JPH04217675A - Epoxy resin and its intermediate, production thereof and epoxy resin composition - Google Patents

Epoxy resin and its intermediate, production thereof and epoxy resin composition

Info

Publication number
JPH04217675A
JPH04217675A JP3276591A JP3276591A JPH04217675A JP H04217675 A JPH04217675 A JP H04217675A JP 3276591 A JP3276591 A JP 3276591A JP 3276591 A JP3276591 A JP 3276591A JP H04217675 A JPH04217675 A JP H04217675A
Authority
JP
Japan
Prior art keywords
naphthyl
epoxy resin
bis
alkane
dihydroxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3276591A
Other languages
Japanese (ja)
Other versions
JP3137202B2 (en
Inventor
Ichiro Ogura
一郎 小椋
Toshiharu Ebara
江原 俊治
Taku Kitamura
卓 北村
Hiroshi Sakata
浩 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to US07/841,470 priority Critical patent/US5302672A/en
Publication of JPH04217675A publication Critical patent/JPH04217675A/en
Application granted granted Critical
Publication of JP3137202B2 publication Critical patent/JP3137202B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an epoxy resin, having a low viscosity in solvents and excellent in all of heat and water resistance and toughness. CONSTITUTION:2,7-Dihydroxynaphthalene is reacted with formaldehyde to provide 1,1-bis(2,7-dihydroxy-1-naphthyl)methane in substantial 100% yield. The resultant compound is then reacted with epichlorohydrin to produce 1,1-bis(2,7- diglycidyloxy-1-naphthyl)methane, which is subsequently cured with a curing agent to afford an epoxy resin having performance satisfactory in all respects of heat and water resistance and toughness. The aforementioned epoxy resin is optimum for especially semiconductor sealing materials.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はエポキシ樹脂とその中間
体、それらの製造方法及びエポキシ組成物に関する。と
りわけ、低溶融粘度で耐熱性、耐水性、靱性のいずれも
に優れたエポキシ樹脂、特に半導体封止用成形材料用に
優れたエポキシ樹脂に関するものである。 【0002】 【従来の技術】エポキシ樹脂は、種々の硬化剤を用いて
硬化させることにより、一般的に機械的性質、耐水性、
耐薬品性、電気特性などに優れた硬化物となり、接着剤
、塗料、積層板、成形材料、注型材料など、幅広い分野
に利用されている。 【0003】特に半導体封止用樹脂として、エポキシ樹
脂がその優れた特性および経済的利点により広く実用さ
れている。特開昭61−69826号公報及び特開平2
−189326号公報には、1,6−ジヒドロキシナフ
タレンにホルムアルデヒドを反応せしめて得られるノボ
ラック樹脂に更にエピクロルヒドリンを反応させて得ら
れるエポキシ樹脂が記載されている。 【0004】 【発明が解決しようとする課題】しかしながら1,6−
ジヒドロキシナフタレンにホルムアルデヒドを反応せし
めて得られる反応生成物は、二量化物、三量化物、四量
化物、五量化物等の混合物となるため、それとエピハロ
ヒドリンとを反応させて得られるエポキシ樹脂は、二量
化物のエポキシ樹脂、三量化物のエポキシ樹脂、四量化
物のエポキシ樹脂、五量化物のエポキシ樹脂等の混合物
になってしまうため、■低溶融粘度で■耐熱性、■耐水
性、■靱性の■〜■のいずれの性能においても満足でき
る優れたエポキシ樹脂は得られていない。 【0005】 【課題を解決するための手段】そこで本発明者らは上記
実状に鑑みて鋭意検討したところ、意外にも2,7−ジ
ヒドロキシナフタレンにホルムアルデヒドを反応せしめ
ると、2、7−ジヒドロキシナフタレンは、その分子中
に反応活性位を複数持つにもかかわらず、決してノボラ
ック化することなく、2量化物のみしか生成しないとい
う特異な反応性を示し、二量化物が化学量論的に実質的
に100%の収率で得られることを初めて見い出し、さ
らにその二量化物にエピハロヒドリンを反応せしめて得
られたエポキシ樹脂は、1,6−ジヒドロキシナフタレ
ンにホルムアルデヒドを反応せしめて得られるノボラッ
ク樹脂に更にエピハロヒドリンを反応させて得られるエ
ポキシ樹脂にはない、上記■、■、■の性能をも有して
いることを見い出し本発明を完成するに至った。 【0006】即ち本発明は、2,7−ジヒドロキシナフ
タレンとアルデヒド類とを反応させる1,1−ビス(2
,7−ジヒドロキシ−1−ナフチル)アルカンの製造方
法、1,1−ビス(2,7−ジヒドロキシ−1−ナフチ
ル)アルカンとエピハロヒドリンとを反応させることを
特徴とする1,1−ビス(2,7−ジグリシジルオキシ
−1−ナフチル)アルカンの製造方法、エポキシ樹脂と
硬化剤とからなるエポキシ樹脂組成物において、前記エ
ポキシ樹脂として、1,1−ビス(2,7−ジグリシジ
ルオキシ−1−ナフチル)アルカンを用いることを特徴
とするエポキシ樹脂組成物を提供するものである。 【0007】本発明において1,1−ビス(2,7−ジ
ヒドロキシ−1−ナフチル)アルカンを製造するに当た
っては、2,7−ジヒドロキシナフタレンとアルデヒド
類とを反応させればよい。 【0008】1,1−ビス(2,7−ジヒドロキシ−1
−ナフチル)アルカンは、次の様な構造の化合物をいう
。 式(I) 【0009】 【化1】 【0010】[ただし、式中Rは水素原子、低級アルキ
ル基、フェニル基、ヒドロキシフェニル基、ハロゲン 
   置換フェニル基である]又、1,1−ビス(2,
7−ジグリシジルオキシナフチル)アルカンを製造する
に当たっては、上記1,1−ビス(2,7−ジヒドロキ
シ−1−ナフチル)アルカンにエピハロヒドリンを反応
させればよい。 【0011】1,1−ビス(2,7−ジグリシジルオキ
シ−1−ナフチル)アルカン次の様な構造の化合物をい
う。 式(II) 【0012】 【化2】 【0013】[ただし、式中Rは水素原子、低級アルキ
ル基、フェニル基、ヒドロキシフェニル基、ハロゲン 
 置換フェニル基である]以下、1,1−ビス(2,7
−ジヒドロキシ−1−ナフチル)アルカンの製造方法、
1,1−ビス(2,7−ジグリシジルオキシ−1−ナフ
チル)アルカンの製造方法の順に説明する。 【0014】本発明のエポキシ樹脂の中間体に相当する
2量化物、即ち1,1−ビス(2,7−ジヒドロキシ−
1−ナフチル)アルカンの製造法は、2,7−ジヒドロ
キシナフタレンとアルデヒド類とを、必要に応じて触媒
の存在下、反応させればよい。 【0015】この際用いられるアルデヒド類は、特に制
限されないが、例えばホルムアルデヒド、アセトアルデ
ヒド、プロピルアルデヒド、ブチルアルデヒド、ベンズ
アルデヒド、p−ヒドロキシベンズアルデヒド、ブロム
ベンズアルデヒドなどが挙げられる。 【0016】使用する触媒も特に限定されないが、例え
ば、塩基性触媒としては、水酸化ナトリウム、水酸化カ
リウム、水酸化リチウム、水酸化カルシウムなどのアル
カリ金属水酸化物叉はアルカリ土類金属水酸化物、ある
いは、炭酸ナトリウム、炭酸カリウムなどのアルカリ金
属炭酸塩が利用できる。また酸性触媒としては、硫酸、
塩酸、硝酸、臭化水素酸、過塩素酸などの鉱酸、パラト
ルエンスルホン酸、ベンゼンスルホン酸等のスルホン酸
類、シュウ酸、コハク酸、マロン酸、モノクロ酢酸、ジ
クロル酢酸などのカルボン酸類が利用される。これらの
触媒の使用量は、通常ヒドロキシナフタレン1モルに対
して0.01〜0.1モルである。それ以上用いても構
わないが、中和工程に大量の酸あるいはアルカリと、そ
れに余分な時間を有することになるので、適宜決定すれ
ばよい。 【0017】反応を行うに当たっては、2,7−ジヒド
ロキシナフタレンを単独で用いてもよいが、その他のフ
ェノール類やナフトール類を適宜併用してもよい。例え
ば2、7−ジヒドロキシナフタレンを単独で用い、アル
デヒド類にホルムアルデヒドを用いて該当する2量化物
である1,1−ビス(2,7−ジグリシジルオキシ−1
−ナフチル)メタンを製造する場合について説明すると
、例えば水分散系で、塩基性触媒或は酸性触媒存在下に
2、7−ジヒドロキシナフタレン1モルに対し、ホルム
アルデヒド0.5〜1.0モル、好ましくは0.5〜0
.55モルを加え、30〜100℃、好ましくは60〜
80℃の温度で、0.5〜3時間攪はん、その後、中和
した後、生成物を濾別し、水洗洗浄後、乾燥させること
によって目的化合物を得ることができる。 【0018】本発明者等はこうして得られた目的化合物
が、二量化物、三量化物、四量化物、五量化物等の混合
物たるノボラック化物でなく、実質的に100%の成分
率で1,1−ビス(2,7−ジグリシジルオキシ−1−
ナフチル)メタンのみであることをみいだした。その際
、未反応のヒドロキシナフタレンも、3個以上のヒドロ
キシナフタレン核をもつ縮合体も、実質的に認めること
が出来なかった。 【0019】また、2、7−ジヒドロキシナフタレンに
β−ナフトールを併用して、同様にアルデヒド類として
ホルムアルデヒドを選択し、エポキシ樹脂を製造する場
合を説明すると、水分散系で、塩基性触媒或は酸性触媒
存在下に2、7−ジヒドロキシナフタレンとβ−ナフト
ール合計1モルに対し、ホルムアルデヒド0.5〜1.
0モル、好ましくは0.5〜0.55モルを加え、30
〜100℃、好ましくは60〜80℃の温度で、0.5
〜3時間攪はん、その後、中和した後、生成物を濾別し
、水洗洗浄後、乾燥させることによって目的化合物を得
ることができる。 【0020】また本発明者等は、2、7−ジヒドロキシ
ナフタレンとβ−ナフトールの混合物を選択した場合に
も、二量化物、三量化物、四量化物、五量化物等の混合
物たるノボラック化物でなく、2量化物が実質的に10
0%の成分率で生成することをみいだした。ただしこの
場合に生成するは、2量化物は1種類でなく1,1−ビ
ス(2,7−ジヒドロキシ−1−ナフチル)メタンと、
1−(2,7−ジヒドロキシ−1−ナフチル)−1−(
2−ヒドロキシ−1−ナフチル)メタンと、1,1−ビ
ス(2−ヒドロキシ−1−ナフチル)メタンとの3種類
の混合物である。 【0021】尚、上記1,1−ビス(2,7−ジヒドロ
キシ−1−ナフチル)メタンと、1−(2,7−ジヒド
ロキシ−1−ナフチル)−1−(2−ヒドロキシ−1−
ナフチル)メタンと、1,1−ビス(2−ヒドロキシ−
1−ナフチル)メタンの構造は順に下記式の通りである
。 式(III) 【0022】 【化3】 【0023】 式(IV) 【0024】 【化4】 【0025】 式(V) 【0026】 【化5】 【0027】この場合における2、7−ジヒドロキシナ
フタレンとβ−ナフトールのモル比は特に制限されない
が、例えば2、7−ジヒドロキシナフタレンの量が多い
と式(III)で表わされる2量化物、即ち1,1−ビ
ス(2,7−ジヒドロキシ−1−ナフチル)メタンの生
成比が高くなり、そのエポキシ樹脂の耐熱性はより向上
する。その反面該当するエポキシ樹脂の粘度が高くなっ
ていく傾向がある。一方、β−ナフトールの量が多くな
ると逆に、1,1−ビス(2,7−ジヒドロキシナフチ
ル)メタンの生成比が低くなり、それに呼応し式(V)
に対応する2量化物、即ち1,1−ビス(2−ヒドロキ
シ−1−ナフチル)メタンの生成比が高くなる。そうな
ると耐熱性は低下する傾向があるものの、粘度はさらに
低くなっていく傾向がある。 【0028】従って、耐熱性−粘度のバランスと後述す
るエポキシ化工程中にエポキシ樹脂が結晶化しにくく、
製造が容易である点を考慮すると、2、7−ジヒドロキ
シナフタレン/β−ナフトールのモル比は、10/0〜
2/8が好ましい。 【0029】又、2,7−ジヒドロキシナフタレンにア
ルデヒド類としてp−ヒドロキシベンズアルデヒドを選
択して反応を行うと、その2量化物としては1,1−ビ
ス(2,7−ジヒドロキシ−1−ナフチル)−4−ヒド
ロキシフェニルメタン、即ち下記式(VI)の様な構造
を有する化合物が得られる。後述するが、これとエピハ
ロヒドリンとを反応せしめたエポキシ樹脂は5官能エポ
キシになり、さらにはその硬化物の耐熱性は極めて優れ
たものとなる。 式(VI) 【0030】 【化6】 【0031】更に2,7−ジヒドロキシナフタレンにβ
−ナフトールを併用して、アルデヒド類としてp−ヒド
ロキシベンズアルデヒドを選択して反応を行うと、2,
7−ジヒドロキシナフタレンのみを用いて、アルデヒド
類としてp−ヒドロキシベンズアルデヒド行った場合の
上記目的化合物の他に、1,1−ビス(2−ヒドロキシ
ナフチル)−4−ヒドロキシフェニルメタン、即ち下記
式(VII)の様な構造を有する化合物も併せて得られ
る。 式(VII) 【0032】 【化7】 【0033】以上詳しく述べた通り、出発物質に上記の
ヒドロキシナフタレン類を選択し用いることによって、
実質的に100%の成分率で、当該2量化物を得ること
ができる。 【0034】要するに、多くのヒドロキシナフタレン類
の中から2、7−ジヒドロキシナフタレン単独、あるい
は2、7−ジヒドロキシナフタレンとβ−ナフトールの
混合物を選択した場合に、ノボラック化することなしに
、ヒドロキシナフタレン核の2量化物のみが生成するこ
とを見いだしたことによって、本発明は完成に至ったの
である。 【0035】特に、2、7−ジヒドロキシナフタレンは
、その分子中に反応活性位を複数持つにもかかわらず、
決してノボラック化することなく、2量化物のみしか生
成しないという特異な反応性を示すことは見い出したの
は、本発明者等が初めてである。 【0036】また、1,1−ビス(2,7−ジヒドロキ
シ−1−ナフチル)アルカンは、エポキシ樹脂の硬化剤
としても用いることができる。これを用いた硬化物は、
極めて高い耐熱性を有する。 【0037】次に1,1−ビス(2,7−ジグリシジル
オキシ−1−ナフチル)アルカンの製造方法について説
明する。上記のようにして得た1,1−ビス(2,7−
ジヒドロキシ−1−ナフチル)アルカンをエポキシ化し
て、1,1−ビス(2,7−ジグリシジルオキシ−1−
ナフチル)アルカンを製造するためには、1価または、
多価フェノールからそのグリシジルエーテルを製造する
のに通常用いられる方法が適用でき、特に限定されるも
のではない。 【0038】例えば、上記1,1−ビス(2,7−ジヒ
ドロキシ−1−ナフチル)アルカンの水酸基1モルに対
し、エピハロヒドリンを1.5〜20モル、好ましくは
3.0〜10.0モル添加し、塩基の存在下に20〜1
20℃、好ましくは50〜80℃で2〜7時間エポキシ
化反応を行うことにより容易に製造できる。 【0039】エポキシ化の際に用いられる塩基は特に限
定されるものでははなく、例えば水酸化カリウム、水酸
化ナトリウム、水酸化バリウム、酸化マグネシウム、炭
酸ナトリウム、炭酸カリウム等が挙げられるが、中でも
水酸化カリウム、水酸化ナトリウムが好ましい。  【
0040】またエピハロヒドリンとしては、エピクロル
ヒドリン、エピブロムヒドリン、β−メチルエピクロル
ヒドリンなどが用いられるが、工業的な入手の容易性か
らエピクロルヒドリンが好ましい。 【0041】上記1,1−ビス(2,7−ジヒドロキシ
−1−ナフチル)アルカンの水酸基のモル数に対するエ
ピハロヒドリンのモル数の過剰率を調節することにより
、得られるエポキシ樹脂の分子量、エポキシ当量、溶融
粘度を調節することができる。エピハロヒドリンのモル
数の過剰率を下げるとエポキシ樹脂の分子量が高くなり
、逆に上げると分子量が低くなる。分子量が高くなると
エポキシ当量、溶融粘度も高くなり、その硬化物の耐熱
性も徐々に低下していく傾向がある。但し、一般的には
エピハロヒドリンのモル数の過剰率が10倍を越えると
分子量、エポキシ当量、溶融粘度はあまり変化しなくな
るので必要以上にエピハロヒドリンを過剰に用いること
は経済性の点からも好ましくない。 【0042】本発明のエポキシ樹脂組成物は、前記の1
,1−ビス(2,7−ジグリシジルオキシ−1−ナフチ
ル)アルカンと硬化剤とを混合せしめれば容易に得られ
る。1,1−ビス(2,7−ジヒドロキシ−1−ナフチ
ル)メタンと、1−(2,7−ジヒドロキシ−1−ナフ
チル)−1−(2−ヒドロキシ−1−ナフチル)メタン
と、1,1−ビス(2−ヒドロキシ−1−ナフチル)メ
タンとを併用してもよい。必要に応じて、その他の公知
慣用のエポキシ樹脂を本発明のエポキシ樹脂と併用して
よいことは勿論である。 【0043】本発明に使用される硬化剤としては、特に
限定はなく、通常エポキシ樹脂の硬化剤として常用され
ている化合物はいずれも使用することができる。硬化剤
としては、例えばトリエチレンテトラミン等の脂肪族ポ
リアミン類;ビス(3−メチル−4−アミノシクロヘキ
シル)メタン等の脂環族ポリアミン類;ジアミノジフェ
ニルメタン、ジアミノジフェニルスルホン等の芳香族ポ
リアミン類;ノボラック型フェノール樹脂;メチルヘキ
サハイドロフタル酸無水物、ベンゾフェノンテトラカル
ボン酸二無水等の多塩基酸無水物;ポリアミドアミン樹
脂およびその変性物;イミダゾール、ジシアンジアミド
、三弗化ホウ素−アミン錯体、グアニジン誘導体等の潜
在性硬化剤が挙げられが、なかでもジアミノジフェニル
メタン、ジアミノジフェニルスルホン、ノボラック型フ
ェノール樹脂、ジシアンジアミド、多塩基酸無水物が好
ましい。これらの硬化剤は単独でも2種類以上の併用で
もかまわない。 【0044】硬化剤の使用量は、エポキシ樹脂の一分子
中に含まれるエポキシ基の数と、硬化剤中のアミノ基ま
たはイミノ基、フェノール性水酸基等の活性水素の数あ
るいは酸無水物基の数が当量付近となる量が一般的であ
る。 【0045】また、硬化剤を用いる際には、硬化促進剤
を適宜使用することができる。本発明では使用できる硬
化促進剤は特に限定されるものではなく、通常エポキシ
樹脂の硬化促進剤として常用されているものはいずれも
使用できる。 【0046】硬化促進剤としては、例えばジメチルベン
ジンアミンの様な3級アミン、2−チメルイミダゾール
の様なイミダゾール系化合物、トリフェニルホスフィン
等の有機リン化合物等が挙げられる。 【0047】本発明のエポキシ樹脂組成物には、さらに
必要に応じて、充填剤、着色剤、難燃剤、離型剤または
シランカップリング剤などの如き公知慣用の各種添加剤
も添加配合せしめることができる。 【0048】上記充填剤として代表的なものには、シリ
カ粉、珪酸ジルコン、アルミナ、炭酸カルシウム、石英
粉、酸化ジルコン、タルク、クレー、硫酸バリウム、ア
スベスト粉またはミルド・グラスなどが、着色剤として
代表的なものにはカーボンブラックなどが、難燃剤とし
て代表的なものには三酸化アンチモンなどが、離型剤と
して代表的なものにはカルナバワックスなどがあるし、
シランカップリング剤として代表的なものには、アミノ
シランまたはエポキシシランなどがある。 【0049】かくして得られる本発明のエポキシ樹脂組
成物は、耐熱性、耐湿性および靱性において極めて優れ
た性能を有す。又、本発明のエポキシ樹脂は溶融粘度が
極めて低いので、充填剤をたくさん添加できる。本発明
のエポキシ樹脂は、例えばできるだけ硬化物の応力を低
くすることが必要な半導体素子の用途には、充填剤をよ
り多く用いてエポキシ樹脂の硬化物自体の線膨張係数と
素子自体のそれに近づける手法が適用できる点でも、大
変好ましい。 【0050】またこれは電気・電子部品封止材料、絶縁
ワニス、積層板、絶縁粉体塗料等の電気絶縁材;プリン
ト配線基板用積層板およびプリブレグ、導電性接着材お
よびハニカムパネルの如き構造材料用等の接着剤;ガラ
ス繊維、炭素繊維、アラミド繊維等の各種強化繊維を用
いた繊維強化プラスチックおよびそのプリプレグ;レジ
ストインキ等の用途に利用できる。 【0051】1,6−ジヒドロキシナフタレンとホルム
アルデヒドとの反応生成物中には、三量体、四量体等の
他に二量体の1,1−ビス(1,6−ジヒドロキシ−1
−ナフチル)メタンが存在するが、その割合は全固形分
重量中15重量%以下であり、且つ種々の精製方法を用
いても、その複数の核体群よりその二量体のみを単離す
ることは極めて困難である。 【0052】そこで、本発明者等は、複数の核体群より
その二量体のみを単離するのではなく、最初から二量体
のみが実質的に100%の成分率で得られる様な合成方
法を検討したのである。これにより本発明が完成したの
である。 【0053】繰り返すが、特開昭61−69826号公
報記載の、ジヒドロキシナフタレンのノボラック型エポ
キシ樹脂は、その公報中の実施例に記載のあるように、
ナフタレン核を2.2あるいは2.4個有し、一般的に
はいくつかの異なる核体数、即ち二量体エポキシ樹脂、
三量体エポキシ樹脂、四量体エポキシ樹脂等の縮合体の
混合物であることがわかる。 【0054】そのためその硬化物は、耐熱性には優れる
ものの、粘度が非常に高く作業性、成形性に劣る。特に
、半導体封止材用途には、その粘度では現在の成形方法
ではそれに使用することは不可能である。またその粘度
ではフィラーを大量に入れることが出来ないため、線膨
張係数を低下させる最も効果的な手法がとれない。また
、靱性においても満足できるレベルには達していない。 【0055】さらにすでに公知であるβ−ナフトールが
メチレン結合で介されたその2量化物を原料とするエポ
キシ樹脂は、2官能であるため耐熱性が不十分で、且つ
結晶性が激しく、エポキシ化の工程中で結晶化を起こし
、非常に製造が困難である。 【0056】一方、本発明に係る1,1−ビス(2,7
−ジグリシジルオキシ−1−ナフチル)アルカンは、そ
の耐熱性骨格であり疎水性骨格であるナフタレン骨格を
有することと、4官能であり架橋密度が高いこと、さら
にその対称性に優れる分子構造を持つことを全て満足す
るから、その硬化物は、極めて優れた耐熱性と耐水性を
備えている。その耐熱性は、同一溶融粘度のオルソクレ
ゾールノボラック型エポキシ樹脂(以下、ECNという
)の硬化物に比較し、ガラス転移温度が90℃程度高い
。耐水性は、ECNのそれに比較し、吸水率が40%程
度低下する。 【0057】また従来のノボラックタイプと異なること
から、靱性にも優れる。さらにそれに加え、溶融粘度が
150℃で3ps程度と低く、作業性・成形性も良好で
ある。 【0058】またそれにより、フィラー量を多くできる
ことから、線膨張係数の低下にも有利に働くため、半導
体封止材用途においては低応力化がなされる。一方、そ
の対称性に優れた構造を持つにもかかわらず、エポキシ
化工程中に結晶化することもなく、製造上の問題もみら
れない。 【0059】また本発明に係る1,1−ビス(2,7−
ジグリシジルオキシ−1−ナフチル)アルカンと、1−
(2,7−ジグリシジルオキシ−1−ナフチル)−1−
(2−グリシジルオキシ−1−ナフチル)アルカンと、
1,1−ビス(2−グリシジルオキシ−1−ナフチル)
アルカンの3種類の2量化物の混合物のエポキシ樹脂の
硬化物も同様に、優れた耐熱性と耐湿性を備えている。 且つ、溶融粘度がさらに低く、例えば2、7−ジヒドロ
キシナフタレンとβ−ナフトールを当モル用いた場合、
その2量化物たる1,1−ビス(2,7−ジグリシジル
オキシ−1−ナフチル)メタンと、1−(2,7−ジグ
リシジルオキシ−1−ナフチル)−1−(2−グリシジ
ルオキシ−1−ナフチル)メタンと、1,1−ビス(2
−グリシジルオキシ−1−ナフチル)メタンの混合エポ
キシ樹脂の150℃における溶融粘度は1ps以下であ
る。またこれの硬化物のガラス転移温度は、前記の1,
1−ビス(2,7−ジグリシジルオキシ−1−ナフチル
)メタンの硬化物に比べ50℃程度低下するものの、同
一溶融粘度のECNの硬化物に比較すると50℃以上高
い値をしめす。加え、吸水率も40%程度低い。さらに
前述のとおり、溶融粘度が非常に低いため、フィラーを
大量に添加でき、線膨張係数をより小さくすることがで
きる。これもそのモル比を調製することにより、エポキ
シ化工程中に結晶化を起こすことはない。 【0060】 【実施例】次に本発明を合成例、実施例および比較例に
より具体的に説明する。合成例1(4価フェノール類及
びそのエポキシ化物に関する合成)温度計、冷却管、滴
下ロート、攪拌器を取り付けた2リットルフラスコに、
2,7−ジヒドロキシナフタレン160g(1モル)を
水1600gに分散させ、40℃で49重量%水酸化ナ
トリウム4.1g(0.05モル)加えた。その後、8
0℃まで昇温しながら、41重量%ホルムアルデヒド水
溶液40.2g(ホルムアルデヒド0.55モルを含む
)を滴下ロートより0.5時間で連続的に添加した。 滴下後80℃で1時間保温した後、36重量%塩酸5.
1g加え中和した。その後、反応生成物を濾別し、温水
で洗浄し、乾燥させ、生成物160gを得た。  この
物質は、常温で結晶で、融点は253℃であった。また
GPCによると純度は99%であった。この物質を重水
素置換ジメチルスルホキシドを溶媒として炭素13−N
MR図を測定した。そのチャートを第1図に示した。 【0061】これらの結果から上記反応の生成物は、1
,1−ビス(2,7−ジヒドロキシ−1−ナフチル)メ
タンであることが明らかになった。この1,1−ビス(
2,7−ジヒドロキシ−1−ナフチル)メタン83g(
0.25モル)をエピクロルヒドリン463g(5モル
)に溶解させ、攪拌しつつ80℃で、20重量%水酸化
ナトリウム水溶液220gを5時間かけて滴下し、さら
に同温度で1時間保温した。その後、水層を棄却したの
ち、過剰のエピクロルヒドリンを蒸留回収して得られた
反応生成物に、メチルイソブチルケトン210gを加え
て均一に溶解させ、しかるのち、水70gを加えて水洗
し、油水分離を行い、油層から共沸蒸留により水を除去
し、濾過し、さらにメチルイソブチルケトンを留去せし
めて、室温で固形のエポキシ樹脂(A)128gを得た
。この樹脂の軟化点は96℃、150℃の溶融粘度は3
psであった。またエポキシ当量は159であった。 この樹脂を重水素置換クロロホルムに溶かし、炭素13
−NMR図を測定した。そのチャートを第2図に示した
。 【0062】これらの結果から上記反応の生成物は、1
,1−ビス(2,7−ジグリシジルオキシ−1−ナフチ
ル)メタンであることが明らかになった。 合成例2(2,3,4価フェノール類混合物及びそのエ
ポキシ化物に関する合成例) 2,7−ジヒドロキシナフタレン単独の代わりに、2、
7−ジヒドロキシナフタレン80g(0.5モル)とβ
−ナフトール72gを用いたほかは合成例1と同様の操
作を行ない、反応生成物137gを得た。この反応生成
物は三種化合物の混合物であった。その生成比はゲルパ
ーミエーションクロマトグラフィー(以下、GPCとい
う)によると、1,1−ビス(2,7−ジヒドロキシ−
1−ナフチル)メタン32重量%、1−(2,7−ジヒ
ドロキシ−1−ナフチル)−1−(2−ヒドロキシ−1
−ナフチル)メタン33重量%、1,1−ビス(2−ヒ
ドロキシ−1−ナフチル)メタン34%であった。 【0063】この3種類の2量化物の混合物105gを
エピクロルヒドリン463g(5モル)に溶解させ、合
成例1と同様にエポキシ化を行なった。その結果、固形
のエポキシ樹脂(B)152gを得た。この混合エポキ
シ樹脂の軟化点は80℃、150℃の溶融粘度は0.8
psであった。またエポキシ当量は180であった。 合成例3 1、6−ジヒドロキシナフタレン160g(1モル)、
ホルマリン(35%)57g、シュウ酸1.8g、水1
8gを100〜120℃に加熱して8時間反応させた。 この反応物に水を加えて加熱し、デカンテーションで水
を分離し、ついで生成物を80℃減圧下で乾燥させ、ノ
ボラック樹脂を得た。このノボラック樹脂固形分重量中
の、1,1−ビス(1,6−ジヒドロキシ−1−ナフチ
ル)メタン含有量は5重量%であった。 【0064】つぎにこのノボラック樹脂100gにエピ
クロルヒドリン555g(6モル)に溶解させ、攪拌し
つつ80℃で、20重量%水酸化ナトリウム水溶液26
0gを5時間かけて滴下し、さらに同温度で1時間保温
した。その後、水層を棄却したのち、過剰のエピクロル
ヒドリンを蒸留回収して得られた反応生成物に、メチル
イソブチルケトン330gを加えて均一に溶解させ、し
かるのち、水80gを加えて水洗し、油水分離を行い、
油層から共沸蒸留により水を除去し、濾過し、さらにメ
チルイソブチルケトンを留去せしめて、室温で固形のノ
ボラック型エポキシ樹脂(C)155gを得た。この樹
脂の軟化点は97℃、150℃の溶融粘度は45psで
あった。またエポキシ当量は159であった。 合成例4 2、7−ジヒドロキシナフタレンの代わりに、β−ナフ
トール144g(1モル)を用いたほかは合成例1と同
様の操作を行ない、1,1−ビス(2−ジヒドロキシ−
1−ナフチル)メタン148gを得た。この78gをエ
ピクロルヒドリン463g(5モル)に溶解させ、攪拌
しつつ80℃で、20重量%水酸化ナトリウム水溶液2
20gを5時間かけて滴下し、さらに同温度で1時間保
温した。この工程中、結晶が析出してきた。そのため分
液工程の際、水層にその結晶が混入し、分液工程が不能
になった。そのため、水層、油層をともに濾過し、濾過
残を水洗したのち、乾燥し白色結晶のエポキシ樹脂(D
)120gを得た。軟化点は174℃、エポキシ当量1
45であった。150℃の溶融粘度は測定不能であった
。 実施例1〜2および比較例1〜3 合成例1と2で得られた本発明のおよび比較のためのエ
ポキシ樹脂である合成例3と4および、オルソクレゾー
ルノボラックエポキシ樹脂(軟化点67℃、150℃溶
融粘度3.2ps、エポキシ当量212)におのおの硬
化剤としてフェノールノボラック(軟化点80℃)を、
硬化促進剤としてトリフェニルフォスフィンを用い、エ
ポキシ基1個に対して硬化剤の水酸基1個になる様に次
表に示す組成で配合した後、150℃で2時間、ついで
180℃で3時間の条件で硬化せしめて、試験片を作り
第1表の試験項目について測定を行なった。その結果を
それぞれ実施例1〜2および比較例1〜3として第1表
に示した。 【0065】試験方法は、ガラス転移温度(耐熱性の尺
度である)は動的粘弾性測定機(以下、DMAという)
にて測定し、また曲げ強度、曲げ弾性率、引っ張り強度
、引っ張り伸び率(靱性の尺度である)は、JIS K
−6911に準拠して測定した。加え、溶融粘度、煮沸
9時間後の吸水率(耐水性の尺度である)も測定した。 【0066】尚、合成例5の樹脂は融点が174℃もあ
るため、この条件では硬化物を得ることが出来なかった
ので、測定値を第1表には記さなかった。本発明のエポ
キシ樹脂と硬化剤とからなる組成物はいずれも半導体封
止材料として好適であった。第1表 【0067】 【表1】 【0068】第1表の結果からわかる様に、本発明のエ
ポキシ樹脂の硬化物は、低溶融粘度で、耐熱性、耐水性
、靱性のいずれの性能においても優れていることが明ら
かである。 【0069】 【発明の効果】本発明のエポキシ樹脂は、低溶融粘度で
、耐熱性、耐水性、靱性のいずれの性能においても優れ
ている。従ってこのエポキシ樹脂の硬化物は、極めて耐
熱性に優れ、且つ耐湿性にも大変優れる。さらに、一般
的に高耐熱エポキシ樹脂の硬化物が抱える、堅くて脆い
という欠点を克服し、靱性にも優れる。 【0070】それに加え、樹脂自身の溶融粘度が低いた
め、作業性、成形性も良好で、フィラーを大量に添加で
きることから、線膨張係数を小さくすることができる。 そのため、前述の様々な用途に本発明のエポキシ樹脂組
成物を用いた場合、高い性能と信頼性および良好な作業
性と成形性を得ることができる。特に、表面実装パッケ
ージに搭載された高集積大型チップ半導体封止用途とし
て、ハンダ耐熱性および熱衝撃性においての信頼性が極
めて高まる。
Description: TECHNICAL FIELD The present invention relates to epoxy resins, intermediates thereof, methods for producing them, and epoxy compositions. In particular, the present invention relates to an epoxy resin that has a low melt viscosity and is excellent in heat resistance, water resistance, and toughness, particularly an epoxy resin that is excellent for use as a molding material for semiconductor encapsulation. [0002] Epoxy resins are generally cured using various curing agents to improve mechanical properties, water resistance,
It becomes a cured product with excellent chemical resistance and electrical properties, and is used in a wide range of fields, including adhesives, paints, laminates, molding materials, and casting materials. In particular, epoxy resins are widely used as semiconductor encapsulating resins due to their excellent properties and economic advantages. JP-A-61-69826 and JP-A-2
No. 189326 describes an epoxy resin obtained by reacting a novolak resin obtained by reacting 1,6-dihydroxynaphthalene with formaldehyde and further reacting epichlorohydrin. [0004] Problems to be Solved by the Invention However, 1,6-
The reaction product obtained by reacting dihydroxynaphthalene with formaldehyde is a mixture of dimers, trimers, tetramers, pentamers, etc., so the epoxy resin obtained by reacting it with epihalohydrin is Because it becomes a mixture of dimerized epoxy resin, trimerized epoxy resin, tetramerized epoxy resin, pentamerized epoxy resin, etc., it has low melt viscosity, ■heat resistance, ■water resistance, and No epoxy resin has been obtained that is satisfactory in any of the toughness characteristics (1) to (2). [Means for Solving the Problems] The inventors of the present invention made extensive studies in view of the above-mentioned circumstances and found that, unexpectedly, when formaldehyde is reacted with 2,7-dihydroxynaphthalene, 2,7-dihydroxynaphthalene is produced. Although it has multiple reactive sites in its molecule, it never converts into novolacs and only produces dimerized products, which is a unique reactivity. The epoxy resin obtained by reacting the dimerized product with epihalohydrin is the first to discover that it can be obtained in 100% yield by reacting the dimerized product with epihalohydrin. The present inventors have completed the present invention by discovering that this resin also has the above-mentioned properties (1), (2), and (3), which are not found in epoxy resins obtained by reacting epihalohydrin. That is, the present invention provides 1,1-bis(2
, 7-dihydroxy-1-naphthyl) alkane, a method for producing 1,1-bis(2, A method for producing 7-diglycidyloxy-1-naphthyl)alkane, and an epoxy resin composition comprising an epoxy resin and a curing agent, wherein the epoxy resin is 1,1-bis(2,7-diglycidyloxy-1- The present invention provides an epoxy resin composition characterized in that it uses (naphthyl)alkane. In the present invention, 1,1-bis(2,7-dihydroxy-1-naphthyl)alkane can be produced by reacting 2,7-dihydroxynaphthalene with aldehydes. 1,1-bis(2,7-dihydroxy-1
-Naphthyl)alkane refers to a compound with the following structure. Formula (I) [0009] [In the formula, R is a hydrogen atom, a lower alkyl group, a phenyl group, a hydroxyphenyl group, a halogen
substituted phenyl group] and 1,1-bis(2,
In producing 7-diglycidyloxynaphthyl)alkane, the above 1,1-bis(2,7-dihydroxy-1-naphthyl)alkane may be reacted with epihalohydrin. 1,1-bis(2,7-diglycidyloxy-1-naphthyl)alkane refers to a compound having the following structure. Formula (II) [0013] [In the formula, R is a hydrogen atom, a lower alkyl group, a phenyl group, a hydroxyphenyl group, a halogen
is a substituted phenyl group] Hereinafter, 1,1-bis(2,7
-Production method of dihydroxy-1-naphthyl)alkane,
The method for producing 1,1-bis(2,7-diglycidyloxy-1-naphthyl)alkane will be explained in order. The dimerized product corresponding to the intermediate of the epoxy resin of the present invention, namely 1,1-bis(2,7-dihydroxy-
The 1-naphthyl)alkane can be produced by reacting 2,7-dihydroxynaphthalene and aldehydes in the presence of a catalyst if necessary. The aldehydes used in this case are not particularly limited, and examples thereof include formaldehyde, acetaldehyde, propylaldehyde, butyraldehyde, benzaldehyde, p-hydroxybenzaldehyde, and brombenzaldehyde. The catalyst to be used is not particularly limited, but examples of basic catalysts include alkali metal hydroxides or alkaline earth metal hydroxides such as sodium hydroxide, potassium hydroxide, lithium hydroxide, and calcium hydroxide. or alkali metal carbonates such as sodium carbonate and potassium carbonate. In addition, as acidic catalysts, sulfuric acid,
Mineral acids such as hydrochloric acid, nitric acid, hydrobromic acid, and perchloric acid, sulfonic acids such as para-toluenesulfonic acid and benzenesulfonic acid, and carboxylic acids such as oxalic acid, succinic acid, malonic acid, monochloroacetic acid, and dichloroacetic acid are used. be done. The amount of these catalysts used is usually 0.01 to 0.1 mol per 1 mol of hydroxynaphthalene. It is possible to use more than that, but the neutralization step requires a large amount of acid or alkali and extra time, so it may be determined appropriately. In conducting the reaction, 2,7-dihydroxynaphthalene may be used alone, but other phenols or naphthols may be used in combination as appropriate. For example, if 2,7-dihydroxynaphthalene is used alone and formaldehyde is used as the aldehyde, the corresponding dimer product 1,1-bis(2,7-diglycidyloxy-1) is used.
-naphthyl) methane is produced, for example, in an aqueous dispersion system in the presence of a basic catalyst or an acidic catalyst, 0.5 to 1.0 mol of formaldehyde, preferably 0.5 to 1.0 mol, per mol of 2,7-dihydroxynaphthalene. is 0.5~0
.. Add 55 mol and heat at 30-100°C, preferably 60-100°C.
The target compound can be obtained by stirring at a temperature of 80° C. for 0.5 to 3 hours, then neutralizing, filtering the product, washing with water, and drying. The present inventors have discovered that the target compound thus obtained is not a novolak compound which is a mixture of dimerized products, trimerized products, tetramerized products, pentamerized products, etc., but is composed of 1 with a component ratio of substantially 100%. ,1-bis(2,7-diglycidyloxy-1-
It was found that only naphthyl methane was present. At that time, neither unreacted hydroxynaphthalene nor condensate having three or more hydroxynaphthalene nuclei could be substantially observed. In addition, to explain the case where epoxy resin is produced by using β-naphthol in combination with 2,7-dihydroxynaphthalene and similarly selecting formaldehyde as the aldehyde, in an aqueous dispersion system, basic catalyst or In the presence of an acidic catalyst, 0.5-1.
Add 0 mol, preferably 0.5-0.55 mol, 30
At a temperature of ~100°C, preferably 60-80°C, 0.5
After stirring for ~3 hours and then neutralizing, the product is filtered, washed with water, and then dried to obtain the target compound. [0020] The inventors of the present invention also found that when a mixture of 2,7-dihydroxynaphthalene and β-naphthol was selected, a novolak compound, which is a mixture of dimerized products, trimerized products, tetramerized products, pentamerized products, etc. , the dimerization product is substantially 10
It was found that it was produced at a component ratio of 0%. However, in this case, not one type of dimer is produced, but 1,1-bis(2,7-dihydroxy-1-naphthyl)methane,
1-(2,7-dihydroxy-1-naphthyl)-1-(
It is a mixture of three types: 2-hydroxy-1-naphthyl)methane and 1,1-bis(2-hydroxy-1-naphthyl)methane. [0021] The above 1,1-bis(2,7-dihydroxy-1-naphthyl)methane and 1-(2,7-dihydroxy-1-naphthyl)-1-(2-hydroxy-1-
naphthyl)methane and 1,1-bis(2-hydroxy-
The structures of 1-naphthyl)methane are as shown in the following formulas in order. Formula (III) [Formula (III)] [Formula (IV)] [Formula (IV)] [Formula (V)] [Formula (V)] [Formula (V)] [Formula (V)] [Formula (V)] [Formula (V)] In this case, 2,7-dihydroxy Although the molar ratio of naphthalene and β-naphthol is not particularly limited, for example, if the amount of 2,7-dihydroxynaphthalene is large, the dimerized product represented by formula (III), i.e., 1,1-bis(2,7-dihydroxy- The production ratio of (1-naphthyl)methane is increased, and the heat resistance of the epoxy resin is further improved. On the other hand, the viscosity of the epoxy resin tends to increase. On the other hand, when the amount of β-naphthol increases, the production ratio of 1,1-bis(2,7-dihydroxynaphthyl)methane decreases, and in response, the formula (V)
The production ratio of the corresponding dimer, ie, 1,1-bis(2-hydroxy-1-naphthyl)methane, increases. In this case, although the heat resistance tends to decrease, the viscosity tends to further decrease. Therefore, the epoxy resin is difficult to crystallize during the heat resistance-viscosity balance and the epoxidation process described below.
Considering the ease of production, the molar ratio of 2,7-dihydroxynaphthalene/β-naphthol is 10/0 to
2/8 is preferred. Furthermore, when p-hydroxybenzaldehyde is selected as the aldehyde and reacted with 2,7-dihydroxynaphthalene, the dimer product is 1,1-bis(2,7-dihydroxy-1-naphthyl). -4-hydroxyphenylmethane, that is, a compound having a structure as shown in the following formula (VI) is obtained. As will be described later, the epoxy resin reacted with epihalohydrin becomes a pentafunctional epoxy, and the cured product thereof has extremely excellent heat resistance. Formula (VI) [Image Omitted] Further, β is added to 2,7-dihydroxynaphthalene
- When the reaction is carried out by using naphthol and selecting p-hydroxybenzaldehyde as the aldehyde, 2,
In addition to the above target compound when p-hydroxybenzaldehyde is used as the aldehyde using only 7-dihydroxynaphthalene, 1,1-bis(2-hydroxynaphthyl)-4-hydroxyphenylmethane, that is, the following formula (VII ) can also be obtained. Formula (VII) ##STR7## As described in detail above, by selecting and using the above hydroxynaphthalenes as starting materials,
The dimerized product can be obtained with a component ratio of substantially 100%. In short, when 2,7-dihydroxynaphthalene alone or a mixture of 2,7-dihydroxynaphthalene and β-naphthol is selected from among many hydroxynaphthalenes, the hydroxynaphthalene nucleus can be formed without being converted into a novolac. The present invention was completed by discovering that only a dimerized product of . In particular, although 2,7-dihydroxynaphthalene has multiple reactive sites in its molecule,
The present inventors are the first to discover that it exhibits a unique reactivity in that it never forms a novolak and only produces a dimerized product. 1,1-bis(2,7-dihydroxy-1-naphthyl)alkane can also be used as a curing agent for epoxy resins. The cured product using this is
It has extremely high heat resistance. Next, a method for producing 1,1-bis(2,7-diglycidyloxy-1-naphthyl)alkane will be explained. 1,1-bis(2,7-
Epoxidation of dihydroxy-1-naphthyl)alkane to produce 1,1-bis(2,7-diglycidyloxy-1-
In order to produce a naphthyl) alkane, monohydric or
A method commonly used for producing glycidyl ether from polyhydric phenol can be applied, and the method is not particularly limited. For example, 1.5 to 20 mol, preferably 3.0 to 10.0 mol of epihalohydrin is added to 1 mol of the hydroxyl group of the above-mentioned 1,1-bis(2,7-dihydroxy-1-naphthyl)alkane. and in the presence of a base 20-1
It can be easily produced by carrying out an epoxidation reaction at 20°C, preferably 50 to 80°C, for 2 to 7 hours. The base used in epoxidation is not particularly limited, and examples thereof include potassium hydroxide, sodium hydroxide, barium hydroxide, magnesium oxide, sodium carbonate, potassium carbonate, etc. Among them, water Potassium oxide and sodium hydroxide are preferred. [
[0040] As the epihalohydrin, epichlorohydrin, epibromohydrin, β-methylepichlorohydrin, etc. can be used, and epichlorohydrin is preferred from the viewpoint of industrial ease of availability. The molecular weight, epoxy equivalent, and Melt viscosity can be adjusted. Lowering the molar excess of epihalohydrin increases the molecular weight of the epoxy resin, and conversely increasing it lowers the molecular weight. As the molecular weight increases, the epoxy equivalent and melt viscosity also increase, and the heat resistance of the cured product tends to gradually decrease. However, in general, if the molar excess of epihalohydrin exceeds 10 times, the molecular weight, epoxy equivalent, and melt viscosity will not change much, so it is not desirable from an economic point of view to use an excess of epihalohydrin. . [0042] The epoxy resin composition of the present invention
, 1-bis(2,7-diglycidyloxy-1-naphthyl)alkane and a curing agent can be easily obtained. 1,1-bis(2,7-dihydroxy-1-naphthyl)methane, 1-(2,7-dihydroxy-1-naphthyl)-1-(2-hydroxy-1-naphthyl)methane, and 1,1-bis(2,7-dihydroxy-1-naphthyl)methane. -bis(2-hydroxy-1-naphthyl)methane may be used in combination. It goes without saying that other known and commonly used epoxy resins may be used in combination with the epoxy resin of the present invention, if necessary. The curing agent used in the present invention is not particularly limited, and any compound commonly used as a curing agent for epoxy resins can be used. Examples of curing agents include aliphatic polyamines such as triethylenetetramine; alicyclic polyamines such as bis(3-methyl-4-aminocyclohexyl)methane; aromatic polyamines such as diaminodiphenylmethane and diaminodiphenylsulfone; novolak. type phenolic resins; polybasic acid anhydrides such as methylhexahydrophthalic anhydride and benzophenonetetracarboxylic dianhydride; polyamide amine resins and modified products thereof; imidazole, dicyandiamide, boron trifluoride-amine complexes, guanidine derivatives, etc. Examples of latent curing agents include diaminodiphenylmethane, diaminodiphenylsulfone, novolac type phenol resin, dicyandiamide, and polybasic acid anhydride. These curing agents may be used alone or in combination of two or more. The amount of the curing agent to be used depends on the number of epoxy groups contained in one molecule of the epoxy resin, the number of active hydrogen groups such as amino groups, imino groups, phenolic hydroxyl groups, or acid anhydride groups in the curing agent. Generally, the amount is close to the equivalent amount. Furthermore, when using a curing agent, a curing accelerator can be used as appropriate. The curing accelerator that can be used in the present invention is not particularly limited, and any curing accelerator that is commonly used as a curing accelerator for epoxy resins can be used. Examples of the curing accelerator include tertiary amines such as dimethylbenzineamine, imidazole compounds such as 2-thimelimidazole, and organic phosphorus compounds such as triphenylphosphine. The epoxy resin composition of the present invention may further contain various known and commonly used additives such as fillers, colorants, flame retardants, mold release agents, silane coupling agents, etc., if necessary. I can do it. Typical fillers include silica powder, zircon silicate, alumina, calcium carbonate, quartz powder, zircon oxide, talc, clay, barium sulfate, asbestos powder, and milled glass as colorants. Typical examples include carbon black, typical flame retardants include antimony trioxide, and typical release agents include carnauba wax.
Typical silane coupling agents include aminosilane and epoxysilane. The epoxy resin composition of the present invention thus obtained has extremely excellent properties in terms of heat resistance, moisture resistance, and toughness. Furthermore, since the epoxy resin of the present invention has an extremely low melt viscosity, a large amount of filler can be added. For example, when the epoxy resin of the present invention is used for semiconductor devices that require the stress of the cured product to be as low as possible, a larger amount of filler is used to bring the coefficient of linear expansion of the cured epoxy resin closer to that of the device itself. It is also very preferable in that the method can be applied. This also applies to electrical/electronic component sealing materials, electrical insulating materials such as insulating varnishes, laminates, and insulating powder coatings; structural materials such as laminates and prepregs for printed wiring boards, conductive adhesives, and honeycomb panels. It can be used for applications such as adhesives for use; fiber-reinforced plastics and their prepregs using various reinforcing fibers such as glass fibers, carbon fibers, and aramid fibers; and resist inks. In addition to trimers, tetramers, etc., the reaction product of 1,6-dihydroxynaphthalene and formaldehyde contains dimer 1,1-bis(1,6-dihydroxy-1
-Naphthyl)methane is present, but its proportion is less than 15% by weight of the total solid weight, and even if various purification methods are used, only its dimer can be isolated from its multiple nuclear bodies. This is extremely difficult. [0052] Therefore, the present inventors did not isolate only the dimer from a plurality of nuclear bodies, but instead created a method in which only the dimer could be obtained from the beginning with a component ratio of substantially 100%. They investigated synthesis methods. This completed the present invention. To repeat, the dihydroxynaphthalene novolak type epoxy resin described in JP-A No. 61-69826, as described in the examples in that publication,
Dimeric epoxy resins with 2.2 or 2.4 naphthalene nuclei and generally available in several different numbers of nuclei;
It can be seen that it is a mixture of condensates such as trimeric epoxy resin and tetrameric epoxy resin. Therefore, although the cured product has excellent heat resistance, it has a very high viscosity and is inferior in workability and moldability. In particular, its viscosity makes it impossible to use it as a semiconductor encapsulant using current molding methods. Furthermore, since a large amount of filler cannot be added at that viscosity, the most effective method for lowering the coefficient of linear expansion cannot be taken. Furthermore, the toughness has not reached a satisfactory level. Furthermore, the already known epoxy resin made from a dimerized product of β-naphthol via a methylene bond has insufficient heat resistance because it is difunctional, and is highly crystalline, making it difficult to epoxidize. Crystallization occurs during the process, making it extremely difficult to manufacture. On the other hand, 1,1-bis(2,7
-Diglycidyloxy-1-naphthyl)alkane has a naphthalene skeleton which is a heat-resistant skeleton and a hydrophobic skeleton, is tetrafunctional and has a high crosslinking density, and has a molecular structure with excellent symmetry. Because it satisfies all of these requirements, the cured product has extremely excellent heat resistance and water resistance. As for its heat resistance, its glass transition temperature is about 90° C. higher than that of a cured product of ortho-cresol novolac type epoxy resin (hereinafter referred to as ECN) having the same melt viscosity. Regarding water resistance, the water absorption rate is approximately 40% lower than that of ECN. [0057] Since it is different from the conventional novolak type, it also has excellent toughness. In addition, it has a low melt viscosity of about 3 ps at 150°C, and has good workability and moldability. [0058] Furthermore, since the amount of filler can be increased, this has an advantageous effect on lowering the coefficient of linear expansion, so that stress can be reduced when used as a semiconductor encapsulant. On the other hand, despite its highly symmetrical structure, it does not crystallize during the epoxidation process, and there are no manufacturing problems. Furthermore, 1,1-bis(2,7-bis) according to the present invention
diglycidyloxy-1-naphthyl)alkane and 1-
(2,7-diglycidyloxy-1-naphthyl)-1-
(2-glycidyloxy-1-naphthyl)alkane,
1,1-bis(2-glycidyloxy-1-naphthyl)
A cured product of an epoxy resin made of a mixture of three types of dimers of alkanes also has excellent heat resistance and moisture resistance. In addition, the melt viscosity is even lower, for example, when equimolar amounts of 2,7-dihydroxynaphthalene and β-naphthol are used,
Its dimerized product 1,1-bis(2,7-diglycidyloxy-1-naphthyl)methane and 1-(2,7-diglycidyloxy-1-naphthyl)-1-(2-glycidyloxy- 1-naphthyl)methane and 1,1-bis(2
-glycidyloxy-1-naphthyl)methane mixed epoxy resin has a melt viscosity of 1 ps or less at 150°C. In addition, the glass transition temperature of the cured product is as described in 1.
Although the temperature decreases by about 50°C compared to the cured product of 1-bis(2,7-diglycidyloxy-1-naphthyl)methane, the value is higher by more than 50°C compared to the cured product of ECN having the same melt viscosity. In addition, the water absorption rate is about 40% lower. Furthermore, as mentioned above, since the melt viscosity is very low, a large amount of filler can be added, and the coefficient of linear expansion can be made smaller. Also, by adjusting the molar ratio, crystallization does not occur during the epoxidation process. [Example] Next, the present invention will be specifically explained with reference to Synthesis Examples, Examples, and Comparative Examples. Synthesis Example 1 (Synthesis of tetrahydric phenols and their epoxidized products) In a 2-liter flask equipped with a thermometer, cooling tube, dropping funnel, and stirrer,
160 g (1 mol) of 2,7-dihydroxynaphthalene was dispersed in 1600 g of water, and 4.1 g (0.05 mol) of 49% by weight sodium hydroxide was added at 40°C. After that, 8
While raising the temperature to 0° C., 40.2 g of a 41% by weight formaldehyde aqueous solution (containing 0.55 mol of formaldehyde) was continuously added from the dropping funnel over 0.5 hours. After dropping and keeping warm at 80°C for 1 hour, 36% by weight hydrochloric acid 5.
1 g was added to neutralize. Thereafter, the reaction product was filtered off, washed with warm water, and dried to obtain 160 g of product. This substance was crystalline at room temperature and had a melting point of 253°C. According to GPC, the purity was 99%. This substance was dissolved in carbon-13-N using deuterated dimethyl sulfoxide as a solvent.
An MR image was measured. The chart is shown in Figure 1. From these results, the product of the above reaction is 1
, 1-bis(2,7-dihydroxy-1-naphthyl)methane. This 1,1-bis(
83g (2,7-dihydroxy-1-naphthyl)methane (
0.25 mol) was dissolved in 463 g (5 mol) of epichlorohydrin, and while stirring, 220 g of a 20% by weight aqueous sodium hydroxide solution was added dropwise at 80° C. over 5 hours, and the mixture was further kept at the same temperature for 1 hour. Then, after discarding the aqueous layer, 210 g of methyl isobutyl ketone was added to the reaction product obtained by distilling and recovering excess epichlorohydrin, and the mixture was uniformly dissolved. Then, 70 g of water was added and washed with water to separate oil and water. Water was removed from the oil layer by azeotropic distillation, filtered, and methyl isobutyl ketone was distilled off to obtain 128 g of epoxy resin (A) that was solid at room temperature. The softening point of this resin is 96℃, and the melt viscosity at 150℃ is 3
It was ps. Moreover, the epoxy equivalent was 159. This resin was dissolved in deuterium-substituted chloroform, and carbon-13
- NMR diagram was measured. The chart is shown in Figure 2. From these results, the product of the above reaction is 1
, 1-bis(2,7-diglycidyloxy-1-naphthyl)methane. Synthesis Example 2 (Synthesis Example Regarding 2, 3, Tetrahydric Phenols Mixture and Its Epoxidized Product) Instead of 2,7-dihydroxynaphthalene alone, 2,
80 g (0.5 mol) of 7-dihydroxynaphthalene and β
The same operation as in Synthesis Example 1 was carried out except that 72 g of -naphthol was used to obtain 137 g of a reaction product. The reaction product was a mixture of three compounds. According to gel permeation chromatography (hereinafter referred to as GPC), the production ratio is 1,1-bis(2,7-dihydroxy-
32% by weight of 1-naphthyl)methane, 1-(2,7-dihydroxy-1-naphthyl)-1-(2-hydroxy-1
-naphthyl)methane, 33% by weight, and 1,1-bis(2-hydroxy-1-naphthyl)methane, 34%. 105 g of the mixture of these three types of dimers was dissolved in 463 g (5 moles) of epichlorohydrin, and epoxidized in the same manner as in Synthesis Example 1. As a result, 152 g of solid epoxy resin (B) was obtained. The softening point of this mixed epoxy resin is 80℃, and the melt viscosity at 150℃ is 0.8
It was ps. Moreover, the epoxy equivalent was 180. Synthesis Example 3 1,6-dihydroxynaphthalene 160g (1 mol),
Formalin (35%) 57g, oxalic acid 1.8g, water 1
8g was heated to 100-120°C and reacted for 8 hours. Water was added to the reaction mixture and heated, the water was separated by decantation, and the product was then dried at 80° C. under reduced pressure to obtain a novolac resin. The 1,1-bis(1,6-dihydroxy-1-naphthyl)methane content in the solid weight of this novolac resin was 5% by weight. Next, 100 g of this novolak resin was dissolved in 555 g (6 moles) of epichlorohydrin, and 26% by weight of a 26% by weight aqueous sodium hydroxide solution was heated at 80° C. with stirring.
0 g was added dropwise over 5 hours, and the mixture was further kept at the same temperature for 1 hour. After that, after discarding the aqueous layer, 330 g of methyl isobutyl ketone was added to the reaction product obtained by distilling and recovering excess epichlorohydrin, and the mixture was dissolved uniformly. Then, 80 g of water was added and washed with water to separate oil and water. and
Water was removed from the oil layer by azeotropic distillation, filtered, and methyl isobutyl ketone was distilled off to obtain 155 g of novolac type epoxy resin (C) that was solid at room temperature. The softening point of this resin was 97°C, and the melt viscosity at 150°C was 45 ps. Moreover, the epoxy equivalent was 159. Synthesis Example 4 The same procedure as in Synthesis Example 1 was performed except that 144 g (1 mol) of β-naphthol was used instead of 2,7-dihydroxynaphthalene, and 1,1-bis(2-dihydroxy-
148 g of 1-naphthyl)methane were obtained. 78 g of this was dissolved in 463 g (5 moles) of epichlorohydrin, and heated at 80° C. with stirring in a 20% by weight aqueous sodium hydroxide solution.
20 g was added dropwise over 5 hours, and the mixture was further kept at the same temperature for 1 hour. During this process, crystals began to precipitate. Therefore, during the liquid separation process, the crystals were mixed into the aqueous layer, making the liquid separation process impossible. Therefore, after filtering both the water and oil layers and washing the filtration residue with water, the epoxy resin (D
) 120g was obtained. Softening point: 174℃, epoxy equivalent: 1
It was 45. The melt viscosity at 150°C could not be measured. Examples 1 to 2 and Comparative Examples 1 to 3 Synthesis Examples 3 and 4, which are the epoxy resins of the present invention and for comparison obtained in Synthesis Examples 1 and 2, and orthocresol novolak epoxy resin (softening point 67 ° C., Phenol novolac (softening point 80°C) was used as a hardening agent at 150°C (melt viscosity 3.2 ps, epoxy equivalent 212),
Triphenylphosphine was used as a curing accelerator, and after compounding the composition as shown in the table below so that one hydroxyl group of the curing agent was present for one epoxy group, the mixture was heated at 150°C for 2 hours and then at 180°C for 3 hours. After curing under the following conditions, test pieces were prepared and measurements were made on the test items listed in Table 1. The results are shown in Table 1 as Examples 1-2 and Comparative Examples 1-3, respectively. The test method was to measure the glass transition temperature (a measure of heat resistance) using a dynamic viscoelasticity measuring machine (hereinafter referred to as DMA).
The bending strength, bending elastic modulus, tensile strength, and tensile elongation rate (measures of toughness) are measured according to JIS K
-6911. In addition, melt viscosity and water absorption rate after 9 hours of boiling (a measure of water resistance) were also measured. The resin of Synthesis Example 5 had a melting point of 174° C., and therefore a cured product could not be obtained under these conditions, so the measured values were not recorded in Table 1. All compositions comprising the epoxy resin and curing agent of the present invention were suitable as semiconductor encapsulation materials. As can be seen from the results in Table 1, the cured product of the epoxy resin of the present invention has a low melt viscosity, and has excellent properties in terms of heat resistance, water resistance, and toughness. It is clear that it is also superior. Effects of the Invention The epoxy resin of the present invention has a low melt viscosity and is excellent in all properties including heat resistance, water resistance, and toughness. Therefore, the cured product of this epoxy resin has extremely excellent heat resistance and moisture resistance. Furthermore, it overcomes the drawbacks of hardness and brittleness, which are generally experienced by cured products of high heat-resistant epoxy resins, and has excellent toughness. In addition, since the melt viscosity of the resin itself is low, workability and moldability are also good, and since a large amount of filler can be added, the coefficient of linear expansion can be reduced. Therefore, when the epoxy resin composition of the present invention is used in the various uses mentioned above, high performance and reliability as well as good workability and moldability can be obtained. In particular, reliability in terms of solder heat resistance and thermal shock resistance is extremely improved when used for encapsulating highly integrated large chip semiconductors mounted on surface mount packages.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】第1図は1,1−ビス(2,7−ジヒドロキシ
−1−ナフチル)メタンの炭素13−核磁気共鳴スペク
トル図である。
FIG. 1 is a carbon-13 nuclear magnetic resonance spectrum diagram of 1,1-bis(2,7-dihydroxy-1-naphthyl)methane.

【図2】第2図は1,1−ビス(2,7−ジグリシジル
オキシ−1−ナフチル)メタンの炭素13−核磁気共鳴
スペクトル図である。
FIG. 2 is a carbon-13-nuclear magnetic resonance spectrum diagram of 1,1-bis(2,7-diglycidyloxy-1-naphthyl)methane.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】  1,1−ビス(2,7−ジグリシジル
オキシ−1−ナフチル)アルカン。
1. 1,1-bis(2,7-diglycidyloxy-1-naphthyl)alkane.
【請求項2】  1,1−ビス(2,7−ジヒドロキシ
−1−ナフチル)アルカンとエピハロヒドリンとを反応
させることを特徴とする1,1−ビス(2,7−ジグリ
シジルオキシ−1−ナフチル)アルカンの製造方法。
2. 1,1-bis(2,7-diglycidyloxy-1-naphthyl) characterized by reacting 1,1-bis(2,7-dihydroxy-1-naphthyl)alkane with epihalohydrin. ) Method for producing alkanes.
【請求項3】  1,1−ビス(2,7−ジヒドロキシ
−1−ナフチル)アルカン。
3. 1,1-bis(2,7-dihydroxy-1-naphthyl)alkane.
【請求項4】  2,7−ジヒドロキシナフタレンとア
ルデヒド類とを反応させる1,1−ビス(2,7−ジヒ
ドロキシ−1−ナフチル)アルカンの製造方法。
4. A method for producing 1,1-bis(2,7-dihydroxy-1-naphthyl)alkane, which comprises reacting 2,7-dihydroxynaphthalene with an aldehyde.
【請求項5】  エポキシ樹脂と硬化剤とからなるエポ
キシ樹脂組成物において、前記エポキシ樹脂として、1
,1−ビス(2,7−ジグリシジルオキシ−1−ナフチ
ル)アルカンを用いることを特徴とするエポキシ樹脂組
成物。
5. An epoxy resin composition comprising an epoxy resin and a curing agent, wherein the epoxy resin comprises 1
, 1-bis(2,7-diglycidyloxy-1-naphthyl)alkane.
【請求項6】  エポキシ樹脂と硬化剤とからなるエポ
キシ樹脂組成物において、エポキシ樹脂として、1,1
−ビス(2,7−ジグリシジルオキシ−1−ナフチル)
アルカンと、1−(2,7−ジグリシジルオキシ−1−
ナフチル)−1−(2−グリシジルオキシ−1−ナフチ
ル)アルカンと、1,1−ビス(2−グリシジルオキシ
−1−ナフチル)アルカンとの混合物を用いることを特
徴とするエポキシ樹脂組成物。
6. An epoxy resin composition comprising an epoxy resin and a curing agent, wherein the epoxy resin is 1,1
-bis(2,7-diglycidyloxy-1-naphthyl)
Alkane and 1-(2,7-diglycidyloxy-1-
An epoxy resin composition characterized by using a mixture of (naphthyl)-1-(2-glycidyloxy-1-naphthyl)alkane and 1,1-bis(2-glycidyloxy-1-naphthyl)alkane.
【請求項7】  エポキシ樹脂と硬化剤とからなるエポ
キシ樹脂組成物において、エポキシ樹脂として、1,1
−ビス(2,7−ジヒドロキシ−1−ナフチル)アルカ
ンと、1−(2,7−ジヒドロキシ−1−ナフチル)−
1−(2−ヒドロキシ−1−ナフチル)アルカンと、1
,1−ビス(2−ヒドロキシ−1−ナフチル)アルカン
との混合物とエピハロヒドリンとを反応させて得られた
エポキシ樹脂用いることを特徴とするエポキシ樹脂組成
物。
7. An epoxy resin composition comprising an epoxy resin and a curing agent, wherein the epoxy resin is 1,1
-bis(2,7-dihydroxy-1-naphthyl)alkane and 1-(2,7-dihydroxy-1-naphthyl)-
1-(2-hydroxy-1-naphthyl)alkane and 1
, 1-bis(2-hydroxy-1-naphthyl)alkane, and an epoxy resin obtained by reacting epihalohydrin.
【請求項8】  1,1−ビス(2,7−ジヒドロキシ
−1−ナフチル)アルカンと、1−(2,7−ジヒドロ
キシ−1−ナフチル)−1−(2−ヒドロキシ−1−ナ
フチル)アルカンと、1,1−ビス(2−ヒドロキシ−
1−ナフチル)アルカンとの混合物が、2,7−ジヒド
ロキシナフタレンとβ−ナフトールの混合物にアルデヒ
ド類を反応させたものである請求項7記載の組成物。
8. 1,1-bis(2,7-dihydroxy-1-naphthyl)alkane and 1-(2,7-dihydroxy-1-naphthyl)-1-(2-hydroxy-1-naphthyl)alkane and 1,1-bis(2-hydroxy-
8. The composition according to claim 7, wherein the mixture with 1-naphthyl) alkane is a mixture of 2,7-dihydroxynaphthalene and β-naphthol reacted with an aldehyde.
JP03032765A 1990-10-30 1991-02-27 Epoxy resin, method for producing the same, and epoxy resin composition Expired - Lifetime JP3137202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/841,470 US5302672A (en) 1991-02-27 1992-02-26 2,7-dihydroxynaphthalene based epoxy resin, intermediate thereof, processes for producing them, and epoxy resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP29247090 1990-10-30
JP2-292470 1990-11-28
JP32323990 1990-11-28
JP2-323239 1990-11-28

Publications (2)

Publication Number Publication Date
JPH04217675A true JPH04217675A (en) 1992-08-07
JP3137202B2 JP3137202B2 (en) 2001-02-19

Family

ID=26559006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03032765A Expired - Lifetime JP3137202B2 (en) 1990-10-30 1991-02-27 Epoxy resin, method for producing the same, and epoxy resin composition

Country Status (1)

Country Link
JP (1) JP3137202B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302761A (en) * 2000-04-24 2001-10-31 Dainippon Ink & Chem Inc Thermosetting resin composition, cured item, prepreg for laminate, and printed circuit substrate
JP2003026761A (en) * 2001-07-11 2003-01-29 Nippon Kayaku Co Ltd Epoxy resin, epoxy resin composition, and cured item thereof
JP2005015689A (en) * 2003-06-27 2005-01-20 Dainippon Ink & Chem Inc Epoxy resin composition, semiconductor encapsulation material and semiconductor device
JP2005290241A (en) * 2004-04-01 2005-10-20 Sumitomo Electric Ind Ltd Film-like adhesive
JP2005298647A (en) * 2004-04-09 2005-10-27 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device
JP2006299249A (en) * 2005-03-24 2006-11-02 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JP2006328362A (en) * 2005-04-25 2006-12-07 Shin Etsu Chem Co Ltd Semiconductor-encapsulating epoxy resin composition and semiconductor device
JP2006328363A (en) * 2005-04-25 2006-12-07 Shin Etsu Chem Co Ltd Semiconductor-encapsulating epoxy resin composition and semiconductor device
JP2007031691A (en) * 2005-06-24 2007-02-08 Shin Etsu Chem Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device
WO2008059612A1 (en) * 2006-11-15 2008-05-22 Sumitomo Bakelite Co., Ltd. Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2008274297A (en) * 2001-07-12 2008-11-13 Dic Corp Epoxy resin, epoxy resin composition, and cured product of the same
JP2011016891A (en) * 2009-07-08 2011-01-27 Dic Corp Epoxy resin, method for producing the same, curable resin composition, cured product thereof and printed wiring board
EP2343327A1 (en) * 2008-10-22 2011-07-13 DIC Corporation Curable resin composition and cured product thereof, printed circuit board, and epoxy resin and method for producing same
JP2011213784A (en) * 2010-03-31 2011-10-27 Sumitomo Bakelite Co Ltd Epoxy resin precursor composition, prepreg, laminated board, resin sheet, printed wiring board, and semiconductor device
JP2012077214A (en) * 2010-10-01 2012-04-19 Namics Corp Epoxy resin composition and semiconductor device using the same
JP2012102227A (en) * 2010-11-10 2012-05-31 Sumitomo Bakelite Co Ltd Epoxy resin precursor composition, prepreg, laminated plate, resin sheet, printed wiring board and semiconductor device
WO2013024778A1 (en) * 2011-08-12 2013-02-21 三菱瓦斯化学株式会社 Resist composition, resist pattern formation method, polyphenol compound used therein, and alcohol compound capable of being derived therefrom
TWI391420B (en) * 2005-11-07 2013-04-01 Shinetsu Chemical Co Epoxy resin composition for semiconductor sealing and semiconductor device
WO2014050789A1 (en) * 2012-09-28 2014-04-03 Dic株式会社 Epoxy compound and method for production thereof, and epoxy resin composition and cured product thereof
JP2016190994A (en) * 2015-03-31 2016-11-10 三菱瓦斯化学株式会社 Method for producing polyvalent hydroxy compound
WO2016204173A1 (en) * 2015-06-19 2016-12-22 東レ株式会社 Epoxy resin composition, prepreg, and fiber-reinforced composite material
WO2017098879A1 (en) * 2015-12-08 2017-06-15 Dic株式会社 Epoxy resin, process for producing epoxy resin, curable resin composition, and cured object obtained therefrom
US20170349564A1 (en) 2014-12-25 2017-12-07 Mitsubishi Gas Chemical Company, Inc. Compound, resin, material for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and purification method
US10047256B2 (en) 2013-03-06 2018-08-14 Dic Corporation Epoxy resin composition, cured product, heat radiating material, and electronic member
WO2018186183A1 (en) * 2017-04-06 2018-10-11 Dic株式会社 Acid group-containing (meth)acrylate resin and solder resist resin material
CN109467882A (en) * 2018-11-05 2019-03-15 烟台德邦科技有限公司 A kind of underfill of high-temp resisting high-humidity resisting and preparation method thereof
US10377734B2 (en) 2013-02-08 2019-08-13 Mitsubishi Gas Chemical Company, Inc. Resist composition, method for forming resist pattern, polyphenol derivative for use in the composition
US11137686B2 (en) 2015-08-31 2021-10-05 Mitsubishi Gas Chemical Company, Inc. Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and production method thereof, and resist pattern forming method
US11143962B2 (en) 2015-08-31 2021-10-12 Mitsubishi Gas Chemical Company, Inc. Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and production method thereof, pattern forming method, resin, and purification method
US11243467B2 (en) 2015-09-10 2022-02-08 Mitsubishi Gas Chemical Company, Inc. Compound, resin, resist composition or radiation-sensitive composition, resist pattern formation method, method for producing amorphous film, underlayer film forming material for lithography, composition for underlayer film formation for lithography, method for forming circuit pattern, and purification method
US11256170B2 (en) 2015-03-31 2022-02-22 Mitsubishi Gas Chemical Company, Inc. Compound, resist composition, and method for forming resist pattern using it
US11480877B2 (en) 2015-03-31 2022-10-25 Mitsubishi Gas Chemical Company, Inc. Resist composition, method for forming resist pattern, and polyphenol compound used therein
WO2023136272A1 (en) * 2022-01-12 2023-07-20 株式会社レゾナック Adhesive composition, adhesive film for circuit connection, and method for manufacturing connection structure

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943706B2 (en) 2005-03-24 2011-05-17 Shin-Etsu Chemical Co., Ltd. Semiconductor encapsulating epoxy resin composition and semiconductor device
US8048969B2 (en) 2005-04-25 2011-11-01 Shin-Etsu Chemical Co., Ltd. Semiconductor encapsulating epoxy resin composition and semiconductor device
JP2007231252A (en) 2006-01-31 2007-09-13 Shin Etsu Chem Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor-device sealed by the same
KR101464700B1 (en) 2013-03-19 2014-11-27 주식회사 유니플러스 Epoxy resin composition for semiconductor
KR102330885B1 (en) * 2014-07-04 2021-11-24 린텍 가부시키가이샤 Protective membrane forming film
JP2016079304A (en) * 2014-10-17 2016-05-16 日立化成株式会社 Resin sheet, resin sheet cured product, resin sheet laminate, resin sheet laminate cured product and method for producing the same, semiconductor device, and led device

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4622036B2 (en) * 2000-04-24 2011-02-02 Dic株式会社 Thermosetting resin composition, cured product, prepreg for laminated board, and printed wiring board
JP2001302761A (en) * 2000-04-24 2001-10-31 Dainippon Ink & Chem Inc Thermosetting resin composition, cured item, prepreg for laminate, and printed circuit substrate
JP2003026761A (en) * 2001-07-11 2003-01-29 Nippon Kayaku Co Ltd Epoxy resin, epoxy resin composition, and cured item thereof
JP2008274297A (en) * 2001-07-12 2008-11-13 Dic Corp Epoxy resin, epoxy resin composition, and cured product of the same
JP2005015689A (en) * 2003-06-27 2005-01-20 Dainippon Ink & Chem Inc Epoxy resin composition, semiconductor encapsulation material and semiconductor device
JP2005290241A (en) * 2004-04-01 2005-10-20 Sumitomo Electric Ind Ltd Film-like adhesive
JP4572562B2 (en) * 2004-04-01 2010-11-04 住友電気工業株式会社 Film adhesive
JP2005298647A (en) * 2004-04-09 2005-10-27 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device
JP2006299249A (en) * 2005-03-24 2006-11-02 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JP2006328362A (en) * 2005-04-25 2006-12-07 Shin Etsu Chem Co Ltd Semiconductor-encapsulating epoxy resin composition and semiconductor device
JP2006328363A (en) * 2005-04-25 2006-12-07 Shin Etsu Chem Co Ltd Semiconductor-encapsulating epoxy resin composition and semiconductor device
JP2007031691A (en) * 2005-06-24 2007-02-08 Shin Etsu Chem Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device
TWI391420B (en) * 2005-11-07 2013-04-01 Shinetsu Chemical Co Epoxy resin composition for semiconductor sealing and semiconductor device
JP5564793B2 (en) * 2006-11-15 2014-08-06 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
US8008410B2 (en) 2006-11-15 2011-08-30 Sumitomo Bakelite Company, Ltd. Epoxy resin composition for encapsulating semiconductor and semiconductor device
WO2008059612A1 (en) * 2006-11-15 2008-05-22 Sumitomo Bakelite Co., Ltd. Epoxy resin composition for semiconductor encapsulation and semiconductor device
EP2343327A1 (en) * 2008-10-22 2011-07-13 DIC Corporation Curable resin composition and cured product thereof, printed circuit board, and epoxy resin and method for producing same
EP2343327A4 (en) * 2008-10-22 2012-05-09 Dainippon Ink & Chemicals Curable resin composition and cured product thereof, printed circuit board, and epoxy resin and method for producing same
JP2011016891A (en) * 2009-07-08 2011-01-27 Dic Corp Epoxy resin, method for producing the same, curable resin composition, cured product thereof and printed wiring board
JP2011213784A (en) * 2010-03-31 2011-10-27 Sumitomo Bakelite Co Ltd Epoxy resin precursor composition, prepreg, laminated board, resin sheet, printed wiring board, and semiconductor device
JP2012077214A (en) * 2010-10-01 2012-04-19 Namics Corp Epoxy resin composition and semiconductor device using the same
JP2012102227A (en) * 2010-11-10 2012-05-31 Sumitomo Bakelite Co Ltd Epoxy resin precursor composition, prepreg, laminated plate, resin sheet, printed wiring board and semiconductor device
JP2017025075A (en) * 2011-08-12 2017-02-02 三菱瓦斯化学株式会社 Resist composition, resist pattern formation method, polyphenol compound for use therein, and alcohol compound that can be induced therefrom
KR20190032618A (en) * 2011-08-12 2019-03-27 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Resist composition, resist pattern formation method, polyphenol compound used therein, and alcohol compound capable of being derived therefrom
WO2013024778A1 (en) * 2011-08-12 2013-02-21 三菱瓦斯化学株式会社 Resist composition, resist pattern formation method, polyphenol compound used therein, and alcohol compound capable of being derived therefrom
JPWO2013024778A1 (en) * 2011-08-12 2015-03-05 三菱瓦斯化学株式会社 RESIST COMPOSITION, RESIST PATTERN FORMING METHOD, POLYPHENOL COMPOUND USED FOR THE SAME, AND ALCOHOLIC COMPOUND DERIVED FROM THE SAME
EP2743769A4 (en) * 2011-08-12 2015-11-04 Mitsubishi Gas Chemical Co Resist composition, resist pattern formation method, polyphenol compound used therein, and alcohol compound capable of being derived therefrom
US9908831B2 (en) 2011-08-12 2018-03-06 Mitsubishi Gas Chemical Company, Inc. Resist composition, method for forming resist pattern, polyphenolic compound for use in the composition, and alcoholic compound that can be derived therefrom
US9598392B2 (en) 2011-08-12 2017-03-21 Mitsubishi Gas Chemical Company, Inc. Resist composition, method for forming resist pattern, polyphenolic compound for use in the composition, and alcoholic compound that can be derived therefrom
US9540339B2 (en) 2011-08-12 2017-01-10 Mitsubishi Gas Chemical Company, Inc. Resist composition, method for forming resist pattern, polyphenolic compound for use in the composition, and alcoholic compound that can be derived therefrom
KR20150042251A (en) 2012-09-28 2015-04-20 디아이씨 가부시끼가이샤 Epoxy compound and method for production thereof, and epoxy resin composition and cured product thereof
US9738580B2 (en) 2012-09-28 2017-08-22 Dic Corporation Epoxy compound, method for producing the same, epoxy resin composition, and cured product thereof
US10329231B2 (en) 2012-09-28 2019-06-25 Dic Corporation Epoxy compound, method for producing the same, epoxy resin composition, and cured product thereof
WO2014050789A1 (en) * 2012-09-28 2014-04-03 Dic株式会社 Epoxy compound and method for production thereof, and epoxy resin composition and cured product thereof
US10377734B2 (en) 2013-02-08 2019-08-13 Mitsubishi Gas Chemical Company, Inc. Resist composition, method for forming resist pattern, polyphenol derivative for use in the composition
US10047256B2 (en) 2013-03-06 2018-08-14 Dic Corporation Epoxy resin composition, cured product, heat radiating material, and electronic member
US10745372B2 (en) 2014-12-25 2020-08-18 Mitsubishi Gas Chemical Company, Inc. Compound, resin, material for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and purification method
US20170349564A1 (en) 2014-12-25 2017-12-07 Mitsubishi Gas Chemical Company, Inc. Compound, resin, material for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and purification method
JP2016190994A (en) * 2015-03-31 2016-11-10 三菱瓦斯化学株式会社 Method for producing polyvalent hydroxy compound
US11480877B2 (en) 2015-03-31 2022-10-25 Mitsubishi Gas Chemical Company, Inc. Resist composition, method for forming resist pattern, and polyphenol compound used therein
US11256170B2 (en) 2015-03-31 2022-02-22 Mitsubishi Gas Chemical Company, Inc. Compound, resist composition, and method for forming resist pattern using it
WO2016204173A1 (en) * 2015-06-19 2016-12-22 東レ株式会社 Epoxy resin composition, prepreg, and fiber-reinforced composite material
US11143962B2 (en) 2015-08-31 2021-10-12 Mitsubishi Gas Chemical Company, Inc. Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and production method thereof, pattern forming method, resin, and purification method
US11137686B2 (en) 2015-08-31 2021-10-05 Mitsubishi Gas Chemical Company, Inc. Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and production method thereof, and resist pattern forming method
US11243467B2 (en) 2015-09-10 2022-02-08 Mitsubishi Gas Chemical Company, Inc. Compound, resin, resist composition or radiation-sensitive composition, resist pattern formation method, method for producing amorphous film, underlayer film forming material for lithography, composition for underlayer film formation for lithography, method for forming circuit pattern, and purification method
US11572430B2 (en) 2015-09-10 2023-02-07 Mitsubishi Gas Chemical Company, Inc. Compound, resin, resist composition or radiation-sensitive composition, resist pattern formation method, method for producing amorphous film, underlayer film forming material for lithography, composition for underlayer film formation for lithography, method for forming circuit pattern, and purification method
JPWO2017098879A1 (en) * 2015-12-08 2018-02-15 Dic株式会社 Epoxy resin, method for producing epoxy resin, curable resin composition and cured product thereof
WO2017098879A1 (en) * 2015-12-08 2017-06-15 Dic株式会社 Epoxy resin, process for producing epoxy resin, curable resin composition, and cured object obtained therefrom
KR20180090264A (en) 2015-12-08 2018-08-10 디아이씨 가부시끼가이샤 EPOXY RESIN, METHOD FOR PRODUCING EPOXY RESIN, CURABLE RESIN COMPOSITION AND THE CURED PRODUCT
JPWO2018186183A1 (en) * 2017-04-06 2019-07-11 Dic株式会社 Acid group-containing (meth) acrylate resin and resin material for solder resist
WO2018186183A1 (en) * 2017-04-06 2018-10-11 Dic株式会社 Acid group-containing (meth)acrylate resin and solder resist resin material
CN109467882B (en) * 2018-11-05 2021-03-30 烟台德邦科技股份有限公司 High-temperature and high-humidity resistant underfill material and preparation method thereof
CN109467882A (en) * 2018-11-05 2019-03-15 烟台德邦科技有限公司 A kind of underfill of high-temp resisting high-humidity resisting and preparation method thereof
WO2023136272A1 (en) * 2022-01-12 2023-07-20 株式会社レゾナック Adhesive composition, adhesive film for circuit connection, and method for manufacturing connection structure

Also Published As

Publication number Publication date
JP3137202B2 (en) 2001-02-19

Similar Documents

Publication Publication Date Title
JP3137202B2 (en) Epoxy resin, method for producing the same, and epoxy resin composition
JP4247658B2 (en) Novel epoxy resin, epoxy resin composition and cured product thereof
US5302672A (en) 2,7-dihydroxynaphthalene based epoxy resin, intermediate thereof, processes for producing them, and epoxy resin composition
KR20160053907A (en) Epoxy resin mixture, epoxy resin composition, cured product and semiconductor device
KR102136614B1 (en) Compound containing phenolic hydroxyl group, phenolic resin, curable composition, cured product thereof, semiconductor sealing material, and printed circuit board
KR101143131B1 (en) Epoxy compound, preparation method thereof, and use thereof
KR101408535B1 (en) Modified liquid epoxy resin, epoxy resin composition using the same, and cured product thereof
KR20160055125A (en) Epoxy resin mixture, epoxy resin composition, cured product and semiconductor device
JP5875030B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP6620981B2 (en) Thermosetting molding material, method for producing the same, and semiconductor sealing material
JP6160777B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP3944765B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP3062822B2 (en) Epoxy resin composition
JP2000103941A (en) Epoxy resin composition and semiconductor sealing material
JP5679248B1 (en) Epoxy compound, epoxy resin, curable composition, cured product thereof, semiconductor sealing material, and printed wiring board
JP3992181B2 (en) Production method of epoxy resin
JPH05287052A (en) Epoxy resin composition, preparation of epoxy resin, and semiconductor sealing material
JP6900949B2 (en) Epoxy resin, curable resin composition and its cured product
JP3636409B2 (en) Phenolic resins, epoxy resins, epoxy resin compositions and cured products thereof
JP3931616B2 (en) Epoxy resin, epoxy resin composition, aromatic polyol compound and cured product thereof.
JP4158137B2 (en) Epoxy resin composition and cured product thereof.
JP2004244526A (en) Novel phenol resin, curing agent for epoxy resin, and epoxy resin composition
JP4186153B2 (en) Epoxy resin composition, cured product thereof, semiconductor sealing material, and resin composition for electronic circuit board
JPH03221516A (en) Production of epoxy resin and epoxy resin composition
JPH06157710A (en) New epoxy resin, its production and production of its intermediate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11