JP5719562B2 - High molecular weight epoxy resin, resin film using the high molecular weight epoxy resin, resin composition, and cured product - Google Patents

High molecular weight epoxy resin, resin film using the high molecular weight epoxy resin, resin composition, and cured product Download PDF

Info

Publication number
JP5719562B2
JP5719562B2 JP2010237992A JP2010237992A JP5719562B2 JP 5719562 B2 JP5719562 B2 JP 5719562B2 JP 2010237992 A JP2010237992 A JP 2010237992A JP 2010237992 A JP2010237992 A JP 2010237992A JP 5719562 B2 JP5719562 B2 JP 5719562B2
Authority
JP
Japan
Prior art keywords
epoxy resin
molecular weight
high molecular
film
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010237992A
Other languages
Japanese (ja)
Other versions
JP2012092158A (en
Inventor
中西 哲也
哲也 中西
秀安 朝蔭
秀安 朝蔭
美幸 内田
美幸 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2010237992A priority Critical patent/JP5719562B2/en
Priority to TW100136707A priority patent/TW201221535A/en
Priority to CN201180050588.6A priority patent/CN103261262B/en
Priority to KR1020137009933A priority patent/KR20130118319A/en
Priority to PCT/JP2011/074735 priority patent/WO2012053661A1/en
Publication of JP2012092158A publication Critical patent/JP2012092158A/en
Application granted granted Critical
Publication of JP5719562B2 publication Critical patent/JP5719562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1494Polycondensates modified by chemical after-treatment followed by a further chemical treatment thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/066Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols with chain extension or advancing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/14Glass
    • C09J2400/143Glass in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/16Metal
    • C09J2400/163Metal in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2467/00Presence of polyester
    • C09J2467/006Presence of polyester in the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)

Description

本発明は電子材料分野に用いられる高分子量エポキシ樹脂及び、該高分子量エポキシ樹脂を用いる樹脂フィルム、エポキシ樹脂組成物、硬化物に関する。 The present invention relates to a high molecular weight epoxy resin used in the field of electronic materials, a resin film using the high molecular weight epoxy resin, an epoxy resin composition, and a cured product.

エポキシ樹脂は接着性、耐熱性、成形性に優れていることから電子部品、電気機器、自動車部品、FRP、スポーツ用品などに広範囲に使用されている。特に近年は電子材料分野において非常に注目されている材料のひとつであり、一般的な技術については非特許文献1などにまとめられている。電子機器に用いられる部材の物性要求は非常に高度なものとなっており、特に複数の部材が集積する積層板では特に線膨張率の小さな材料が求められている。 Epoxy resins are widely used in electronic parts, electrical equipment, automobile parts, FRP, sports equipment and the like because of their excellent adhesiveness, heat resistance and moldability. In particular, in recent years, it is one of the materials that have attracted a great deal of attention in the field of electronic materials, and general techniques are summarized in Non-Patent Document 1 and the like. The requirements for the physical properties of members used in electronic devices are extremely high. In particular, a material having a low coefficient of linear expansion is required particularly for a laminated plate in which a plurality of members are integrated.

電子機器に用いられる部材等においては、高温での実装をおこなった後に冷却すると、基板と素子の線膨張率の差により「そり」が発生することが知られている。また、電子機器の使用時においても発熱と冷却のサイクルを繰り返すうちに銅配線と積層板との線膨張率差が応力となり、いずれ銅配線を断線することが知られている。これまでにも電子材料用途において低線膨張材料について検討され、特許文献1には、多環芳香族を骨格に含有したエポキシ樹脂が開示されている。 It has been known that a member used in an electronic device or the like is “warped” due to a difference in linear expansion coefficient between a substrate and an element when it is cooled after being mounted at a high temperature. Further, it is known that even when an electronic device is used, a difference in coefficient of linear expansion between the copper wiring and the laminated board becomes stress as the heat generation and cooling cycles are repeated, and the copper wiring is eventually disconnected. So far, low linear expansion materials have been studied for use in electronic materials, and Patent Document 1 discloses an epoxy resin containing a polycyclic aromatic compound in the skeleton.

しかしながら、多環芳香族を含有する化合物は剛直な主鎖を有するため、ガラス転移温度が高いという特徴を有するが、硬く脆いという側面がある。特許文献2ではナフタレン骨格を含有するフェノキシ樹脂を用い、さらに、骨格内の2級水酸基をアシル化することにより、耐折り曲げ性を付与することが可能になり、誘電特性について改善できたとの記載があるが、ガラス転移温度が低下するため更なる耐熱性の向上が求められている。 However, since a compound containing a polycyclic aromatic has a rigid main chain, it has a feature of a high glass transition temperature, but has a side that it is hard and brittle. Patent Document 2 describes that the use of a phenoxy resin containing a naphthalene skeleton, and further acylation of a secondary hydroxyl group in the skeleton makes it possible to impart bending resistance and improve dielectric properties. However, since the glass transition temperature is lowered, further improvement in heat resistance is required.

また、特許文献3記載の、2価のエポキシ樹脂をナフタレンジオールと反応せしめて得るナフタレン骨格含有の高分子量エポキシ樹脂は、従来得られなかったフィルム形成能を有する化合物を得ることができるとの記載があるが、フィルム形成能を付与するためにはゲル濾過クロマトグラフィーによる評価において200,000を越える高い分子量を有する化合物を得る必要があり、ゲル化に近い条件となるため安定して製造するのは難しく、また高分子量エポキシ樹脂ワニスの粘度が高くなるためハンドリング性が悪くなり、ハンドリング性改善のために多くの溶剤を使用することは経済的ではなく、環境負荷を軽減する面からも好ましくない。さらには粘度が高い場合、フィラー等を配合することによりさらに溶液粘度あるいは溶融粘度が高くなるため、フィラー等の配合の自由度がそこなわれるという点からも好ましくない。 Moreover, the description that the high molecular weight epoxy resin containing a naphthalene skeleton obtained by reacting a divalent epoxy resin with naphthalenediol described in Patent Document 3 can obtain a compound having a film-forming ability that has not been obtained conventionally. However, in order to impart film-forming ability, it is necessary to obtain a compound having a high molecular weight exceeding 200,000 in the evaluation by gel filtration chromatography. Is difficult, and the viscosity of the high-molecular-weight epoxy resin varnish is high, so that the handling property is deteriorated. It is not economical to use many solvents for improving the handling property, and it is not preferable from the viewpoint of reducing the environmental load. . Further, when the viscosity is high, the solution viscosity or the melt viscosity is further increased by blending a filler or the like, which is not preferable from the viewpoint that the degree of freedom of blending the filler or the like is lost.

特開平06−234832号公報Japanese Patent Laid-Open No. 06-234832 特開2007−277333号公報JP 2007-277333 A 特公平7−59620号公報Japanese Patent Publication No. 7-59620

エレクトロニクス実装学会編 プリント回路技術便覧 第3版(2006年)Japan Institute of Electronics Packaging Printed Circuit Technology Handbook 3rd Edition (2006)

上記に示すとおり、線膨張率の低い樹脂としてナフタレンをはじめとする多環芳香族を骨格内に含有する樹脂が提供されてきた。しかしながら剛直な主鎖を有する化合物は硬く、脆いという側面を有するものであった。近年、電子部品の傾向として、平坦性、加工性の面からフィルム状の原材料を用いて電子部品を得る工法が増えてきている。すなわち、原材料にも自己成膜性を有することが求められるが、これまで低線膨張性、自己成膜性、ハンドリング性を満足できる材料は得られていなかった。 As described above, resins containing polycyclic aromatics such as naphthalene in the skeleton have been provided as resins having a low linear expansion coefficient. However, the compound having a rigid main chain is hard and brittle. In recent years, as a trend of electronic components, there are increasing methods for obtaining electronic components using film-like raw materials in terms of flatness and workability. That is, the raw material is required to have a self-film forming property, but no material that satisfies the low linear expansion property, the self-film forming property, and the handling property has been obtained so far.

上記の課題を解決するために、本発明者らは高分子量エポキシ樹脂骨格中に多環芳香族を導入することについて鋭意検討した結果、1分子中に2つのエポキシ基を有しナフタレン骨格をもつエポキシ樹脂を50重量%以上含有する2官能性エポキシ樹脂類と1分子中に2つの芳香族性水酸基を有する化合物を反応して得られる高分子量エポキシ樹脂は、ハンドリング性が良好な30,000〜80,000程度の重量平均分子量であるにもかかわらず、フィルム化した際には極めて高い自己製膜性を有し、引っ張りの力に対して破断せずに伸びる長さが長くなる上、低線膨張性を有するものとなることを見いだしたものである。 In order to solve the above-mentioned problems, the present inventors have intensively studied about introducing a polycyclic aromatic group into a high molecular weight epoxy resin skeleton, and as a result, have two epoxy groups in one molecule and a naphthalene skeleton. A high molecular weight epoxy resin obtained by reacting a bifunctional epoxy resin containing 50% by weight or more of an epoxy resin with a compound having two aromatic hydroxyl groups in one molecule has a good handling property of 30,000 to Despite having a weight average molecular weight of about 80,000, it has a very high self-forming property when formed into a film, and the length that stretches without breaking with respect to the tensile force becomes long and low. It has been found that it has a linear expansion property.

すなわち、本発明は
(1)下記一般式1で示され、ゲルパーミエーションクロマトグラフィ(以下GPC)によるn=1成分より高分子量側のオリゴマー成分含有量が1面積%以上5面積%以下であるエポキシ樹脂(a)を50重量%以上含有する2官能性エポキシ樹脂類(A)と1分子中に2つのフェノール性水酸基を有する化合物(B)とを溶媒中で反応して得られる、GCによる標準ポリスチレン換算の重量平均分子量が30,000以上80,000以下である高分子量エポキシ樹脂(C)。
That is, the present invention is (1) an epoxy which is represented by the following general formula 1 and has an oligomer component content of 1 area% or more and 5 area% or less from n = 1 component by gel permeation chromatography (hereinafter GPC). G P C obtained by reacting a bifunctional epoxy resin (A) containing 50% by weight or more of the resin (a) with a compound (B) having two phenolic hydroxyl groups in one molecule in a solvent. the weight average molecular weight in terms of standard polystyrene by is 30,000 80,000 high molecular weight epoxy resin (C).

Figure 0005719562
(nは繰り返し単位を表し、nは0以上の整数である。)
Figure 0005719562
(N represents a repeating unit, and n is an integer of 0 or more.)

(2) 上1に記載の高分子量エポキシ樹脂(C)から成形されたフィルム。
) 上記1に記載の高分子量エポキシ樹脂(C)を必須成分として含有してなる硬化性樹脂組成物(D)。
) 上記(3)に記載の硬化性樹脂組成物(D)を支持フィルム上に塗工、必要に応じて乾燥して得られる硬化性接着フィルム(E)。
) 上記()に記載の硬化性樹脂組成物(D)を金属箔に塗工、必要に応じて乾燥して得られる樹脂付き金属箔(F)。
) 上記()に記載の硬化性樹脂組成物(D)をガラスクロスに含浸、必要に応じて乾燥して得られるプリプレグ(G)。
) 上記()に記載の硬化性樹脂組成物(D)、または上記に記載の硬化性接着フィルム(E)、上記に記載の樹脂付き金属箔(F)、または上記に記載のプリプレグ(G)を硬化してなる硬化物(H)
である。
(2) films molded from high molecular weight epoxy resin described above Symbol 1 (C).
( 3 ) A curable resin composition (D) comprising the high molecular weight epoxy resin (C) described in 1 above as an essential component.
( 4 ) A curable adhesive film (E) obtained by coating the curable resin composition (D) described in ( 3 ) above on a support film and drying as necessary.
( 5 ) A metal foil with resin (F) obtained by coating the curable resin composition (D) according to ( 3 ) above on a metal foil and drying it as necessary.
( 6 ) A prepreg (G) obtained by impregnating a glass cloth with the curable resin composition (D) described in ( 3 ) above and drying it as necessary.
(7) The curable resin composition according to (3) (D), or curable adhesive film according to the 4 (E), the resin coated metal foil according to the 5 (F), or above 6 Cured product (H) obtained by curing prepreg (G) described
It is.

本発明で得られる高分子量エポキシ樹脂(C)を用いることにより、ハンドリング性、低線膨張性、フィルム形成性、伸びなどを高い次元で両立した高分子量エポキシ樹脂フィルムおよび該高分子量エポキシ樹脂硬化物を得ることができ、電気絶縁材料としてプリプレグ、電気絶縁フィルム、樹脂付き金属箔、プリント配線板、接着フィルムを提供することができる。 By using the high molecular weight epoxy resin (C) obtained in the present invention, a high molecular weight epoxy resin film having a high level of handling properties, low linear expansion property, film formability, elongation and the like, and a cured product of the high molecular weight epoxy resin As an electrical insulating material, a prepreg, an electrical insulating film, a metal foil with resin, a printed wiring board, and an adhesive film can be provided.

合成例1で用いた1,6−ジヒドロキシナフタレンのジグリシジルエーテル型エポキシ樹脂のゲルパーミエーションクロマトグラムを図1に示す。本発明のオリゴマー成分とは、図1の(S)成分(n=1の成分)より左側(高分子量側)にあるピーク(T)、ピーク(U)、およびピーク(V)を指し、オリゴマー成分含有量はピーク(T)、ピーク(U)およびピーク(V)の面積の和を総ピーク面積で除したものを面積%で表記するものとし、図1の場合オリゴマー成分含有量は3.23面積%である。A gel permeation chromatogram of the 1,6-dihydroxynaphthalene diglycidyl ether type epoxy resin used in Synthesis Example 1 is shown in FIG. The oligomer component of the present invention refers to the peak (T), peak (U), and peak (V) on the left side (high molecular weight side) of the component (S) in FIG. The component content is expressed by area% obtained by dividing the sum of the areas of peak (T), peak (U) and peak (V) by the total peak area. In the case of FIG. 23 area%.

Figure 0005719562
Figure 0005719562

本発明の高分子量エポキシ樹脂(C)は、ジヒドロキシナフタレンとエピハロヒドリンをアルカリ金属水酸化物と反応して得られる共縮合物を必須成分として使用する方法がある他は、1分子中に2つのエポキシ基を有する化合物と1分子中に2つの芳香族性水酸基を有する化合物とを重合触媒存在下で重合するなどの公知慣用の製造方法により得ることができる。本発明において特に重要となるものは、一般式1で示されるエポキシ樹脂(a)を用いて得られた高分子量エポキシ樹脂(C)は、驚くべきことに高分子量エポキシ樹脂フィルム、および硬化フィルムにおいて自己成膜性が著しく高く、破断伸度を大きくすることができることである。更には、本発明の高分子量エポキシ樹脂フィルムで特徴的なのは、フィルム化の際に溶剤に溶解しない成分が生成することである。原料となるエポキシ樹脂類(A)中に、一般式1で示されるエポキシ樹脂(a)のオリゴマー成分の特定量を含む場合、得られた高分子エポキシ樹脂(C)は加熱により極めて緩やかな網目構造をとりやすくなり、自己成膜性に優れるものとなることが推測できるが、オリゴマー成分が多くなりすぎると溶剤溶解性が悪化し、ハンドリングできなくなる問題がある。 The high molecular weight epoxy resin (C) of the present invention has two epoxy compounds in one molecule except that there is a method using a cocondensate obtained by reacting dihydroxynaphthalene and epihalohydrin with an alkali metal hydroxide as an essential component. The compound having a group and a compound having two aromatic hydroxyl groups in one molecule can be obtained by a known and common production method such as polymerization in the presence of a polymerization catalyst. What is particularly important in the present invention is that the high molecular weight epoxy resin (C) obtained using the epoxy resin (a) represented by the general formula 1 is surprisingly used in a high molecular weight epoxy resin film and a cured film. The self-film forming property is remarkably high and the elongation at break can be increased. Further, the high molecular weight epoxy resin film of the present invention is characterized in that a component that does not dissolve in a solvent is formed during film formation. When the epoxy resin (A) as a raw material contains a specific amount of the oligomer component of the epoxy resin (a) represented by the general formula 1, the obtained polymer epoxy resin (C) has an extremely loose network by heating. Although it can be presumed that the structure becomes easy and the self-film-formation property is excellent, there is a problem that when the oligomer component is excessive, the solvent solubility is deteriorated and the handling becomes impossible.

本発明の高分子量エポキシ樹脂(C)は、一般式1で示されるエポキシ樹脂(a)を50重量%以上含有する2官能性エポキシ樹脂類(A)と1分子中に2つのフェノール性水酸基を有するフェノール化合物とを触媒存在下で反応して得ることができる。2官能性エポキシ樹脂類(A)としては、エポキシ樹脂(a)を100重量%で用いることができるが、その他の2官能性エポキシ樹脂を50重量%以下で含有することができる。その他の2官能性エポキシ樹脂が、2官能性エポキシ樹脂類(A)中で50重量%以上を占める場合は、本発明の効果を損ない易くなる。本発明の効果を損なわない範囲で用いることができるエポキシ樹脂類(A)としては、ビスフェノールA(BPA)型エポキシ樹脂(新日鐵化学株式会社製エポトートYD−128、YD−8125,YD−011,YD−825GSなど)、ビスフェノールF(BPF)型エポキシ樹脂(新日鐵化学株式会社製YDF−170,YDF−8170,YDF−2001,YDF−870GSなど)、テトラメチルビスフェノールF型エポキシ樹脂(新日鐵化学株式会社製YSLV−80XY)、テトラメチルビフェニル型エポキシ樹脂(三菱化学株式会社製YX−4000など)、リン含有エポキシ樹脂(新日鐵化学株式会社製FX−305など)、などの公知慣用の2官能性エポキシ樹脂が挙げられ、これらを単独で用いても良いし、2種以上を混合して用いても良い。 The high molecular weight epoxy resin (C) of the present invention comprises a bifunctional epoxy resin (A) containing 50 wt% or more of the epoxy resin (a) represented by the general formula 1 and two phenolic hydroxyl groups in one molecule. It can be obtained by reacting with a phenol compound having it in the presence of a catalyst. As the bifunctional epoxy resins (A), the epoxy resin (a) can be used at 100% by weight, but other bifunctional epoxy resins can be contained at 50% by weight or less. When other bifunctional epoxy resins occupy 50% by weight or more in the bifunctional epoxy resins (A), the effects of the present invention are easily impaired. Examples of the epoxy resins (A) that can be used within the range not impairing the effects of the present invention include bisphenol A (BPA) type epoxy resins (Epototo YD-128, YD-8125, YD-011 manufactured by Nippon Steel Chemical Co., Ltd.). , YD-825GS, etc.), bisphenol F (BPF) type epoxy resin (YDF-170, YDF-8170, YDF-2001, YDF-870GS, etc., manufactured by Nippon Steel Chemical Co., Ltd.), tetramethylbisphenol F type epoxy resin (new) Nichijo Chemical Co., Ltd. YSLV-80XY), tetramethylbiphenyl type epoxy resin (Mitsubishi Chemical Corporation YX-4000, etc.), phosphorus-containing epoxy resin (Nippon Steel Chemical Co., Ltd. FX-305, etc.) Conventional bifunctional epoxy resins can be used, and these may be used alone or in combination of two kinds. It may be mixed and used the above.

本発明において重要となる一般式1で示されるエポキシ樹脂(a)のオリゴマー成分含有量はゲルパーミエーションクロマトグラフィにより決定する。すなわち総ピーク面積に対して、n=1成分であるピーク(S)より高分子量側の成分の合計面積をオリゴマー成分含有量として面積%で表す。 The oligomer component content of the epoxy resin (a) represented by the general formula 1 which is important in the present invention is determined by gel permeation chromatography. That is, with respect to the total peak area, the total area of components on the high molecular weight side from the peak (S) where n = 1 component is expressed in area% as the oligomer component content.

本発明で用いるエポキシ樹脂(a)は1,4−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン、1,8−ジヒドロキシナフタレンなど、ひとつのナフタレン環にふたつの水酸基を持つ化合物をエピハロヒドリンにてエポキシ樹脂としたものであるが、このエポキシ樹脂に含まれる上記オリゴマー成分含有量が1.0面積%以上5.0面積%以下であり、好ましくは1.5面積%以上4.0面積%以下である。オリゴマー成分含有量が1.0面積%以下の場合フィルム成膜性に劣り、オリゴマー成分含有量が5面積%を超えると架橋密度が高くなりすぎるため脆いフィルムとなり易く、極端な場合は高分子量エポキシ樹脂合成中に溶剤に不溶な成分が生成することがあるため好ましくない。 The epoxy resin (a) used in the present invention is one naphthalene ring such as 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,8-dihydroxynaphthalene. The compound having two hydroxyl groups is an epoxy resin using epihalohydrin, and the content of the oligomer component contained in the epoxy resin is 1.0 area% or more and 5.0 area% or less, preferably 1 It is 0.5 area% or more and 4.0 area% or less. When the oligomer component content is 1.0 area% or less, the film-forming property is inferior, and when the oligomer component content exceeds 5 area%, the crosslinking density becomes too high and a brittle film tends to be formed. This is not preferable because a component insoluble in a solvent may be generated during resin synthesis.

上記エピハロヒドリンについて、技術的には何を使っても特に問題はないが、このうちエピクロルヒドリンがもっとも安価かつ汎用的で、工業的に広く利用されている。また、用いるアルカリについても特に指定はないが、水酸化ナトリウム水溶液が工業的に広く利用されている。 The above-mentioned epihalohydrin has no particular problem even if it is used technically. Of these, epichlorohydrin is the most inexpensive and versatile, and is widely used industrially. Moreover, although there is no designation | designated also about the alkali to be used, sodium hydroxide aqueous solution is widely utilized industrially.

本発明で用いるフェノール化合物(B)は、1分子中に2つのフェノール性水酸基を有する化合物であれば特に制限はなく、ビスフェノールA、ビスフェノールF−D、ビスフェノールE、ビスフェノールZ、ビスフェノールフルオレン(ビスフェノールフルオレノン)、4,4’−ジヒドロキシベンゾフェノンなどのビスフェノール類、4,4’−ジヒドロキシビフェニル、1,6’−ジヒドロキシナフタレンおよびその位置異性体、HCA−HQ(三光株式会社製リン含有化合物)などが挙げられ、目的に応じてこれらを単独で用いても、複数を組み合わせて使用しても良い。 The phenol compound (B) used in the present invention is not particularly limited as long as it is a compound having two phenolic hydroxyl groups in one molecule. Bisphenol A, bisphenol FD, bisphenol E, bisphenol Z, bisphenol fluorene (bisphenol fluorenone) ), Bisphenols such as 4,4′-dihydroxybenzophenone, 4,4′-dihydroxybiphenyl, 1,6′-dihydroxynaphthalene and its positional isomers, HCA-HQ (phosphorus-containing compound manufactured by Sanko Co., Ltd.), and the like. Depending on the purpose, these may be used alone or in combination.

本発明の高分子量エポキシ樹脂(C)は、製造時の合成反応の工程において溶媒を用いても良い。その溶媒としてはポリヒドロキシポリエーテル樹脂を溶解し、反応に悪影響のないものであればどのようなものでも良い。例えば、芳香族系炭化水素、ケトン類、アミド系溶媒、グリコールエーテル類等が挙げられる。芳香族系炭化水素の具体例としては、ベンゼン、トルエン、キシレン等が挙げられる。ケトン類としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、2−ヘプタノン、4−ヘプタノン、2−オクタノン、シクロヘキサノン、アセチルアセトン、ジオキサン等が挙げられる。アミド系溶媒の具体例としては、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、2−ピロリドン、N−メチルピロリドン等が挙げられる。グリコールエーテル類の具体例としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ−n−ブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ−n−ブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノ−n−ブチルエーテル、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。これらの溶媒は2種以上併用することができる。使用する溶媒の量は反応条件に応じて適宜選択することができるが、固形分濃度が35%〜95%となるようにすることが好ましい。また、反応中に高粘性生成物が生じる場合は反応途中で溶媒を添加して反応を続けることができる。反応終了後、溶媒は必要に応じて蒸留等により除去することもできるし、更に追加することもできる。 The high molecular weight epoxy resin (C) of the present invention may use a solvent in a synthetic reaction step during production. Any solvent may be used as long as it dissolves the polyhydroxy polyether resin and does not adversely affect the reaction. Examples thereof include aromatic hydrocarbons, ketones, amide solvents, glycol ethers and the like. Specific examples of the aromatic hydrocarbon include benzene, toluene, xylene and the like. Examples of ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, 2-heptanone, 4-heptanone, 2-octanone, cyclohexanone, acetylacetone, and dioxane. Specific examples of the amide solvent include formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, 2-pyrrolidone, N-methylpyrrolidone and the like. Specific examples of glycol ethers include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol dimethyl ether, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono -N-butyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether, propylene glycol mono-n-butyl ether, propylene glycol monomethyl ether acetate and the like. Two or more of these solvents can be used in combination. The amount of the solvent to be used can be appropriately selected according to the reaction conditions, but it is preferable that the solid content concentration is 35% to 95%. Further, when a highly viscous product is produced during the reaction, the reaction can be continued by adding a solvent during the reaction. After completion of the reaction, the solvent can be removed by distillation or the like, if necessary, or further added.

本発明の高分子量エポキシ樹脂(C)を製造する際の反応触媒については特に指定するものはないが、アルカリ金属水酸化物、4級アンモニウム塩類、アミン類、ホスフィン類、ホスホニウム塩類、イミダゾール類が好適である。触媒はエポキシ樹脂類(A)100重量部に対して0.01〜5.0重量部が必要に応じ用いられる。また、反応温度については触媒種により好適な水準は異なるが、通常は40℃から200℃の範囲で反応をおこない、特にホスフィン類の場合は140℃から180℃程度で反応をおこなう。なお、メチルエチルケトンなどの低沸点溶媒を使用する場合はオートクレーブを使用して高圧下で反応をおこなうことで必要な反応温度を得ることができる。 The reaction catalyst for producing the high molecular weight epoxy resin (C) of the present invention is not particularly specified, but alkali metal hydroxides, quaternary ammonium salts, amines, phosphines, phosphonium salts, imidazoles can be used. Is preferred. The catalyst is used in an amount of 0.01 to 5.0 parts by weight based on 100 parts by weight of the epoxy resin (A), if necessary. The reaction temperature varies depending on the type of catalyst, but the reaction is usually carried out in the range of 40 ° C to 200 ° C. In the case of phosphines, the reaction is carried out at about 140 ° C to 180 ° C. When a low-boiling solvent such as methyl ethyl ketone is used, the necessary reaction temperature can be obtained by carrying out the reaction under high pressure using an autoclave.

本発明の高分子量エポキシ樹脂(C)の好ましい重量平均分子量は30,000以上80,000以下であり、より好ましくは30,000以上60,000以下である。重量平均分子量が80,000より高いと通常用いられる溶剤組成で使用する場合は粘度が高くなりハンドリング性が悪化するなどの問題が発生しやすい。また、溶剤を追加してハンドリング性の向上を図ると輸送効率など経済的な面からも問題となる。重量平均分子量が30,000未満では自己造膜性に劣るものとなる。また、高分子量エポキシ樹脂(C)を得る際のエポキシ樹脂類(A)とフェノール化合物(B)との縮合反応におけるエポキシ基:フェノール性水酸基のモル比は通常0.9:1.1〜1.1:0.9であり、好ましくは0.95:1.05〜1.05:0.95である。本発明の高分子量エポキシ樹脂(C)は、エポキシ樹脂類(A)がフェノール化合物(B)に比べ過剰であると一般的に末端はエポキシ基となり、少ないと末端はフェノール性水酸基となる。 The weight average molecular weight of the high molecular weight epoxy resin (C) of the present invention is preferably 30,000 to 80,000, more preferably 30,000 to 60,000. When the weight average molecular weight is higher than 80,000, when used in a solvent composition that is usually used, problems such as high viscosity and poor handling are likely to occur. Further, if a solvent is added to improve the handling property, there will be a problem from the economical aspect such as transportation efficiency. When the weight average molecular weight is less than 30,000, the self-film forming property is inferior. The molar ratio of epoxy group: phenolic hydroxyl group in the condensation reaction of the epoxy resin (A) and the phenol compound (B) in obtaining the high molecular weight epoxy resin (C) is usually 0.9: 1.1 to 1. 1: 0.9, preferably 0.95: 1.05 to 1.05: 0.95. In the high molecular weight epoxy resin (C) of the present invention, when the epoxy resin (A) is excessive as compared with the phenol compound (B), the terminal generally becomes an epoxy group, and when it is small, the terminal becomes a phenolic hydroxyl group.

本発明の硬化性樹脂組成物(D)は、本発明の効果を損なわない範囲で、他のエポキシ樹脂を用いることができる。用いるエポキシ樹脂は1分子中に2つ以上のエポキシ基を有する化合物が好ましい。具体的にはBPA型エポキシ樹脂(新日鐵化学株式会社製エポトートYD−128、YD−8125,YD−011,YD−825GSなど)、BPF型エポキシ樹脂(新日鐵化学株式会社製YDF−170,YDF−8170,YDF−2001,YDF−870GSなど)、フェノールノボラック型エポキシ樹脂(新日鐵化学株式会社製YDPN−638など)、クレゾールノボラック型エポキシ樹脂(新日鐵化学株式会社製YDCN−701など)、テトラメチルビスフェノールF型エポキシ樹脂(新日鐵化学株式会社製YSLV−80XY)、テトラメチルビフェニル型エポキシ樹脂(三菱化学株式会社製YX−4000など)、ナフトールアラルキル型エポキシ樹脂(新日鐵化学株式会社製ESN−170,ESN−375,ESN−475Vなど)、リン含有エポキシ樹脂(新日鐵化学株式会社製FX−289B,FX−305など)、多官能特殊骨格エポキシ樹脂(日本化薬株式会社製EPPN−501など)、ビフェニルアラルキルフェノール型エポキシ樹脂(日本化薬株式会社製NC−3000)など公知慣用の化合物が挙げられ、これらを単独で用いても良いし、2種以上を混合して用いても良い。また、物性をそこなわない範囲でフェニルグリシジルエーテルなどの単官能エポキシ樹脂を用いても良い。1分子中に2つ以上のエポキシ基を有するエポキシ樹脂の配合量は、高分子量エポキシ樹脂(C)95重量部〜20重量部に対して5重量部〜80重量部の範囲が好ましく、より好ましくは高分子量エポキシ樹脂(C)80重量部〜45重量部に対して20重量部〜55重量部である。1分子中に2つ以上のエポキシ基を有するエポキシ樹脂の配合量が5重量部〜80重量部以外では、高分子量エポキシ樹脂(C)の特性が発現されにくくなる。 The curable resin composition (D) of the present invention can use other epoxy resins as long as the effects of the present invention are not impaired. The epoxy resin used is preferably a compound having two or more epoxy groups in one molecule. Specifically, BPA type epoxy resin (Epototo YD-128, YD-8125, YD-011, YD-825GS, etc. manufactured by Nippon Steel Chemical Co., Ltd.), BPF type epoxy resin (YDF-170 manufactured by Nippon Steel Chemical Co., Ltd.) , YDF-8170, YDF-2001, YDF-870GS, etc.), phenol novolac type epoxy resins (such as YDPN-638 manufactured by Nippon Steel Chemical Co., Ltd.), cresol novolac type epoxy resins (YDCN-701 manufactured by Nippon Steel Chemical Co., Ltd.) ), Tetramethylbisphenol F type epoxy resin (YSLV-80XY manufactured by Nippon Steel Chemical Co., Ltd.), tetramethyl biphenyl type epoxy resin (YX-4000 manufactured by Mitsubishi Chemical Co., Ltd.), naphthol aralkyl type epoxy resin (Nippon Steel) ESN-170, ESN-375, ES manufactured by Chemical Co., Ltd. -475V, etc.), phosphorus-containing epoxy resins (FX-289B, FX-305, etc. manufactured by Nippon Steel Chemical Co., Ltd.), polyfunctional special skeleton epoxy resins (EPPN-501, etc., Nippon Kayaku Co., Ltd.), biphenylaralkylphenol type Known and commonly used compounds such as epoxy resins (NC-3000 manufactured by Nippon Kayaku Co., Ltd.) may be mentioned, and these may be used alone or in admixture of two or more. Moreover, you may use monofunctional epoxy resins, such as a phenyl glycidyl ether, in the range which does not spoil a physical property. The amount of the epoxy resin having two or more epoxy groups in one molecule is preferably in the range of 5 to 80 parts by weight, more preferably 95 to 20 parts by weight of the high molecular weight epoxy resin (C). Is 20 to 55 parts by weight with respect to 80 to 45 parts by weight of the high molecular weight epoxy resin (C). When the blending amount of the epoxy resin having two or more epoxy groups in one molecule is other than 5 parts by weight to 80 parts by weight, the characteristics of the high molecular weight epoxy resin (C) are hardly expressed.

本発明の硬化性樹脂組成物(D)に用いる硬化剤はアミン系硬化剤(脂肪族ポリアミン類、芳香族アミン類、ジシアンジアミドなど)、フェノール系硬化剤(フェノールノボラック樹脂など)、酸無水物系硬化剤(無水フタル酸、無水トリメリット酸など)、イミダゾール類(四国化成工業株式会社2MZなど)など公知慣用の化合物が挙げられ、これらを単独で用いても良いし、2種以上を混合して用いても良い。上記のアミン系硬化剤、フェノール系硬化剤、酸無水物系硬化剤の配合量については、1エポキシ当量のエポキシ樹脂に対し0.4〜1.3当量の硬化剤官能基を配合することが望ましい。この範囲を外れると得られるエポキシ樹脂組成物の耐熱性が損なわれるという問題が生じる。また、イミダゾール類については用いるエポキシ樹脂の100重量部に対し0.01〜5.0重量部が必要に応じ用いられる。 Curing agents used in the curable resin composition (D) of the present invention are amine curing agents (aliphatic polyamines, aromatic amines, dicyandiamide, etc.), phenolic curing agents (phenol novolac resin, etc.), and acid anhydrides. Examples include known and commonly used compounds such as curing agents (phthalic anhydride, trimellitic anhydride, etc.), imidazoles (such as Shikoku Kasei Kogyo Co., Ltd. 2MZ), and these may be used alone or in combination of two or more. May be used. About the compounding quantity of said amine type hardening | curing agent, a phenol type hardening | curing agent, and an acid anhydride type hardening | curing agent, 0.4-1.3 equivalent of hardening | curing agent functional groups may be mix | blended with respect to 1 epoxy equivalent epoxy resin. desirable. If it is out of this range, the problem arises that the heat resistance of the resulting epoxy resin composition is impaired. Moreover, about imidazole, 0.01-5.0 weight part is used as needed with respect to 100 weight part of the epoxy resin to be used.

前記硬化性樹脂組成物(D)を硬化する際、必要に応じて硬化触媒を用いることができる。たとえば2−メチルイミダゾールなどのイミダゾール類、トリフェニルホスフィンなどのリン化合物が挙げられる。硬化触媒の配合量は用いるエポキシ樹脂の100重量部に対し0.01〜5.0重量部が必要に応じ用いられる。 When hardening the said curable resin composition (D), a curing catalyst can be used as needed. Examples thereof include imidazoles such as 2-methylimidazole and phosphorus compounds such as triphenylphosphine. The blending amount of the curing catalyst is 0.01 to 5.0 parts by weight based on 100 parts by weight of the epoxy resin to be used, if necessary.

前記硬化性樹脂組成物(D)には粘度の調整、耐衝撃性、熱伝導性、難燃性の付与のため、フィラーを配合することができる。具体的にはシリカ、アルミナなどのフィラーのほか、ガラス繊維や炭素繊維などのファイバー状不織布、あるいは織布などを使用することができる。 The curable resin composition (D) can be blended with a filler for adjusting viscosity, imparting impact resistance, thermal conductivity, and flame retardancy. Specifically, in addition to fillers such as silica and alumina, fiber-like nonwoven fabrics such as glass fibers and carbon fibers, or woven fabrics can be used.

本発明の硬化性接着フィルム(E)はポリエチレンテレフタレートなどのフィルム上に薄膜を形成したものであり、ビルドアップフィルム、異方性導電フィルム、アンダーフィル用接着フィルムなどに使用できる。なお、硬化性樹脂組成物を塗工、乾燥後に必要に応じて保護フィルムをラミネートしても良い。 The curable adhesive film (E) of the present invention is obtained by forming a thin film on a film such as polyethylene terephthalate, and can be used for build-up films, anisotropic conductive films, adhesive films for underfills, and the like. In addition, you may laminate a protective film as needed after coating and drying a curable resin composition.

本発明の樹脂付き金属箔(F)は銅箔などの金属箔上に薄膜を形成したものであり、硬化性樹脂組成物を塗工、乾燥したものであり、樹脂付き銅箔などにして使用できる。 The metal foil with resin (F) of the present invention is obtained by forming a thin film on a metal foil such as copper foil, which is obtained by coating and drying a curable resin composition, and using it as a copper foil with resin. it can.

本発明のプリプレグ(G)はガラスクロス、ガラス不織布などに硬化性樹脂組成物を含浸し、乾燥したものであるが、ガラスに限定されるものではなく、アラミド繊維などの有機繊維やアルミナクロスなどの無機繊維を用いてもよい。 The prepreg (G) of the present invention is obtained by impregnating a glass cloth, a glass nonwoven fabric and the like with a curable resin composition and drying, but is not limited to glass, organic fibers such as aramid fibers, alumina cloth, and the like Inorganic fibers may be used.

本発明の硬化物は上記硬化性樹脂組成物(D)、硬化性接着フィルム(E)、樹脂付き金属箔(F)、プリプレグ(G)等を加工、熱硬化してなるものであり、代表的にはプリント配線板(リジッド、フレキシブル)などの電子材料用に用いることができる。いずれも非特許文献1などに記載の公知慣用の手法、工法で作製されるものである。 The cured product of the present invention is obtained by processing and thermosetting the curable resin composition (D), the curable adhesive film (E), the metal foil with resin (F), the prepreg (G), and the like. Specifically, it can be used for electronic materials such as printed wiring boards (rigid and flexible). All of them are produced by known and commonly used techniques and construction methods described in Non-Patent Document 1 and the like.

以下に実施例を示すが、本発明は以下の実施例に限られるものではない。 Examples are shown below, but the present invention is not limited to the following examples.

(原料樹脂類)
1分子中に2つのエポキシ基を有し、かつナフタレン骨格を有するエポキシ樹脂として、1,6−ジヒドロキシナフタレンのジグリシジルエーテル型エポキシ化物(エポキシ当量143.8g/eq、n=1成分含有量5.23面積%、オリゴマー成分含有量3.23面積%)、市販品の1,6−ジヒドロキシナフタレン型エポキシ樹脂(新日鐵化学株式会社製ZX−1711(エポキシ当量147.0g/eq、n=1成分含有量6.63面積%、オリゴマー成分含有量7.32面積%))およびZX−1711の蒸留品(エポキシ当量139.5g/eq、n=1成分含有量0.05面積%、オリゴマー成分含有量0.00面積%)、2,7−ジヒドロキシナフタレンのジグリシジルエーテル型エポキシ化物(エポキシ当量145.0g/eq、n=1成分含有量6.54面積%、オリゴマー成分含有量1.67面積%)を用いた。1分子中に2つのフェノール性水酸基を有する化合物として、4,4’−ジヒドロキシビフェニル、ビスフェノールAを用いた。その他のエポキシ樹脂として、新日鐵化学株式会社製YD−128(BPA型液状エポキシ樹脂、エポキシ当量188g/eq)を用いた。また、アミン系硬化剤として日本カーバイド株式会社製DYHARD−III(ジシアンジアミド、活性水素当量21.1g/eq)を用いた。さらに、特に記載のないものについては一般に入手が可能な試薬を用いた。
(Raw materials)
As an epoxy resin having two epoxy groups in one molecule and having a naphthalene skeleton, a diglycidyl ether type epoxidized product of 1,6-dihydroxynaphthalene (epoxy equivalent: 143.8 g / eq, n = 1 component content: 5 .23 area%, oligomer component content 3.23 area%), commercially available 1,6-dihydroxynaphthalene type epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., ZX-1711 (epoxy equivalent 147.0 g / eq, n = 1 component content 6.63 area%, oligomer component content 7.32 area%)) and ZX-1711 distilled product (epoxy equivalent 139.5 g / eq, n = 1 component content 0.05 area%, oligomer Component content 0.00 area%), 2,7-dihydroxynaphthalene diglycidyl ether type epoxidized product (epoxy equivalent 145.0 g) eq, n = 1 component content of 6.54 area%, the oligomer component content 1.67 area%) was used. 4,4′-dihydroxybiphenyl and bisphenol A were used as compounds having two phenolic hydroxyl groups in one molecule. As another epoxy resin, YD-128 (BPA type liquid epoxy resin, epoxy equivalent 188 g / eq) manufactured by Nippon Steel Chemical Co., Ltd. was used. Moreover, DYHARD-III (dicyandiamide, active hydrogen equivalent 21.1 g / eq) manufactured by Nippon Carbide Corporation was used as an amine curing agent. Furthermore, generally available reagents were used unless otherwise specified.

(原料エポキシ分析方法)
エポキシ樹脂の原料評価にはゲルパーミエーションクロマトグラフィを用いて分析した。具体的には東ソー株式会社製HLC−8220本体に、東ソー株式会社製のカラム、TSKgel G2000HXL、TSKgel G2000HXL、TSKgel G1000HXLを直列に備えたものを使用した。また、溶離液はテトラヒドロフランとし、流速は1ml/minとした。カラム室の温度を40℃にした。検出はRI検出器を用いて測定をおこなった。n=1成分含有量およびオリゴマー成分含有量は以下の式で計算により求めた値で単位は面積%である。
n=1成分含有量 =(図1におけるピーク(S)の面積)/(図1における総ピーク面積)×100%
オリゴマー成分含有量 =(図1におけるピーク(T)、ピーク(U)、およびピーク(V)の面積の和)/(図1における総ピーク面積)×100%
(Raw material epoxy analysis method)
The raw material evaluation of the epoxy resin was analyzed using gel permeation chromatography. Specifically, a Tosoh Corporation HLC-8220 main body with a Tosoh Corporation column, TSKgel G2000HXL, TSKgel G2000HXL, and TSKgel G1000HXL in series was used. The eluent was tetrahydrofuran and the flow rate was 1 ml / min. The temperature of the column chamber was 40 ° C. Detection was performed using an RI detector. The n = 1 component content and the oligomer component content are values obtained by calculation using the following formula, and the unit is area%.
n = 1 component content = (Area of peak (S) in FIG. 1) / (Total peak area in FIG. 1) × 100%
Oligomer component content = (Sum of areas of peak (T), peak (U), and peak (V) in FIG. 1) / (total peak area in FIG. 1) × 100%

(高分子量エポキシ樹脂分析方法)
高分子量エポキシ樹脂の重量平均分子量はゲルパーミエーションクロマトグラフィを用いて分析した。具体的には東ソー株式会社製HLC−8320本体に、東ソー株式会社製のカラム、TSK−gel GMHXL、TSK−gel GMHXL、TSK−gel G2000HXLを直列に備えたものを使用した。また、溶離液はテトラヒドロフランとし、流速は1ml/minとした。カラム室の温度を40℃にした。検出はRI検出器を使用し、測定をおこなった。重量平均分子量は標準ポリスチレン検量線を用いて求めた。
〔合成例1〕
(High molecular weight epoxy resin analysis method)
The weight average molecular weight of the high molecular weight epoxy resin was analyzed using gel permeation chromatography. Specifically, the Tosoh Corporation HLC-8320 main body with a Tosoh Corporation column, TSK-gel GMH XL , TSK-gel GMH XL , and TSK-gel G2000H XL in series was used. The eluent was tetrahydrofuran and the flow rate was 1 ml / min. The temperature of the column chamber was 40 ° C. Detection was performed using an RI detector. The weight average molecular weight was determined using a standard polystyrene calibration curve.
[Synthesis Example 1]

攪拌機、窒素吹きこみ口、減圧装置と冷却器と油水分離槽を備えた還流口、アルカリ金属水酸化物水溶液滴下口を備えたセパラブルフラスコに1,6−ジヒドロキシナフタレン300重量部、エピクロルヒドリンを1387.5重量部、ハイソルブMDMを208.1重量部仕込み、窒素パージの後60℃まで昇温、溶解したのちに水酸化ナトリウム48.8重量%水溶液を31.1重量部、発熱に注意しながら仕込み、1時間反応した。その後窒素の導入を停止し、160Torr、63℃の条件で、水酸化ナトリウム48.8重量%水溶液を290.0重量部を8時間かけて滴下した。滴下が終了したら150℃まで昇温し、さらに10Torrまで減圧してエピクロルヒドリンとハイソルブMDMを留去した。得られた樹脂にトルエンを加えたのち珪藻土を用いて濾過し、水酸化ナトリウム0.1重量%水溶液重量部にて洗浄後油水分離して水相を取り除いた。さらに水を加えて洗浄後、油水分離して水相を取り除いた。得られた樹脂溶液から水とトルエンを取り除き、1,6−ジヒドロキシナフタレンのジグリシジルエーテル型エポキシ樹脂a1を得た。得られた樹脂は褐色液状であり、そのエポキシ当量は143.8g/eqであり、n=1成分含有量は5.23面積%、オリゴマー成分含有量は3.23面積%であった。
〔合成例2〕
In a separable flask equipped with a stirrer, a nitrogen inlet, a reflux port equipped with a decompression device, a cooler, and an oil / water separation tank, and a separable flask equipped with an alkali metal hydroxide aqueous solution dropping port, 300 parts by weight of 1,6-dihydroxynaphthalene and 1387 of epichlorohydrin .5 parts by weight, 208.1 parts by weight of high-solve MDM were charged, heated to 60 ° C. after nitrogen purge, dissolved, and 31.1 parts by weight of 48.8% by weight sodium hydroxide aqueous solution, paying attention to heat generation Charged and reacted for 1 hour. Thereafter, the introduction of nitrogen was stopped, and 290.0 parts by weight of a 48.8 wt% sodium hydroxide aqueous solution was added dropwise over 8 hours under the conditions of 160 Torr and 63 ° C. When the dropping was completed, the temperature was raised to 150 ° C., and the pressure was reduced to 10 Torr to distill off epichlorohydrin and high-solve MDM. Toluene was added to the obtained resin, followed by filtration using diatomaceous earth. After washing with 0.1 part by weight of sodium hydroxide aqueous solution and oil-water separation, the aqueous phase was removed. Further, water was added for washing, followed by oil / water separation to remove the aqueous phase. Water and toluene were removed from the resulting resin solution to obtain 1,6-dihydroxynaphthalene diglycidyl ether type epoxy resin a1. The obtained resin was a brown liquid, its epoxy equivalent was 143.8 g / eq, n = 1 component content was 5.23 area%, and oligomer component content was 3.23 area%.
[Synthesis Example 2]

2,7−ジヒドロキシナフタレンを用いた他は合成例1と同様の手順で合成をおこない、2,7−ジヒドロキシナフタレンのジグリシジルエーテル型エポキシ樹脂を得た。得られた樹脂は褐色液状であるが、結晶性を有しており、白色の固体となった。また、そのエポキシ当量は145.0g/eqであり、n=1成分含有量は6.54面積%、オリゴマー成分含有量は1.67面積%であった。
〔合成例3〕
The synthesis was performed in the same procedure as in Synthesis Example 1 except that 2,7-dihydroxynaphthalene was used to obtain a diglycidyl ether type epoxy resin of 2,7-dihydroxynaphthalene. The obtained resin was a brown liquid, but had crystallinity and became a white solid. Moreover, the epoxy equivalent was 145.0 g / eq, n = 1 component content was 6.54 area%, and oligomer component content was 1.67 area%.
[Synthesis Example 3]

新日鐵化学株式会社製ZX−1711を蒸留し、1,6−ジヒドロキシナフタレンジグリシジルエーテルを得た。得られた樹脂は無色透明の液状であり、そのエポキシ当量は139.5g/eqであり、n=1成分含有量は0.05面積%であり、オリゴマー成分含有量は0.00面積%であった。
〔実施例1〕
ZX-1711 manufactured by Nippon Steel Chemical Co., Ltd. was distilled to obtain 1,6-dihydroxynaphthalenediglycidyl ether. The obtained resin is colorless and transparent liquid, its epoxy equivalent is 139.5 g / eq, n = 1 component content is 0.05 area%, oligomer component content is 0.00 area%. there were.
[Example 1]

攪拌機、冷却管、温度計、窒素吹きこみ口を備えたセパラブルフラスコに、合成例1で得られた1,6−ジヒドロキシナフタレンのジグリシジルエーテル型エポキシ樹脂を61.2重量部、4,4’−ジヒドロキシビフェニルを38.8重量部、シクロヘキサノンを25重量部仕込み、145℃まで昇温、溶解して1時間撹拌した。その後反応触媒としてトリス−(2,6−ジメトキシフェニル)ホスフィンを0.1重量部仕込み、165℃まで昇温した。反応の進行とともに反応溶液の粘度が上昇するが、適宜シクロヘキサノンを加えて一定のトルクとなるよう撹拌を継続した。また反応はゲルパーミエーションクロマトグラフィにて随時経過を確認し、重量平均分子量が40000前後となったところで反応を終了した。反応終了後、高分子量エポキシ樹脂/シクロヘキサノン/メチルエチルケトン=40/30/30(重量比)となるように希釈し、高分子量エポキシ樹脂溶液A1を得た。得られた樹脂溶液をアルミニウム箔上に塗工、熱風循環式オーブンにて空気雰囲気下180℃にて2時間乾燥した。さらに水酸化ナトリウムの5重量%水溶液を用いてアルミニウム箔を溶解、洗浄した上で100℃で10分乾燥し、厚さ70μmのフィルムA2を得た。
〔実施例2〕
In a separable flask equipped with a stirrer, a condenser, a thermometer, and a nitrogen inlet, 61.2 parts by weight of the 1,6-dihydroxynaphthalene diglycidyl ether type epoxy resin obtained in Synthesis Example 1 was used. 38.8 parts by weight of '-dihydroxybiphenyl and 25 parts by weight of cyclohexanone were charged, heated to 145 ° C, dissolved, and stirred for 1 hour. Thereafter, 0.1 part by weight of tris- (2,6-dimethoxyphenyl) phosphine was charged as a reaction catalyst, and the temperature was raised to 165 ° C. Although the viscosity of the reaction solution increased with the progress of the reaction, cyclohexanone was appropriately added and stirring was continued to obtain a constant torque. The reaction was confirmed as needed by gel permeation chromatography, and the reaction was terminated when the weight average molecular weight reached around 40,000. After completion of the reaction, the reaction mixture was diluted so that high molecular weight epoxy resin / cyclohexanone / methyl ethyl ketone = 40/30/30 (weight ratio) to obtain high molecular weight epoxy resin solution A1. The obtained resin solution was coated on an aluminum foil and dried at 180 ° C. for 2 hours in a hot air circulation oven in an air atmosphere. Further, the aluminum foil was dissolved and washed with a 5% by weight aqueous solution of sodium hydroxide and dried at 100 ° C. for 10 minutes to obtain a film A2 having a thickness of 70 μm.
[Example 2]

ナフタレン骨格を有するエポキシ樹脂として合成例2で得られた2,7−ジヒドロキシナフタレンのジグリシジルエーテル型エポキシ樹脂を56.7重量部、ビスフェノールAを43.3重量部仕込んだ他は実施例1と同様な手順で重量平均分子量が40000前後となったところで反応を終了し高分子量エポキシ樹脂溶液B1およびフィルムB2を得た。
〔比較例1〕
Except that 56.7 parts by weight of diglycidyl ether type epoxy resin of 2,7-dihydroxynaphthalene obtained in Synthesis Example 2 as an epoxy resin having a naphthalene skeleton and 43.3 parts by weight of bisphenol A were charged, Example 1 In the same procedure, when the weight average molecular weight reached around 40,000, the reaction was terminated to obtain a high molecular weight epoxy resin solution B1 and a film B2.
[Comparative Example 1]

ナフタレン骨格を有するエポキシ樹脂として合成例3で得られた1,6−ジヒドロキシナフタレンのジグリシジルエーテルを60.7重量部、4,4’−ジヒドロキシビフェニルを39.3重量部仕込んだ他は実施例1と同様な手順で重量平均分子量が40000前後となったところで反応を終了し高分子量エポキシ樹脂溶液C1およびフィルムC2を得た。
〔比較例2〕
Example 1 except that 60.7 parts by weight of diglycidyl ether of 1,6-dihydroxynaphthalene obtained in Synthesis Example 3 as an epoxy resin having a naphthalene skeleton and 39.3 parts by weight of 4,4′-dihydroxybiphenyl were charged. The reaction was terminated when the weight average molecular weight reached around 40,000 in the same procedure as in No. 1 to obtain a high molecular weight epoxy resin solution C1 and a film C2.
[Comparative Example 2]

ナフタレン骨格を有するエポキシ樹脂として合成例3で得られた1,6−ジヒドロキシナフタレンのジグリシジルエーテルを53.5重量部、4,4’−ジヒドロキシビスフェノールSを46.5重量部仕込んだ他は実施例1と同様な手順で高分子量エポキシ樹脂溶液D1およびフィルムD2を得た。ただし反応は重量平均分子量が18000程度まで上昇したところで反応の進行が著しく遅くなり、また分析用の溶剤にも溶けにくくなっていったので反応を終了した。
〔比較例3〕
Implementation was conducted except that 53.5 parts by weight of diglycidyl ether of 1,6-dihydroxynaphthalene obtained in Synthesis Example 3 as an epoxy resin having a naphthalene skeleton and 46.5 parts by weight of 4,4′-dihydroxybisphenol S were charged. High molecular weight epoxy resin solution D1 and film D2 were obtained in the same procedure as in Example 1. However, the reaction was terminated when the weight average molecular weight rose to about 18000, and the reaction progressed remarkably and became difficult to dissolve in the solvent for analysis.
[Comparative Example 3]

ナフタレン骨格を有するエポキシ樹脂としてZX−1711を61.9重量部、4,4’−ジヒドロキシビフェニルを38.1重量部仕込んだ他は実施例1と同様な手順で反応をおこなった結果、反応開始より2時間で溶媒に不溶なゲルが生成したため、中断した。
〔比較例4〕
As a result of carrying out the reaction in the same procedure as in Example 1 except that 61.9 parts by weight of ZX-1711 and 38.1 parts by weight of 4,4′-dihydroxybiphenyl were charged as an epoxy resin having a naphthalene skeleton, the reaction started. In 2 hours, a gel insoluble in the solvent was formed, and the process was interrupted.
[Comparative Example 4]

新日鐵化学株式会社製高分子量エポキシ樹脂YP−50S(重量平均分子量50000)を100重量部をシクロヘキサノン75重量部、メチルエチルケトン75重量部からなる混合溶液に溶解し、高分子量エポキシ樹脂溶液E1を得た。また、実施例1と同様の手順でフィルムE2を得た。 High molecular weight epoxy resin YP-50S (weight average molecular weight 50000) manufactured by Nippon Steel Chemical Co., Ltd. is dissolved in a mixed solution consisting of 75 parts by weight of cyclohexanone and 75 parts by weight of methyl ethyl ketone to obtain a high molecular weight epoxy resin solution E1. It was. A film E2 was obtained in the same procedure as in Example 1.

実施例1〜2および比較例1〜4を表2にまとめた。また得られたフィルムの測定は下記に示す方法によって行った。 Examples 1-2 and Comparative Examples 1-4 are summarized in Table 2. Moreover, the measurement of the obtained film was performed by the method shown below.

Figure 0005719562
Figure 0005719562

(破断伸度)
高分子量エポキシ樹脂フィルムを幅10mm×長さ60mmに切り出した。得られたフィルムを180℃で5分間乾燥し、試験片を得た。測定には株式会社島津製作所製オートグラフEZ−Sを用いて、測定長30mmとして試験片の高分子量フェノキシ樹脂の破断伸度と最大点応力を測定した。なお、このときの引っ張り速度は1mm/minとした。
(Elongation at break)
A high molecular weight epoxy resin film was cut into a width of 10 mm and a length of 60 mm. The obtained film was dried at 180 ° C. for 5 minutes to obtain a test piece. For the measurement, an autograph EZ-S manufactured by Shimadzu Corporation was used, and the elongation at break and the maximum point stress of the high molecular weight phenoxy resin of the test piece were measured with a measurement length of 30 mm. The pulling speed at this time was 1 mm / min.

(熱機械的測定)
高分子量エポキシ樹脂フィルムの熱機械的測定の測定はエスアイアイ・ナノテクノロジー株式会社製TMA7100を用いておこなった。高分子量エポキシ樹脂フィルムを幅4mm×長さ30mmに切り出した。測定モードは引っ張りとし、引っ張り加重は0.14MPa、測定長は10mmとした。測定温度範囲は室温から240℃とした。昇温速度は5℃/minとした。熱膨張における変曲点の外挿点をTg(TMA)とし、Tg(TMA)よりも低温側の線膨張率(CTE;Coefficient of Thermal Expansion)をα1とした。
(Thermomechanical measurement)
The thermomechanical measurement of the high molecular weight epoxy resin film was performed using TMA7100 manufactured by SII Nano Technology. A high molecular weight epoxy resin film was cut into a width of 4 mm and a length of 30 mm. The measurement mode was tensile, the tensile load was 0.14 MPa, and the measurement length was 10 mm. The measurement temperature range was from room temperature to 240 ° C. The heating rate was 5 ° C./min. The extrapolation point of the inflection point in thermal expansion was defined as Tg (TMA), and the coefficient of linear expansion (CTE; Coefficient of Thermal Expansion) on the lower temperature side than Tg (TMA) was defined as α1.

(示差走査熱量測定)
高分子量エポキシ樹脂の示差走査熱量測定の測定はエスアイアイ・ナノテクノロジー株式会社製DSC6200を用いておこなった。高分子量エポキシ樹脂フィルムをパンチングし、積層、アルミニウム製カプセルにパッキングしたものを測定試料とした。測定温度範囲は室温から240℃とした。昇温速度は10℃/minとした。測定は2サイクルおこない、2サイクル目に得られたDSCチャートより、補外ガラス転移開始温度(Tig)を高分子量エポキシ樹脂のTg(DSC)とした。
(Differential scanning calorimetry)
Measurement of differential scanning calorimetry of the high molecular weight epoxy resin was performed using DSC6200 manufactured by SII Nano Technology. A measurement sample was punched from a high molecular weight epoxy resin film, laminated and packed in an aluminum capsule. The measurement temperature range was from room temperature to 240 ° C. The heating rate was 10 ° C./min. The measurement was performed for 2 cycles, and from the DSC chart obtained in the second cycle, the extrapolated glass transition start temperature (Tig) was defined as Tg (DSC) of the high molecular weight epoxy resin.

表2に示すとおり、実施例1,実施例2のナフタレン骨格を含有する高分子量エポキシ樹脂は比較例4と比べてTgが高く、低線膨張性を有することがわかった。また、実施例1,実施例2は比較例1、比較例2と比べて破断伸度が大きい。なお、比較例1と比較例4で、破断伸度に有意差はなく、多環芳香族があれば破断伸度が高い、すなわちフィルム形成性に優れるものではないという結果を得た。
〔実施例3〜実施例4及び比較例5〜比較例6〕
As shown in Table 2, it was found that the high molecular weight epoxy resins containing the naphthalene skeleton of Examples 1 and 2 had a higher Tg than that of Comparative Example 4 and low linear expansion. In addition, Examples 1 and 2 have a higher elongation at break than Comparative Examples 1 and 2. In Comparative Example 1 and Comparative Example 4, there was no significant difference in elongation at break, and the result was that if there was a polycyclic aromatic, the elongation at break was high, that is, the film formability was not excellent.
[Examples 3 to 4 and Comparative Examples 5 to 6]

硬化性樹脂組成物の配合ついて下記に示す。
まず、ジシアンジアミドは次に示す条件にて調製した硬化剤溶液として配合した。ジシアンジアミドが4重量部を、N,N−ジメチルホルムアミドが15重量部、2−メトキシエタノールが15重量部からなる混合溶媒に溶解し、ジシアンジアミド溶液を得た。また、2−メトキシエタノール50重量部、メチルエチルケトン50重量部を混合し、希釈溶液を得た。固形分換算で表3記載の条件となるように高分子量エポキシ樹脂溶液とYD−128とジシアンジアミド溶液、および2−エチル−4−メチルイミダゾールを配合し、さらに不揮発分が40重量%になるように希釈溶液を加えた。
The formulation of the curable resin composition is shown below.
First, dicyandiamide was blended as a curing agent solution prepared under the following conditions. A dicyandiamide solution was obtained by dissolving 4 parts by weight of dicyandiamide, 15 parts by weight of N, N-dimethylformamide, and 15 parts by weight of 2-methoxyethanol. Further, 50 parts by weight of 2-methoxyethanol and 50 parts by weight of methyl ethyl ketone were mixed to obtain a diluted solution. A high molecular weight epoxy resin solution, YD-128, a dicyandiamide solution, and 2-ethyl-4-methylimidazole are blended so as to satisfy the conditions described in Table 3 in terms of solid content, and the non-volatile content is 40% by weight. Diluted solution was added.

実施例3〜実施例4及び比較例5〜比較例6を表3にまとめた。また得られたフィルムの測定は下記に示す方法によって行った。 Examples 3 to 4 and Comparative Examples 5 to 6 are summarized in Table 3. Moreover, the measurement of the obtained film was performed by the method shown below.

Figure 0005719562
Figure 0005719562

(硬化フィルムの作成)
得られた硬化性樹脂組成物溶液をアルミニウム箔に塗布後硬化し、厚さが70μmの硬化フィルムを作成した。これを150℃で1時間乾燥した後、180℃で2時間、0.1kPaの条件で硬化をおこない、アルミニウム箔付き硬化フィルムを得た。
(Cure cured film)
The obtained curable resin composition solution was applied to an aluminum foil and then cured to prepare a cured film having a thickness of 70 μm. This was dried at 150 ° C. for 1 hour and then cured at 180 ° C. for 2 hours under the conditions of 0.1 kPa to obtain a cured film with an aluminum foil.

(熱機械的測定)
硬化フィルムの熱機械的測定はエスアイアイ・ナノテクノロジー株式会社製TMASS7100を用いておこなった。アルミニウム箔付き硬化フィルムを4mm×30mmの大きさに切りだし、5重量%の水酸化ナトリウム水溶液にてアルミニウム箔を溶解してフィルムを得た。さらにこれを200℃のオーブンで5分間加熱し、試験片を得た。測定温度範囲は室温から240℃とした。昇温速度は5℃/minとした。引っ張り加重は0.14MPaとした。得られたTMA曲線の傾きが変わる外挿点を硬化フィルムのTg(TMA)とした。
(Thermomechanical measurement)
Thermomechanical measurement of the cured film was performed using TMASS7100 manufactured by SII Nano Technology. A cured film with an aluminum foil was cut into a size of 4 mm × 30 mm, and the aluminum foil was dissolved in a 5 wt% aqueous sodium hydroxide solution to obtain a film. Furthermore, this was heated in 200 degreeC oven for 5 minutes, and the test piece was obtained. The measurement temperature range was from room temperature to 240 ° C. The heating rate was 5 ° C./min. The tensile load was 0.14 MPa. The extrapolation point at which the slope of the obtained TMA curve changed was defined as Tg (TMA) of the cured film.

(示差走査熱量測定)
硬化フィルムの示差走査熱量測定におけるTgは、樹脂厚25μmのアルミニウム箔付き硬化フィルム用いた他は、高分子量エポキシ樹脂における示差操作熱量測定と同じ方法にて測定をおこない、硬化フィルムのTg(DSC)とした。
(Differential scanning calorimetry)
The Tg in the differential scanning calorimetry of the cured film was measured by the same method as the differential operation calorimetry in the high molecular weight epoxy resin except that a cured film with an aluminum foil having a resin thickness of 25 μm was used. The Tg of the cured film (DSC) It was.

(動的粘弾性測定)
動的粘弾性測定はエスアイアイ・ナノテクノロジー株式会社製DMA120を用いておこなった。樹脂厚75μmのアルミニウム箔付き硬化フィルムを10mm×60mmの大きさに切りだし、5重量%の水酸化ナトリウム水溶液にてアルミニウム箔を溶解してフィルムを得た。さらにこれを200℃のオーブンで5分間加熱し、試験片を得た。測定温度範囲は室温から280℃とした。昇温速度は2℃/minとした。測定モードはずりモードとし、また、測定周波数は10Hzで固定しておこなった。測定により得られた貯蔵弾性率(E′)曲線より、貯蔵弾性率が低下し始める外挿点の温度をDMAE′による硬化フィルムのTgとした。また、貯蔵弾性率( (E′)と損失弾性率(E″)の比(E″/ E′)の最大値の温度をDMAtanδによる硬化フィルムのTgとした。
(Dynamic viscoelasticity measurement)
The dynamic viscoelasticity measurement was performed using DMA 120 manufactured by SII Nano Technology. A cured film with an aluminum foil having a resin thickness of 75 μm was cut into a size of 10 mm × 60 mm, and the aluminum foil was dissolved in a 5 wt% aqueous sodium hydroxide solution to obtain a film. Furthermore, this was heated in 200 degreeC oven for 5 minutes, and the test piece was obtained. The measurement temperature range was from room temperature to 280 ° C. The temperature rising rate was 2 ° C./min. The measurement mode was the off mode, and the measurement frequency was fixed at 10 Hz. From the storage elastic modulus (E ′) curve obtained by the measurement, the temperature at the extrapolation point at which the storage elastic modulus begins to decrease was defined as Tg of the cured film by DMAE ′. The maximum temperature of the ratio (E ″ / E ′) of the storage elastic modulus ((E ′) to the loss elastic modulus (E ″) was defined as Tg of the cured film by DMAtan δ.

(銅箔引きはがし強さ試験)
銅箔引きはがし強さ試験の試験片作製方法を以下に示す。まずサンドブラストした鉄板をメチルエチルケトンにて脱脂処理をし、乾燥後の樹脂厚が12μmとなるように、得られた硬化性樹脂組成物を塗布した。同様に、三井金属鉱業株式会社製銅箔3EC−III(35μm)もメチルエチルケトンでの脱脂処理をおこなったのち、銅箔マット面に乾燥後の樹脂厚が12μmとなるように硬化性樹脂組成物を塗布した。これを150℃のオーブンで5分間加熱乾燥し、樹脂面同士を張り合わせた。同様の方法で、サンドブラストした鉄板と銅箔シャイニー面のそれぞれをメチルエチルケトンにて脱脂処理した後に乾燥後の樹脂厚が12μmとなるように硬化性樹脂組成物を塗布し、150℃のオーブンで5分間加熱乾燥して樹脂面同士を張り合わせた。これを真空状態で170℃、2MPaの条件で加熱圧着して硬化物を得た。この硬化物の銅箔を、JIS−C−6481に記載されている銅箔引きはがし強さ試験片と同様の形状に切り出し、試験片を得た。これを株式会社島津製作所製オートグラフEZ−Sにて銅箔マット面およびシャイニー面それぞれの引きはがし強さを測定した。
(Copper foil peel strength test)
The test piece preparation method of the copper foil peeling strength test is shown below. First, the sandblasted iron plate was degreased with methyl ethyl ketone, and the obtained curable resin composition was applied so that the resin thickness after drying was 12 μm. Similarly, after Mitsui Metal Mining Co., Ltd. copper foil 3EC-III (35 μm) was degreased with methyl ethyl ketone, a curable resin composition was applied to the copper foil mat surface so that the resin thickness after drying was 12 μm. Applied. This was heat-dried in an oven at 150 ° C. for 5 minutes, and the resin surfaces were bonded together. In the same manner, each of the sandblasted iron plate and the shiny surface of the copper foil was degreased with methyl ethyl ketone, and then the curable resin composition was applied so that the resin thickness after drying was 12 μm. The resin surfaces were bonded together by heat drying. This was heat-pressed under vacuum conditions at 170 ° C. and 2 MPa to obtain a cured product. The copper foil of this cured product was cut out in the same shape as the copper foil peeling strength test piece described in JIS-C-6481 to obtain a test piece. The peel strength of each of the copper foil mat surface and the shiny surface was measured with an autograph EZ-S manufactured by Shimadzu Corporation.

(硬化フィルムの破断伸度)
硬化フィルムの引っ張り強さと破断伸度はアルミニウム箔付き硬化フィルムを5重量%の水酸化ナトリウム水溶液にてアルミニウム箔を溶解したのち洗浄して乾燥したものを用いた他は、高分子量エポキシ樹脂フィルムと同様の方法で破断伸度と破断点の応力を測定した。
(Elongation at break of cured film)
The tensile strength and breaking elongation of the cured film are the same as that of the high molecular weight epoxy resin film except that the cured film with aluminum foil was dissolved in 5% by weight sodium hydroxide aqueous solution, washed and dried. The breaking elongation and the stress at the breaking point were measured by the same method.

表3は高分子量エポキシ樹脂(C)以外のエポキシ樹脂、硬化剤および硬化促進剤を共通としており、高分子量エポキシ樹脂(C)成分の影響を比較しやすくしたものである。本発明により得られた高分子量エポキシ樹脂(C)を用いて得られる硬化物は低線膨張性に優れ、硬化物に伸び性を付与できる結果となった。詳細については以下に記載する。 Table 3 shows a common epoxy resin other than the high molecular weight epoxy resin (C), a curing agent and a curing accelerator, and makes it easy to compare the influence of the high molecular weight epoxy resin (C) component. The cured product obtained by using the high molecular weight epoxy resin (C) obtained according to the present invention was excellent in low linear expansion property, and it was possible to impart extensibility to the cured product. Details are described below.

(表3・硬化フィルムのガラス転移温度について)
ガラス転移温度は骨格に依存するものであり、骨格が同一である実施例3と比較例4は同等な値を得た。実施例4と比較例5を比較した場合、多環芳香族を含有する実施例4は20℃程度高い値を示した。
(Table 3. Glass transition temperature of cured film)
The glass transition temperature depends on the skeleton, and Example 3 and Comparative Example 4 having the same skeleton obtained the same value. When Example 4 and Comparative Example 5 were compared, Example 4 containing a polycyclic aromatic showed a value about 20 ° C. higher.

(表3・低線膨張性について)
線膨張率については高分子量エポキシ樹脂(C)の線膨張率の結果を反映した結果となり、多環芳香族を含有するものは小さな値となり、多環芳香族を含有しないものは大きな値であるという結果を得た。
(Table 3. Low linear expansion)
The linear expansion coefficient reflects the result of the linear expansion coefficient of the high molecular weight epoxy resin (C), the value containing polycyclic aromatics is a small value, and the value not containing polycyclic aromatics is a large value. The result was obtained.

(表3・破断伸度と最大点応力について)
実施例3と比較例4は骨格が同一であり、ガラス転移温度や線膨張率において同一の物性を示すことがわかったが、破断伸度においては実施例3で40%、比較例4で13%と大きく異なる値を示した。この原因についても明らかではないが、実施例1で得られた樹脂には原料にオリゴマー成分が含まれるのに対して、比較例1で得られた樹脂にはオリゴマー成分が含まれないことから、この違いにより差異が生まれたのではないかと推測できる。
(Table 3. Breaking elongation and maximum point stress)
Example 3 and Comparative Example 4 have the same skeleton and were found to exhibit the same physical properties in terms of glass transition temperature and linear expansion coefficient. However, the breaking elongation was 40% in Example 3 and 13 in Comparative Example 4. % Was significantly different. Although it is not clear about this cause, the resin obtained in Example 1 contains an oligomer component in the raw material, whereas the resin obtained in Comparative Example 1 does not contain an oligomer component. It can be inferred that this difference created a difference.

図1中の各符号は以下のとおりである。
(O)は、一般式1で示されるエポキシ樹脂(a)のn=0成分であり、総ピーク面積に対する割合は87.746面積%である。
(P)は、一般式1で示されるエポキシ樹脂(a)に含まれる不純物成分であり、総ピーク面積に対する割合は1.583面積%である。
(Q)は、一般式1で示されるエポキシ樹脂(a)に含まれる不純物成分であり、総ピーク面積に対する割合は1.517面積%である。
(R)は、一般式1で示されるエポキシ樹脂(a)に含まれる不純物成分であり、総ピーク面積に対する割合は0.692面積%である。
(S)は、一般式1で示されるエポキシ樹脂(a)のn=1の成分であり、総ピーク面積に対する割合は5.233面積%である。
(T)は、一般式1で示されるエポキシ樹脂(a)のオリゴマー成分であり、総ピーク面積に対する割合は0.894面積%である。
(U)は、一般式1で示されるエポキシ樹脂(a)のオリゴマー成分であり、全ピーク面積に対する割合は1.427面積%である。
(V)は、一般式1で示されるエポキシ樹脂(a)のオリゴマー成分であり、全ピーク面積に対する割合は0.907面積%である。
The symbols in FIG. 1 are as follows.
(O) is an n = 0 component of the epoxy resin (a) represented by the general formula 1, and the ratio to the total peak area is 87.746 area%.
(P) is an impurity component contained in the epoxy resin (a) represented by the general formula 1, and the ratio to the total peak area is 1.583 area%.
(Q) is an impurity component contained in the epoxy resin (a) represented by the general formula 1, and the ratio to the total peak area is 1.517 area%.
(R) is an impurity component contained in the epoxy resin (a) represented by the general formula 1, and the ratio to the total peak area is 0.692 area%.
(S) is an n = 1 component of the epoxy resin (a) represented by the general formula 1, and the ratio to the total peak area is 5.233 area%.
(T) is an oligomer component of the epoxy resin (a) represented by the general formula 1, and the ratio to the total peak area is 0.894 area%.
(U) is an oligomer component of the epoxy resin (a) represented by the general formula 1, and the ratio to the total peak area is 1.427 area%.
(V) is an oligomer component of the epoxy resin (a) represented by the general formula 1, and the ratio to the total peak area is 0.907 area%.

Claims (7)

下記一般式1で示され、ゲルパーミエーションクロマトグラフィ(以下GPC)によるn=1成分より高分子量側のオリゴマー成分含有量が1面積%以上5面積%以下であるエポキシ樹脂(a)を50重量%以上含有する2官能性エポキシ樹脂類(A)と1分子中に2つのフェノール性水酸基を有する化合物(B)とを溶媒中で反応して得られる、GCによる標準ポリスチレン換算の重量平均分子量が30,000以上80,000以下である高分子量エポキシ樹脂(C)。
Figure 0005719562
(nは繰り返し単位を表し、nは0以上の整数である。)
50 wt% of an epoxy resin (a) represented by the following general formula 1 and having an oligomer component content of 1 to 5 area% from n = 1 component by gel permeation chromatography (hereinafter GPC) obtained by reacting difunctional epoxy resins containing (a) a compound having two phenolic hydroxyl groups in one molecule and (B) in a solvent or a weight average polystyrene equivalent by G P C High molecular weight epoxy resin (C) having a molecular weight of 30,000 to 80,000.
Figure 0005719562
(N represents a repeating unit, and n is an integer of 0 or more.)
請求項1記載の高分子量エポキシ樹脂(C)から成形されたフィルム Film molded from claims 1 Symbol placement of high molecular weight epoxy resin (C) 請求項1記載の高分子量エポキシ樹脂(C)を必須成分として含有してなる硬化性樹脂組成物(D)。 Curable resin composition comprising claim 1 Symbol placement of high molecular weight epoxy resin (C) as essential components (D). 請求項記載の硬化性樹脂組成物(D)を支持フィルム上に塗工、必要に応じて乾燥して得られる硬化性接着フィルム(E)。 A curable adhesive film (E) obtained by coating the curable resin composition (D) according to claim 3 on a support film and drying it as necessary. 請求項記載の硬化性樹脂組成物(D)を金属箔に塗工、必要に応じて乾燥して得られる樹脂付き金属箔(F)。 A metal foil with resin (F) obtained by applying the curable resin composition (D) according to claim 3 to a metal foil, and drying it as necessary. 請求項記載の硬化性樹脂組成物(D)をガラスクロスに含浸、必要に応じて乾燥して得られるプリプレグ(G)。 A prepreg (G) obtained by impregnating a glass cloth with the curable resin composition (D) according to claim 3 and drying as required. 請求項記載の硬化性樹脂組成物(D)、請求項記載の硬化性接着フィルム(E)、請求項記載の樹脂付き金属箔(F)、または請求項記載のプリプレグ(G)を硬化してなる硬化物(H)。 3. The curable resin composition according (D), the curable adhesive film of claim 4, wherein (E), the resin coated metal film according to claim 5, wherein (F), or claim 6, wherein the prepreg (G) Cured product (H) obtained by curing
JP2010237992A 2010-10-22 2010-10-22 High molecular weight epoxy resin, resin film using the high molecular weight epoxy resin, resin composition, and cured product Active JP5719562B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010237992A JP5719562B2 (en) 2010-10-22 2010-10-22 High molecular weight epoxy resin, resin film using the high molecular weight epoxy resin, resin composition, and cured product
TW100136707A TW201221535A (en) 2010-10-22 2011-10-11 High molecular weight epoxy resin, resin film, resin composition and cured article using said high molecular weight epoxy resin
CN201180050588.6A CN103261262B (en) 2010-10-22 2011-10-20 High molecular expoxy resin, the resin molding using this high molecular expoxy resin, resin combination and cured article
KR1020137009933A KR20130118319A (en) 2010-10-22 2011-10-20 High-molecular-weight epoxy resin and resin film, resin composition, and cured article using high-molecular-weight epoxy resin
PCT/JP2011/074735 WO2012053661A1 (en) 2010-10-22 2011-10-20 High-molecular-weight epoxy resin and resin film, resin composition, and cured article using high-molecular-weight epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010237992A JP5719562B2 (en) 2010-10-22 2010-10-22 High molecular weight epoxy resin, resin film using the high molecular weight epoxy resin, resin composition, and cured product

Publications (2)

Publication Number Publication Date
JP2012092158A JP2012092158A (en) 2012-05-17
JP5719562B2 true JP5719562B2 (en) 2015-05-20

Family

ID=45975364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010237992A Active JP5719562B2 (en) 2010-10-22 2010-10-22 High molecular weight epoxy resin, resin film using the high molecular weight epoxy resin, resin composition, and cured product

Country Status (5)

Country Link
JP (1) JP5719562B2 (en)
KR (1) KR20130118319A (en)
CN (1) CN103261262B (en)
TW (1) TW201221535A (en)
WO (1) WO2012053661A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6268753B2 (en) * 2012-05-24 2018-01-31 三菱ケミカル株式会社 Epoxy resin, epoxy resin composition, cured product, and laminate for electric / electronic circuit
JP6331460B2 (en) * 2014-02-24 2018-05-30 三菱ケミカル株式会社 Epoxy compound and method for producing the same, epoxy compound-containing composition, and cured product
JP7295376B2 (en) 2017-12-28 2023-06-21 日本製鉄株式会社 METAL-FIBER REINFORCED RESIN MATERIAL COMPOSITE AND PRODUCTION METHOD THEREOF
JP7215163B2 (en) * 2017-12-28 2023-01-31 日本製鉄株式会社 Metal-fiber reinforced resin material composite
EP3760435A4 (en) * 2018-02-28 2021-12-01 Nippon Steel Corporation Metal-fiber reinforced resin material composite body and method for producing metal-fiber reinforced resin material composite body
JP7243091B2 (en) * 2018-09-10 2023-03-22 株式会社レゾナック Epoxy resins, epoxy resin compositions, cured epoxy resins and composite materials
CN109897162B (en) * 2019-02-18 2021-05-18 江苏澳盛复合材料科技有限公司 Epoxy resin with release function, cured product and carbon fiber composite material thereof
JP7185384B2 (en) * 2019-04-17 2022-12-07 日本化薬株式会社 Epoxy resin, curable resin composition, and cured product thereof
JP6703341B1 (en) * 2019-07-16 2020-06-03 三菱電機株式会社 Insulation varnish composition, rotating machine coil and rotating machine
JP2021091787A (en) * 2019-12-10 2021-06-17 日東シンコー株式会社 Resin composition and heat conductive sheet
CN112208183A (en) * 2020-09-21 2021-01-12 清华大学深圳国际研究生院 Composite wave-absorbing material and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01268712A (en) * 1988-04-21 1989-10-26 Dainippon Ink & Chem Inc Epoxy resin composition
JPH0759620B2 (en) * 1990-09-12 1995-06-28 日立化成工業株式会社 Method for producing high molecular weight epoxy resin
JP3233222B2 (en) * 1991-07-31 2001-11-26 大日本インキ化学工業株式会社 Epoxy resin composition
JP2000336248A (en) * 1999-05-27 2000-12-05 Dainippon Ink & Chem Inc Epoxy resin composition and electrical laminate sheet
US20040247882A1 (en) * 2001-11-07 2004-12-09 Shinji Kouchi Epoxy resin compositions for fiber-reinforced composite materials, process for production of the materials and fiber-reinforced composite materials
JP2007023273A (en) * 2005-06-17 2007-02-01 Hitachi Chem Co Ltd Epoxy resin molding compound for sealing use and electronic component device
JP5387872B2 (en) * 2006-07-31 2014-01-15 Dic株式会社 Epoxy resin composition and cured product thereof
GB0619401D0 (en) * 2006-10-02 2006-11-08 Hexcel Composites Ltd Composite materials with improved performance
JP2009221487A (en) * 2009-07-09 2009-10-01 Japan Epoxy Resin Kk Method for producing high molecular weight epoxy resin

Also Published As

Publication number Publication date
JP2012092158A (en) 2012-05-17
WO2012053661A1 (en) 2012-04-26
TW201221535A (en) 2012-06-01
CN103261262B (en) 2015-11-25
KR20130118319A (en) 2013-10-29
CN103261262A (en) 2013-08-21

Similar Documents

Publication Publication Date Title
JP5719562B2 (en) High molecular weight epoxy resin, resin film using the high molecular weight epoxy resin, resin composition, and cured product
TWI488879B (en) Epoxy resin compositions
US8546510B2 (en) Crystalline resin cured product, crystalline resin composite material, and method for producing the same
WO2006090662A1 (en) Epoxy resin, hardenable resin composition containing the same and use thereof
US20180298186A1 (en) Resin composition, semi-cured thermally conductive film using same, circuit board and adhesive sheet
WO2007037206A1 (en) Thermosetting resin, thermosetting composition containing same, and molded body obtained from same
JP6515255B1 (en) Curable resin composition, varnish, prepreg, cured product, and laminate or copper-clad laminate
KR20080027769A (en) Polyamide resin, epoxy resin compositions, and cured articles thereof
JP7338479B2 (en) Modified epoxy resin, epoxy resin composition, cured product, and laminate for electric/electronic circuit
JP2019052278A (en) Epoxy resin, epoxy resin composition, cured product, and laminate for electric-electronic circuit
JP5135951B2 (en) Epoxy resin composition, cured product thereof, and novel epoxy resin
JP5457304B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP6119376B2 (en) Epoxy resin, epoxy resin composition and cured product
JP7185383B2 (en) Curable resin composition and its cured product
JP5734603B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP7185384B2 (en) Epoxy resin, curable resin composition, and cured product thereof
JPWO2020080292A1 (en) Curable resin composition, cured product and sheet-shaped molded product
TWI837297B (en) Ester compounds, resin compositions, hardeners, and build-up films
JP2010235823A (en) Epoxy resin, epoxy resin composition and cured product of the same
TW202337945A (en) Epoxy resin, epoxy resin composition, and epoxy resin cured product
JP5390491B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product
JP2022154693A (en) Epoxy resin, epoxy resin composition, and cured material
JP2022011688A (en) Resin composition and cured product thereof
KR20180042151A (en) Epoxy resin composition and adhesive film of same
JPH03721A (en) Heat-resistant and flame-retardant epoxy resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141125

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20150206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150323

R150 Certificate of patent or registration of utility model

Ref document number: 5719562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250