WO2008018364A1 - Prepreg, laminate and printed wiring board - Google Patents

Prepreg, laminate and printed wiring board Download PDF

Info

Publication number
WO2008018364A1
WO2008018364A1 PCT/JP2007/065186 JP2007065186W WO2008018364A1 WO 2008018364 A1 WO2008018364 A1 WO 2008018364A1 JP 2007065186 W JP2007065186 W JP 2007065186W WO 2008018364 A1 WO2008018364 A1 WO 2008018364A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
general formula
printed wiring
curing agent
wiring board
Prior art date
Application number
PCT/JP2007/065186
Other languages
French (fr)
Japanese (ja)
Inventor
Masashi Kaji
Koichiro Ogami
Tomomi Fukunaga
Original Assignee
Nippon Steel Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co., Ltd. filed Critical Nippon Steel Chemical Co., Ltd.
Priority to JP2008528796A priority Critical patent/JP5234962B2/en
Publication of WO2008018364A1 publication Critical patent/WO2008018364A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/504Amines containing an atom other than nitrogen belonging to the amine group, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Definitions

  • the present invention relates to an epoxy resin composition excellent in high thermal conductivity, low thermal expansion, high heat resistance and low moisture absorption, a pre-preda to which the epoxy resin composition is applied, and a laminate or printed wiring using the pre-preda. Regarding the board.
  • JP-A-7-90052 discloses a biphenol type epoxy resin. And epoxy resin composition containing polyhydric phenol resin curing agent as essential components, excellent stability and strength at high temperatures, and can be used in a wide range of fields such as adhesion, casting, sealing, molding and lamination Is disclosed.
  • Japanese Patent Application Laid-Open No. 9118673 discloses an epoxy compound having two mesogen structures connected by a bent chain in the molecule.
  • JP-A-11-323162 discloses a resin composition containing an epoxy compound having a mesogenic group.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7 90052
  • Patent Document 2 JP-A-9 118673
  • Patent Document 3 Japanese Patent Laid-Open No. 11 323162
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004 123847
  • such an epoxy resin having a mesogenic structure has a feature that it is very difficult to dissolve in an organic solvent having a high melting point.
  • High temperatures are required to uniformly mix such epoxy resins with curing agents. At high temperatures, the epoxy resin cures rapidly and the gelation time is shortened, so the mixing process is severely limited and difficult to handle.
  • epoxy resin mixtures that are insoluble in organic solvents have a problem that it is difficult to produce prepregs and laminates that are difficult to impregnate fiber substrates.
  • a soluble third component was added to compensate for this drawback, the melting point of the resin was lowered and the resin was easily dissolved in an organic solvent, but the cured product had a problem that the thermal conductivity was lowered.
  • Patent Document 4 describes a sealing agent using a biphenyl ether type epoxy resin, and only teaches its application to a sealing agent.
  • the present invention is a pre-predder and laminate using an epoxy resin composition excellent in high thermal conductivity, low thermal expansion, high heat resistance and low hygroscopicity in addition to solubility in an organic solvent! / It is to provide a printed wiring board.
  • the present inventors have found that an extremely specific phenomenon of crystallization occurs even in a three-dimensional cross-linked state after the epoxy resin power curing reaction having a diphenyl ether structure.
  • the present invention can be achieved for the first time by applying this phenomenon to a pre-preda. Due to the development of crystallinity in the hardened state, the present invention has high thermal conductivity, low thermal expansion, high heat resistance and low resistance. It is possible to manufacture a laminated board having excellent characteristics with ensured hygroscopicity.
  • the present invention provides a pre-preda that is impregnated into a semi-cured state by impregnating a sheet-like fiber base material with an epoxy resin composition containing an epoxy resin and a curing agent.
  • the present invention is a pre-preda characterized by using an epoxy resin represented by the following general formula (1).
  • n is a number greater than or equal to 0.
  • the epoxy resin represented by the general formula (1) includes an epoxy resin represented by the following general formula (2).
  • n is a number greater than or equal to 0
  • a phenolic resin or an aromatic diamine compound represented by the following general formula (3) can be used as a part or all of the curing agent.
  • a phenolic resin represented by the general formula (3) there is a phenolic resin represented by the following general formula (4).
  • m represents a number from 1 to 3
  • q represents a number of 0 or more.
  • the present invention is a laminated board obtained by heat-pressing a laminated material having the above-mentioned pre-predder as all or a part of the pre-predder layer. Furthermore, this invention is a printed wiring board provided with the insulating layer formed by heat-press-molding the layer of said pre-preder.
  • the resin phase is crystallized and preferably has a melting point of 120 ° C. to 280 ° C.
  • the present invention is a pre-precured cured product having a melting point of 120 ° C. to 280 ° C.
  • the laminate according to the present invention is obtained by integrally laminating a laminate material having the above-mentioned pre-predder as all or a part of the pre-predator layer by heating and pressing.
  • the printed wiring board according to the present invention includes an insulating layer formed by heating and pressing the above-described pre-preder layer.
  • the epoxy resin represented by the general formula (1) is represented by the following general formula (5),
  • is an integer greater than or equal to 0.
  • the value of S, n varies the molar ratio of epichlorohydrin used in the epoxy resin synthesis reaction to the bisphenol compound. Can be adjusted easily. Further, the average value of n is preferably in the range of 0.;! To 10 ⁇ 0. When larger than this, melting
  • n is 0 in the general formula (1).
  • a method in which an epoxy resin containing a main component as a main component and a bisphenol compound of the above general formula (5) is reacted in advance is employed.
  • m is 1, 2 or 3, preferably 1 or 2.
  • the raw material of the epoxy resin may be a mixture thereof, but is preferably 4,4′-dihydroxydiphenyl ether or a bisphenol compound having a content of 50 wt% or more.
  • an epoxy resin represented by the general formula (2) is preferably exemplified.
  • This epoxy resin is an epoxy resin in which m is 1 in the general formula (1), and n has the same meaning as that in the general formula (1).
  • the epoxy resin used in the prepreader of the present invention contains a part or all of the epoxy resin represented by the general formula (1), preferably 50 wt% or more, more preferably 70 wt% or more. If it is less than this, the crystallinity of the cured product will be reduced, and the effect of improving high thermal conductivity, low thermal expansion, high heat resistance and low hygroscopicity will be small.
  • the epoxy equivalent of the epoxy resin represented by the general formula (1) is usually in the range of 160 force, etc., and in the range of 50,000, from the viewpoint of imparting film properties and flexibility, Preferably it is the range of 400-40,000. It is preferable to satisfy this epoxy equivalent even when two or more epoxy resins are used. In this case, the epoxy equivalent is calculated by the total weight (g) / epoxy group (mono).
  • the purity of the epoxy resin, in particular, the amount of hydrolyzable chlorine, is less and / or better from the viewpoint of improving reliability. Although not particularly limited, it is preferably lOOOppm or less, more preferably 5 OOppm or less.
  • the hydrolyzable chlorine as used in the present invention means a value measured by the following method. That is, after dissolving 0.5 g of the sample in 30 ml of dioxane, add 1 ⁇ - ⁇ and 10 ml, boil and reflux for 30 minutes, cool to room temperature, add 100 ml of 80% acetone water, and add a potential difference with 0.002N-AgNO aqueous solution. This is a value obtained by titration.
  • epoxy resin represented by the general formula (1) examples include bisphenol A, bisphenol F, 3,3 ', 5,5'-tetramethyl-1,4'-dihydroxydiphenylmethane, 4,4'-dihydroxydiphenylsulfone, 4, 4'-dihydroxydiphenylsulfide, 4,4'-dihydroxydiphenyl ketone, fluorene bisphenol, 4,4'-biphenol, 3,3 ', 5,5'-tetramethyl mono 4,4'-dihydroxybifu Enil, 2,2'-Bihuenore, Noduloquinone, Resonoresin, Force Teconole, t-Butinore Force Teconole, t-Butinorehydroquinone, 1,2-Dihydroxynaphthalene, 1,3-Dihydroxynaphthalene, 1,
  • Divalent phenols or phenol novolaks, bisphenol monoreno A novolaks, 0-crezo monorenovolacs, m-crezo monorenovolacs, p-crezo monorenovolacs, xylenol novolacs, poly-p-hydroxystyrene, tris-one (4-hydroxyphenol), methane, 1,1,2,2-tetrakis (4-hydroxyphenol) ethane, fluorologinole, pyrogallol, t-butyl pyrogallol, arylated pyrogallol, polyallylated pyrogallol, 1,2,4-benzenetriol, 2,3,4-trihydroxy Darcydyl ethers derived from trivalent or higher phenols such as benzophenone, phenol aralkyl resins, naphthol aralkyl resins, dicyclopentagen resins, or halogenated bisphenols such as tetrabromobis
  • the curing agent used in the present invention it is possible to use what is generally known as an epoxy resin curing agent.
  • examples include dicyandiamide, imidazoles, amine-based curing agents, acid anhydride-based curing agents, phenol-based curing agents, polymercaptan-based curing agents, polyaminoamide-based curing agents, isocyanate-based curing agents, and block isocyanate-based curing.
  • Agents and the like include aliphatic amines, polyether polyamines, alicyclic amines, aromatic amines and the like.
  • Aliphatic amines include ethylene diamine, 1,3-diamine propane, 1,4-diamine propane, hexamethylene diamine, 2,5-dimethyl hexamethylene diamine, trimethyl hexamethylene diamine, Diethylenetriamine, iminobispropylamine, bis (hexamethylene) triamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, N-hydroxyethynoleethylenediamine, tetra (hydroxyethyl) ethylenediamine Etc.
  • polyether polyamines examples include triethylene glycol diamine, tetraethylene glycol diamine, jetylene glycol bis (propylamine), polyoxypropylene diamine, polyoxypropylene triamines, and the like.
  • Cycloaliphatic amines include isophorone diamine, metasendiamine, N-aminoethylpiperazine, bis (4-amino-3-methyldicyclohexyl) methan, bis (aminomethyl) cyclohexane, 3,9- Bis (3-aminopropyl) 2,4,8,10-tetraoxaspiro (5,5) undecane, norbornene diamine and the like can be mentioned.
  • Aromatic amines include Tetrachrome-P-xylenediamine, m-xylenediamine, P-xylenediamine, m-phenylenediamine, 0-phenylenediamine, p-phenylenediamine, 2,4-diaminoanizone, 2,4-toluenediamine, 2,4-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 4,4'-diamino-1,2-diphenylethane, 2,4-diaminodiphenylsulfone, 4,4 '-Diaminodiphenylsulfone, m-aminophenol, m-aminobenzylamine, benzyldimethylamine, 2-dimethylaminomethinole) phenol, triethanolamine, methylbenzylamine, ⁇ - (m-aminophenyl) Ethylamine, ⁇ - ( ⁇ -
  • the acid anhydride-based curing agent include dodecenyl succinic anhydride, polyadipic acid anhydrous, polyazelinic acid anhydride, polysebacic acid anhydride, poly (ethyloctadecanedioic acid) anhydride, Poly (phenylhexadecanedioic anhydride), methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, methylhymic anhydride, tetrahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, methylcyclohexene Dicarboxylic anhydride, methylcyclohexene tetracarboxylic anhydride, anhydrous lid Phosphoric acid, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene
  • phenolic curing agent examples include bisphenol A, bisphenol F, phenol mononovolak, bisphenolenovol A, novolak, 0-crezo mononovolac, m-crezo mononorenopolac, P-cresol monovolak, Xylenol novolac, poly-p-hydroxystyrene, resorcin, force teconole, t-butylcatechol, t-butylhydroquinone, fluorologinol, pyrogallol, t-butyl pyrogallol, arylated pyrogallol, polyarinorelated pyrogalonore, 1, 2, 4 benzenetriol 2, 3, 4 trihydroxybenzophenone,
  • Dihydroxynaphthalene 2,5 dihydroxynaphthalene, 2,6 dihydroxynaphthalene, 2,7 dihydroxynaphthalene, 2,8 dihydroxynaphthalene, arylated or polyallylated products of the above-mentioned dihydroxynaphthalene, arylated bisphenol A, arylated bis Examples include phenol F, arylated phenol nopolac, and arylated pyrogallol.
  • curing agents may be appropriately selected in consideration of the physical properties of the resulting prepreader or laminated board! /, But preferably from the viewpoint of heat resistance, moisture resistance and electrical insulation, a phenolic curing agent or An aromatic diamine compound, particularly preferably a phenolic resin represented by the above general formula (3).
  • the amount of the curing agent to be added to the epoxy resin is usually determined so that the number of functional groups in the curing agent is in the range of 0.8 mol to 1.2 mol with respect to 1 mol of the epoxy group. .
  • the amount used is preferably 50% by weight or more, more preferably 70% by weight or more in the total curing agent component in the epoxy resin composition. .
  • a cured epoxy resin is obtained.
  • the crystallinity at the time is high, and the effects such as high thermal conductivity, low thermal expansion, high heat resistance and low hygroscopicity are excellent.
  • the hydroxyl group equivalent of the phenolic resin represented by the general formula (3) is usually in the range of 40,000 at 100 forces. However, in applications such as laminates, from the viewpoint of providing film properties and flexibility. The preferred range is 200 to 20,000. This hydroxyl equivalent is preferably satisfied even when two or more types of epoxy resins are used. In this case, the hydroxyl equivalent is calculated by the total weight (g) / hydroxyl (mole).
  • the phenolic resin represented by the general formula (4) is preferable, and examples thereof include a phenolic resin.
  • the phenolic resin represented by the general formula (4) is a phenolic resin in which m is 1 in the general formula (3), and q has the same meaning as that of the general formula (3). Note that n can be calculated from the above hydroxyl group equivalent, and may be calculated as an average value.
  • the phenolic resin is a bisphenol compound represented by the general formula (5).
  • this phenolic resin when q is a number greater than 0, this phenolic resin is produced, for example, by reacting the bisphenol compound of the general formula (5) with epichlorohydrin. That power S.
  • 1 mol or less of epichlorohydrin is used per 1 mol of hydroxyl group in the bisphenol compound, and the reaction is made in the presence of an alkali metal hydroxide.
  • the bisphenol compound used as a raw material for the phenolic resin is preferably a bisphenol compound represented by the general formula (5).
  • m is 1, 2 or 3, preferably 1 or 2.
  • diphenyl ether 1,4'-dihydroxydiphenyl ether, 1,4 bis (4 hydroxyphenoxy) benzene, 1,3 bis (4 hydroxyphenoxy) benzene, 1,3 bis (3 hydroxyphenoxy) Benzene, 4,4 'bis (4-hydroxyphenoxy) diphenyl ether, 3,3'-bis (3-hydroxyphenoxy) Ii)
  • the raw material of the phenolic resin may be a mixture thereof, but is preferably 4,4′-dihydroxydiphenyl ether or a bisphenol compound having a content of 50 wt% or more.
  • the phenolic resin represented by the general formula (3) is an epoxy resin mainly composed of the bisphenol compound of the general formula (5) and n of 0 in the general formula (1). It can also be synthesized by a reaction method. In this case, the usage ratio of the two is such that the epoxy group in the epoxy resin is 1 mol or less, preferably 0.1 to 0.9, more preferably 0.2 to 1 mol of the hydroxyl group in the bisphenol compound. Adjusted to be ⁇ 0.6.
  • the phenolic resin represented by the general formula (3) may be a single bisphenol compound in which q is 0 in the general formula (3), or a mixture thereof.
  • m is 1, 2, or 3 in the general formula (3) or (5), but is preferably 1 or 2.
  • the epoxy resin composition used in the present invention may contain a conventionally known curing accelerator in addition to the epoxy resin and the curing agent.
  • a conventionally known curing accelerator examples include amines, imidazoles, organic phosphines, Lewis acids, etc., specifically 1,8 diazabicyclo (5,4,0) undecene-7, triethylenediamine, Tertiary amines such as benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, 2-methyl imidazole, 2 phenyl imidazole, 2 phenol 4 methyl imi Dazonole, 2 Imidazoles such as 1-heptadecylimidazole, Organic phosphines such as tributylphosphine, methyldiphenylenophosphine, triphenylenophosphine, diphenylenophosphine, phenenolephosphine, tetraphenyl
  • the amount added is usually 0.2 to 10 parts by weight per 100 parts by weight of the epoxy resin.
  • Thermoplastic oligomers can be added to the epoxy resin composition used in the present invention from the viewpoint of improving fluidity during molding and improving adhesion to a lead frame and the like.
  • Thermoplastic oligomers include C5 and C9 petroleum resins, styrene resins, indene resins, inden 'styrene copolymer resins, inden' styrene 'phenol copolymer resins, inden' coumarone copolymer resins, and inden 'benzothiophene copolymers.
  • Examples include polymerized resins. The addition amount is usually in the range of 2 to 30 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • the epoxy resin composition used in the present invention includes flame retardants such as brominated epoxy, mold release agents such as carnauba wax and ester wax, epoxy silane, amino silane, ureido silane, bur silane, alkyl silane, organic titanate, Power coupling agents such as aluminum alcoholate, colorants such as carbon black, flame retardant aids such as antimony trioxide, low stress agents such as silicone oil, lubricants such as higher fatty acids and higher fatty acid metal salts can be used.
  • flame retardants such as brominated epoxy
  • mold release agents such as carnauba wax and ester wax
  • epoxy silane amino silane, ureido silane, bur silane, alkyl silane, organic titanate
  • Power coupling agents such as aluminum alcoholate, colorants such as carbon black, flame retardant aids such as antimony trioxide, low stress agents such as silicone oil, lubricants such as higher fatty acids and higher fatty acid metal salts can be used.
  • an appropriate amount of an inorganic filler can be added to the epoxy resin composition in order to improve the thermal conductivity of the cured epoxy resin.
  • the inorganic filler include metals, metal oxides, metal nitrides, metal carbides, metal hydroxides, and carbon materials.
  • Metals include silver, copper, gold, platinum, and zircon, metal oxides include silica, aluminum oxide, magnesium oxide, titanium oxide, and tungsten trioxide, and metal nitrides include boron nitride and nitride.
  • a crushed shape, a spherical shape, a whisker shape, or a fiber shape can be applied as the shape of the inorganic filler.
  • These inorganic fillers may be blended alone or in combination of two or more. Ordinary coupling agent treatment may be applied to the inorganic filler for the purpose of improving the wettability between the inorganic filler and the epoxy resin, reinforcing the interface of the inorganic filler, and improving the dispersibility.
  • the epoxy resin composition used in the present invention is usually a sheet using a solvent as a varnish. It is preferable that the prepreg is produced by impregnating the fibrous fiber base material and drying it.
  • Solvents in this case include aromatic solvents such as benzene, toluene, xylene and black benzene, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, hexane, heptane, and methylcyclohexane.
  • Aliphatic hydrocarbon solvents such as ethanol, alcohol solvents such as ethanol, isopropanol, butanol and ethylene glycol, ether solvents such as jetyl ether, divalent xylene, tetrahydrofuran and diethylene glycol dimethyl ether, N, N-dimethylformamide, N, N —Polar solvents such as dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone can be used.
  • a pre-preda according to the present invention is obtained by impregnating the above-mentioned epoxy resin composition into a sheet-like fiber base material (woven fabric or non-woven fabric) made of glass fiber or organic fiber, followed by drying by heating. Semi-cured state. Further, the epoxy resin composition obtained by heating and partially curing the above epoxy resin composition solution may be impregnated into a sheet-like fiber base material and dried by heating.
  • the laminated plate of the present invention is obtained by heat-pressing a laminated material having all or part of the pre-preder layer.
  • the laminated material may be composed only of the pre-predder layer or may have a layer other than the pre-predder layer.
  • the pre-preder layer is composed of a plurality of layers, it has at least one pre-preda of the present invention.
  • it should be 50% or more, preferably 70% or more of the total pre-preda layer thickness in the laminate.
  • the base material to be laminated includes sheet-like and film-like materials such as copper foil, aluminum foil, stainless steel foil, etc., polyethylene, polypropylene, polystyrene, polyacrylate, polymethacrylate, polyethylene terephthalate, polybutylene terephthalate.
  • polymer base materials such as polyethylene naphthalate, liquid crystal polymer, polyamide, polyimide, and Teflon (registered trademark).
  • a printed wiring board of the present invention is provided with an insulating layer formed by heat-pressing the above-mentioned pre-preder layer.
  • a single-sided printed wiring board, a double-sided printed wiring board, and further an inner layer with printed wiring Is a multilayer printed wiring board.
  • the pre-preder of the present invention When the pre-preder of the present invention is heated and pressure-molded, a pre-preda cured product is obtained.
  • This pre-preda As for hardened
  • the resin phase In the laminated board or printed wiring board of the present invention, the resin phase is preferably crystallized. Since the crystal phase grows in a turbid state and eventually becomes opaque, the force that can be confirmed by visual observation The degree of crystal phase growth can be estimated from the endothermic amount by differential thermal analysis.
  • the preferred endothermic amount is 10 J / g or more per unit weight of the resin component (corresponding to the total of the epoxy resin, the curing agent and the curing accelerator) excluding the filler, the sheet-like fiber base material, the metal foil and the like. More preferably, it is 30 J / g or more, and particularly preferably 60 J / g or more. If it is smaller than this, the effect of improving the thermal conductivity, low thermal expansion, high heat resistance and low hygroscopicity as a cured epoxy resin is small. Furthermore, those with a large endotherm, that is, those with a high degree of crystallinity, can maintain strength at high temperatures by maintaining crystallinity even if the glass transition point is low, and are practically heat resistant.
  • the heat distortion temperature can be kept high.
  • the melting point of the crystallized resin phase is in the range of 120 ° C to 280 ° C, preferably in the range of 150 ° C to 250 ° C.
  • the endothermic amount refers to the endothermic amount obtained by measuring with a differential thermal analyzer using a sample that weighed approximately 10 mg under a nitrogen stream at a temperature rising rate of 5 ° C / min.
  • the melting point is the endothermic peak temperature of differential thermal analysis.
  • the degree of crystallization of the resin can be adjusted by controlling the curing conditions of the pre-preda.
  • the optimum curing conditions largely depend on the compounding conditions of the epoxy resin composition, but usually the molding temperature is 80 ° C to 250 ° C, and the molding time is 1 minute to 20 hours.
  • the forming pressure is preferably in the range of 0.2 MPa to 20 MPa, but may be a vacuum press.
  • Preferred curing temperatures range from 120 ° C to 200 ° C, more preferably 140 ° C force, and 180 ° C.
  • the preferable curing time is 10 minutes to 6 hours, more preferably 30 minutes to 3 hours.
  • post-cure can increase the crystallinity.
  • the post cure temperature is 130 ° C to 250 ° C and the time ranges from 1 hour to 24 hours, but preferably 5 ° C to 50 ° C lower than the endothermic peak temperature in differential thermal analysis It is desirable to post-cure for 1 to 24 hours at temperature.
  • epichlorohydrin was distilled off under reduced pressure, dissolved in 3660 g of methylisoptyl ketone, and the salt formed by filtration was removed, and then 119.4 g of 20% aqueous sodium hydroxide solution was added, and 80 The reaction was allowed to proceed for 2 hours at ° C. After the reaction, filtration and washing with water were carried out, and then the solvent methylolisobutyl ketone was distilled off under reduced pressure to obtain 144 Og of light yellow crystalline epoxy resin (epoxy resin A).
  • the epoxy equivalent of the obtained epoxy resin is 163 g / eq.
  • Decomposable chlorine was 280 ppm, melting point was 78 force 84, C, 150.
  • Viscosity was 0.0026 Pa's, where hydrolysable chlorine was 0.5 g of sample dissolved in 30 ml of dioxane. , 1 ⁇ - ⁇ , 10ml was added, boiled and refluxed for 30 minutes, cooled to room temperature, and further added with 100ml of 80% acetone water, measured by potentiometric titration with 0.002N-AgNO aqueous solution.
  • the melting point is a value obtained at a rate of temperature rise of 2 ° C / min by the one-way method.
  • the epoxy resin thus obtained had an epoxy equivalent of 261 g / eq., A melting point of 100 power, a viscosity at 122 ° C and 150 ° C of 0.037 Pa's.
  • the viscosity was measured with Rheomatt 115 manufactured by Contrabass.
  • GPC measurement is performed using the following equipment: HLC-82A (manufactured by Tosohichi Co., Ltd.), column; TSK-GEL2000 X 3 and TSK-GEL4000 X 1 Solvent; tetrahydrofuran, flow rate; 1 ml / min, temperature; 38 ° C, detector; RI conditions were followed.
  • the epoxy resin composition was impregnated into a glass fiber woven fabric having a thickness of 0.07 mm and dried by heating at 150 ° C for 8 minutes to obtain a pre-preda.
  • the four pre-predas were stacked and devolatilized at a temperature of 130 ° C for 15 minutes using a vacuum press machine, and then heated and pressurized for 90 minutes under the conditions of a temperature of 175 ° C and a pressure of 2 MPa, and the thickness was 0.
  • a 4 mm laminate was obtained.
  • a plate-like sample of 50 mm ⁇ 120 mm was cut out from the laminated plate and subjected to various physical property measurements.
  • the epoxy resin component was the same as in Example 1 except that the epoxy resin B216.3g obtained in Synthesis Example 2 and the curing agent component were 4,4'-dihydroxydiphenyl ether (curing agent A) 83.7g.
  • an epoxy resin composition varnish was prepared.
  • the viscosity at 25 ° C was 0.56 Pa's.
  • a laminate was obtained in the same manner as in Example 1, and subjected to various physical property measurements.
  • Epoxy resin component epoxy resin A189.5g obtained in Synthesis Example 1, curing agent component 4,4'-dihydroxydiphenyl ether (curing agent A) 99.4 g and 4,4'-diaminodiphenyl sulfone (Curing agent B)
  • An epoxy resin composition varnish was prepared in the same manner as in Example 1 except that 11.0 g was used. The viscosity at 25 ° C. was 0.61 Pa ′s. Using this epoxy resin composition, a laminate was obtained in the same manner as in Example 1 and subjected to various physical property measurements.
  • Example 4 The epoxy resin component was the same as Example 1 except that the epoxy resin B242.3g obtained in Synthesis Example 2 and the curing agent component were 4,4'-diaminodiphenylsulfone (curing agent B) 57.6g Thus, an epoxy resin composition varnish was prepared. The viscosity at 25 ° C. was 0.78 Pa ′s. Using this epoxy resin composition, a laminate was obtained in the same manner as in Example 1, and subjected to various physical property measurements.
  • Epoxy resin component the epoxy resin A183.8g obtained in Synthesis Example 1, the curing agent component? 3 ⁇ — 4261 (curing agent: Gunei Chemical Co., phenol nopolak resin; OH equivalent 103 g / eq., Softening point 80 ° C) 116.
  • Epoxy resin composition in the same manner as in Example 1 except that lg was used. A varnish was prepared. The viscosity at 25 ° C. was 0.47 Pa ′s. Using this epoxy resin composition, a laminate was obtained in the same manner as in Example 1, and subjected to various physical property measurements.
  • epoxy resin component YD-128 (epoxy resin C: manufactured by Tohto Kasei Co., Ltd., bisphenol A type epoxy resin, epoxy equivalent 186 g / eq.) 193.
  • PSM— 4261 curing agent C: Gunei Chemical
  • the reaction was carried out in the same manner as in Example 1 using 106.9 g of phenol nopolac resin (OH equivalent 103 g / eq., Softening point 80 ° C.) to prepare an epoxy resin composition varnish.
  • the viscosity at 25 ° C. was 0.43 Pa ′s.
  • Using this epoxy resin composition a laminate was obtained in the same manner as in Example 1, and subjected to various physical property measurements.
  • epoxy resin component YD-128 (epoxy resin C: manufactured by Tohto Kasei, bisphenol A type epoxy resin, epoxy equivalent 186 g / eq.) 225. Og, 4, 4'- diaminodiphenyl as a curing agent component Using sulfone (curing agent B) 75. Og, the reaction was carried out in the same manner as in Example 1 to prepare an epoxy resin composition varnish. The viscosity at 25 ° C. was 0.61 Pa ′s. Using this epoxy resin composition, a laminate was obtained in the same manner as in Example 1 and subjected to various physical property measurements.
  • epoxy resin component As an epoxy resin component, YX-4000H (epoxy resin C: made by Japan Epoxy Resin, biphenyl type epoxy resin; epoxy equivalent 195 g / eq.) 196.3 g, hardener component and PSM-4261 (curing agent C: manufactured by Gunei Chemical Co., phenol nopolak resin; OH equivalent 103 g Zeq., Softening point 80 ° C) 103.7 g was used for the reaction in the same manner as in Example 1 to produce an epoxy. A resin composition varnish was prepared. The viscosity at 25 ° C in the E type viscometer was 0.45 Pa's. Using this epoxy resin composition, a laminate was obtained in the same manner as in Example 1, and subjected to various physical property measurements.
  • Tg is the glass transition point
  • CTE is the coefficient of thermal expansion
  • HDT is the heat distortion temperature
  • m.p. is the melting point.
  • X is transparent
  • is slightly turbid
  • is completely opaque.
  • an epoxy resin having a diphenyl ether structure is used as an epoxy resin component, and the diphenyl ether structure has a conventionally known epoxy resin having a mesogenic group which is a rigid main chain. Unlike the above, it has excellent solvent solubility characteristics, and is a pre-preder having excellent heat conductivity.
  • the thermal conductivity of the insulating layer is Since it has good heat dissipation, it is suitably used for printed wiring boards for automobile equipment, power supply unit boards for home appliances, PCs, servers, and other high-density mounting printed wiring boards.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

Disclosed is a printed wiring board having excellent heat-dissipating property because of good heat conductivity of an insulating layer. Also disclosed are a prepreg which enables to obtain such a printed wiring board, and a laminate. Specifically disclosed is a prepreg obtained by impregnating a sheet-like fiber base with an epoxy resin composition containing an epoxy resin and a curing agent, and half-curing the composition. A diphenyl ether epoxy resin obtained by epoxydizing a dihydroxydiphenyl ether is used as a part or all of the epoxy resin. A printed wiring board and a laminate are obtained by arranging materials including the prepreg in layers and subjecting the resulting to heat-press molding. In the prepreg cured product obtained by heat-press molding of the prepreg, a resin layer is crystallized, while having a melting point of 120-280˚C.

Description

明 細 書  Specification
プリプレダ、積層板およびプリント配線板  Pre-preda, laminated board and printed wiring board
技術分野  Technical field
[0001] 本発明は、高熱伝導性、低熱膨張性、高耐熱性および低吸湿性に優れたエポキシ 樹脂組成物およびそれを適用したプリプレダ、当該プリプレダを用いた積層板なレ、し はプリント配線板に関する。  [0001] The present invention relates to an epoxy resin composition excellent in high thermal conductivity, low thermal expansion, high heat resistance and low moisture absorption, a pre-preda to which the epoxy resin composition is applied, and a laminate or printed wiring using the pre-preda. Regarding the board.
背景技術  Background art
[0002] 高熱伝導性に優れたエポキシ樹脂組成物としては、メソゲン構造を有するエポキシ 樹脂を用いたものが知られており、例えば、特開平 7— 90052号公報には、ビフエノ ール型エポキシ樹脂と多価フエノール樹脂硬化剤を必須成分としたエポキシ樹脂組 成物が示され、高温下での安定性と強度に優れ、接着、注型、封止、成型、積層等 の広い分野で使用できることが開示されている。また、特開平 9 118673号公報に は、屈曲鎖で連結された二つのメソゲン構造を分子内に有するエポキシ化合物の開 示がある。さらに、特開平 11— 323162号公報には、メソゲン基を有するエポキシ化 合物を含む樹脂組成物の開示がある。  [0002] As an epoxy resin composition excellent in high thermal conductivity, one using an epoxy resin having a mesogen structure is known. For example, JP-A-7-90052 discloses a biphenol type epoxy resin. And epoxy resin composition containing polyhydric phenol resin curing agent as essential components, excellent stability and strength at high temperatures, and can be used in a wide range of fields such as adhesion, casting, sealing, molding and lamination Is disclosed. Japanese Patent Application Laid-Open No. 9118673 discloses an epoxy compound having two mesogen structures connected by a bent chain in the molecule. Further, JP-A-11-323162 discloses a resin composition containing an epoxy compound having a mesogenic group.
[0003] 特許文献 1 :特開平 7 90052号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 7 90052
特許文献 2:特開平 9 118673号公報  Patent Document 2: JP-A-9 118673
特許文献 3:特開平 11 323162号公報  Patent Document 3: Japanese Patent Laid-Open No. 11 323162
特許文献 4:特開 2004 123847号公報  Patent Document 4: Japanese Unexamined Patent Application Publication No. 2004 123847
[0004] しかし、このようなメソゲン構造を有するエポキシ樹脂は融点が高ぐ有機溶剤に非 常に溶けにくいという特徴を有する。このようなエポキシ樹脂を硬化剤と均一に混合 するには、高温が必要である。高温では、エポキシ樹脂の硬化反応が急速に進みゲ ル化時間が短くなるため、混合処理は厳しく制限され取り扱いが難しい。さらに、有 機溶剤に溶けないエポキシ樹脂混合物は繊維基材に含浸し難ぐプリプレダおよび 積層板の製造が困難であるという問題があった。そして、その欠点を補うために溶解 性の第 3成分を添加すると、樹脂の融点が低下して有機溶剤に溶けやすくなるが、そ の硬化物は熱伝導率が低下するという問題を生じた。 [0005] また、メソゲン構造を有するエポキシ樹脂より得られた硬化物は、結晶化の進行が 十分ではなぐ結晶化度の向上によって発現される高熱伝導性、低熱膨張性、高耐 熱性および低吸湿性等の効果が十分ではなかった。特許文献 4にはビフエニルエー テル型エポキシ樹脂を使用した封止剤が記載されてレ、る力 封止剤への適用を教え るにとどまる。 [0004] However, such an epoxy resin having a mesogenic structure has a feature that it is very difficult to dissolve in an organic solvent having a high melting point. High temperatures are required to uniformly mix such epoxy resins with curing agents. At high temperatures, the epoxy resin cures rapidly and the gelation time is shortened, so the mixing process is severely limited and difficult to handle. Furthermore, epoxy resin mixtures that are insoluble in organic solvents have a problem that it is difficult to produce prepregs and laminates that are difficult to impregnate fiber substrates. When a soluble third component was added to compensate for this drawback, the melting point of the resin was lowered and the resin was easily dissolved in an organic solvent, but the cured product had a problem that the thermal conductivity was lowered. [0005] In addition, a cured product obtained from an epoxy resin having a mesogenic structure has high thermal conductivity, low thermal expansion, high heat resistance, and low moisture absorption, which are manifested by an improvement in crystallinity that does not progress sufficiently. Effects such as sex were not sufficient. Patent Document 4 describes a sealing agent using a biphenyl ether type epoxy resin, and only teaches its application to a sealing agent.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明は、有機溶剤への溶解性に加え、高熱伝導性、低熱膨張性、高耐熱性およ び低吸湿性に優れたエポキシ樹脂組成物を適用したプリプレダ、積層板な!/、しはプ リント配線板を提供することにある。 [0006] The present invention is a pre-predder and laminate using an epoxy resin composition excellent in high thermal conductivity, low thermal expansion, high heat resistance and low hygroscopicity in addition to solubility in an organic solvent! / It is to provide a printed wiring board.
課題を解決するための手段  Means for solving the problem
[0007] 本発明者らは、ジフエニルエーテル構造を有するエポキシ樹脂力 硬化反応後の 三次元架橋状態においても結晶化するという極めて特異的現象の発現を見出した。 本発明は、本現象をプリプレダへ適用することにより初めて到達し得たものであり、硬 化状態における結晶性の発現により、積層板としての高い熱伝導性、低熱膨張性、 高耐熱性および低吸湿性が確保された優れた特性を有する積層板を製造すること が可能となる。 [0007] The present inventors have found that an extremely specific phenomenon of crystallization occurs even in a three-dimensional cross-linked state after the epoxy resin power curing reaction having a diphenyl ether structure. The present invention can be achieved for the first time by applying this phenomenon to a pre-preda. Due to the development of crystallinity in the hardened state, the present invention has high thermal conductivity, low thermal expansion, high heat resistance and low resistance. It is possible to manufacture a laminated board having excellent characteristics with ensured hygroscopicity.
[0008] すなわち、本発明は、エポキシ樹脂と硬化剤を含むエポキシ樹脂組成物をシート状 の繊維基材に含浸し半硬化状態としてなるプリプレダにお!/、て、当該エポキシ樹脂 の一部または全部として、下記一般式(1)で示すエポキシ樹脂を用いることを特徴と するプリプレダである。  [0008] That is, the present invention provides a pre-preda that is impregnated into a semi-cured state by impregnating a sheet-like fiber base material with an epoxy resin composition containing an epoxy resin and a curing agent. In all, the present invention is a pre-preda characterized by using an epoxy resin represented by the following general formula (1).
Figure imgf000003_0001
Figure imgf000003_0001
(ここで、 mは 1から 3の数、 nは 0以上の数を示す。) (Here, m is a number from 1 to 3, and n is a number greater than or equal to 0.)
[0009] 一般式(1)で示すエポキシ樹脂としては、下記一般式(2)で示すエポキシ樹脂があ る [0009] The epoxy resin represented by the general formula (1) includes an epoxy resin represented by the following general formula (2). Ru
Figure imgf000004_0001
Figure imgf000004_0001
(ここで、 nは 0以上の数の数を示す。) (Where n is a number greater than or equal to 0)
硬化剤の一部または全部として、下記一般式(3)で示されるフエノール性樹脂また は芳香族ジァミン化合物を用いることができる。そして、一般式(3)で示されるフエノ ール性樹脂としては、下記一般式 (4)で示されるフエノール性樹脂がある。一般式 (3 )及び(4)において、 mは 1から 3の数、 qは 0以上の数を示す。  As a part or all of the curing agent, a phenolic resin or an aromatic diamine compound represented by the following general formula (3) can be used. As the phenolic resin represented by the general formula (3), there is a phenolic resin represented by the following general formula (4). In the general formulas (3) and (4), m represents a number from 1 to 3, and q represents a number of 0 or more.
Figure imgf000004_0002
Figure imgf000004_0002
Figure imgf000004_0003
Figure imgf000004_0003
また、本発明は上記のプリプレダをプリプレダ層の全層ないしは一部の層として有 する積層材料を加熱加圧成形してなる積層板である。更に、本発明は、上記のプリ プレダの層を加熱加圧成形してなる絶縁層を備えるプリント配線板である。ここで、上 記積層板またはプリント配線板において、樹脂相が結晶化したものであり、 120°Cか ら 280°Cの融点を持つことが好ましい。また、本発明は上記プリプレダを加熱加圧成 形して得られる硬化物中の樹脂相が結晶化したものであり、 120°Cから 280°Cの融 点を持つプリプレダ硬化物である。 [0012] 本発明に係る積層板は、上記のプリプレダをプリプレダ層の全層ないしは一部の層 として有する積層材料を加熱加圧成形して一体に積層してなるものである。また、本 発明に係るプリント配線板は、上述したプリプレダの層を加熱加圧成形してなる絶縁 層を備えたものである。 Further, the present invention is a laminated board obtained by heat-pressing a laminated material having the above-mentioned pre-predder as all or a part of the pre-predder layer. Furthermore, this invention is a printed wiring board provided with the insulating layer formed by heat-press-molding the layer of said pre-preder. Here, in the above laminated board or printed wiring board, the resin phase is crystallized and preferably has a melting point of 120 ° C. to 280 ° C. Further, the present invention is a pre-precured cured product having a melting point of 120 ° C. to 280 ° C. in which a resin phase in a cured product obtained by heating and press-molding the above-mentioned pre-predator is crystallized. [0012] The laminate according to the present invention is obtained by integrally laminating a laminate material having the above-mentioned pre-predder as all or a part of the pre-predator layer by heating and pressing. The printed wiring board according to the present invention includes an insulating layer formed by heating and pressing the above-described pre-preder layer.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 上記一般式(1)で表されるエポキシ樹脂は、下記一般式(5)、
Figure imgf000005_0001
[0013] The epoxy resin represented by the general formula (1) is represented by the following general formula (5),
Figure imgf000005_0001
(但し、 mは;!〜 3の整数を示す。 ) (However, m represents an integer from;! To 3.)
で表されるビスフエノール化合物とェピクロルヒドリンを反応させることにより製造する こと力 Sできる。この反応は、通常のエポキシ化反応と同様に行うことができる。  It can be produced by reacting the bisphenol compound represented by the formula with epichlorohydrin. This reaction can be performed in the same manner as a normal epoxidation reaction.
[0014] 例えば、上記一般式(5)のビスフエノール化合物を過剰のェピクロルヒドリンに溶解 した後、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物の存在下に、 5 0〜; 150°C、好ましくは、 60〜; 100°Cの範囲で 1〜; 10時間反応させる方法が挙げら れる。この際の、アルカリ金属水酸化物の使用量は、ビスフエノール化合物中の水酸 基 1モノレ ίこ対して、 0. 8— 1. 2モノレ、好ましく (ま、 0. 9—1. 0モノレの範囲である。ェピ クロルヒドリンは、ビスフエノール化合物中の水酸基に対して過剰量が用いられ、通常 は、ビスフエノール化合物中の水酸基 1モルに対して、 1. 2力、ら 15モルである。反応 終了後、過剰のェピクロルヒドリンを留去し、残留物をトルエン、メチルイソプチルケト ン等の溶剤に溶解し、濾過し、水洗して無機塩を除去し、次いで溶剤を留去すること により目的のエポキシ樹脂を得ることができる。  [0014] For example, after dissolving the bisphenol compound of the general formula (5) in an excess of epichlorohydrin, in the presence of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, 50 to 150 ° C, preferably 60 to; 100 to 100 ° C for 1 to 10 hours. The amount of alkali metal hydroxide used here is 0.8—1.2 monolayers, preferably 0.9—1.0 monolayers, relative to 1 monohydroxy group of bisphenol compound. Epoxy chlorohydrin is used in an excess amount relative to the hydroxyl group in the bisphenol compound, and is usually 1.2 forces or 15 moles per mole of the hydroxyl group in the bisphenol compound. After completion of the reaction, excess epichlorohydrin is distilled off, and the residue is dissolved in a solvent such as toluene or methylisobutylketone, filtered, washed with water to remove inorganic salts, and then the solvent is distilled off. By leaving, the desired epoxy resin can be obtained.
[0015] 上記一般式(1)において、 ηは 0以上の整数である力 S、 nの値はエポキシ樹脂の合 成反応時に用いるェピクロルヒドリンのビスフエノール化合物に対するモル比を変え ることにより、容易に調整すること力 Sできる。また、 nの平均値としては、 0.;!〜 10· 0 の範囲が好ましい。これより大きいと融点、粘度が高くなり取り扱い性が低下する。  [0015] In the above general formula (1), η is an integer greater than or equal to 0. The value of S, n varies the molar ratio of epichlorohydrin used in the epoxy resin synthesis reaction to the bisphenol compound. Can be adjusted easily. Further, the average value of n is preferably in the range of 0.;! To 10 · 0. When larger than this, melting | fusing point and a viscosity will become high and a handleability will fall.
[0016] また、高分子量のエポキシ樹脂を得るためには、上記一般式(1)において nが 0の ものを主成分とするエポキシ樹脂と上記一般式(5)のビスフエノール化合物を予め反 応させる方法を取ることあでさる。 In addition, in order to obtain a high molecular weight epoxy resin, n is 0 in the general formula (1). A method in which an epoxy resin containing a main component as a main component and a bisphenol compound of the above general formula (5) is reacted in advance is employed.
[0017] 上記一般式(5)において、 mは 1、 2または 3であるが、好ましくは 1または 2である。  In the above general formula (5), m is 1, 2 or 3, preferably 1 or 2.
具体的には、 4,4'ージヒドロキシジフエニルエーテル、 1,4 ビス(4ーヒドロキシフエノ キシ)ベンゼン、 1,3 ビス(4ーヒドロキシフエノキシ)ベンゼン、 1,3 ビス(3 ヒドロキ シフエノキシ)ベンゼン、 4,4' ビス(4ーヒドロキシフエノキシ)ジフエニルエーテル、 3,3 '—ビス(4—ヒドロキシフエノキシ)ジフエニルエーテル、 3,3'—ビス(3—ヒドロキシフエ ノキシ)ジフエニルエーテルを挙げることができる。エポキシ樹脂の原料としては、これ らの混合物であっても良いが、好ましくは 4,4'ージヒドロキシジフエニルエーテルまた はこの含有率が 50wt%以上のビスフエノール化合物である。  Specifically, 4,4'-dihydroxydiphenyl ether, 1,4 bis (4-hydroxyphenoxy) benzene, 1,3 bis (4-hydroxyphenoxy) benzene, 1,3 bis (3 hydroxy) Ciphenoxy) benzene, 4,4 'bis (4-hydroxyphenoxy) diphenyl ether, 3,3'-bis (4-hydroxyphenoxy) diphenyl ether, 3,3'-bis (3-hydroxyphene) Noxy) diphenyl ether. The raw material of the epoxy resin may be a mixture thereof, but is preferably 4,4′-dihydroxydiphenyl ether or a bisphenol compound having a content of 50 wt% or more.
[0018] 一般式(1)で表されるエポキシ樹脂の中でも、一般式(2)で表されるエポキシ樹脂 が好ましく例示される。このエポキシ樹脂は一般式(1)において、 mが 1であるェポキ シ樹脂であり、 nは一般式(1)のそれと同じ意味を有する。  Of the epoxy resins represented by the general formula (1), an epoxy resin represented by the general formula (2) is preferably exemplified. This epoxy resin is an epoxy resin in which m is 1 in the general formula (1), and n has the same meaning as that in the general formula (1).
[0019] 本発明のプリプレダに用いるエポキシ樹脂は、一般式(1)で表されるエポキシ樹脂 を全エポキシ樹脂中の一部または全部、好ましくは 50wt%以上、より好ましくは 70w t%以上含む。これより少ないと硬化物とした際の結晶性が低下し高熱伝導性、低熱 膨張性、高耐熱性および低吸湿性の向上効果が小さい。また、一般式(1)で表され るエポキシ樹脂のエポキシ当量は、通常 160力、ら 50, 000の範囲である力 積層板 等の用途においては、フィルム性、可撓性付与の観点から、好ましくは 400〜40,00 0の範囲である。このエポキシ当量は、 2種類以上のエポキシ樹脂を使用する場合に おいてもこれを満足することが好ましぐこの場合、エポキシ当量は、全重量 (g) /ェ ポキシ基 (モノレ)で計算される。  [0019] The epoxy resin used in the prepreader of the present invention contains a part or all of the epoxy resin represented by the general formula (1), preferably 50 wt% or more, more preferably 70 wt% or more. If it is less than this, the crystallinity of the cured product will be reduced, and the effect of improving high thermal conductivity, low thermal expansion, high heat resistance and low hygroscopicity will be small. In addition, the epoxy equivalent of the epoxy resin represented by the general formula (1) is usually in the range of 160 force, etc., and in the range of 50,000, from the viewpoint of imparting film properties and flexibility, Preferably it is the range of 400-40,000. It is preferable to satisfy this epoxy equivalent even when two or more epoxy resins are used. In this case, the epoxy equivalent is calculated by the total weight (g) / epoxy group (mono). The
[0020] エポキシ樹脂の純度、特に加水分解性塩素量は、信頼性向上の観点より少な!/、方 がよい。特に限定するものではないが、好ましくは lOOOppm以下、さらに好ましくは 5 OOppm以下である。なお、本発明でいう加水分解性塩素とは、以下の方法により測 定された値をいう。すなわち、試料 0. 5gをジォキサン 30mlに溶解後、 1Ν— ΚΟΗ、 10mlを加え 30分間煮沸還流した後、室温まで冷却し、さらに 80%アセトン水 100m 1を加え、 0. 002N— AgNO水溶液で電位差滴定を行い得られる値である。 [0021] 本発明で用いるエポキシ樹脂には、一般式(1 )で表されるエポキシ樹脂以外に、分 子中にエポキシ基を 2個以上有する他のエポキシ樹脂を併用してもよい。例を挙げ れば、ビスフエノール A、ビスフエノール F、 3,3',5,5'—テトラメチル一 4,4'—ジヒドロキ シジフエニルメタン、 4,4'ージヒドロキシジフエニルスルホン、 4,4'ージヒドロキシジフエ ニルスルフイド、 4,4'ージヒドロキシジフエ二ルケトン、フルオレンビスフエノール、 4,4' —ビフエノール、 3,3',5,5'—テトラメチル一 4,4'—ジヒドロキシビフエニル、 2,2'—ビフエ ノーノレ、 ノヽイドロキノン、レゾノレシン、力テコーノレ、 t-ブチノレ力テコーノレ、 t-ブチノレハイ ドロキノン、 1,2-ジヒドロキシナフタレン、 1,3-ジヒドロキシナフタレン、 1,4-ジヒドロキシ ナフタレン、 1,5-ジヒドロキシナフタレン、 1,6-ジヒドロキシナフタレン、 1,7-ジヒドロキシ ナフタレン、 1,8-ジヒドロキシナフタレン、 2,3-ジヒドロキシナフタレン、 2,4-ジヒドロキシ ナフタレン、 2,5-ジヒドロキシナフタレン、 2,6-ジヒドロキシナフタレン、 2,7-ジヒドロキシ はポリアリル化物、ァリル化ビスフエノール A、ァリル化ビスフエノール F、ァリル化フエ ノールノボラック等の 2価のフエノール類、あるいは、フエノールノボラック、ビスフエノ 一ノレ Aノボラック、 0 -クレゾ一ノレノボラック、 m-クレゾ一ノレノボラック、 p-クレゾ一ノレノボ ラック、キシレノールノボラック、ポリ- p-ヒドロキシスチレン、トリス一(4—ヒドロキシフエ 二ノレ)メタン、 1,1,2,2—テトラキス(4ーヒドロキシフエ二ノレ)ェタン、フルォログリシノー ノレ、ピロガロール、 t-ブチルピロガロール、ァリル化ピロガロール、ポリアリル化ピロガ ロール、 1,2,4-ベンゼントリオール、 2,3,4-トリヒドロキシベンゾフエノン、フエノールァラ ルキル樹脂、ナフトールァラルキル樹脂、ジシクロペンタジェン系樹脂等の 3価以上 のフエノール類、または、テトラブロモビスフエノーノレ A等のハロゲン化ビスフエノール 類から誘導されるダルシジルエーテル化物等がある。これらのエポキシ樹脂は、 1種 または 2種以上を混合して用いることができる。 [0020] The purity of the epoxy resin, in particular, the amount of hydrolyzable chlorine, is less and / or better from the viewpoint of improving reliability. Although not particularly limited, it is preferably lOOOppm or less, more preferably 5 OOppm or less. The hydrolyzable chlorine as used in the present invention means a value measured by the following method. That is, after dissolving 0.5 g of the sample in 30 ml of dioxane, add 1Ν-ΚΟΗ and 10 ml, boil and reflux for 30 minutes, cool to room temperature, add 100 ml of 80% acetone water, and add a potential difference with 0.002N-AgNO aqueous solution. This is a value obtained by titration. [0021] In addition to the epoxy resin represented by the general formula (1), other epoxy resins having two or more epoxy groups in the molecule may be used in combination with the epoxy resin used in the present invention. Examples include bisphenol A, bisphenol F, 3,3 ', 5,5'-tetramethyl-1,4'-dihydroxydiphenylmethane, 4,4'-dihydroxydiphenylsulfone, 4, 4'-dihydroxydiphenylsulfide, 4,4'-dihydroxydiphenyl ketone, fluorene bisphenol, 4,4'-biphenol, 3,3 ', 5,5'-tetramethyl mono 4,4'-dihydroxybifu Enil, 2,2'-Bihuenore, Noduloquinone, Resonoresin, Force Teconole, t-Butinore Force Teconole, t-Butinorehydroquinone, 1,2-Dihydroxynaphthalene, 1,3-Dihydroxynaphthalene, 1,4-Dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 1,8-dihydroxynaphthalene, 2,3-dihydroxynaphthalene 2,4-dihydroxynaphthalene, 2,5-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxy are polyallylated, arylated bisphenol A, arylated bisphenol F, arylated phenol novolak, etc. Divalent phenols, or phenol novolaks, bisphenol monoreno A novolaks, 0-crezo monorenovolacs, m-crezo monorenovolacs, p-crezo monorenovolacs, xylenol novolacs, poly-p-hydroxystyrene, tris-one (4-hydroxyphenol), methane, 1,1,2,2-tetrakis (4-hydroxyphenol) ethane, fluorologinole, pyrogallol, t-butyl pyrogallol, arylated pyrogallol, polyallylated pyrogallol, 1,2,4-benzenetriol, 2,3,4-trihydroxy Darcydyl ethers derived from trivalent or higher phenols such as benzophenone, phenol aralkyl resins, naphthol aralkyl resins, dicyclopentagen resins, or halogenated bisphenols such as tetrabromobisphenol A. There are chemicals. These epoxy resins can be used alone or in combination of two or more.
[0022] 本発明に用いる硬化剤としては、一般的にエポキシ樹脂硬化剤として知られている ものを用いること力 Sできる。例を挙げれば、ジシアンジアミド、イミダゾール類、アミン系 硬化剤、酸無水物系硬化剤、フエノール系硬化剤、ポリメルカプタン系硬化剤、ポリ アミノアミド系硬化剤、イソシァネート系硬化剤、ブロックイソシァネート系硬化剤等が 挙げられる。 [0023] アミン系硬化剤の具体例としては、脂肪族ァミン類、ポリエーテルポリアミン類、脂環 式ァミン類、芳香族ァミン類等が挙げられる。脂肪族ァミン類としては、エチレンジアミ ン、 1,3-ジァミノプロパン、 1,4-ジァミノプロパン、へキサメチレンジァミン、 2,5-ジメチ ルへキサメチレンジァミン、トリメチルへキサメチレンジァミン、ジエチレントリァミン、ィ ミノビスプロピルァミン、ビス(へキサメチレン)トリァミン、トリエチレンテトラミン、テトラ エチレンペンタミン、ペンタエチレンへキサミン、 N-ヒドロキシェチノレエチレンジァミン 、テトラ(ヒドロキシェチル)エチレンジァミン等が挙げられる。ポリエーテルポリアミン 類としては、トリエチレングリコールジァミン、テトラエチレングリコールジァミン、ジェチ レングリコールビス(プロピルァミン)、ポリオキシプロピレンジァミン、ポリオキシプロピ レントリアミン類等が挙げられる。脂環式ァミン類としては、イソホロンジァミン、メタセ ンジァミン、 N-アミノエチルピペラジン、ビス(4-ァミノ- 3-メチルジシクロへキシル)メタ ン、ビス(アミノメチル)シクロへキサン、 3,9-ビス(3-ァミノプロピル) 2,4,8,10-テトラオ キサスピロ(5,5)ゥンデカン、ノルボルネンジァミン等が挙げられる。芳香族ァミン類と しては、テトラクロ口- P-キシレンジァミン、 m-キシレンジァミン、 P-キシレンジァミン、 m-フエ二レンジァミン、 0 -フエ二レンジァミン、 p-フエ二レンジァミン、 2,4-ジアミノア二 ゾーノレ、 2,4-トルエンジァミン、 2,4-ジアミノジフエニルメタン、 4,4' -ジアミノジフエニル メタン、 4,4' -ジァミノ- 1,2-ジフエニルェタン、 2,4-ジアミノジフエニルスルホン、 4,4' -ジ アミノジフエニルスルホン、 m-ァミノフエノーノレ、 m-ァミノベンジルァミン、ベンジルジ メチルァミン、 2-ジメチルアミノメチノレ)フエノール、トリエタノールァミン、メチルベンジ ルァミン、 α - (m-ァミノフエニル)ェチルァミン、 α - (ρ-ァミノフエニル)ェチルァミン、 ジァミノジェチルジメチルジフエニルメタン、 α , α ' -ビス(4-ァミノフエニル) -ρ-ジィ ソプロピルベンゼン等が挙げられる。 [0022] As the curing agent used in the present invention, it is possible to use what is generally known as an epoxy resin curing agent. Examples include dicyandiamide, imidazoles, amine-based curing agents, acid anhydride-based curing agents, phenol-based curing agents, polymercaptan-based curing agents, polyaminoamide-based curing agents, isocyanate-based curing agents, and block isocyanate-based curing. Agents and the like. [0023] Specific examples of the amine curing agent include aliphatic amines, polyether polyamines, alicyclic amines, aromatic amines and the like. Aliphatic amines include ethylene diamine, 1,3-diamine propane, 1,4-diamine propane, hexamethylene diamine, 2,5-dimethyl hexamethylene diamine, trimethyl hexamethylene diamine, Diethylenetriamine, iminobispropylamine, bis (hexamethylene) triamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, N-hydroxyethynoleethylenediamine, tetra (hydroxyethyl) ethylenediamine Etc. Examples of the polyether polyamines include triethylene glycol diamine, tetraethylene glycol diamine, jetylene glycol bis (propylamine), polyoxypropylene diamine, polyoxypropylene triamines, and the like. Cycloaliphatic amines include isophorone diamine, metasendiamine, N-aminoethylpiperazine, bis (4-amino-3-methyldicyclohexyl) methan, bis (aminomethyl) cyclohexane, 3,9- Bis (3-aminopropyl) 2,4,8,10-tetraoxaspiro (5,5) undecane, norbornene diamine and the like can be mentioned. Aromatic amines include Tetrachrome-P-xylenediamine, m-xylenediamine, P-xylenediamine, m-phenylenediamine, 0-phenylenediamine, p-phenylenediamine, 2,4-diaminoanizone, 2,4-toluenediamine, 2,4-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 4,4'-diamino-1,2-diphenylethane, 2,4-diaminodiphenylsulfone, 4,4 '-Diaminodiphenylsulfone, m-aminophenol, m-aminobenzylamine, benzyldimethylamine, 2-dimethylaminomethinole) phenol, triethanolamine, methylbenzylamine, α- (m-aminophenyl) Ethylamine, α- (ρ-Aminophenyl) ethylamine, Diaminojetyldimethyldiphenylmethane, α, α'-bis (4-amino) Enyl)-p-Jie isopropyl benzene.
[0024] 酸無水物系硬化剤の具体例としては、ドデセニル無水コハク酸、ポリアジピン酸無 水物、ポリアゼライン酸無水物、ポリセバシン酸無水物、ポリ(ェチルォクタデカン二 酸)無水物、ポリ(フエニルへキサデカン二酸)無水物、メチルテトラヒドロ無水フタル 酸、メチルへキサヒドロ無水フタル酸、へキサヒドロ無水フタル酸、無水メチルハイミツ ク酸、テトラヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、メチルシクロへ キセンジカルボン酸無水物、メチルシクロへキセンテトラカルボン酸無水物、無水フタ ル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフエノンテトラカルボン酸無水物、 エチレングリコールビストリメリテート、無水へット酸、無水ナジック酸、無水メチルナジ ック酸、 5— (2, 5 ジォキソテトラヒドロ一 3 フラニル)一 3 メチノレ一 3 シクロへキ サン 1 , 2—ジカルボン酸無水物、 3, 4—ジカルボキシー 1,2, 3, 4—テトラヒドロー 1 ナフタレンコハク酸二無水物、 1ーメチルージカルボキシー 1,2, 3, 4 テトラヒド ロー 1 ナフタレンコハク酸二無水物等が挙げられる。 [0024] Specific examples of the acid anhydride-based curing agent include dodecenyl succinic anhydride, polyadipic acid anhydrous, polyazelinic acid anhydride, polysebacic acid anhydride, poly (ethyloctadecanedioic acid) anhydride, Poly (phenylhexadecanedioic anhydride), methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, methylhymic anhydride, tetrahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, methylcyclohexene Dicarboxylic anhydride, methylcyclohexene tetracarboxylic anhydride, anhydrous lid Phosphoric acid, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol bis trimellitate, anhydrous het acid, nadic anhydride, methyl nadic anhydride, 5- (2, 5 Dioxotetrahydro-1,3 furanyl) 1-3 methinole-1, cyclohexan 1,2-dicarboxylic anhydride, 3,4-dicarboxy 1,2,3,4-tetrahydro-1 naphthalene succinic dianhydride, 1- Examples include methyl-dicarboxy-1,2,3,4 tetrahydrahydrate 1 naphthalene succinic dianhydride.
[0025] フエノール系硬化剤の具体例としては、ビスフエノール A、ビスフエノール F、フエノ 一ノレノボラック、ビスフエノーノレ Aノボラック、 0 -クレゾ一ノレノボラック、 m-クレゾ一ノレノ ポラック、 P-クレゾ一ルノボラック、キシレノールノボラック、ポリ- p-ヒドロキシスチレン、 レゾルシン、力テコーノレ、 t-ブチルカテコール、 t-ブチルハイドロキノン、フルォログリ シノール、ピロガロール、 t-ブチルピロガロール、ァリル化ピロガロール、ポリアリノレ化 ピロガローノレ、 1 , 2, 4 ベンゼントリオール、 2, 3, 4 トリヒドロキシベンゾフエノン、 [0025] Specific examples of the phenolic curing agent include bisphenol A, bisphenol F, phenol mononovolak, bisphenolenovol A, novolak, 0-crezo mononovolac, m-crezo mononorenopolac, P-cresol monovolak, Xylenol novolac, poly-p-hydroxystyrene, resorcin, force teconole, t-butylcatechol, t-butylhydroquinone, fluorologinol, pyrogallol, t-butyl pyrogallol, arylated pyrogallol, polyarinorelated pyrogalonore, 1, 2, 4 benzenetriol 2, 3, 4 trihydroxybenzophenone,
ージヒドロキシナフタレン、 2, 5 ジヒドロキシナフタレン、 2, 6 ジヒドロキシナフタレ ン、 2, 7 ジヒドロキシナフタレン、 2, 8 ジヒドロキシナフタレン、上記ジヒドロキシナ フタレンのァリル化物またはポリアリル化物、ァリル化ビスフエノール A、ァリル化ビス フエノール F、ァリル化フエノールノポラック、ァリル化ピロガロール等が挙げられる。 Dihydroxynaphthalene, 2,5 dihydroxynaphthalene, 2,6 dihydroxynaphthalene, 2,7 dihydroxynaphthalene, 2,8 dihydroxynaphthalene, arylated or polyallylated products of the above-mentioned dihydroxynaphthalene, arylated bisphenol A, arylated bis Examples include phenol F, arylated phenol nopolac, and arylated pyrogallol.
[0026] これらの硬化剤は得られるプリプレダまたは積層板の物性を考慮して適宜選定す ればよ!/、が、好ましくは耐熱性、耐湿性および電気絶縁性の観点からフエノール系 硬化剤または芳香族ジァミン化合物であり、特に好ましくは、上記一般式 (3)で表さ れるフエノール性樹脂である。  [0026] These curing agents may be appropriately selected in consideration of the physical properties of the resulting prepreader or laminated board! /, But preferably from the viewpoint of heat resistance, moisture resistance and electrical insulation, a phenolic curing agent or An aromatic diamine compound, particularly preferably a phenolic resin represented by the above general formula (3).
[0027] エポキシ樹脂に対する硬化剤の配合量は、エポキシ基 1モルに対して、通常、硬化 剤中の官能基の数が 0. 8モルから 1. 2モルの範囲になるように決定される。一般式( 3)で表されるフエノール性樹脂を使用する場合の使用量は、エポキシ樹脂組成物中 の全硬化剤成分中、好ましくは 50重量%以上、さらに好ましくは 70重量%以上であ る。このフエノール性樹脂を上記量以上使用することにより、エポキシ樹脂硬化物とし た際の結晶化度が高くなり、高熱伝導性、低熱膨張性、高耐熱性および低吸湿性等 の効果が優れる。 [0027] The amount of the curing agent to be added to the epoxy resin is usually determined so that the number of functional groups in the curing agent is in the range of 0.8 mol to 1.2 mol with respect to 1 mol of the epoxy group. . When the phenolic resin represented by the general formula (3) is used, the amount used is preferably 50% by weight or more, more preferably 70% by weight or more in the total curing agent component in the epoxy resin composition. . By using more than the above amount of this phenolic resin, a cured epoxy resin is obtained. The crystallinity at the time is high, and the effects such as high thermal conductivity, low thermal expansion, high heat resistance and low hygroscopicity are excellent.
[0028] 一般式(3)で表されるフエノール性樹脂の水酸基当量は、通常 100力も 40, 000の 範囲であるが、積層板等の用途においては、フィルム性、可撓性付与の観点から、好 ましくは 200〜20,000の範囲である。この水酸基当量は、 2種類以上のエポキシ樹 脂を使用する場合においてもこれを満足することが好ましぐこの場合、水酸基当量 は、全重量 (g) /水酸基 (モル)で計算される。  [0028] The hydroxyl group equivalent of the phenolic resin represented by the general formula (3) is usually in the range of 40,000 at 100 forces. However, in applications such as laminates, from the viewpoint of providing film properties and flexibility. The preferred range is 200 to 20,000. This hydroxyl equivalent is preferably satisfied even when two or more types of epoxy resins are used. In this case, the hydroxyl equivalent is calculated by the total weight (g) / hydroxyl (mole).
[0029] 一般式(3)で表されるフエノール性樹脂の中でも、一般式 (4)で表されるフエノール 性樹脂が好ましレ、フエノール性樹脂として挙げられる。一般式 (4)で表されるフエノー ノレ性樹脂は、一般式(3)において mが 1であるフエノール性樹脂であり、 qは一般式( 3)のそれと同じ意味を有する。なお、 nは上記水酸基当量から計算可能であり、平均 値として計算される場合がある。一般式(3)において、 qが 0の場合は、フエノール性 樹脂は、一般式(5)で表されるビスフエノール化合物となる。  [0029] Among the phenolic resins represented by the general formula (3), the phenolic resin represented by the general formula (4) is preferable, and examples thereof include a phenolic resin. The phenolic resin represented by the general formula (4) is a phenolic resin in which m is 1 in the general formula (3), and q has the same meaning as that of the general formula (3). Note that n can be calculated from the above hydroxyl group equivalent, and may be calculated as an average value. In the general formula (3), when q is 0, the phenolic resin is a bisphenol compound represented by the general formula (5).
[0030] 一般式(3)において、 qが 0より大きい数の場合、このフエノール性樹脂は、たとえば 、上記一般式(5)のビスフエノール化合物とェピクロルヒドリンを反応させることにより 製造すること力 Sできる。この場合、ビスフエノール化合物中の水酸基 1モルに対して、 1モル以下のェピクロルヒドリンが使用され、アルカリ金属水酸化物の存在下で反応 がネ亍われる。  [0030] In the general formula (3), when q is a number greater than 0, this phenolic resin is produced, for example, by reacting the bisphenol compound of the general formula (5) with epichlorohydrin. That power S. In this case, 1 mol or less of epichlorohydrin is used per 1 mol of hydroxyl group in the bisphenol compound, and the reaction is made in the presence of an alkali metal hydroxide.
[0031] フエノール性樹脂の原料として用いるビスフエノール化合物は、上記一般式(5)で 表されるビスフエノール化合物であることが好ましい。一般式(5)において、 mは 1、 2 または 3であるが、好ましくは 1または 2である。具体的には、 4,4'—ジヒドロキシジフエ ニルエーテル、 1,4 ビス(4 ヒドロキシフエノキシ)ベンゼン、 1,3 ビス(4 ヒドロキ シフエノキシ)ベンゼン、 1,3 ビス(3 ヒドロキシフエノキシ)ベンゼン、 4,4' ビス(4 ーヒドロキシフエノキシ)ジフエニルエーテル、 3,3'—ビス(4ーヒドロキシフエノキシ)ジ フエニルエーテル、 3,3 '—ビス(3—ヒドロキシフエノキシ)ジフエニルエーテルを挙げる こと力 Sできる。フエノール性樹脂の原料としては、これらの混合物であっても良いが、 好ましくは 4,4'ージヒドロキシジフエニルエーテルまたはその含有率が 50wt%以上の ビスフエノール化合物である。 [0032] また、一般式(3)で表されるフエノール性樹脂は、上記一般式(5)のビスフエノール 化合物と上記一般式(1)において nが 0のものを主成分とするエポキシ樹脂を反応さ せる方法により合成することもできる。この場合の両者の使用比率は、ビスフエノール 化合物中の水酸基 1モルに対して、エポキシ樹脂中のエポキシ基が 1モル以下、好 ましくは 0. 1 ~0. 9、さらに好ましくは 0. 2〜0. 6となるように調整される。 [0031] The bisphenol compound used as a raw material for the phenolic resin is preferably a bisphenol compound represented by the general formula (5). In the general formula (5), m is 1, 2 or 3, preferably 1 or 2. Specifically, 4,4'-dihydroxydiphenyl ether, 1,4 bis (4 hydroxyphenoxy) benzene, 1,3 bis (4 hydroxyphenoxy) benzene, 1,3 bis (3 hydroxyphenoxy) Benzene, 4,4 'bis (4-hydroxyphenoxy) diphenyl ether, 3,3'-bis (4-hydroxyphenoxy) diphenyl ether, 3,3'-bis (3-hydroxyphenoxy) Ii) Speaking of diphenyl ether. The raw material of the phenolic resin may be a mixture thereof, but is preferably 4,4′-dihydroxydiphenyl ether or a bisphenol compound having a content of 50 wt% or more. [0032] In addition, the phenolic resin represented by the general formula (3) is an epoxy resin mainly composed of the bisphenol compound of the general formula (5) and n of 0 in the general formula (1). It can also be synthesized by a reaction method. In this case, the usage ratio of the two is such that the epoxy group in the epoxy resin is 1 mol or less, preferably 0.1 to 0.9, more preferably 0.2 to 1 mol of the hydroxyl group in the bisphenol compound. Adjusted to be ~ 0.6.
[0033] さらに、一般式(3)で表されるフエノール性樹脂は、一般式(3)中で qが 0である単 一のビスフエノール化合物、もしくはこれらの混合物であってもよい。かかるフエノール 性樹脂としてのビスフエノール化合物としては、一般式(3)または(5)において、 mは 1、 2または 3であるが、好ましくは 1または 2である。具体的には、 4,4'—ジヒドロキシジ フエニルエーテル、 1,4 ビス(4 ヒドロキシフエノキシ)ベンゼン、 1,3 ビス(4 ヒド 口キシフエノキシ)ベンゼン、 1,3 ビス(3 ヒドロキシフエノキシ)ベンゼン、 4,4' ビス (4ーヒドロキシフエノキシ)ジフエニルエーテル、 3,3'—ビス(4ーヒドロキシフエノキシ) ジフエニルエーテル、 3,3 '—ビス(3—ヒドロキシフエノキシ)ジフエニルエーテルを挙げ ること力 Sでさる。  [0033] Furthermore, the phenolic resin represented by the general formula (3) may be a single bisphenol compound in which q is 0 in the general formula (3), or a mixture thereof. In the general formula (3) or (5), m is 1, 2, or 3 in the general formula (3) or (5), but is preferably 1 or 2. Specifically, 4,4'-dihydroxydiphenyl ether, 1,4 bis (4 hydroxyphenoxy) benzene, 1,3 bis (4 hydroxyphenoxy) benzene, 1,3 bis (3 hydroxyphenoxy) B) Benzene, 4,4'bis (4-hydroxyphenoxy) diphenyl ether, 3,3'-bis (4-hydroxyphenoxy) diphenyl ether, 3,3'-bis (3-hydroxyphene) Enoxy) Diphenyl ether.
[0034] 本発明に用いるエポキシ樹脂組成物には、エポキシ樹脂と硬化剤の他に、従来より 公知の硬化促進剤を含むことができる。例を挙げれば、アミン類、イミダゾール類、有 機ホスフィン類、ルイス酸等があり、具体的には、 1 , 8 ジァザビシクロ(5, 4, 0)ゥン デセン- 7、トリエチレンジァミン、ベンジルジメチルァミン、トリエタノールァミン、ジメチ ルァミノエタノール、トリス(ジメチルアミノメチル)フエノールなどの三級ァミン、 2—メチ ノレイミダゾーノレ、 2 フエ二ルイミダゾ一ノレ、 2 フエ二ルー 4 メチルイミダゾーノレ、 2 一へプタデシルイミダゾールなどのイミダゾール類、トリブチルホスフィン、メチルジフ ェニノレホスフィン、トリフエニノレホスフィン、ジフエニノレホスフィン、フエニノレホスフィンな どの有機ホスフィン類、テトラフェニルホスホニゥム 'テトラフエ二ルポレート、テトラフエ ニルホスホニゥム.ェチルトリフエ二ルポレート、テトラブチルホスホニゥム.テトラプチ ルポレートなどのテトラ置換ホスホニゥム'テトラ置換ボレート、 2 ェチルー 4 メチル イミダゾーノレ'テトラフエ二ルポレート、 N メチルモルホリン 'テトラフエ二ルポレートな どのテトラフエ二ルポロン塩などがある。添加量としては、通常、エポキシ樹脂 100重 量部に対して、 0. 2〜; 10重量部の範囲である。 [0035] 本発明に用いるエポキシ樹脂組成物には、成形時の流動性改良およびリードフレ ーム等との密着性向上の観点より、熱可塑性のオリゴマー類を添加することができる 。熱可塑性のオリゴマー類としては、 C5系および C9系の石油樹脂、スチレン樹脂、 インデン樹脂、インデン 'スチレン共重合樹脂、インデン'スチレン'フエノール共重合 樹脂、インデン 'クマロン共重合樹脂、インデン 'ベンゾチォフェン共重合樹脂等が例 示される。添加量としては、通常、エポキシ樹脂 100重量部に対して、 2〜30重量部 の範囲である。 [0034] The epoxy resin composition used in the present invention may contain a conventionally known curing accelerator in addition to the epoxy resin and the curing agent. Examples include amines, imidazoles, organic phosphines, Lewis acids, etc., specifically 1,8 diazabicyclo (5,4,0) undecene-7, triethylenediamine, Tertiary amines such as benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, 2-methyl imidazole, 2 phenyl imidazole, 2 phenol 4 methyl imi Dazonole, 2 Imidazoles such as 1-heptadecylimidazole, Organic phosphines such as tributylphosphine, methyldiphenylenophosphine, triphenylenophosphine, diphenylenophosphine, phenenolephosphine, tetraphenylphosphonium 'tetraphenylporate Tetraphenyl phosphonium. Rate, tetrabutyl phosphonyl © beam. Tetrasubstituted Hosuhoniumu 'tetrasubstituted borate, 2 Echiru 4-methyl Imidazonore' such Tetorapuchi Ruporeto Tetorafue two Ruporeto, and the like N-methylmorpholine 'Tetorafue two Ruporeto of any Tetorafue two Ruporon salt. The amount added is usually 0.2 to 10 parts by weight per 100 parts by weight of the epoxy resin. [0035] Thermoplastic oligomers can be added to the epoxy resin composition used in the present invention from the viewpoint of improving fluidity during molding and improving adhesion to a lead frame and the like. Thermoplastic oligomers include C5 and C9 petroleum resins, styrene resins, indene resins, inden 'styrene copolymer resins, inden' styrene 'phenol copolymer resins, inden' coumarone copolymer resins, and inden 'benzothiophene copolymers. Examples include polymerized resins. The addition amount is usually in the range of 2 to 30 parts by weight with respect to 100 parts by weight of the epoxy resin.
[0036] 本発明に用いるエポキシ樹脂組成物には、臭素化エポキシ等の難燃剤、カルナバ ワックス、エステル系ワックス等の離型剤、エポキシシラン、アミノシラン、ウレイドシラ ン、ビュルシラン、アルキルシラン、有機チタネート、アルミニウムアルコレート等の力 ップリング剤、カーボンブラック等の着色剤、三酸化アンチモン等の難燃助剤、シリコ ンオイル等の低応力化剤、高級脂肪酸、高級脂肪酸金属塩等の滑剤等を使用でき  [0036] The epoxy resin composition used in the present invention includes flame retardants such as brominated epoxy, mold release agents such as carnauba wax and ester wax, epoxy silane, amino silane, ureido silane, bur silane, alkyl silane, organic titanate, Power coupling agents such as aluminum alcoholate, colorants such as carbon black, flame retardant aids such as antimony trioxide, low stress agents such as silicone oil, lubricants such as higher fatty acids and higher fatty acid metal salts can be used.
[0037] さらに、上記エポキシ樹脂組成物には、エポキシ樹脂硬化物の熱伝導性を向上さ せるため、無機充填材を適量配合することができる。無機充填材としては、金属、金 属酸化物、金属窒化物、金属炭化物、金属水酸化物、炭素材料等が挙げられる。金 属としては、銀、銅、金、白金、ジルコン等、金属酸化物としてはシリカ、酸化アルミ二 ゥム、酸化マグネシウム、酸化チタン、三酸化タングステン等、金属窒化物としては窒 化ホウ素、窒化アルミニウム、窒化ケィ素等、金属炭化物としては炭化ケィ素等、金 属水酸化物としては水酸化アルミニウム、水酸化マグネシウム等、炭素材料としては 炭素繊維、黒鉛化炭素繊維、天然黒鉛、人造黒鉛、球状黒鉛粒子、メソカーボンマ イク口ビーズ、ゥイスカー状カーボン、マイクロコイル状カーボン、ナノコイル状カーボ ン、カーボンナノチューブ、カーボンナノホーン等が挙げられる。無機充填材の形状 としては、破砕状、球状、ゥイスカー状、繊維状のものが適用できる。これらの無機充 填材は単独で配合してもよぐ二種以上を組み合わせて配合してもよい。また、無機 充填材とエポキシ樹脂との濡れ性の改善、無機充填材の界面の補強、分散性の改 善等の目的で無機充填材に通常のカップリング剤処理を施してもよい。 [0037] Furthermore, an appropriate amount of an inorganic filler can be added to the epoxy resin composition in order to improve the thermal conductivity of the cured epoxy resin. Examples of the inorganic filler include metals, metal oxides, metal nitrides, metal carbides, metal hydroxides, and carbon materials. Metals include silver, copper, gold, platinum, and zircon, metal oxides include silica, aluminum oxide, magnesium oxide, titanium oxide, and tungsten trioxide, and metal nitrides include boron nitride and nitride. Aluminum, silicon nitride, etc., metal carbide, carbide, etc., metal hydroxide, aluminum hydroxide, magnesium hydroxide, etc., carbon material, carbon fiber, graphitized carbon fiber, natural graphite, artificial graphite, Examples thereof include spherical graphite particles, mesocarbon microphone mouth beads, whisker-like carbon, microcoiled carbon, nanocoiled carbon, carbon nanotube, and carbon nanohorn. As the shape of the inorganic filler, a crushed shape, a spherical shape, a whisker shape, or a fiber shape can be applied. These inorganic fillers may be blended alone or in combination of two or more. Ordinary coupling agent treatment may be applied to the inorganic filler for the purpose of improving the wettability between the inorganic filler and the epoxy resin, reinforcing the interface of the inorganic filler, and improving the dispersibility.
[0038] 本発明に用いるエポキシ樹脂組成物は、通常、溶剤を使用しワニスとして、シート 状繊維基材に含浸し乾燥してプリプレダを製造することがよい。この場合の溶剤とし ては、ベンゼン、トルエン、キシレン、クロ口ベンゼン等の芳香族溶媒、アセトン、メチ ルェチルケトン、メチルイソブチルケトン、シクロへキサノン等のケトン系溶剤、へキサ ン、ヘプタン、メチルシクロへキサン等の脂肪族炭化水素溶剤、エタノール、イソプロ パノール、ブタノール、エチレングリコール等のアルコール溶剤、ジェチルエーテル、 ジ才キサン、テトラヒドロフラン、ジエチレングリコールジメチルエーテル等のエーテル 系溶剤、 N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミド、ジメチルスルホ キシド、 N—メチルピロリドン等の極性溶剤を使用することができる。 [0038] The epoxy resin composition used in the present invention is usually a sheet using a solvent as a varnish. It is preferable that the prepreg is produced by impregnating the fibrous fiber base material and drying it. Solvents in this case include aromatic solvents such as benzene, toluene, xylene and black benzene, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, hexane, heptane, and methylcyclohexane. Aliphatic hydrocarbon solvents such as ethanol, alcohol solvents such as ethanol, isopropanol, butanol and ethylene glycol, ether solvents such as jetyl ether, divalent xylene, tetrahydrofuran and diethylene glycol dimethyl ether, N, N-dimethylformamide, N, N —Polar solvents such as dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone can be used.
[0039] 本発明に係るプリプレダは、上記のエポキシ樹脂組成物を、ガラス繊維や有機繊維 で構成されたシート状繊維基材 (織布ゃ不織布)に含浸し加熱乾燥して、エポキシ樹 脂を半硬化状態としたものである。また、上記のエポキシ樹脂組成物の溶液を加熱し て部分的に硬化反応させたエポキシ樹脂組成物を、シート状繊維基材に含浸し加熱 乾燥することあよい。 [0039] A pre-preda according to the present invention is obtained by impregnating the above-mentioned epoxy resin composition into a sheet-like fiber base material (woven fabric or non-woven fabric) made of glass fiber or organic fiber, followed by drying by heating. Semi-cured state. Further, the epoxy resin composition obtained by heating and partially curing the above epoxy resin composition solution may be impregnated into a sheet-like fiber base material and dried by heating.
[0040] 本発明の積層板は、プリプレダ層の全層ないしは一部の層として有する積層材料 を加熱加圧成形してなるものである。そして、積層材料はプリプレダ層のみからなるも のであっても、プリプレダ層以外の他の層を有するものであってもよい。プリプレダ層 が複数の層からなる場合は、本発明のプリプレダを少なくとも 1層有する。有利には、 積層板中の全プリプレダ層厚みの 50%以上、好ましくは 70%以上とすることがよい。  [0040] The laminated plate of the present invention is obtained by heat-pressing a laminated material having all or part of the pre-preder layer. The laminated material may be composed only of the pre-predder layer or may have a layer other than the pre-predder layer. When the pre-preder layer is composed of a plurality of layers, it has at least one pre-preda of the present invention. Advantageously, it should be 50% or more, preferably 70% or more of the total pre-preda layer thickness in the laminate.
[0041] プリプレダ層の片面あるいは両面あるいは中間に別種の基材を積層させることがで きる。積層させる基材としては、シート状、フィルム状のものがあり、銅箔、アルミニウム 箔、ステンレス箔等の金属基材、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアク リレート、ポリメタタリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、 ポリエチレンナフタレート、液晶ポリマー、ポリアミド、ポリイミド、テフロン (登録商標) 等の高分子基材が例示される。  [0041] Another kind of base material can be laminated on one side or both sides or in the middle of the pre-preder layer. The base material to be laminated includes sheet-like and film-like materials such as copper foil, aluminum foil, stainless steel foil, etc., polyethylene, polypropylene, polystyrene, polyacrylate, polymethacrylate, polyethylene terephthalate, polybutylene terephthalate. And polymer base materials such as polyethylene naphthalate, liquid crystal polymer, polyamide, polyimide, and Teflon (registered trademark).
[0042] 本発明のプリント配線板は、前記のプリプレダ層を加熱加圧成形してなる絶縁層を 備えたものであり、片面プリント配線板、両面プリント配線板、さらには、内層にプリン ト配線を有する多層プリント配線板である。  [0042] A printed wiring board of the present invention is provided with an insulating layer formed by heat-pressing the above-mentioned pre-preder layer. A single-sided printed wiring board, a double-sided printed wiring board, and further an inner layer with printed wiring Is a multilayer printed wiring board.
[0043] 本発明のプリプレダを加熱加圧成形するとプリプレダ硬化物となる。このプリプレダ 硬化物は、樹脂相が結晶化していることが望ましい。また、本発明の積層板、もしくは プリント配線板は、樹脂相が結晶化していることが望ましい。結晶相の成長は、樹脂 相が濁り、やがて不透明な状態になるため、 目視においても確認できる力 結晶相成 長の程度は、示差熱分析による吸熱量から見積もることができる。好ましい吸熱量は 、充填材、シート状繊維基材、金属箔等を除いた樹脂成分 (エポキシ樹脂、硬化剤 及び硬化促進剤の合計に相当する)の単位重量あたり 10J/g以上である。より好まし くは 30J/g以上であり、特に好ましくは 60J/g以上である。これより小さいとエポキシ樹 脂硬化物としての熱伝導性、低熱膨張性、高耐熱性および低吸湿性の向上効果が 小さい。さらに、吸熱量の大きいもの、すなわち結晶化度の高いものは、たとえガラス 転移点が低くても、結晶性の維持により高温での強度を保持することが可能であり、 実用的耐熱性である熱変形温度を高く維持することができる。結晶化した樹脂相の 融点は、 120°Cから 280°Cの範囲であり、好ましくは 150°Cから 250°Cの範囲である 。なお、ここでいう吸熱量は、示差熱分析計により、約 10mgを精秤した試料を用いて 、窒素気流下、昇温速度 5°C/分の条件で測定して得られる吸熱量を指し、融点は 示差熱分析の吸熱ピーク温度である。 [0043] When the pre-preder of the present invention is heated and pressure-molded, a pre-preda cured product is obtained. This pre-preda As for hardened | cured material, it is desirable for the resin phase to crystallize. In the laminated board or printed wiring board of the present invention, the resin phase is preferably crystallized. Since the crystal phase grows in a turbid state and eventually becomes opaque, the force that can be confirmed by visual observation The degree of crystal phase growth can be estimated from the endothermic amount by differential thermal analysis. The preferred endothermic amount is 10 J / g or more per unit weight of the resin component (corresponding to the total of the epoxy resin, the curing agent and the curing accelerator) excluding the filler, the sheet-like fiber base material, the metal foil and the like. More preferably, it is 30 J / g or more, and particularly preferably 60 J / g or more. If it is smaller than this, the effect of improving the thermal conductivity, low thermal expansion, high heat resistance and low hygroscopicity as a cured epoxy resin is small. Furthermore, those with a large endotherm, that is, those with a high degree of crystallinity, can maintain strength at high temperatures by maintaining crystallinity even if the glass transition point is low, and are practically heat resistant. The heat distortion temperature can be kept high. The melting point of the crystallized resin phase is in the range of 120 ° C to 280 ° C, preferably in the range of 150 ° C to 250 ° C. Here, the endothermic amount refers to the endothermic amount obtained by measuring with a differential thermal analyzer using a sample that weighed approximately 10 mg under a nitrogen stream at a temperature rising rate of 5 ° C / min. The melting point is the endothermic peak temperature of differential thermal analysis.
樹脂の結晶化の度合いは、プリプレダの硬化条件の制御により調整することができ る。最適な硬化条件は、エポキシ樹脂組成物の配合条件に大きく依存するが、通常 は、成形温度としては 80°Cから 250°Cであり、成形時間は 1分から 20時間である。成 形圧力は 0. 2MPaから 20MPaの範囲が好ましいが、真空プレスであってもよい。ェ ポキシ樹脂硬化物の結晶化度を上げるためには、低!、温度で長時間かけて硬化さ せることが望ましい。好ましい硬化温度は 120°Cから 200°Cの範囲であり、より好まし くは 140°C力、ら 180°Cである。また、好ましい硬化時間は 10分から 6時間であり、より 好ましくは 30分から 3時間である。さらに成形後、ポストキュアにより、さらに結晶化度 を上げること力 Sできる。通常、ポストキュア温度は 130°Cから 250°Cであり、時間は 1時 間から 24時間の範囲であるが、好ましくは、示差熱分析における吸熱ピーク温度より も 5°Cから 50°C低い温度で、 1時間から 24時間かけてポストキュアを行うことが望まし い。  The degree of crystallization of the resin can be adjusted by controlling the curing conditions of the pre-preda. The optimum curing conditions largely depend on the compounding conditions of the epoxy resin composition, but usually the molding temperature is 80 ° C to 250 ° C, and the molding time is 1 minute to 20 hours. The forming pressure is preferably in the range of 0.2 MPa to 20 MPa, but may be a vacuum press. In order to increase the crystallinity of the cured epoxy resin, it is desirable to cure it at a low temperature for a long time. Preferred curing temperatures range from 120 ° C to 200 ° C, more preferably 140 ° C force, and 180 ° C. The preferable curing time is 10 minutes to 6 hours, more preferably 30 minutes to 3 hours. Further, after forming, post-cure can increase the crystallinity. Usually the post cure temperature is 130 ° C to 250 ° C and the time ranges from 1 hour to 24 hours, but preferably 5 ° C to 50 ° C lower than the endothermic peak temperature in differential thermal analysis It is desirable to post-cure for 1 to 24 hours at temperature.
実施例 [0045] 以下、本発明に係る実施例を示し、本発明について詳細に説明する。 Example [0045] Hereinafter, examples according to the present invention will be shown, and the present invention will be described in detail.
[0046] 合成例 1 [0046] Synthesis Example 1
4, 4,ージヒドロキシジフエニルエーテル 1010gをェピクロルヒドリン 6475gに溶解 し、減圧下(約 120mmHg、 60。Cにて 48%水酸ィ匕ナトリウム水溶 ί夜 808gを 4日寺間力、 けて滴下した。この間、生成する水はェピクロルヒドリンとの共沸により系外に除き、溜 出したェピクロルヒドリンは系内に戻した。滴下終了後、さらに 1時間反応を継続した 。その後、ェピクロルヒドリンを減圧留去し、メチルイソプチルケトン 3660gに溶解した 後、濾過により生成した塩を除いた。その後、 20%水酸化ナトリウム水溶液 119. 4g を加え、 80°Cで 2時間反応させた。反応後、濾過、水洗を行った後、溶媒であるメチ ノレイソプチルケトンを減圧留去し、淡黄色結晶のエポキシ樹脂(エポキシ樹脂 A) 144 Ogを得た。得られたエポキシ樹脂のエポキシ当量は 163g/eq.、加水分解性塩素 は 280ppm、融点は 78力も 84。C、 150。。での粘度は0. 0062Pa ' sであった。ここで 、加水分解性塩素とは、試料 0. 5gをジォキサン 30mlに溶解後、 1Ν— ΚΟΗ、 10ml を加え 30分間煮沸還流した後、室温まで冷却し、さらに 80%アセトン水 100mlを加 えたものを、 0. 002N— AgNO水溶液で電位差滴定を行うことにより測定された値  Dissolve 1010 g of 4,4, -dihydroxydiphenyl ether in 6475 g of epichlorohydrin and reduce the pressure (approx. 120 mmHg, 60. 48% sodium hydroxide aqueous solution at C at 808 g for 4 days. During this time, the generated water was removed from the system by azeotropy with epichlorohydrin, and the distilled epichlorohydrin was returned to the system. After that, epichlorohydrin was distilled off under reduced pressure, dissolved in 3660 g of methylisoptyl ketone, and the salt formed by filtration was removed, and then 119.4 g of 20% aqueous sodium hydroxide solution was added, and 80 The reaction was allowed to proceed for 2 hours at ° C. After the reaction, filtration and washing with water were carried out, and then the solvent methylolisobutyl ketone was distilled off under reduced pressure to obtain 144 Og of light yellow crystalline epoxy resin (epoxy resin A). The epoxy equivalent of the obtained epoxy resin is 163 g / eq. Decomposable chlorine was 280 ppm, melting point was 78 force 84, C, 150. Viscosity was 0.0026 Pa's, where hydrolysable chlorine was 0.5 g of sample dissolved in 30 ml of dioxane. , 1Ν-ΚΟΗ, 10ml was added, boiled and refluxed for 30 minutes, cooled to room temperature, and further added with 100ml of 80% acetone water, measured by potentiometric titration with 0.002N-AgNO aqueous solution.
3  Three
である。また、融点とは、キヤビラリ一法により昇温速度 2°C/分で得られる値である。  It is. The melting point is a value obtained at a rate of temperature rise of 2 ° C / min by the one-way method.
[0047] 合成例 2 [0047] Synthesis Example 2
攪拌機、温度計、冷却管、窒素導入管のついた 1L、 4ロセパラブルフラスコに、合 成例 1で合成したエポキシ樹脂 489gと 4, 4'ージヒドロキシジフエニルエーテル 75. 8gを仕込み、窒素気流下、攪拌しながら 150°Cにて溶融混合した後、トリフエニルホ スフイン 0. 226gを加え、 2時間反応を行った。反応後、得られたエポキシ樹脂(ェポ キシ樹脂 B)は、室温に放冷することにより、結晶性を示し固化した。得られたェポキ シ樹脂のエポキシ当量は 261g/eq.、融点は 100力、ら 122°C、 150°Cでの粘度は 0 . 037Pa' sであった。また、得られた樹脂の GPC測定より求められた一般式(1)にお ける各成分 itは、 n = 0力 45. 8%、1 = 2カ 28. 0%、 n = 4力 2. 3%、n≥6力 3. 9 %であった。ここで、粘度はコントラバス社製レオマット 115で測定した。また、 GPC測 定は、装置; HLC— 82A (東ソ一(株)製)、カラム; TSK— GEL2000 X 3本および T SK— GEL4000 X 1本(レ、ずれも東ソー(株)製)、溶媒;テトラヒドロフラン、流量; 1 ml/min、温度; 38°C、検出器; RIの条件に従った。 Into a 1L, 4-separable flask equipped with a stirrer, thermometer, cooling tube, and nitrogen introduction tube, charge 489g of the epoxy resin synthesized in Synthesis Example 1 and 75.8g of 4,4'-dihydroxydiphenyl ether. After melt-mixing at 150 ° C with stirring under an air stream, 0.226 g of triphenylphosphine was added, and the reaction was carried out for 2 hours. After the reaction, the obtained epoxy resin (epoxy resin B) was allowed to cool to room temperature and showed crystallinity and solidified. The epoxy resin thus obtained had an epoxy equivalent of 261 g / eq., A melting point of 100 power, a viscosity at 122 ° C and 150 ° C of 0.037 Pa's. In addition, each component it in the general formula (1) obtained by GPC measurement of the obtained resin is n = 0 force 45.8%, 1 = 2 28.0%, n = 4 force 2. 3%, n≥6 force 3.9%. Here, the viscosity was measured with Rheomatt 115 manufactured by Contrabass. In addition, GPC measurement is performed using the following equipment: HLC-82A (manufactured by Tosohichi Co., Ltd.), column; TSK-GEL2000 X 3 and TSK-GEL4000 X 1 Solvent; tetrahydrofuran, flow rate; 1 ml / min, temperature; 38 ° C, detector; RI conditions were followed.
[0048] 実施例 1 [0048] Example 1
攪拌機、温度計、冷却管、窒素導入管のついた 1L、 4ロセパラブルフラスコに、ェ ポキシ樹脂成分として、合成例 1で得られたエポキシ樹脂 A185. 2g、硬化剤成分と して、 4, 4'ージヒドロキシジフエニルエーテル (硬化剤 A) 141. 8g、および硬化促進 剤としての 2 ェチル 4 メチルイミダゾール 0. 18gを、シクロへキサノン 246gに溶 解し、 120°Cにて 0. 5時間反応させて、エポキシ樹脂組成物ワニスを調製した。 E型 粘度計における 25°Cの粘度は、 0. 42Pa' sであった。 GPC測定力 、参考例 1で得 られたエポキシ樹脂は 25. 7%残存し、 4, 4'ージヒドロキシジフエニルエーテルは 24 . 2%残存していた。  In a 1L, 4 separable flask equipped with a stirrer, thermometer, cooling pipe, and nitrogen introduction pipe, epoxy resin A185.2g obtained in Synthesis Example 1 as an epoxy resin component, and a curing agent component, 4 , 4'-dihydroxydiphenyl ether (curing agent A) 141.8 g and 2-ethyl 4-methylimidazole 0.18 g as a curing accelerator were dissolved in 246 g of cyclohexanone and 0.5 at 120 ° C. It was made to react for time and the epoxy resin composition varnish was prepared. The viscosity at 25 ° C. in an E-type viscometer was 0.42 Pa ′s. Regarding the GPC measurement power, 25.7% of the epoxy resin obtained in Reference Example 1 remained, and 24.2% of 4,4′-dihydroxydiphenyl ether remained.
[0049] このエポキシ樹脂組成物を、厚さ 0. 07mmのガラス繊維織布に含浸し、 150°Cで 8 分加熱乾燥してプリプレダを得た。このプリプレダ 4枚を重ね、真空プレス機により温 度 130°Cで 15分間脱揮し、その後、温度 175°C、圧力 2MPaの条件で 90分間加熱 加圧形成して一体化し、厚さ 0. 4mmの積層板を得た。この積層板から 50mm X 12 0mmの板状試料を切り出し、各種物性測定に供した。  [0049] The epoxy resin composition was impregnated into a glass fiber woven fabric having a thickness of 0.07 mm and dried by heating at 150 ° C for 8 minutes to obtain a pre-preda. The four pre-predas were stacked and devolatilized at a temperature of 130 ° C for 15 minutes using a vacuum press machine, and then heated and pressurized for 90 minutes under the conditions of a temperature of 175 ° C and a pressure of 2 MPa, and the thickness was 0. A 4 mm laminate was obtained. A plate-like sample of 50 mm × 120 mm was cut out from the laminated plate and subjected to various physical property measurements.
[0050] 実施例 2  [0050] Example 2
エポキシ樹脂成分を、合成例 2で得られたエポキシ樹脂 B216. 3g、硬化剤成分を 、 4, 4'ージヒドロキシジフエニルエーテル (硬化剤 A) 83. 7gとした他は、実施例 1と 同様にしてエポキシ樹脂組成物ワニスを調製した。 25°Cの粘度は、 0. 56Pa' sであ つた。このエポキシ樹脂組成物を、実施例 1と同様に積層板を得て、各種物性測定に 供した。  The epoxy resin component was the same as in Example 1 except that the epoxy resin B216.3g obtained in Synthesis Example 2 and the curing agent component were 4,4'-dihydroxydiphenyl ether (curing agent A) 83.7g. Thus, an epoxy resin composition varnish was prepared. The viscosity at 25 ° C was 0.56 Pa's. Using this epoxy resin composition, a laminate was obtained in the same manner as in Example 1, and subjected to various physical property measurements.
[0051] 実施例 3 [0051] Example 3
エポキシ樹脂成分を、合成例 1で得られたエポキシ樹脂 A189. 5g、硬化剤成分を 、 4, 4'—ジヒドロキシジフエニルエーテル(硬化剤 A) 99. 4gおよび 4, 4'—ジァミノ ジフエニルスルホン (硬化剤 B) 11. 0gとした他は、実施例 1と同様にしてエポキシ樹 脂組成物ワニスを調製した。 25°Cの粘度は、 0. 61Pa' sであった。このエポキシ樹脂 組成物を、実施例 1と同様に積層板を得て、各種物性測定に供した。  Epoxy resin component, epoxy resin A189.5g obtained in Synthesis Example 1, curing agent component 4,4'-dihydroxydiphenyl ether (curing agent A) 99.4 g and 4,4'-diaminodiphenyl sulfone (Curing agent B) An epoxy resin composition varnish was prepared in the same manner as in Example 1 except that 11.0 g was used. The viscosity at 25 ° C. was 0.61 Pa ′s. Using this epoxy resin composition, a laminate was obtained in the same manner as in Example 1 and subjected to various physical property measurements.
[0052] 実施例 4 エポキシ樹脂成分を、合成例 2で得られたエポキシ樹脂 B242. 3g、硬化剤成分を 、 4, 4'ージアミノジフエニルスルホン (硬化剤 B) 57. 6gとした他は、実施例 1と同様 にしてエポキシ樹脂組成物ワニスを調製した。 25°Cの粘度は、 0. 78Pa' sであった。 このエポキシ樹脂組成物を、実施例 1と同様に積層板を得て、各種物性測定に供し た。 [0052] Example 4 The epoxy resin component was the same as Example 1 except that the epoxy resin B242.3g obtained in Synthesis Example 2 and the curing agent component were 4,4'-diaminodiphenylsulfone (curing agent B) 57.6g Thus, an epoxy resin composition varnish was prepared. The viscosity at 25 ° C. was 0.78 Pa ′s. Using this epoxy resin composition, a laminate was obtained in the same manner as in Example 1, and subjected to various physical property measurements.
[0053] 実施例 5  [0053] Example 5
エポキシ樹脂成分を、合成例 1で得られたエポキシ樹脂 A183. 8g、硬化剤成分を 、?3^ — 4261 (硬化剤じ:群栄化学製、フエノールノポラック樹脂; OH当量 103g/ eq.、軟化点 80°C) 116. lgとした他は、実施例 1と同様にしてエポキシ樹脂組成物 ワニスを調製した。 25°Cの粘度は、 0. 47Pa' sであった。このエポキシ樹脂組成物を 、実施例 1と同様に積層板を得て、各種物性測定に供した。  Epoxy resin component, the epoxy resin A183.8g obtained in Synthesis Example 1, the curing agent component? 3 ^ — 4261 (curing agent: Gunei Chemical Co., phenol nopolak resin; OH equivalent 103 g / eq., Softening point 80 ° C) 116. Epoxy resin composition in the same manner as in Example 1 except that lg was used. A varnish was prepared. The viscosity at 25 ° C. was 0.47 Pa ′s. Using this epoxy resin composition, a laminate was obtained in the same manner as in Example 1, and subjected to various physical property measurements.
[0054] 比較例 1 [0054] Comparative Example 1
エポキシ樹脂成分として、 YD— 128 (エポキシ樹脂 C:東都化成製、ビスフエノール A型エポキシ樹脂、エポキシ当量 186g/eq. ) 193. Og、硬化剤成分として PSM— 4261 (硬化剤 C :群栄化学製、フエノールノポラック樹脂; OH当量 103g/eq.、軟 化点 80°C) 106. 9gを用いて、実施例 1と同様に反応を行い、エポキシ樹脂組成物 ワニスを調製した。 25°Cの粘度は、 0. 43Pa' sであった。このエポキシ樹脂組成物を 、実施例 1と同様に積層板を得て、各種物性測定に供した。  As an epoxy resin component, YD-128 (epoxy resin C: manufactured by Tohto Kasei Co., Ltd., bisphenol A type epoxy resin, epoxy equivalent 186 g / eq.) 193. Og, as a curing agent component PSM— 4261 (curing agent C: Gunei Chemical The reaction was carried out in the same manner as in Example 1 using 106.9 g of phenol nopolac resin (OH equivalent 103 g / eq., Softening point 80 ° C.) to prepare an epoxy resin composition varnish. The viscosity at 25 ° C. was 0.43 Pa ′s. Using this epoxy resin composition, a laminate was obtained in the same manner as in Example 1, and subjected to various physical property measurements.
[0055] 比較例 2 [0055] Comparative Example 2
エポキシ樹脂成分として、 YD— 128 (エポキシ樹脂 C:東都化成製、ビスフエノール A型エポキシ樹脂、エポキシ当量 186g/eq. ) 225. Og、硬化剤成分として 4, 4'— ジァミノジフヱニルスルホン(硬化剤 B) 75. Ogを用いて、実施例 1と同様に反応を行 い、エポキシ樹脂組成物ワニスを調製した。 25°Cの粘度は、 0. 61Pa ' sであった。こ のエポキシ樹脂組成物を、実施例 1と同様に積層板を得て、各種物性測定に供した As an epoxy resin component, YD-128 (epoxy resin C: manufactured by Tohto Kasei, bisphenol A type epoxy resin, epoxy equivalent 186 g / eq.) 225. Og, 4, 4'- diaminodiphenyl as a curing agent component Using sulfone (curing agent B) 75. Og, the reaction was carried out in the same manner as in Example 1 to prepare an epoxy resin composition varnish. The viscosity at 25 ° C. was 0.61 Pa ′s. Using this epoxy resin composition, a laminate was obtained in the same manner as in Example 1 and subjected to various physical property measurements.
Yes
[0056] 比較例 3  [0056] Comparative Example 3
エポキシ樹脂成分として、 YX— 4000H (エポキシ樹脂 C:ジャパンエポキシレジン 製、ビフエニル型エポキシ樹脂;エポキシ当量 195g/eq. ) 196. 3g、硬化剤成分と して PSM— 4261 (硬化剤 C:群栄化学製、フエノールノポラック樹脂; OH当量 103g Zeq.、軟化点 80°C) 103. 7gを用いて、実施例 1と同様に反応を行い、エポキシ樹 脂組成物ワニスを調製した。 E型粘度計における 25°Cの粘度は、 0. 45Pa ' sであつ た。このエポキシ樹脂組成物を、実施例 1と同様に積層板を得て、各種物性測定に 供した。 As an epoxy resin component, YX-4000H (epoxy resin C: made by Japan Epoxy Resin, biphenyl type epoxy resin; epoxy equivalent 195 g / eq.) 196.3 g, hardener component and PSM-4261 (curing agent C: manufactured by Gunei Chemical Co., phenol nopolak resin; OH equivalent 103 g Zeq., Softening point 80 ° C) 103.7 g was used for the reaction in the same manner as in Example 1 to produce an epoxy. A resin composition varnish was prepared. The viscosity at 25 ° C in the E type viscometer was 0.45 Pa's. Using this epoxy resin composition, a laminate was obtained in the same manner as in Example 1, and subjected to various physical property measurements.
[0057] 測定結果を表 1にまとめて示す。表 1において、 Tgはガラス転移点、 CTEは熱膨張 係数、 HDTは熱変形温度、 m.p.は融点を示す。また、外観において、 Xは透明、 Δは やや濁り、〇は完全不透明を示す。  [0057] The measurement results are summarized in Table 1. In Table 1, Tg is the glass transition point, CTE is the coefficient of thermal expansion, HDT is the heat distortion temperature, and m.p. is the melting point. In the appearance, X is transparent, Δ is slightly turbid, and ◯ is completely opaque.
[0058] [表 1]  [0058] [Table 1]
Figure imgf000018_0001
Figure imgf000018_0001
産業上の利用の可能性 Industrial applicability
[0059] 本発明によれば、エポキシ樹脂成分としてジフエ二ルエーテル構造のエポキシ樹脂 を用いるが、ジフエニルエーテル構造は、従来から知られている剛直な主鎖であるメ ソゲン基を有するエポキシ樹脂とは異なって、溶剤溶解性に優れた特性があり、熱伝 導性等が優れるプリプレダとなる。本発明のプリント配線板は、絶縁層の熱伝導性が 良好で優れた放熱性を有するので、自動車機器用のプリント配線板、家電製品の電 源ユニット基板、パソコン、サーバー等の高密度実装プリント配線板に好適に使用さ れる。 [0059] According to the present invention, an epoxy resin having a diphenyl ether structure is used as an epoxy resin component, and the diphenyl ether structure has a conventionally known epoxy resin having a mesogenic group which is a rigid main chain. Unlike the above, it has excellent solvent solubility characteristics, and is a pre-preder having excellent heat conductivity. In the printed wiring board of the present invention, the thermal conductivity of the insulating layer is Since it has good heat dissipation, it is suitably used for printed wiring boards for automobile equipment, power supply unit boards for home appliances, PCs, servers, and other high-density mounting printed wiring boards.

Claims

請求の範囲 The scope of the claims
エポキシ樹脂と硬化剤を含むエポキシ樹脂組成物をシート状の繊維基材に含浸し 半硬化状態としてなるプリプレダにおいて、当該エポキシ樹脂の一部または全部とし て、下記一般式(1)で示すエポキシ樹脂を用いたことを特徴とするプリプレダ。  An epoxy resin represented by the following general formula (1) is used as a part or all of the epoxy resin in a semi-cured state by impregnating a sheet-like fiber base material with an epoxy resin composition containing an epoxy resin and a curing agent. A pre-preda characterized by using
Figure imgf000020_0001
Figure imgf000020_0001
ここで、 mは 1から 3の数、 nは 0以上の数を示す。 Here, m is a number from 1 to 3, and n is a number greater than or equal to 0.
[2] 一般式(1)で示すエポキシ樹脂が、下記一般式 (2)で示すエポキシ樹脂である請 求項 1に記載のプリプレダ。 [2] The pre-preda according to claim 1, wherein the epoxy resin represented by the general formula (1) is an epoxy resin represented by the following general formula (2).
Figure imgf000020_0002
Figure imgf000020_0002
ここで、 nは 0以上の数の数を示す。 Here, n represents a number of 0 or more.
[3] 硬化剤の一部または全部として、下記一般式(3)で示されるフエノール性樹脂を用 V、る請求項 1に記載のプリプレダ。 [3] The pre-preda according to claim 1, wherein a phenolic resin represented by the following general formula (3) is used as a part or all of the curing agent.
Figure imgf000020_0003
Figure imgf000020_0003
ここで、 mは 1から 3の数、 qは 0以上の数を示す。 Here, m is a number from 1 to 3, and q is a number greater than or equal to 0.
[4] 一般式(3)で示されるフエノール性樹脂力 下記一般式 (4)で示されるフエノール 性樹脂である請求項 3に記載
Figure imgf000021_0001
[4] Phenolic resin strength represented by general formula (3) Phenolic resin represented by the following general formula (4) 4. The resin according to claim 3, which is a functional resin
Figure imgf000021_0001
ここで、 qは 0以上の数を示す。 Here, q represents a number of 0 or more.
[5] 硬化剤の一部または全部として、芳香族ジァミン化合物を用いる請求項 1に記載の プリプレダ。 [5] The pre-preda according to [1], wherein an aromatic diamine compound is used as part or all of the curing agent.
[6] 請求項 1〜5のいずれかに記載のプリプレダをプリプレダ層の全層ないしは一部の 層として有する積層材料を加熱加圧成形してなることを特徴とする積層板。  [6] A laminated board obtained by heat-pressing a laminated material having the pre-preder according to any one of claims 1 to 5 as a whole layer or a part of a pre-preder layer.
[7] 請求項 1〜5のいずれかに記載のプリプレダを加熱加圧成形して得られる硬化物中 の樹脂相が結晶化したものであり、 120°Cから 280°Cの融点を持つことを特徴とする プリプレダ硬化物。  [7] The resin phase in the cured product obtained by heat-press molding the prepreader according to any one of claims 1 to 5 is crystallized and has a melting point of 120 ° C to 280 ° C. Pre-precured cured product characterized by
[8] 請求項 1〜5のいずれかに記載のプリプレダの層を加熱加圧成形して得られる絶縁 層を備えることを特徴とするプリント配線板。  [8] A printed wiring board comprising an insulating layer obtained by heating and pressing the layer of the pre-preder according to any one of [1] to [5].
[9] 絶縁層中の樹脂相が結晶化したものであり、 120°Cから 280°Cの融点を持つ請求 項 8に記載のプリント配線板。 [9] The printed wiring board according to claim 8, wherein the resin phase in the insulating layer is crystallized and has a melting point of 120 ° C to 280 ° C.
PCT/JP2007/065186 2006-08-07 2007-08-02 Prepreg, laminate and printed wiring board WO2008018364A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008528796A JP5234962B2 (en) 2006-08-07 2007-08-02 Prepreg, laminated board and printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-214856 2006-08-07
JP2006214856 2006-08-07

Publications (1)

Publication Number Publication Date
WO2008018364A1 true WO2008018364A1 (en) 2008-02-14

Family

ID=39032896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065186 WO2008018364A1 (en) 2006-08-07 2007-08-02 Prepreg, laminate and printed wiring board

Country Status (3)

Country Link
JP (1) JP5234962B2 (en)
TW (1) TW200833745A (en)
WO (1) WO2008018364A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060897A1 (en) * 2007-11-08 2009-05-14 Nippon Steel Chemical Co., Ltd. Epoxy resin, method for producing the same, epoxy resin composition and cured product
WO2009113392A1 (en) * 2008-03-13 2009-09-17 新日本製鐵株式会社 Electromagnetic steel sheet having insulating coating film with excellent thermal conductivity therein, and process for production thereof
WO2009123058A1 (en) * 2008-03-31 2009-10-08 新日鐵化学株式会社 Epoxy resin composition and molded object
JP2012233206A (en) * 2012-09-03 2012-11-29 Nippon Steel & Sumikin Chemical Co Ltd Epoxy resin composition and molded article
JP2013007047A (en) * 2012-09-03 2013-01-10 Nippon Steel & Sumikin Chemical Co Ltd Epoxy resin composition and molded product
KR20140077557A (en) * 2012-12-14 2014-06-24 엘지이노텍 주식회사 Epoxy resin composite and printed circuit board using the same
WO2018074221A1 (en) * 2016-10-17 2018-04-26 株式会社ダイセル Sheet-shaped prepreg
WO2020100513A1 (en) 2018-11-12 2020-05-22 東レ株式会社 Epoxy resin composition for fiber-reinforced composite materials, epoxy resin cured product, preform and fiber-reinforced composite material
WO2022209715A1 (en) * 2021-03-30 2022-10-06 日鉄ケミカル&マテリアル株式会社 Epoxy resin composition, prepreg, and fiber-reinforced plastic obtained using these

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5115645B2 (en) * 2010-11-18 2013-01-09 住友ベークライト株式会社 Insulating substrate, metal-clad laminate, printed wiring board, and semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140269A (en) * 1991-11-26 1993-06-08 Matsushita Electric Works Ltd Epoxy resin composition
JPH06239966A (en) * 1993-02-16 1994-08-30 Nippon Kayaku Co Ltd Epoxy resin, epoxy resin composition and its cured product
JPH06313025A (en) * 1993-04-28 1994-11-08 Nippon Steel Chem Co Ltd New epoxy resin, its production and epoxy resin composition using the same
JP2001329046A (en) * 2000-05-24 2001-11-27 Japan Epoxy Resin Kk Semiconductor sealing epoxy resin composition, resin sealed semiconductor device, and method for packaging semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4493748B2 (en) * 1999-07-13 2010-06-30 新日鐵化学株式会社 Epoxy resin, method for producing the same, epoxy resin composition and cured product thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140269A (en) * 1991-11-26 1993-06-08 Matsushita Electric Works Ltd Epoxy resin composition
JPH06239966A (en) * 1993-02-16 1994-08-30 Nippon Kayaku Co Ltd Epoxy resin, epoxy resin composition and its cured product
JPH06313025A (en) * 1993-04-28 1994-11-08 Nippon Steel Chem Co Ltd New epoxy resin, its production and epoxy resin composition using the same
JP2001329046A (en) * 2000-05-24 2001-11-27 Japan Epoxy Resin Kk Semiconductor sealing epoxy resin composition, resin sealed semiconductor device, and method for packaging semiconductor device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060897A1 (en) * 2007-11-08 2009-05-14 Nippon Steel Chemical Co., Ltd. Epoxy resin, method for producing the same, epoxy resin composition and cured product
WO2009113392A1 (en) * 2008-03-13 2009-09-17 新日本製鐵株式会社 Electromagnetic steel sheet having insulating coating film with excellent thermal conductivity therein, and process for production thereof
JP4608600B2 (en) * 2008-03-13 2011-01-12 新日本製鐵株式会社 Electrical steel sheet having an insulating coating excellent in thermal conductivity and method for producing the same
JPWO2009113392A1 (en) * 2008-03-13 2011-07-21 新日本製鐵株式会社 Electrical steel sheet having an insulating coating excellent in thermal conductivity and method for producing the same
TWI494341B (en) * 2008-03-31 2015-08-01 Nippon Steel & Sumikin Chem Co Epoxy resin compositions and shaped articles
WO2009123058A1 (en) * 2008-03-31 2009-10-08 新日鐵化学株式会社 Epoxy resin composition and molded object
CN101970526B (en) * 2008-03-31 2012-05-30 新日铁化学株式会社 Epoxy resin composition and molded object
JP2012233206A (en) * 2012-09-03 2012-11-29 Nippon Steel & Sumikin Chemical Co Ltd Epoxy resin composition and molded article
JP2013007047A (en) * 2012-09-03 2013-01-10 Nippon Steel & Sumikin Chemical Co Ltd Epoxy resin composition and molded product
KR20140077557A (en) * 2012-12-14 2014-06-24 엘지이노텍 주식회사 Epoxy resin composite and printed circuit board using the same
KR101952356B1 (en) * 2012-12-14 2019-02-26 엘지이노텍 주식회사 Epoxy resin composite and printed circuit board using the same
WO2018074221A1 (en) * 2016-10-17 2018-04-26 株式会社ダイセル Sheet-shaped prepreg
JP2018065892A (en) * 2016-10-17 2018-04-26 株式会社ダイセル Sheet-like prepreg
KR20190069408A (en) * 2016-10-17 2019-06-19 주식회사 다이셀 Sheet-like prepreg
KR102402277B1 (en) 2016-10-17 2022-05-26 주식회사 다이셀 sheet prepreg
US11479637B2 (en) 2016-10-17 2022-10-25 Daicel Corporation Sheet-shaped prepreg
WO2020100513A1 (en) 2018-11-12 2020-05-22 東レ株式会社 Epoxy resin composition for fiber-reinforced composite materials, epoxy resin cured product, preform and fiber-reinforced composite material
WO2022209715A1 (en) * 2021-03-30 2022-10-06 日鉄ケミカル&マテリアル株式会社 Epoxy resin composition, prepreg, and fiber-reinforced plastic obtained using these

Also Published As

Publication number Publication date
JPWO2008018364A1 (en) 2009-12-24
JP5234962B2 (en) 2013-07-10
TW200833745A (en) 2008-08-16

Similar Documents

Publication Publication Date Title
WO2008018364A1 (en) Prepreg, laminate and printed wiring board
TWI402288B (en) Epoxy resin composition and hardened material
JP5315057B2 (en) Crystalline resin cured product, crystalline resin composite and production method thereof
JP5719562B2 (en) High molecular weight epoxy resin, resin film using the high molecular weight epoxy resin, resin composition, and cured product
JP5265461B2 (en) Crystalline modified epoxy resin, epoxy resin composition and crystalline cured product
JP6509009B2 (en) Bismaleimide compound, composition containing the same, and cured product
JP5312447B2 (en) Epoxy resin composition and molded article
JP2012046616A (en) Phenolic resin, epoxy resin, production method of the same, epoxy resin composition and cured product
JP2011020365A (en) Copper foil with resin, laminated plate, and printed wiring board
JP2013221120A (en) Epoxy resin composition and cured product obtained by curing the same
JP5734603B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP5314912B2 (en) Epoxy resin composition and molded article
JP5195107B2 (en) Imide skeleton resin, curable resin composition, and cured product thereof
JP2012233206A (en) Epoxy resin composition and molded article
JP5681152B2 (en) Epoxy resin composition and molded article
JP7502916B2 (en) Epoxy resin, epoxy resin composition and cured product
KR102022430B1 (en) Epoxy resin composite and printed circuit board comprising isolation using the same
KR101799365B1 (en) Epoxy resin, method for manufacturing the same, intermediate, epoxy resin composition and cured product
JP2024035605A (en) Resin material, cured product, circuit board with insulating layer, multilayer printed wiring board and method for producing imide compound
JP2022154693A (en) Epoxy resin, epoxy resin composition, and cured material
KR20150022479A (en) Epoxy resin composite and printed circuit board comprising isolation using the same
KR20150022478A (en) Epoxy resin composite and printed circuit board comprising isolation using the same
JP2012046615A (en) Epoxy resin, production method of the same, epoxy resin composition and cured product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791860

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008528796

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07791860

Country of ref document: EP

Kind code of ref document: A1