or more.)

硬化剤の一部または全部として、下記一般式(3)で示されるフェノール性樹脂または芳香族ジアミン化合物を用いることができる。そして、一般式(3)で示されるフェノール性樹脂としては、下記一般式(4)で示されるフェノール性樹脂がある。一般式(3)及び(4)において、mは1から3の数、qは0以上の数を示す。

Figure 0005234962

Figure 0005234962
As part or all of the curing agent, a phenolic resin or an aromatic diamine compound represented by the following general formula (3) can be used. And as phenolic resin shown by General formula (3), there exists phenolic resin shown by following General formula (4). In the general formulas (3) and (4), m represents a number from 1 to 3, and q represents a number of 0 or more.
Figure 0005234962

Figure 0005234962

また、本発明は上記のプリプレグをプリプレグ層の全層ないしは一部の層として有する積層材料を加熱加圧成形してなる積層板である。更に、本発明は、上記のプリプレグの層を加熱加圧成形してなる絶縁層を備えるプリント配線板である。ここで、上記積層板またはプリント配線板において、樹脂相が結晶化したものであり、120℃から280℃の融点を持つことが好ましい。また、本発明は上記プリプレグを加熱加圧成形して得られる硬化物中の樹脂相が結晶化したものであり、120℃から280℃の融点を持つプリプレグ硬化物である。   Moreover, this invention is a laminated board formed by heat-pressing the laminated material which has said prepreg as the whole layer of the prepreg layer, or one part layer. Furthermore, this invention is a printed wiring board provided with the insulating layer formed by heat-press-molding the layer of said prepreg. Here, in the laminated board or printed wiring board, the resin phase is crystallized, and preferably has a melting point of 120 ° C. to 280 ° C. In addition, the present invention is a prepreg cured product having a melting point of 120 ° C. to 280 ° C., in which a resin phase in a cured product obtained by heating and pressing the prepreg is crystallized.

本発明に係る積層板は、上記のプリプレグをプリプレグ層の全層ないしは一部の層として有する積層材料を加熱加圧成形して一体に積層してなるものである。また、本発明に係るプリント配線板は、上述したプリプレグの層を加熱加圧成形してなる絶縁層を備えたものである。   The laminate according to the present invention is formed by heating and press-molding a laminate material having the prepreg as a whole layer or a part of the prepreg layer and integrally laminating. Moreover, the printed wiring board according to the present invention includes an insulating layer formed by heating and pressing the above-described prepreg layer.

上記一般式(1)で表されるエポキシ樹脂は、下記一般式(5)、

Figure 0005234962

(但し、mは1〜3の整数を示す。)
で表されるビスフェノール化合物とエピクロルヒドリンを反応させることにより製造することができる。この反応は、通常のエポキシ化反応と同様に行うことができる。The epoxy resin represented by the general formula (1) is represented by the following general formula (5),
Figure 0005234962

(However, m represents an integer of 1 to 3.)
It can manufacture by making the bisphenol compound represented by and epichlorohydrin react. This reaction can be performed in the same manner as a normal epoxidation reaction.

例えば、上記一般式(5)のビスフェノール化合物を過剰のエピクロルヒドリンに溶解した後、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物の存在下に、50〜150℃、好ましくは、60〜100℃の範囲で1〜10時間反応させる方法が挙げられる。この際の、アルカリ金属水酸化物の使用量は、ビスフェノール化合物中の水酸基1モルに対して、0.8〜1.2モル、好ましくは、0.9〜1.0モルの範囲である。エピクロルヒドリンは、ビスフェノール化合物中の水酸基に対して過剰量が用いられ、通常は、ビスフェノール化合物中の水酸基1モルに対して、1.2から15モルである。反応終了後、過剰のエピクロルヒドリンを留去し、残留物をトルエン、メチルイソブチルケトン等の溶剤に溶解し、濾過し、水洗して無機塩を除去し、次いで溶剤を留去することにより目的のエポキシ樹脂を得ることができる。   For example, after the bisphenol compound of the general formula (5) is dissolved in excess epichlorohydrin, it is 50 to 150 ° C., preferably 60 to 100 in the presence of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide. The method of making it react for 1 to 10 hours in the range of ° C is mentioned. In this case, the amount of the alkali metal hydroxide used is in the range of 0.8 to 1.2 mol, preferably 0.9 to 1.0 mol, relative to 1 mol of the hydroxyl group in the bisphenol compound. The epichlorohydrin is used in an excess amount relative to the hydroxyl group in the bisphenol compound, and is usually 1.2 to 15 mol with respect to 1 mol of the hydroxyl group in the bisphenol compound. After completion of the reaction, excess epichlorohydrin is distilled off, the residue is dissolved in a solvent such as toluene, methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then the target epoxy is removed by distilling off the solvent. A resin can be obtained.

上記一般式(1)において、nは0以上の整数であるが、nの値はエポキシ樹脂の合成反応時に用いるエピクロルヒドリンのビスフェノール化合物に対するモル比を変えることにより、容易に調整することができる。また、nの平均値としては、0.1〜10.0の範囲が好ましい。これより大きいと融点、粘度が高くなり取り扱い性が低下する。   In the general formula (1), n is an integer of 0 or more, but the value of n can be easily adjusted by changing the molar ratio of epichlorohydrin to the bisphenol compound used in the epoxy resin synthesis reaction. Moreover, as an average value of n, the range of 0.1-10.0 is preferable. When larger than this, melting | fusing point and a viscosity will become high and handleability will fall.

また、高分子量のエポキシ樹脂を得るためには、上記一般式(1)においてnが0のものを主成分とするエポキシ樹脂と上記一般式(5)のビスフェノール化合物を予め反応させる方法を取ることもできる。   Further, in order to obtain a high molecular weight epoxy resin, a method in which an epoxy resin mainly composed of n in the general formula (1) and a bisphenol compound of the general formula (5) is reacted in advance is used. You can also.

上記一般式(5)において、mは1、2または3であるが、好ましくは1または2である。具体的には、4,4'−ジヒドロキシジフェニルエーテル、1,4−ビス(4−ヒドロキシフェノキシ)ベンゼン、1,3−ビス(4−ヒドロキシフェノキシ)ベンゼン、1,3−ビス(3−ヒドロキシフェノキシ)ベンゼン、4,4'−ビス(4−ヒドロキシフェノキシ)ジフェニルエーテル、3,3'−ビス(4−ヒドロキシフェノキシ)ジフェニルエーテル、3,3'−ビス(3−ヒドロキシフェノキシ)ジフェニルエーテルを挙げることができる。エポキシ樹脂の原料としては、これらの混合物であっても良いが、好ましくは4,4'−ジヒドロキシジフェニルエーテルまたはこの含有率が50wt%以上のビスフェノール化合物である。   In the above general formula (5), m is 1, 2 or 3, preferably 1 or 2. Specifically, 4,4′-dihydroxydiphenyl ether, 1,4-bis (4-hydroxyphenoxy) benzene, 1,3-bis (4-hydroxyphenoxy) benzene, 1,3-bis (3-hydroxyphenoxy) Examples include benzene, 4,4′-bis (4-hydroxyphenoxy) diphenyl ether, 3,3′-bis (4-hydroxyphenoxy) diphenyl ether, and 3,3′-bis (3-hydroxyphenoxy) diphenyl ether. As a raw material of the epoxy resin, a mixture thereof may be used, but 4,4′-dihydroxydiphenyl ether or a bisphenol compound having a content of 50 wt% or more is preferable.

一般式(1)で表されるエポキシ樹脂の中でも、一般式(2)で表されるエポキシ樹脂が好ましく例示される。このエポキシ樹脂は一般式(1)において、mが1であるエポキシ樹脂であり、nは一般式(1)のそれと同じ意味を有する。   Among the epoxy resins represented by the general formula (1), an epoxy resin represented by the general formula (2) is preferably exemplified. This epoxy resin is an epoxy resin in which m is 1 in the general formula (1), and n has the same meaning as that in the general formula (1).

本発明のプリプレグに用いるエポキシ樹脂は、一般式(1)で表されるエポキシ樹脂を全エポキシ樹脂中の一部または全部、好ましくは50wt%以上、より好ましくは70wt%以上含む。これより少ないと硬化物とした際の結晶性が低下し高熱伝導性、低熱膨張性、高耐熱性および低吸湿性の向上効果が小さい。また、一般式(1)で表されるエポキシ樹脂のエポキシ当量は、通常160から50,000の範囲であるが、積層板等の用途においては、フィルム性、可撓性付与の観点から、好ましくは400〜40,000の範囲である。このエポキシ当量は、2種類以上のエポキシ樹脂を使用する場合においてもこれを満足することが好ましく、この場合、エポキシ当量は、全重量(g)/エポキシ基(モル)で計算される。   The epoxy resin used for the prepreg of the present invention contains a part or all of the epoxy resin represented by the general formula (1), preferably 50 wt% or more, more preferably 70 wt% or more. If it is less than this, the crystallinity at the time of making it into a cured product is lowered, and the effect of improving high thermal conductivity, low thermal expansion, high heat resistance and low hygroscopicity is small. In addition, the epoxy equivalent of the epoxy resin represented by the general formula (1) is usually in the range of 160 to 50,000, but is preferable from the viewpoint of imparting film properties and flexibility in applications such as laminates. Is in the range of 400 to 40,000. This epoxy equivalent preferably satisfies this condition even when two or more types of epoxy resins are used. In this case, the epoxy equivalent is calculated by the total weight (g) / epoxy group (mol).

エポキシ樹脂の純度、特に加水分解性塩素量は、信頼性向上の観点より少ない方がよい。特に限定するものではないが、好ましくは1000ppm以下、さらに好ましくは500ppm以下である。なお、本発明でいう加水分解性塩素とは、以下の方法により測定された値をいう。すなわち、試料0.5gをジオキサン30mlに溶解後、1N−KOH、10mlを加え30分間煮沸還流した後、室温まで冷却し、さらに80%アセトン水100mlを加え、0.002N−AgNO3水溶液で電位差滴定を行い得られる値である。The purity of the epoxy resin, in particular the amount of hydrolyzable chlorine, is better from the viewpoint of improving the reliability. Although it does not specifically limit, Preferably it is 1000 ppm or less, More preferably, it is 500 ppm or less. In addition, the hydrolyzable chlorine as used in the field of this invention means the value measured by the following method. That is, the potential difference the sample 0.5g were dissolved in dioxane 30 ml, 1N-KOH, after the added boiled under reflux for 30 minutes 10 ml, cooled to room temperature, 80% aqueous acetone 100ml was added, with 0.002 N-AgNO 3 aqueous solution This is a value obtained by titration.

本発明で用いるエポキシ樹脂には、一般式(1)で表されるエポキシ樹脂以外に、分子中にエポキシ基を2個以上有する他のエポキシ樹脂を併用してもよい。例を挙げれば、ビスフェノールA、ビスフェノールF、3,3',5,5'−テトラメチル−4,4'−ジヒドロキシジフェニルメタン、4,4'−ジヒドロキシジフェニルスルホン、4,4'−ジヒドロキシジフェニルスルフィド、4,4'−ジヒドロキシジフェニルケトン、フルオレンビスフェノール、4,4'−ビフェノール、3,3',5,5'−テトラメチル−4,4'−ジヒドロキシビフェニル、2,2'−ビフェノール、ハイドロキノン、レゾルシン、カテコール、t‐ブチルカテコール、t‐ブチルハイドロキノン、1,2‐ジヒドロキシナフタレン、1,3‐ジヒドロキシナフタレン、1,4‐ジヒドロキシナフタレン、1,5‐ジヒドロキシナフタレン、1,6‐ジヒドロキシナフタレン、1,7‐ジヒドロキシナフタレン、1,8‐ジヒドロキシナフタレン、2,3‐ジヒドロキシナフタレン、2,4‐ジヒドロキシナフタレン、2,5‐ジヒドロキシナフタレン、2,6‐ジヒドロキシナフタレン、2,7‐ジヒドロキシナフタレン、2,8‐ジヒドロキシナフタレン、上記ジヒドロキシナフタレンのアリル化物またはポリアリル化物、アリル化ビスフェノールA、アリル化ビスフェノールF、アリル化フェノールノボラック等の2価のフェノール類、あるいは、フェノールノボラック、ビスフェノールAノボラック、o‐クレゾールノボラック、m‐クレゾールノボラック、p‐クレゾールノボラック、キシレノールノボラック、ポリ‐p‐ヒドロキシスチレン、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フルオログリシノール、ピロガロール、t‐ブチルピロガロール、アリル化ピロガロール、ポリアリル化ピロガロール、1,2,4‐ベンゼントリオール、2,3,4‐トリヒドロキシベンゾフェノン、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ジシクロペンタジエン系樹脂等の3価以上のフェノール類、または、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類から誘導されるグルシジルエーテル化物等がある。これらのエポキシ樹脂は、1種または2種以上を混合して用いることができる。   In addition to the epoxy resin represented by the general formula (1), another epoxy resin having two or more epoxy groups in the molecule may be used in combination with the epoxy resin used in the present invention. Examples include bisphenol A, bisphenol F, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenylsulfone, 4,4′-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl ketone, fluorene bisphenol, 4,4'-biphenol, 3,3 ', 5,5'-tetramethyl-4,4'-dihydroxybiphenyl, 2,2'-biphenol, hydroquinone, resorcin Catechol, t-butylcatechol, t-butylhydroquinone, 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1, 7-dihydroxynaphthalene, 1,8-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,4-dihydroxynaphthalene 2,5-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2,8-dihydroxynaphthalene, allylated or polyallylated products of the above-mentioned dihydroxynaphthalene, allylated bisphenol A, allylated bisphenol F, Divalent phenols such as allylated phenol novolak, or phenol novolak, bisphenol A novolak, o-cresol novolak, m-cresol novolak, p-cresol novolak, xylenol novolak, poly-p-hydroxystyrene, tris- (4 -Hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, fluoroglycinol, pyrogallol, t-butyl pyrogallol, allylated pyrogallol, polyallylated pyrogallo 1,2,4-benzenetriol, 2,3,4-trihydroxybenzophenone, phenol aralkyl resin, naphthol aralkyl resin, dicyclopentadiene resin and other trivalent phenols, or tetrabromobisphenol A There are glycidyl ethers derived from halogenated bisphenols and the like. These epoxy resins can be used alone or in combination of two or more.

本発明に用いる硬化剤としては、一般的にエポキシ樹脂硬化剤として知られているものを用いることができる。例を挙げれば、ジシアンジアミド、イミダゾール類、アミン系硬化剤、酸無水物系硬化剤、フェノール系硬化剤、ポリメルカプタン系硬化剤、ポリアミノアミド系硬化剤、イソシアネート系硬化剤、ブロックイソシアネート系硬化剤等が挙げられる。   As the curing agent used in the present invention, those generally known as epoxy resin curing agents can be used. Examples include dicyandiamide, imidazoles, amine curing agents, acid anhydride curing agents, phenol curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, block isocyanate curing agents, and the like. Is mentioned.

アミン系硬化剤の具体例としては、脂肪族アミン類、ポリエーテルポリアミン類、脂環式アミン類、芳香族アミン類等が挙げられる。脂肪族アミン類としては、エチレンジアミン、1,3‐ジアミノプロパン、1,4‐ジアミノプロパン、ヘキサメチレンジアミン、2,5‐ジメチルヘキサメチレンジアミン、トリメチルヘキサメチレンジアミン、ジエチレントリアミン、イミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、N‐ヒドロキシエチルエチレンジアミン、テトラ(ヒドロキシエチル)エチレンジアミン等が挙げられる。ポリエーテルポリアミン類としては、トリエチレングリコールジアミン、テトラエチレングリコールジアミン、ジエチレングリコールビス(プロピルアミン)、ポリオキシプロピレンジアミン、ポリオキシプロピレントリアミン類等が挙げられる。脂環式アミン類としては、イソホロンジアミン、メタセンジアミン、N‐アミノエチルピペラジン、ビス(4‐アミノ‐3‐メチルジシクロヘキシル)メタン、ビス(アミノメチル)シクロヘキサン、3,9‐ビス(3‐アミノプロピル)2,4,8,10‐テトラオキサスピロ(5,5)ウンデカン、ノルボルネンジアミン等が挙げられる。芳香族アミン類としては、テトラクロロ‐p‐キシレンジアミン、m‐キシレンジアミン、p‐キシレンジアミン、m‐フェニレンジアミン、o‐フェニレンジアミン、p‐フェニレンジアミン、2,4‐ジアミノアニゾール、2,4‐トルエンジアミン、2,4‐ジアミノジフェニルメタン、4,4'‐ジアミノジフェニルメタン、4,4'‐ジアミノ‐1,2‐ジフェニルエタン、2,4‐ジアミノジフェニルスルホン、4,4'‐ジアミノジフェニルスルホン、m‐アミノフェノール、m‐アミノベンジルアミン、ベンジルジメチルアミン、2‐ジメチルアミノメチル)フェノール、トリエタノールアミン、メチルベンジルアミン、α‐(m‐アミノフェニル)エチルアミン、α‐(p‐アミノフェニル)エチルアミン、ジアミノジエチルジメチルジフェニルメタン、α,α’‐ビス(4‐アミノフェニル)‐p‐ジイソプロピルベンゼン等が挙げられる。   Specific examples of the amine curing agent include aliphatic amines, polyether polyamines, alicyclic amines, aromatic amines and the like. Aliphatic amines include ethylenediamine, 1,3-diaminopropane, 1,4-diaminopropane, hexamethylenediamine, 2,5-dimethylhexamethylenediamine, trimethylhexamethylenediamine, diethylenetriamine, iminobispropylamine, bis ( Hexamethylene) triamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, N-hydroxyethylethylenediamine, tetra (hydroxyethyl) ethylenediamine and the like. Examples of polyether polyamines include triethylene glycol diamine, tetraethylene glycol diamine, diethylene glycol bis (propylamine), polyoxypropylene diamine, and polyoxypropylene triamines. Cycloaliphatic amines include isophorone diamine, metacene diamine, N-aminoethylpiperazine, bis (4-amino-3-methyldicyclohexyl) methane, bis (aminomethyl) cyclohexane, 3,9-bis (3-amino). Propyl) 2,4,8,10-tetraoxaspiro (5,5) undecane, norbornenediamine and the like. Aromatic amines include tetrachloro-p-xylenediamine, m-xylenediamine, p-xylenediamine, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, 2,4-diaminoanisole, 2, 4-toluenediamine, 2,4-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 4,4'-diamino-1,2-diphenylethane, 2,4-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone , M-aminophenol, m-aminobenzylamine, benzyldimethylamine, 2-dimethylaminomethyl) phenol, triethanolamine, methylbenzylamine, α- (m-aminophenyl) ethylamine, α- (p-aminophenyl) Ethylamine, diaminodiethyldimethyldiphenylmethane, α, α'- Scan (4-aminophenyl)-p-diisopropylbenzene and the like.

酸無水物系硬化剤の具体例としては、ドデセニル無水コハク酸、ポリアジピン酸無水物、ポリアゼライン酸無水物、ポリセバシン酸無水物、ポリ(エチルオクタデカン二酸)無水物、ポリ(フェニルヘキサデカン二酸)無水物、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水メチルハイミック酸、テトラヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物、メチルシクロヘキセンテトラカルボン酸無水物、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、エチレングリコールビストリメリテート、無水ヘット酸、無水ナジック酸、無水メチルナジック酸、5−(2,5−ジオキソテトラヒドロ−3−フラニル)−3−メチル−3−シクロヘキサン−1,2−ジカルボン酸無水物、3,4−ジカルボキシ−1,2,3,4−テトラヒドロ−1−ナフタレンコハク酸二無水物、1−メチル−ジカルボキシ−1,2,3,4−テトラヒドロ−1−ナフタレンコハク酸二無水物等が挙げられる。   Specific examples of acid anhydride curing agents include dodecenyl succinic anhydride, polyadipic acid anhydride, polyazeline acid anhydride, polysebacic acid anhydride, poly (ethyloctadecanedioic acid) anhydride, poly (phenylhexadecanedioic acid) Anhydride, Methyltetrahydrophthalic anhydride, Methylhexahydrophthalic anhydride, Hexahydrophthalic anhydride, Methylhymic anhydride, Tetrahydrophthalic anhydride, Trialkyltetrahydrophthalic anhydride, Methylcyclohexene dicarboxylic anhydride, Methylcyclohexene tetracarboxylic Acid anhydride, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol bistrimellitic acid, anhydrous het acid, anhydrous nadic acid, anhydrous methyl nadic acid, 5- (2,5 -Geo Sotetrahydro-3-furanyl) -3-methyl-3-cyclohexane-1,2-dicarboxylic anhydride, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride 1-methyl-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride and the like.

フェノール系硬化剤の具体例としては、ビスフェノールA、ビスフェノールF、フェノールノボラック、ビスフェノールAノボラック、o‐クレゾールノボラック、m‐クレゾールノボラック、p‐クレゾールノボラック、キシレノールノボラック、ポリ‐p‐ヒドロキシスチレン、レゾルシン、カテコール、t‐ブチルカテコール、t‐ブチルハイドロキノン、フルオログリシノール、ピロガロール、t‐ブチルピロガロール、アリル化ピロガロール、ポリアリル化ピロガロール、1,2,4−ベンゼントリオール、2,3,4−トリヒドロキシベンゾフェノン、1,2−ジヒドロキシナフタレン、1,3−ジヒドロキシナフタレン、1,4−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、1,7−ジヒドロキシナフタレン、1,8−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、2,4−ジヒドロキシナフタレン、2,5−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン、2,8−ジヒドロキシナフタレン、上記ジヒドロキシナフタレンのアリル化物またはポリアリル化物、アリル化ビスフェノールA、アリル化ビスフェノールF、アリル化フェノールノボラック、アリル化ピロガロール等が挙げられる。   Specific examples of phenolic curing agents include bisphenol A, bisphenol F, phenol novolak, bisphenol A novolak, o-cresol novolak, m-cresol novolak, p-cresol novolak, xylenol novolak, poly-p-hydroxystyrene, resorcin, Catechol, t-butylcatechol, t-butylhydroquinone, fluoroglycinol, pyrogallol, t-butyl pyrogallol, allylated pyrogallol, polyallylated pyrogallol, 1,2,4-benzenetriol, 2,3,4-trihydroxybenzophenone, 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene 1,7-dihydroxynaphthalene, 1,8-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,4-dihydroxynaphthalene, 2,5-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2, , 8-dihydroxynaphthalene, allylated or polyallylated products of the above-mentioned dihydroxynaphthalene, allylated bisphenol A, allylated bisphenol F, allylated phenol novolak, allylated pyrogallol and the like.

これらの硬化剤は得られるプリプレグまたは積層板の物性を考慮して適宜選定すればよいが、好ましくは耐熱性、耐湿性および電気絶縁性の観点からフェノール系硬化剤または芳香族ジアミン化合物であり、特に好ましくは、上記一般式(3)で表されるフェノール性樹脂である。   These curing agents may be appropriately selected in consideration of the physical properties of the obtained prepreg or laminate, but are preferably phenolic curing agents or aromatic diamine compounds from the viewpoint of heat resistance, moisture resistance and electrical insulation, Particularly preferred is a phenolic resin represented by the general formula (3).

エポキシ樹脂に対する硬化剤の配合量は、エポキシ基1モルに対して、通常、硬化剤中の官能基の数が0.8モルから1.2モルの範囲になるように決定される。一般式(3)で表されるフェノール性樹脂を使用する場合の使用量は、エポキシ樹脂組成物中の全硬化剤成分中、好ましくは50重量%以上、さらに好ましくは70重量%以上である。このフェノール性樹脂を上記量以上使用することにより、エポキシ樹脂硬化物とした際の結晶化度が高くなり、高熱伝導性、低熱膨張性、高耐熱性および低吸湿性等の効果が優れる。   The compounding amount of the curing agent with respect to the epoxy resin is usually determined so that the number of functional groups in the curing agent is in the range of 0.8 mol to 1.2 mol with respect to 1 mol of the epoxy group. The amount used when the phenolic resin represented by the general formula (3) is used is preferably 50% by weight or more, more preferably 70% by weight or more in the total curing agent component in the epoxy resin composition. By using this phenolic resin in the above amount or more, the degree of crystallinity when a cured epoxy resin is obtained increases, and effects such as high thermal conductivity, low thermal expansion, high heat resistance, and low hygroscopicity are excellent.

一般式(3)で表されるフェノール性樹脂の水酸基当量は、通常100から40,000の範囲であるが、積層板等の用途においては、フィルム性、可撓性付与の観点から、好ましくは200〜20,000の範囲である。この水酸基当量は、2種類以上のエポキシ樹脂を使用する場合においてもこれを満足することが好ましく、この場合、水酸基当量は、全重量(g)/水酸基(モル)で計算される。   The hydroxyl group equivalent of the phenolic resin represented by the general formula (3) is usually in the range of 100 to 40,000, but in applications such as laminates, it is preferably from the viewpoint of imparting film properties and flexibility. It is in the range of 200 to 20,000. This hydroxyl equivalent is preferably satisfied even when two or more types of epoxy resins are used. In this case, the hydroxyl equivalent is calculated by the total weight (g) / hydroxyl group (mol).

一般式(3)で表されるフェノール性樹脂の中でも、一般式(4)で表されるフェノール性樹脂が好ましいフェノール性樹脂として挙げられる。一般式(4)で表されるフェノール性樹脂は、一般式(3)においてmが1であるフェノール性樹脂であり、qは一般式(3)のそれと同じ意味を有する。なお、nは上記水酸基当量から計算可能であり、平均値として計算される場合がある。一般式(3)において、qが0の場合は、フェノール性樹脂は、一般式(5)で表されるビスフェノール化合物となる。   Among the phenolic resins represented by the general formula (3), a phenolic resin represented by the general formula (4) is mentioned as a preferred phenolic resin. The phenolic resin represented by the general formula (4) is a phenolic resin in which m is 1 in the general formula (3), and q has the same meaning as that of the general formula (3). In addition, n can be calculated from the above hydroxyl group equivalent and may be calculated as an average value. In general formula (3), when q is 0, the phenolic resin is a bisphenol compound represented by general formula (5).

一般式(3)において、qが0より大きい数の場合、このフェノール性樹脂は、たとえば、上記一般式(5)のビスフェノール化合物とエピクロルヒドリンを反応させることにより製造することができる。この場合、ビスフェノール化合物中の水酸基1モルに対して、1モル以下のエピクロルヒドリンが使用され、アルカリ金属水酸化物の存在下で反応が行われる。   In the general formula (3), when q is a number larger than 0, this phenolic resin can be produced, for example, by reacting the bisphenol compound of the general formula (5) with epichlorohydrin. In this case, 1 mol or less of epichlorohydrin is used with respect to 1 mol of hydroxyl group in the bisphenol compound, and the reaction is carried out in the presence of an alkali metal hydroxide.

フェノール性樹脂の原料として用いるビスフェノール化合物は、上記一般式(5)で表されるビスフェノール化合物であることが好ましい。一般式(5)において、mは1、2または3であるが、好ましくは1または2である。具体的には、4,4'−ジヒドロキシジフェニルエーテル、1,4−ビス(4−ヒドロキシフェノキシ)ベンゼン、1,3−ビス(4−ヒドロキシフェノキシ)ベンゼン、1,3−ビス(3−ヒドロキシフェノキシ)ベンゼン、4,4'−ビス(4−ヒドロキシフェノキシ)ジフェニルエーテル、3,3'−ビス(4−ヒドロキシフェノキシ)ジフェニルエーテル、3,3'−ビス(3−ヒドロキシフェノキシ)ジフェニルエーテルを挙げることができる。フェノール性樹脂の原料としては、これらの混合物であっても良いが、好ましくは4,4'−ジヒドロキシジフェニルエーテルまたはその含有率が50wt%以上のビスフェノール化合物である。   The bisphenol compound used as a raw material for the phenolic resin is preferably a bisphenol compound represented by the general formula (5). In the general formula (5), m is 1, 2 or 3, preferably 1 or 2. Specifically, 4,4′-dihydroxydiphenyl ether, 1,4-bis (4-hydroxyphenoxy) benzene, 1,3-bis (4-hydroxyphenoxy) benzene, 1,3-bis (3-hydroxyphenoxy) Examples include benzene, 4,4′-bis (4-hydroxyphenoxy) diphenyl ether, 3,3′-bis (4-hydroxyphenoxy) diphenyl ether, and 3,3′-bis (3-hydroxyphenoxy) diphenyl ether. As a raw material of the phenolic resin, a mixture thereof may be used, but preferably 4,4′-dihydroxydiphenyl ether or a bisphenol compound having a content of 50 wt% or more.

また、一般式(3)で表されるフェノール性樹脂は、上記一般式(5)のビスフェノール化合物と上記一般式(1)においてnが0のものを主成分とするエポキシ樹脂を反応させる方法により合成することもできる。この場合の両者の使用比率は、ビスフェノール化合物中の水酸基1モルに対して、エポキシ樹脂中のエポキシ基が1モル以下、好ましくは0.1〜0.9、さらに好ましくは0.2〜0.6となるように調整される。   Further, the phenolic resin represented by the general formula (3) is obtained by reacting the bisphenol compound of the general formula (5) with an epoxy resin mainly composed of n of the general formula (1) of 0. It can also be synthesized. In this case, the use ratio of both is that the epoxy group in the epoxy resin is 1 mol or less, preferably 0.1-0.9, more preferably 0.2-0. It is adjusted to be 6.

さらに、一般式(3)で表されるフェノール性樹脂は、一般式(3)中でqが0である単一のビスフェノール化合物、もしくはこれらの混合物であってもよい。かかるフェノール性樹脂としてのビスフェノール化合物としては、一般式(3)または(5)において、mは1、2または3であるが、好ましくは1または2である。具体的には、4,4'−ジヒドロキシジフェニルエーテル、1,4−ビス(4−ヒドロキシフェノキシ)ベンゼン、1,3−ビス(4−ヒドロキシフェノキシ)ベンゼン、1,3−ビス(3−ヒドロキシフェノキシ)ベンゼン、4,4'−ビス(4−ヒドロキシフェノキシ)ジフェニルエーテル、3,3'−ビス(4−ヒドロキシフェノキシ)ジフェニルエーテル、3,3'−ビス(3−ヒドロキシフェノキシ)ジフェニルエーテルを挙げることができる。   Furthermore, the phenolic resin represented by the general formula (3) may be a single bisphenol compound in which q is 0 in the general formula (3), or a mixture thereof. As the bisphenol compound as such a phenolic resin, in general formula (3) or (5), m is 1, 2, or 3, but is preferably 1 or 2. Specifically, 4,4′-dihydroxydiphenyl ether, 1,4-bis (4-hydroxyphenoxy) benzene, 1,3-bis (4-hydroxyphenoxy) benzene, 1,3-bis (3-hydroxyphenoxy) Examples include benzene, 4,4′-bis (4-hydroxyphenoxy) diphenyl ether, 3,3′-bis (4-hydroxyphenoxy) diphenyl ether, and 3,3′-bis (3-hydroxyphenoxy) diphenyl ether.

本発明に用いるエポキシ樹脂組成物には、エポキシ樹脂と硬化剤の他に、従来より公知の硬化促進剤を含むことができる。例を挙げれば、アミン類、イミダゾール類、有機ホスフィン類、ルイス酸等があり、具体的には、1,8−ジアザビシクロ(5,4,0)ウンデセン-7、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノールなどの三級アミン、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−へプタデシルイミダゾールなどのイミダゾール類、トリブチルホスフィン、メチルジフェニルホスフイン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィンなどの有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート、テトラブチルホスホニウム・テトラブチルボレートなどのテトラ置換ホスホニウム・テトラ置換ボレート、2−エチル−4−メチルイミダゾール・テトラフェニルポレート、N−メチルモルホリン・テトラフェニルポレートなどのテトラフェニルボロン塩などがある。添加量としては、通常、エポキシ樹脂100重量部に対して、0.2〜10重量部の範囲である。   The epoxy resin composition used in the present invention may contain a conventionally known curing accelerator in addition to the epoxy resin and the curing agent. Examples include amines, imidazoles, organic phosphines, Lewis acids, etc., specifically 1,8-diazabicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethylamine, Tertiary amines such as ethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, imidazoles such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole, Organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, phenylphosphine, tetraphenylphosphonium / tetraphenylborate, tetraphenylphosphonium / ethyltriphenylborate, tetra Tetra-substituted phosphonium tetra-substituted borate such as Chiruhosuhoniumu-tetrabutyl borate, 2-ethyl-4-methylimidazole · tetraphenyl port rate, and the like tetraphenyl boron salts such as N- methylmorpholine-tetraphenyl port rate. As addition amount, it is the range of 0.2-10 weight part normally with respect to 100 weight part of epoxy resins.

本発明に用いるエポキシ樹脂組成物には、成形時の流動性改良およびリードフレーム等との密着性向上の観点より、熱可塑性のオリゴマー類を添加することができる。熱可塑性のオリゴマー類としては、C5系およびC9系の石油樹脂、スチレン樹脂、インデン樹脂、インデン・スチレン共重合樹脂、インデン・スチレン・フェノール共重合樹脂、インデン・クマロン共重合樹脂、インデン・ベンゾチオフェン共重合樹脂等が例示される。添加量としては、通常、エポキシ樹脂100重量部に対して、2〜30重量部の範囲である。   Thermoplastic oligomers can be added to the epoxy resin composition used in the present invention from the viewpoint of improving fluidity during molding and improving adhesion to a lead frame and the like. Thermoplastic oligomers include C5 and C9 petroleum resins, styrene resins, indene resins, indene / styrene copolymer resins, indene / styrene / phenol copolymer resins, indene / coumarone copolymer resins, indene / benzothiophene. Examples thereof include copolymer resins. As addition amount, it is the range of 2-30 weight part normally with respect to 100 weight part of epoxy resins.

本発明に用いるエポキシ樹脂組成物には、臭素化エポキシ等の難燃剤、カルナバワックス、エステル系ワックス等の離型剤、エポキシシラン、アミノシラン、ウレイドシラン、ビニルシラン、アルキルシラン、有機チタネート、アルミニウムアルコレート等のカップリング剤、カーボンブラック等の着色剤、三酸化アンチモン等の難燃助剤、シリコンオイル等の低応力化剤、高級脂肪酸、高級脂肪酸金属塩等の滑剤等を使用できる。   Epoxy resin compositions used in the present invention include flame retardants such as brominated epoxies, mold release agents such as carnauba wax and ester wax, epoxy silane, amino silane, ureido silane, vinyl silane, alkyl silane, organic titanate, aluminum alcoholate Coupling agents such as carbon black, colorants such as carbon black, flame retardant aids such as antimony trioxide, low stress agents such as silicone oil, lubricants such as higher fatty acids and higher fatty acid metal salts, and the like can be used.

さらに、上記エポキシ樹脂組成物には、エポキシ樹脂硬化物の熱伝導性を向上させるため、無機充填材を適量配合することができる。無機充填材としては、金属、金属酸化物、金属窒化物、金属炭化物、金属水酸化物、炭素材料等が挙げられる。金属としては、銀、銅、金、白金、ジルコン等、金属酸化物としてはシリカ、酸化アルミニウム、酸化マグネシウム、酸化チタン、三酸化タングステン等、金属窒化物としては窒化ホウ素、窒化アルミニウム、窒化ケイ素等、金属炭化物としては炭化ケイ素等、金属水酸化物としては水酸化アルミニウム、水酸化マグネシウム等、炭素材料としては炭素繊維、黒鉛化炭素繊維、天然黒鉛、人造黒鉛、球状黒鉛粒子、メソカーボンマイクロビーズ、ウィスカー状カーボン、マイクロコイル状カーボン、ナノコイル状カーボン、カーボンナノチューブ、カーボンナノホーン等が挙げられる。無機充填材の形状としては、破砕状、球状、ウィスカー状、繊維状のものが適用できる。これらの無機充填材は単独で配合してもよく、二種以上を組み合わせて配合してもよい。また、無機充填材とエポキシ樹脂との濡れ性の改善、無機充填材の界面の補強、分散性の改善等の目的で無機充填材に通常のカップリング剤処理を施してもよい。   Furthermore, in order to improve the thermal conductivity of the cured epoxy resin, an appropriate amount of an inorganic filler can be added to the epoxy resin composition. Examples of the inorganic filler include metals, metal oxides, metal nitrides, metal carbides, metal hydroxides, and carbon materials. Silver, copper, gold, platinum, zircon, etc. as metal, silica, aluminum oxide, magnesium oxide, titanium oxide, tungsten trioxide, etc. as metal oxide, boron nitride, aluminum nitride, silicon nitride, etc. as metal nitride Silicon carbide as metal carbide, aluminum hydroxide and magnesium hydroxide as metal hydroxide, carbon fiber, graphitized carbon fiber, natural graphite, artificial graphite, spherical graphite particles, mesocarbon microbeads as carbon material , Whisker-like carbon, microcoiled carbon, nanocoiled carbon, carbon nanotube, carbon nanohorn and the like. As the shape of the inorganic filler, a crushed shape, a spherical shape, a whisker shape, or a fiber shape can be applied. These inorganic fillers may be blended singly or in combination of two or more. Ordinary coupling agent treatment may be applied to the inorganic filler for the purpose of improving the wettability between the inorganic filler and the epoxy resin, reinforcing the interface of the inorganic filler, and improving the dispersibility.

本発明に用いるエポキシ樹脂組成物は、通常、溶剤を使用しワニスとして、シート状繊維基材に含浸し乾燥してプリプレグを製造することがよい。この場合の溶剤としては、ベンゼン、トルエン、キシレン、クロロベンゼン等の芳香族溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、ヘキサン、ヘプタン、メチルシクロヘキサン等の脂肪族炭化水素溶剤、エタノール、イソプロパノール、ブタノール、エチレングリコール等のアルコール溶剤、ジエチルエーテル、ジオキサン、テトラヒドロフラン、ジエチレングリコールジメチルエーテル等のエーテル系溶剤、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、N−メチルピロリドン等の極性溶剤を使用することができる。   The epoxy resin composition used in the present invention is preferably produced by impregnating a sheet-like fiber base material and drying it as a varnish using a solvent. Solvents in this case include aromatic solvents such as benzene, toluene, xylene and chlorobenzene, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, aliphatic hydrocarbon solvents such as hexane, heptane and methylcyclohexane, ethanol Alcohol solvents such as isopropanol, butanol, ethylene glycol, ether solvents such as diethyl ether, dioxane, tetrahydrofuran, diethylene glycol dimethyl ether, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, etc. Polar solvents can be used.

本発明に係るプリプレグは、上記のエポキシ樹脂組成物を、ガラス繊維や有機繊維で構成されたシート状繊維基材(織布や不織布)に含浸し加熱乾燥して、エポキシ樹脂を半硬化状態としたものである。また、上記のエポキシ樹脂組成物の溶液を加熱して部分的に硬化反応させたエポキシ樹脂組成物を、シート状繊維基材に含浸し加熱乾燥することもよい。   The prepreg according to the present invention is obtained by impregnating the above epoxy resin composition into a sheet-like fiber base material (woven fabric or non-woven fabric) made of glass fiber or organic fiber, followed by drying by heating, so that the epoxy resin is in a semi-cured state. It is what. Alternatively, the epoxy resin composition obtained by heating and partially curing the above epoxy resin composition solution may be impregnated into a sheet-like fiber base material and dried by heating.

本発明の積層板は、プリプレグ層の全層ないしは一部の層として有する積層材料を加熱加圧成形してなるものである。そして、積層材料はプリプレグ層のみからなるものであっても、プリプレグ層以外の他の層を有するものであってもよい。プリプレグ層が複数の層からなる場合は、本発明のプリプレグを少なくとも1層有する。有利には、積層板中の全プリプレグ層厚みの50%以上、好ましくは70%以上とすることがよい。   The laminated board of the present invention is formed by heat-pressing a laminated material having all or part of the prepreg layer. And a laminated material may consist only of a prepreg layer, or may have layers other than a prepreg layer. When the prepreg layer is composed of a plurality of layers, it has at least one prepreg of the present invention. Advantageously, it is 50% or more, preferably 70% or more of the total prepreg layer thickness in the laminate.

プリプレグ層の片面あるいは両面あるいは中間に別種の基材を積層させることができる。積層させる基材としては、シート状、フィルム状のものがあり、銅箔、アルミニウム箔、ステンレス箔等の金属基材、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアクリレート、ポリメタクリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、液晶ポリマー、ポリアミド、ポリイミド、テフロン(登録商標)等の高分子基材が例示される。   Another type of substrate can be laminated on one side, both sides, or the middle of the prepreg layer. As the substrate to be laminated, there are sheet-like and film-like materials, such as copper foil, aluminum foil, stainless steel foil, etc., polyethylene, polypropylene, polystyrene, polyacrylate, polymethacrylate, polyethylene terephthalate, polybutylene terephthalate, Examples of the polymer base material include polyethylene naphthalate, liquid crystal polymer, polyamide, polyimide, and Teflon (registered trademark).

本発明のプリント配線板は、前記のプリプレグ層を加熱加圧成形してなる絶縁層を備えたものであり、片面プリント配線板、両面プリント配線板、さらには、内層にプリント配線を有する多層プリント配線板である。   The printed wiring board of the present invention is provided with an insulating layer formed by heat-pressing the prepreg layer, and is a single-sided printed wiring board, a double-sided printed wiring board, and further a multilayer printed circuit having a printed wiring in the inner layer. It is a wiring board.

本発明のプリプレグを加熱加圧成形するとプリプレグ硬化物となる。このプリプレグ硬化物は、樹脂相が結晶化していることが望ましい。また、本発明の積層板、もしくはプリント配線板は、樹脂相が結晶化していることが望ましい。結晶相の成長は、樹脂相が濁り、やがて不透明な状態になるため、目視においても確認できるが、結晶相成長の程度は、示差熱分析による吸熱量から見積もることができる。好ましい吸熱量は、充填材、シート状繊維基材、金属箔等を除いた樹脂成分(エポキシ樹脂、硬化剤及び硬化促進剤の合計に相当する)の単位重量あたり10J/g以上である。より好ましくは30J/g以上であり、特に好ましくは60J/g以上である。これより小さいとエポキシ樹脂硬化物としての熱伝導性、低熱膨張性、高耐熱性および低吸湿性の向上効果が小さい。さらに、吸熱量の大きいもの、すなわち結晶化度の高いものは、たとえガラス転移点が低くても、結晶性の維持により高温での強度を保持することが可能であり、実用的耐熱性である熱変形温度を高く維持することができる。結晶化した樹脂相の融点は、120℃から280℃の範囲であり、好ましくは150℃から250℃の範囲である。なお、ここでいう吸熱量は、示差熱分析計により、約10mgを精秤した試料を用いて、窒素気流下、昇温速度5℃/分の条件で測定して得られる吸熱量を指し、融点は示差熱分析の吸熱ピーク温度である。   When the prepreg of the present invention is heat-press molded, a prepreg cured product is obtained. The prepreg cured product preferably has a crystallized resin phase. Moreover, as for the laminated board or printed wiring board of this invention, it is desirable for the resin phase to crystallize. The growth of the crystal phase can be visually confirmed because the resin phase becomes cloudy and eventually becomes opaque, but the degree of crystal phase growth can be estimated from the endothermic amount by differential thermal analysis. A preferable endothermic amount is 10 J / g or more per unit weight of the resin component (corresponding to the total of the epoxy resin, the curing agent and the curing accelerator) excluding the filler, the sheet-like fiber base material, the metal foil and the like. More preferably, it is 30 J / g or more, and particularly preferably 60 J / g or more. When smaller than this, the improvement effect of thermal conductivity, low thermal expansibility, high heat resistance, and low hygroscopicity as a cured epoxy resin is small. Furthermore, those having a large endotherm, that is, those having a high degree of crystallinity, can maintain strength at high temperatures by maintaining crystallinity even if the glass transition point is low, and are practically heat resistant. The heat distortion temperature can be kept high. The melting point of the crystallized resin phase is in the range of 120 ° C. to 280 ° C., preferably in the range of 150 ° C. to 250 ° C. In addition, the endothermic amount here refers to the endothermic amount obtained by measuring with a differential thermal analyzer under the condition of a temperature rising rate of 5 ° C./min under a nitrogen stream using a sample accurately weighed about 10 mg. The melting point is the endothermic peak temperature of differential thermal analysis.

樹脂の結晶化の度合いは、プリプレグの硬化条件の制御により調整することができる。最適な硬化条件は、エポキシ樹脂組成物の配合条件に大きく依存するが、通常は、成形温度としては80℃から250℃であり、成形時間は1分から20時間である。成形圧力は0.2MPaから20MPaの範囲が好ましいが、真空プレスであってもよい。エポキシ樹脂硬化物の結晶化度を上げるためには、低い温度で長時間かけて硬化させることが望ましい。好ましい硬化温度は120℃から200℃の範囲であり、より好ましくは140℃から180℃である。また、好ましい硬化時間は10分から6時間であり、より好ましくは30分から3時間である。さらに成形後、ポストキュアにより、さらに結晶化度を上げることができる。通常、ポストキュア温度は130℃から250℃であり、時間は1時間から24時間の範囲であるが、好ましくは、示差熱分析における吸熱ピーク温度よりも5℃から50℃低い温度で、1時間から24時間かけてポストキュアを行うことが望ましい。   The degree of crystallization of the resin can be adjusted by controlling the curing conditions of the prepreg. The optimum curing conditions largely depend on the blending conditions of the epoxy resin composition, but usually the molding temperature is 80 ° C. to 250 ° C., and the molding time is 1 minute to 20 hours. The molding pressure is preferably in the range of 0.2 MPa to 20 MPa, but may be a vacuum press. In order to increase the crystallinity of the cured epoxy resin, it is desirable to cure at a low temperature for a long time. A preferred curing temperature is in the range of 120 ° C to 200 ° C, more preferably 140 ° C to 180 ° C. The preferable curing time is 10 minutes to 6 hours, more preferably 30 minutes to 3 hours. Further, after molding, the crystallinity can be further increased by post-cure. Usually, the post-cure temperature is 130 ° C. to 250 ° C., and the time is in the range of 1 hour to 24 hours, but preferably 1 hour at a temperature 5 ° C. to 50 ° C. lower than the endothermic peak temperature in differential thermal analysis. It is desirable to perform post-cure over 24 hours from the beginning.

以下、本発明に係る実施例を示し、本発明について詳細に説明する。 Examples of the present invention will be described below, and the present invention will be described in detail.

合成例1
4,4’−ジヒドロキシジフェニルエーテル1010gをエピクロルヒドリン6475gに溶解し、減圧下(約120mmHg、60℃にて48%水酸化ナトリウム水溶液808gを4時間かけて滴下した。この間、生成する水はエピクロルヒドリンとの共沸により系外に除き、溜出したエピクロルヒドリンは系内に戻した。滴下終了後、さらに1時間反応を継続した。その後、エピクロルヒドリンを減圧留去し、メチルイソブチルケトン3660gに溶解した後、濾過により生成した塩を除いた。その後、20%水酸化ナトリウム水溶液119.4gを加え、80℃で2時間反応させた。反応後、濾過、水洗を行った後、溶媒であるメチルイソブチルケトンを減圧留去し、淡黄色結晶のエポキシ樹脂(エポキシ樹脂A)1440gを得た。得られたエポキシ樹脂のエポキシ当量は163g/eq.、加水分解性塩素は280ppm、融点は78から84℃、150℃での粘度は0.0062Pa・sであった。ここで、加水分解性塩素とは、試料0.5gをジオキサン30mlに溶解後、1N−KOH、10mlを加え30分間煮沸還流した後、室温まで冷却し、さらに80%アセトン水100mlを加えたものを、0.002N−AgNO3水溶液で電位差滴定を行うことにより測定された値である。また、融点とは、キャピラリー法により昇温速度2℃/分で得られる値である。
Synthesis example 1
1010 g of 4,4′-dihydroxydiphenyl ether was dissolved in 6475 g of epichlorohydrin, and 808 g of a 48% aqueous sodium hydroxide solution was added dropwise over 4 hours at about 120 mmHg and 60 ° C. over 4 hours. The distilled epichlorohydrin was returned to the system by boiling, and the reaction was continued for another hour after the completion of the dropping, and then the epichlorohydrin was distilled off under reduced pressure, dissolved in 3660 g of methyl isobutyl ketone, and filtered. Thereafter, 119.4 g of a 20% aqueous sodium hydroxide solution was added, and the mixture was reacted for 2 hours at 80 ° C. After the reaction, filtration and washing were performed, and then methyl isobutyl ketone as a solvent was distilled off under reduced pressure. To obtain 1440 g of a light yellow crystalline epoxy resin (epoxy resin A). The epoxy equivalent of the obtained epoxy resin was 163 g / eq, the hydrolyzable chlorine was 280 ppm, the melting point was 78 to 84 ° C., and the viscosity at 150 ° C. was 0.0062 Pa · s. The sample was prepared by dissolving 0.5 g of the sample in 30 ml of dioxane, adding 10 ml of 1N-KOH, boiling and refluxing for 30 minutes, cooling to room temperature, and further adding 100 ml of 80% acetone water to 0.002 N-AgNO 3. The value is obtained by performing potentiometric titration with an aqueous solution, and the melting point is a value obtained by a capillary method at a heating rate of 2 ° C./min.

合成例2
攪拌機、温度計、冷却管、窒素導入管のついた1L、4口セパラブルフラスコに、合成例1で合成したエポキシ樹脂489gと4,4’−ジヒドロキシジフェニルエーテル75.8gを仕込み、窒素気流下、攪拌しながら150℃にて溶融混合した後、トリフェニルホスフィン0.226gを加え、2時間反応を行った。反応後、得られたエポキシ樹脂(エポキシ樹脂B)は、室温に放冷することにより、結晶性を示し固化した。得られたエポキシ樹脂のエポキシ当量は261g/eq.、融点は100から122℃、150℃での粘度は0.037Pa・sであった。また、得られた樹脂のGPC測定より求められた一般式(1)における各成分比は、n=0が45.8%、n=2が28.0%、n=4が12.3%、n≧6が13.9%であった。ここで、粘度はコントラバス社製レオマット115で測定した。また、GPC測定は、装置;HLC−82A(東ソー(株)製)、カラム;TSK−GEL2000×3本およびTSK−GEL4000×1本(いずれも東ソー(株)製)、溶媒;テトラヒドロフラン、流量;1 ml/min、温度;38℃、検出器;RIの条件に従った。
Synthesis example 2
Into a 1 L, 4-neck separable flask equipped with a stirrer, thermometer, cooling tube, and nitrogen introduction tube were charged 489 g of the epoxy resin synthesized in Synthesis Example 1 and 75.8 g of 4,4′-dihydroxydiphenyl ether, and under a nitrogen stream, After stirring and mixing at 150 ° C. with stirring, 0.226 g of triphenylphosphine was added and the reaction was performed for 2 hours. After the reaction, the obtained epoxy resin (epoxy resin B) was allowed to cool to room temperature, thereby showing crystallinity and solidifying. The epoxy equivalent of the obtained epoxy resin is 261 g / eq. The melting point was 100 to 122 ° C., and the viscosity at 150 ° C. was 0.037 Pa · s. Moreover, each component ratio in General formula (1) calculated | required from GPC measurement of the obtained resin is 45.8% for n = 0, 28.0% for n = 2, and 12.3% for n = 4. N ≧ 6 was 13.9%. Here, the viscosity was measured with Rheomatt 115 manufactured by Contrabass. In addition, GPC measurement was performed by using an apparatus; HLC-82A (manufactured by Tosoh Corp.), column; TSK-GEL2000 × 3 and TSK-GEL4000 × 1 (both manufactured by Tosoh Corp.), solvent; 1 ml / min, temperature; 38 ° C., detector; RI conditions were followed.

実施例1
攪拌機、温度計、冷却管、窒素導入管のついた1L、4口セパラブルフラスコに、エポキシ樹脂成分として、合成例1で得られたエポキシ樹脂A185.2g、硬化剤成分として、4,4’−ジヒドロキシジフェニルエーテル(硬化剤A)141.8g、および硬化促進剤としての2−エチル−4−メチルイミダゾール0.18gを、シクロヘキサノン246gに溶解し、120℃にて0.5時間反応させて、エポキシ樹脂組成物ワニスを調製した。E型粘度計における25℃の粘度は、0.42Pa・sであった。GPC測定から、参考例1で得られたエポキシ樹脂は25.7%残存し、4,4’−ジヒドロキシジフェニルエーテルは24.2%残存していた。
Example 1
Into a 1 L, 4-neck separable flask equipped with a stirrer, thermometer, cooling pipe, and nitrogen introduction pipe, 185.2 g of epoxy resin A obtained in Synthesis Example 1 as an epoxy resin component, and 4,4 ′ as a curing agent component -141.8 g of dihydroxydiphenyl ether (curing agent A) and 0.18 g of 2-ethyl-4-methylimidazole as a curing accelerator were dissolved in 246 g of cyclohexanone and reacted at 120 ° C for 0.5 hour to give an epoxy. A resin composition varnish was prepared. The viscosity at 25 ° C. in the E-type viscometer was 0.42 Pa · s. From the GPC measurement, 25.7% of the epoxy resin obtained in Reference Example 1 remained, and 24.2% of 4,4′-dihydroxydiphenyl ether remained.

このエポキシ樹脂組成物を、厚さ0.07mmのガラス繊維織布に含浸し、150℃で8分加熱乾燥してプリプレグを得た。このプリプレグ4枚を重ね、真空プレス機により温度130℃で15分間脱揮し、その後、温度175℃、圧力2MPaの条件で90分間加熱加圧形成して一体化し、厚さ0.4mmの積層板を得た。この積層板から50mm×120mmの板状試料を切り出し、各種物性測定に供した。   The epoxy resin composition was impregnated into a glass fiber woven fabric having a thickness of 0.07 mm and dried by heating at 150 ° C. for 8 minutes to obtain a prepreg. Four prepregs are stacked, devolatilized at a temperature of 130 ° C. for 15 minutes by a vacuum press machine, and then integrated by heating and pressing for 90 minutes under the conditions of a temperature of 175 ° C. and a pressure of 2 MPa. I got a plate. A plate-like sample of 50 mm × 120 mm was cut out from this laminated plate and subjected to various physical property measurements.

実施例2
エポキシ樹脂成分を、合成例2で得られたエポキシ樹脂B216.3g、硬化剤成分を、4,4’−ジヒドロキシジフェニルエーテル(硬化剤A)83.7gとした他は、実施例1と同様にしてエポキシ樹脂組成物ワニスを調製した。25℃の粘度は、0.56Pa・sであった。このエポキシ樹脂組成物を、実施例1と同様に積層板を得て、各種物性測定に供した。
Example 2
Except that the epoxy resin component was 216.3 g of the epoxy resin B obtained in Synthesis Example 2, and the curing agent component was 83.7 g of 4,4′-dihydroxydiphenyl ether (curing agent A), the same as in Example 1. An epoxy resin composition varnish was prepared. The viscosity at 25 ° C. was 0.56 Pa · s. A laminate was obtained from this epoxy resin composition in the same manner as in Example 1 and subjected to various physical property measurements.

実施例3
エポキシ樹脂成分を、合成例1で得られたエポキシ樹脂A189.5g、硬化剤成分を、4,4’−ジヒドロキシジフェニルエーテル(硬化剤A)99.4gおよび4,4’−ジアミノジフェニルスルホン(硬化剤B)11.0gとした他は、実施例1と同様にしてエポキシ樹脂組成物ワニスを調製した。25℃の粘度は、0.61Pa・sであった。このエポキシ樹脂組成物を、実施例1と同様に積層板を得て、各種物性測定に供した。
Example 3
The epoxy resin component was 189.5 g of the epoxy resin A obtained in Synthesis Example 1, the curing agent component was 99.4 g of 4,4′-dihydroxydiphenyl ether (curing agent A) and 4,4′-diaminodiphenyl sulfone (curing agent). B) An epoxy resin composition varnish was prepared in the same manner as in Example 1 except that 11.0 g was used. The viscosity at 25 ° C. was 0.61 Pa · s. A laminate was obtained from this epoxy resin composition in the same manner as in Example 1 and subjected to various physical property measurements.

実施例4(参考例)
エポキシ樹脂成分を、合成例2で得られたエポキシ樹脂B242.3g、硬化剤成分を、4,4'−ジアミノジフェニルスルホン(硬化剤B)57.6gとした他は、実施例1と同様にしてエポキシ樹脂組成物ワニスを調製した。25℃の粘度は、0.78Pa・sであった。このエポキシ樹脂組成物を、実施例1と同様に積層板を得て、各種物性測定に供した。
Example 4 (Reference Example)
The same procedure as in Example 1 was conducted except that the epoxy resin component was 242.3 g of the epoxy resin B obtained in Synthesis Example 2 and the curing agent component was 47.6 g of 4,4′-diaminodiphenylsulfone (curing agent B). Thus, an epoxy resin composition varnish was prepared. The viscosity at 25 ° C. was 0.78 Pa · s. A laminate was obtained from this epoxy resin composition in the same manner as in Example 1 and subjected to various physical property measurements.

実施例5(参考例)
エポキシ樹脂成分を、合成例1で得られたエポキシ樹脂A183.8g、硬化剤成分を、PSM−4261(硬化剤C:群栄化学製、フェノールノボラック樹脂;OH当量103g/eq.、軟化点80℃)116.1gとした他は、実施例1と同様にしてエポキシ樹脂組成物ワニスを調製した。25℃の粘度は、0.47Pa・sであった。このエポキシ樹脂組成物を、実施例1と同様に積層板を得て、各種物性測定に供した。
Example 5 (Reference Example)
The epoxy resin component was 183.8 g of the epoxy resin A obtained in Synthesis Example 1, and the curing agent component was PSM-4261 (curing agent C: manufactured by Gunei Chemical Co., phenol novolak resin; OH equivalent 103 g / eq., Softening point 80 The epoxy resin composition varnish was prepared in the same manner as in Example 1 except that 116.1 g. The viscosity at 25 ° C. was 0.47 Pa · s. A laminate was obtained from this epoxy resin composition in the same manner as in Example 1 and subjected to various physical property measurements.

比較例1
エポキシ樹脂成分として、YD−128(エポキシ樹脂C:東都化成製、ビスフェノールA型エポキシ樹脂、エポキシ当量186g/eq.)193.0g、硬化剤成分としてPSM−4261(硬化剤C:群栄化学製、フェノールノボラック樹脂;OH当量103g/eq.、軟化点80℃)106.9gを用いて、実施例1と同様に反応を行い、エポキシ樹脂組成物ワニスを調製した。25℃の粘度は、0.43Pa・sであった。このエポキシ樹脂組成物を、実施例1と同様に積層板を得て、各種物性測定に供した。
Comparative Example 1
As an epoxy resin component, YD-128 (epoxy resin C: manufactured by Tohto Kasei, bisphenol A type epoxy resin, epoxy equivalent 186 g / eq.) 193.0 g, as a curing agent component, PSM-4261 (curing agent C: manufactured by Gunei Chemical Co., Ltd.) , Phenol novolac resin; OH equivalent 103 g / eq., Softening point 80 ° C.) 106.9 g was used in the same manner as in Example 1 to prepare an epoxy resin composition varnish. The viscosity at 25 ° C. was 0.43 Pa · s. A laminate was obtained from this epoxy resin composition in the same manner as in Example 1 and subjected to various physical property measurements.

比較例2
エポキシ樹脂成分として、YD−128(エポキシ樹脂C:東都化成製、ビスフェノールA型エポキシ樹脂、エポキシ当量186g/eq.)225.0g、硬化剤成分として4,4’−ジアミノジフェニルスルホン(硬化剤B)75.0gを用いて、実施例1と同様に反応を行い、エポキシ樹脂組成物ワニスを調製した。25℃の粘度は、0.61Pa・sであった。このエポキシ樹脂組成物を、実施例1と同様に積層板を得て、各種物性測定に供した。
Comparative Example 2
As an epoxy resin component, YD-128 (epoxy resin C: manufactured by Tohto Kasei Co., Ltd., bisphenol A type epoxy resin, epoxy equivalent 186 g / eq.) 225.0 g, 4,4′-diaminodiphenyl sulfone (curing agent B) as a curing agent component ) Using 75.0 g, the reaction was carried out in the same manner as in Example 1 to prepare an epoxy resin composition varnish. The viscosity at 25 ° C. was 0.61 Pa · s. A laminate was obtained from this epoxy resin composition in the same manner as in Example 1 and subjected to various physical property measurements.

比較例3
エポキシ樹脂成分として、YX−4000H(エポキシ樹脂C:ジャパンエポキシレジン製、ビフェニル型エポキシ樹脂;エポキシ当量195g/eq.)196.3g、硬化剤成分としてPSM−4261(硬化剤C:群栄化学製、フェノールノボラック樹脂;OH当量103g/eq.、軟化点80℃)103.7gを用いて、実施例1と同様に反応を行い、エポキシ樹脂組成物ワニスを調製した。E型粘度計における25℃の粘度は、0.45Pa・sであった。このエポキシ樹脂組成物を、実施例1と同様に積層板を得て、各種物性測定に供した。
Comparative Example 3
As an epoxy resin component, YX-4000H (epoxy resin C: manufactured by Japan Epoxy Resin, biphenyl type epoxy resin; epoxy equivalent 195 g / eq.) 196.3 g, as a curing agent component, PSM-4261 (curing agent C: manufactured by Gunei Chemical Co., Ltd.) , Phenol novolac resin; OH equivalent 103 g / eq., Softening point 80 ° C.) 103.7 g was used in the same manner as in Example 1 to prepare an epoxy resin composition varnish. The viscosity at 25 ° C. in the E-type viscometer was 0.45 Pa · s. A laminate was obtained from this epoxy resin composition in the same manner as in Example 1 and subjected to various physical property measurements.

測定結果を表1にまとめて示す。表1において、Tgはガラス転移点、CTEは熱膨張係数、HDTは熱変形温度、m.p.は融点を示す。また、外観において、Xは透明、△はやや濁り、○は完全不透明を示す。   The measurement results are summarized in Table 1. In Table 1, Tg is the glass transition point, CTE is the thermal expansion coefficient, HDT is the heat distortion temperature, and m.p. is the melting point. In the appearance, X is transparent, Δ is slightly turbid, and ◯ is completely opaque.

Figure 0005234962
Figure 0005234962

産業上の利用の可能性Industrial applicability

本発明によれば、エポキシ樹脂成分としてジフェニルエーテル構造のエポキシ樹脂を用いるが、ジフェニルエーテル構造は、従来から知られている剛直な主鎖であるメソゲン基を有するエポキシ樹脂とは異なって、溶剤溶解性に優れた特性があり、熱伝導性等が優れるプリプレグとなる。本発明のプリント配線板は、絶縁層の熱伝導性が良好で優れた放熱性を有するので、自動車機器用のプリント配線板、家電製品の電源ユニット基板、パソコン、サーバー等の高密度実装プリント配線板に好適に使用される。   According to the present invention, an epoxy resin having a diphenyl ether structure is used as an epoxy resin component, but the diphenyl ether structure is different from an epoxy resin having a mesogenic group which is a rigid main chain conventionally known, and has a solvent solubility. The prepreg has excellent characteristics and excellent thermal conductivity. The printed wiring board of the present invention has a good thermal conductivity of the insulating layer and excellent heat dissipation. Therefore, the printed wiring board for automobile equipment, the power supply unit board for home appliances, personal computers, servers, etc. It is suitably used for plates.

Claims (9)

エポキシ樹脂と硬化剤を含むエポキシ樹脂組成物をシート状の繊維基材に含浸し半硬化状態としてなるプリプレグにおいて、当該エポキシ樹脂の一部または全部として、下記一般式(1)で示すエポキシ樹脂を用い、当該硬化剤の一部または全部として、下記一般式(3)で示されるフェノール性樹脂を用いたことを特徴とするプリプレグ。
Figure 0005234962
ここで、mは1であり、nは0以上の数を示す。
Figure 0005234962
ここで、mは1であり、qは0以上の数を示す。
In a prepreg in which a sheet-like fiber base material is impregnated with an epoxy resin composition containing an epoxy resin and a curing agent to form a semi-cured state, an epoxy resin represented by the following general formula (1) is used as a part or all of the epoxy resin. use have as part or all of the curing agent, prepreg characterized by using a phenolic resin represented by the following general formula (3).
Figure 0005234962
Here, m is 1 and n is a number of 0 or more.
Figure 0005234962
Here, m is 1 and q represents a number of 0 or more.
一般式(1)で示すエポキシ樹脂が、下記一般式(2)で示すエポキシ樹脂である請求項1に記載のプリプレグ。
Figure 0005234962
ここで、nは0以上の数の数を示す。
The prepreg according to claim 1, wherein the epoxy resin represented by the general formula (1) is an epoxy resin represented by the following general formula (2).
Figure 0005234962
Here, n represents a number of 0 or more.
一般式(3)で示されるフェノール性樹脂が、下記一般式(4)で示されるフェノール性樹脂である請求項1又は2に記載のプリプレグ。
Figure 0005234962
ここで、qは0以上の数を示す。
The prepreg according to claim 1 or 2, wherein the phenolic resin represented by the general formula (3) is a phenolic resin represented by the following general formula (4) .
Figure 0005234962
Here, q represents a number of 0 or more.
一般式(1)で示すエポキシ樹脂を、全エポキシ樹脂の70wt%以上使用し、一般式(3)で示されるフェノール性樹脂を、全硬化剤の50重量%以上使用する請求項1〜3のいずれかに記載のプリプレグ。 The epoxy resin represented by the general formula (1) is used by 70 wt% or more of the total epoxy resin, and the phenolic resin represented by the general formula (3) is used by 50 wt% or more of the total curing agent. The prepreg according to any one of the above. 硬化剤の一部として、芳香族ジアミン化合物を用いる請求項1〜4のいずれかに記載のプリプレグ。 The prepreg according to any one of claims 1 to 4, wherein an aromatic diamine compound is used as a part of the curing agent. 請求項1〜5のいずれかに記載のプリプレグをプリプレグ層の全層ないしは一部の層として有する積層材料を加熱加圧成形してなることを特徴とする積層板。   A laminate comprising a laminate material having the prepreg according to any one of claims 1 to 5 as a whole layer or a part of a prepreg layer, which is formed by heating and pressing. 請求項1〜5のいずれかに記載のプリプレグを加熱加圧成形して得られる硬化物中の樹脂相が結晶化したものであり、120℃から280℃の融点を持つことを特徴とするプリプレグ硬化物。   A prepreg obtained by crystallizing a resin phase in a cured product obtained by heating and pressing the prepreg according to claim 1 and having a melting point of 120 ° C to 280 ° C. Cured product. 請求項1〜5のいずれかに記載のプリプレグの層を加熱加圧成形して得られる絶縁層を備えることを特徴とするプリント配線板。   A printed wiring board comprising an insulating layer obtained by heating and pressing the prepreg layer according to claim 1. 絶縁層中の樹脂相が結晶化したものであり、120℃から280℃の融点を持つ請求項8に記載のプリント配線板。   The printed wiring board according to claim 8, wherein the resin phase in the insulating layer is crystallized and has a melting point of 120 ° C. to 280 ° C.
JP2008528796A 2006-08-07 2007-08-02 Prepreg, laminated board and printed wiring board Active JP5234962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008528796A JP5234962B2 (en) 2006-08-07 2007-08-02 Prepreg, laminated board and printed wiring board

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006214856 2006-08-07
JP2006214856 2006-08-07
JP2008528796A JP5234962B2 (en) 2006-08-07 2007-08-02 Prepreg, laminated board and printed wiring board
PCT/JP2007/065186 WO2008018364A1 (en) 2006-08-07 2007-08-02 Prepreg, laminate and printed wiring board

Publications (2)

Publication Number Publication Date
JPWO2008018364A1 JPWO2008018364A1 (en) 2009-12-24
JP5234962B2 true JP5234962B2 (en) 2013-07-10

Family

ID=39032896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008528796A Active JP5234962B2 (en) 2006-08-07 2007-08-02 Prepreg, laminated board and printed wiring board

Country Status (3)

Country Link
JP (1) JP5234962B2 (en)
TW (1) TW200833745A (en)
WO (1) WO2008018364A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060897A1 (en) * 2007-11-08 2009-05-14 Nippon Steel Chemical Co., Ltd. Epoxy resin, method for producing the same, epoxy resin composition and cured product
JP4608600B2 (en) * 2008-03-13 2011-01-12 新日本製鐵株式会社 Electrical steel sheet having an insulating coating excellent in thermal conductivity and method for producing the same
TWI494341B (en) * 2008-03-31 2015-08-01 Nippon Steel & Sumikin Chem Co Epoxy resin compositions and shaped articles
JP5115645B2 (en) * 2010-11-18 2013-01-09 住友ベークライト株式会社 Insulating substrate, metal-clad laminate, printed wiring board, and semiconductor device
JP5681151B2 (en) * 2012-09-03 2015-03-04 新日鉄住金化学株式会社 Epoxy resin composition and molded article
JP5681152B2 (en) * 2012-09-03 2015-03-04 新日鉄住金化学株式会社 Epoxy resin composition and molded article
KR101952356B1 (en) * 2012-12-14 2019-02-26 엘지이노텍 주식회사 Epoxy resin composite and printed circuit board using the same
JP6793517B2 (en) * 2016-10-17 2020-12-02 株式会社ダイセル Sheet prepreg
US11667749B2 (en) 2018-11-12 2023-06-06 Toray Industries, Inc. Epoxy resin composition for fiber-reinforced composite materials, epoxy resin cured product, preform and fiber-reinforced composite material
WO2022209715A1 (en) * 2021-03-30 2022-10-06 日鉄ケミカル&マテリアル株式会社 Epoxy resin composition, prepreg, and fiber-reinforced plastic obtained using these

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140269A (en) * 1991-11-26 1993-06-08 Matsushita Electric Works Ltd Epoxy resin composition
JPH06239966A (en) * 1993-02-16 1994-08-30 Nippon Kayaku Co Ltd Epoxy resin, epoxy resin composition and its cured product
JPH06313025A (en) * 1993-04-28 1994-11-08 Nippon Steel Chem Co Ltd New epoxy resin, its production and epoxy resin composition using the same
JP2001026633A (en) * 1999-07-13 2001-01-30 Nippon Steel Chem Co Ltd Epoxy resin, its production, epoxy resin composition and cured product thereof
JP2001329046A (en) * 2000-05-24 2001-11-27 Japan Epoxy Resin Kk Semiconductor sealing epoxy resin composition, resin sealed semiconductor device, and method for packaging semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140269A (en) * 1991-11-26 1993-06-08 Matsushita Electric Works Ltd Epoxy resin composition
JPH06239966A (en) * 1993-02-16 1994-08-30 Nippon Kayaku Co Ltd Epoxy resin, epoxy resin composition and its cured product
JPH06313025A (en) * 1993-04-28 1994-11-08 Nippon Steel Chem Co Ltd New epoxy resin, its production and epoxy resin composition using the same
JP2001026633A (en) * 1999-07-13 2001-01-30 Nippon Steel Chem Co Ltd Epoxy resin, its production, epoxy resin composition and cured product thereof
JP2001329046A (en) * 2000-05-24 2001-11-27 Japan Epoxy Resin Kk Semiconductor sealing epoxy resin composition, resin sealed semiconductor device, and method for packaging semiconductor device

Also Published As

Publication number Publication date
TW200833745A (en) 2008-08-16
WO2008018364A1 (en) 2008-02-14
JPWO2008018364A1 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP5324094B2 (en) Epoxy resin composition and cured product
JP5234962B2 (en) Prepreg, laminated board and printed wiring board
JP5314911B2 (en) Epoxy resin composition and molded article
JP5315057B2 (en) Crystalline resin cured product, crystalline resin composite and production method thereof
JP5265461B2 (en) Crystalline modified epoxy resin, epoxy resin composition and crystalline cured product
JP2010184993A (en) Epoxy resin composition and cured article
JP5312447B2 (en) Epoxy resin composition and molded article
JP5524525B2 (en) Copper foil with resin, laminated board and printed wiring board
JP5079721B2 (en) Epoxy resin composition and molded article
JP2012046616A (en) Phenolic resin, epoxy resin, production method of the same, epoxy resin composition and cured product
JP7320942B2 (en) Epoxy resin, epoxy resin composition and cured product
JP5314912B2 (en) Epoxy resin composition and molded article
JP5037370B2 (en) Epoxy resin composition and cured product
JP5734603B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP2023033883A (en) Epoxy resin, its composition and cured product
JP5681151B2 (en) Epoxy resin composition and molded article
JP5681152B2 (en) Epoxy resin composition and molded article
WO2023276851A1 (en) Epoxy resin, epoxy resin composition, and cured product of same
KR101799365B1 (en) Epoxy resin, method for manufacturing the same, intermediate, epoxy resin composition and cured product
JP2012197366A (en) Epoxy resin composition and molding
JP2022154693A (en) Epoxy resin, epoxy resin composition, and cured material
TW202202543A (en) Crystalline epoxy resin, epoxy resin composition and epoxy resin cured product Capable of being effectively used as an insulating material for electrical/electronic parts
JP5390491B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product
JP2022011688A (en) Resin composition and cured product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130322

R150 Certificate of patent or registration of utility model

Ref document number: 5234962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250