WO2011019061A1 - Method for producing polyglycidyl ether compound - Google Patents

Method for producing polyglycidyl ether compound Download PDF

Info

Publication number
WO2011019061A1
WO2011019061A1 PCT/JP2010/063658 JP2010063658W WO2011019061A1 WO 2011019061 A1 WO2011019061 A1 WO 2011019061A1 JP 2010063658 W JP2010063658 W JP 2010063658W WO 2011019061 A1 WO2011019061 A1 WO 2011019061A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
compound
ether compound
producing
polyglycidyl ether
Prior art date
Application number
PCT/JP2010/063658
Other languages
French (fr)
Japanese (ja)
Inventor
博 内田
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2011526781A priority Critical patent/JPWO2011019061A1/en
Publication of WO2011019061A1 publication Critical patent/WO2011019061A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/34Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0237Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0239Quaternary ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0257Phosphorus acids or phosphorus acid esters
    • B01J31/0259Phosphorus acids or phosphorus acid esters comprising phosphorous acid (-ester) groups ((RO)P(OR')2) or the isomeric phosphonic acid (-ester) groups (R(R'O)2P=O), i.e. R= C, R'= C, H
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0271Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds also containing elements or functional groups covered by B01J31/0201 - B01J31/0231
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/28Ethers with hydroxy compounds containing oxirane rings
    • C07D303/30Ethers of oxirane-containing polyhydroxy compounds in which all hydroxyl radicals are etherified with oxirane-containing hydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • B01J2231/72Epoxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/66Tungsten

Definitions

  • the present invention relates to a polyglycidyl ether compound in which a carbon-carbon double bond of an allyl group of a compound having a plurality of phenolic hydroxyl groups is epoxidized using hydrogen peroxide as an oxidizing agent in the presence of a tungsten catalyst. It relates to the manufacturing method.
  • Polyglycidyl ether known as an epoxy resin is widely used in various fields, and is industrially produced on a large scale.
  • a method for producing polyglycidyl ether there is a method of obtaining glycidyl ether by reacting bisphenol-A or phenol novolac resin with epichlorohydrin in the presence or absence of a catalyst under basic conditions.
  • the glycidyl ether produced by this production method has a high content of organochlorine compounds that are considered undesirable for electronics applications. Therefore, attempts have been made for a long time to epoxidize the corresponding double bond after allyl etherification of the starting phenolic compound using peracetic acid or hydrogen peroxide.
  • Patent Document 1 discloses a method of performing epoxidation in the presence of molybdenum or a tungsten compound, a quaternary ammonium salt, and phosphoric acid, but the reaction rate, yield, and selectivity are not sufficient. .
  • Patent Document 2 discloses an example in which epoxidation of allyl ether, which is subject to conformational restrictions, is successful, but there are restrictions on allyl ether that can be used, and it is not a method that can be universally adopted industrially. .
  • Patent Document 3 discloses a method using peracid without using hydrogen peroxide.
  • organic peracid which is frequently used in accidents such as explosions. Since the produced carboxylic acid easily reacts with the epoxy resin, there is a problem that it is difficult to isolate the product with a high yield.
  • Patent Document 4 discloses a method of epoxidation using methanol or acetonitrile solvent in the presence of potassium carbonate.
  • Patent Document 5 discloses a method for producing an epoxy compound in which an olefin is reacted with a hydrogen peroxide solution using ⁇ -aminomethylphosphonic acid having a specific structure.
  • the olefins described in Patent Document 5 are mainly low molecular weight olefins, and there is no description or suggestion that they can be similarly applied to polyphenol ethers of polyphenols.
  • the problem to be solved by the present invention is that an allyl group carbon-carbon double bond of a polyallyl ether compound having a plurality of phenolic hydroxyl groups is bonded to an epoxy using hydrogen peroxide as an oxidizing agent under mild conditions. It is an object to provide a method for efficiently converting to a corresponding polyglycidyl ether with less residual organochlorine compound.
  • the present inventors have found that a polyglycidyl ether compound can be efficiently obtained by carrying out the reaction in the presence of a specific catalyst system.
  • the invention has been completed. That is, the present invention includes the following [1] to [12].
  • a carbon-carbon double bond of an allyl group of a polyallyl ether compound of a compound having a plurality of phenolic hydroxyl groups as a starting material is used as an oxidizing agent in the presence of a tungsten compound, a phosphorus compound and a quaternary ammonium salt.
  • a method for producing a polyglycidyl ether compound comprising a step of epoxidation using hydrogen peroxide.
  • the polyallyl ether compound of polyphenol is catechol, resorcinol, hydroquinone, bisphenol A (p, p′-isopropylidenediphenol), bisphenol F (p, p′-methylenediphenol), bisphenol K (p, p'-diphenolcarbonyl), dihydroxymethylstilbene, dihydroxybiphenyl, tetramethyldihydroxybiphenyl, dihydroxynaphthalene, bis (hydroxyphenyl) fluorene, methane type trisphenols, trisphenols, phenol-aldehyde novolac resin, alkyl-substituted phenol- At least one phenol selected from the group consisting of aldehyde novolac resin, polycyclopentadiene-modified phenolic resin, and polyvinylphenol
  • the polyallyl ether compound of polyphenol is a methane type trisphenol obtained by condensing an aromatic hydrocarbon having a phenolic hydroxyl group and an aldehyde compound, a phenol-aldehyde novolak resin, and an alkyl-substituted phenol-aldehyde novolak resin.
  • the polyallyl ether compound of polyphenol is composed of a polycyclopentadiene-modified phenol resin obtained by condensing an aromatic hydrocarbon having a phenolic hydroxyl group and dicyclopentadiene, and polyvinyl phenol obtained by polymerizing vinyl phenol.
  • the phosphorus compound is phosphoric acid, aminomethylphosphonic acid, ⁇ -aminoethylphosphonic acid, ⁇ -aminopropylphosphonic acid, ⁇ -aminobutylphosphonic acid, ⁇ -aminopentylphosphonic acid, ⁇ -aminohexylphosphonic acid, ⁇ -At least one selected from the group consisting of aminoheptylphosphonic acid, ⁇ -aminooctylphosphonic acid, ⁇ -aminononylphosphonic acid, ⁇ -amino- ⁇ -phenylmethylphosphonic acid, and nitrilotris (methylene) trisphosphonic acid
  • a method for producing a polyglycidyl ether compound according to any one of [1] to [5].
  • tungsten compound is at least one selected from the group consisting of tungstic acid, alkali tungstate, ammonium tungstate, phosphotungstic acid, and silicotungstic acid.
  • the molar ratio of the allyl group carbon-carbon double bond to hydrogen peroxide of the polyallyl ether compound of the compound having a plurality of phenolic hydroxyl groups is in the range of 1: 0.5 to 1: 4.
  • -Glycidyl ether which is a useful substance widely used in various industrial fields including chemical industry as a raw material for resist materials) and as a raw material for various polymers such as intermediates for agricultural chemicals and pharmaceuticals, plasticizers, adhesives and paint resins.
  • Type epoxy resin can be produced safely, with good yield and at low cost by a simple operation from the reaction of the corresponding polyallyl ether and hydrogen peroxide solution. Therefore, the present invention has a great industrial effect.
  • the method for producing a polyglycidyl ether compound of the present invention comprises a polyallyl ether compound of a compound having a plurality of phenolic hydroxyl groups using hydrogen peroxide as an oxidizing agent in the presence of a tungsten compound, a phosphorus compound and a quaternary ammonium salt.
  • the carbon-carbon double bond of the allyl group is epoxidized.
  • the concentration of the hydrogen peroxide aqueous solution that is a supply source of hydrogen peroxide used as the oxidizing agent in the production method of the present invention is generally 1 to 80% by mass, preferably 20 to 65% by mass. Selected from a range.
  • hydrogen peroxide is preferably a high concentration, but it is needless to say that it is preferable not to use a high concentration of hydrogen peroxide for safety.
  • the amount of aqueous hydrogen peroxide used is not particularly limited, but at least the molar equivalent of hydrogen peroxide used cannot epoxidize the allyl group. Therefore, when all the carbon-carbon double bonds of the allyl group of the polyallyl ether compound of the compound having a plurality of phenolic hydroxyl groups are epoxidized, the peroxidation is more than equimolar with respect to the carbon-carbon double bond. Although hydrogen is required, when partially epoxidizing, the amount of hydrogen peroxide used may be less than an equimolar amount. In addition, because the reaction system is acidic, the hydrolysis of the epoxy group tends to proceed easily.
  • the amount of hydrogen peroxide depends on the number of phenolic hydroxyl groups that are substrates to be epoxidized.
  • the number of carbon-carbon double bonds of the allyl group of the polyallyl ether compound of the compound is preferably in the range of 0.5 to 10 molar equivalents, more preferably in the range of 0.5 to 4 molar equivalents. And even more preferably in the range of 1 to 4 molar equivalents.
  • Tungsten compounds used as catalysts include compounds that generate tungstate anions in water, such as tungstic acid, tungsten trioxide, tungsten trisulfide, tungsten hexachloride, silicotungstic acid, phosphotungstic acid, ammonium tungstate, and alkali tungstate.
  • tungstic acid tungsten trioxide
  • tungsten trisulfide tungsten hexachloride
  • silicotungstic acid phosphotungstic acid
  • phosphotungstic acid ammonium tungstate
  • alkali tungstate alkali tungstate
  • ammonium tungstate for example, sodium tungstate dihydrate
  • phosphotungstic acid silica Tungstic acid or the like is preferable.
  • These tungsten compounds may be used alone or in combination of two or more.
  • the amount used is 0.001 to 20 mol% of tungsten atoms based on the number of carbon-carbon double bonds of the allyl group of the polyallyl ether compound of the compound having a plurality of phenolic hydroxyl groups as the substrate, preferably 0.8.
  • the range is 1 to 20 mol%.
  • the tungsten compound As a method for adding the tungsten compound to the reaction solution, the tungsten compound is previously dissolved in pure water, and then added in a form mixed with a hydrogen peroxide aqueous solution in a range of 0.5 to 10 times moles of the tungsten compound. It is desirable. If this treatment is not performed, the tungsten compound exists in a solid state depending on the pH of the reaction solution, and the reaction does not proceed immediately after the dropwise addition of the aqueous hydrogen peroxide solution. After the addition, the tungsten compound dissolves and the reaction proceeds suddenly, so that the selectivity may deteriorate.
  • the phosphorus compound examples include phosphoric acid, aminomethylphosphonic acid, ⁇ -aminoethylphosphonic acid, ⁇ -aminopropylphosphonic acid, ⁇ -aminobutylphosphonic acid, ⁇ -aminopentylphosphonic acid, ⁇ -aminohexylphosphonic acid, ⁇ -Aminoheptylphosphonic acid, ⁇ -aminooctylphosphonic acid, ⁇ -aminononylphosphonic acid, ⁇ -amino- ⁇ -phenylmethylphosphonic acid, nitrilotris (methylene) trisphosphonic acid and the like.
  • phosphoric acid, aminomethylphosphonic acid and nitrilotris (methylene) trisphosphonic acid are preferable, aminomethylphosphonic acid and nitrilotris (methylene) trisphosphonic acid are more preferable, and nitrilotris (methylene) trisphosphonic acid is even more preferable.
  • These phosphorus compounds may be used alone or in combination of two or more. If the amount used is small, the effect as an epoxidation catalyst is low, and if it is large, the remaining in the product becomes a problem. Therefore, the carbon-carbon double of the allyl group of the polyallyl ether of the compound having a plurality of phenolic hydroxyl groups of the substrate. A range of 0.001 to 10 mol% is preferable based on the number of bonds, and a range of 0.1 to 5 mol% is more preferable.
  • the ratio of the amount of the tungsten compound and the phosphorus compound used is such that the molar ratio of the tungsten atom to the phosphorus compound in the tungsten compound is in the range of 1: 0.01 to 1: 100, and 1: 0.1 to 1
  • the range of 10 is more preferable.
  • the quaternary ammonium salt acts as a phase transfer catalyst.
  • sulfate, hydrogen sulfate, and nitrate are preferable.
  • examples of the quaternary ammonium ion include tetrahexyl ammonium ion, tetraoctyl ammonium ion, methyl trioctyl ammonium ion, tetrabutyl ammonium ion, ethyl trioctyl ammonium ion, cetyl pyridinium ion, and the like.
  • quaternary ammonium salt tetrahexylammonium hydrogen sulfate, tetraoctylammonium hydrogensulfate, methyltrioctylammonium hydrogensulfate and the like are preferable. These quaternary ammonium hydrogen sulfates may be used alone or in combination of two or more. If the amount used is small, the effect as a phase transfer catalyst is low, and if it is large, the remaining in the product becomes a problem. Therefore, the allyl group carbon-carbon two-carbon compound of the compound having a plurality of phenolic hydroxyl groups of the substrate is used. A range of 0.001 to 10 mol% is preferable based on the number of heavy bonds, and a range of 0.1 to 5 mol% is more preferable.
  • the substrate to be epoxidized is a polyallyl ether compound of a compound having a plurality of phenolic hydroxyl groups, preferably a polyallyl ether compound of polyphenol, specifically catechol, resorcinol, Hydroquinone, bisphenol A (p, p'-isopropylidenediphenol), bisphenol F (p, p'-methylenediphenol), bisphenol K (p, p'-diphenolcarbonyl), dihydroxymethylstilbene, dihydroxybiphenyl, tetra Methyldihydroxybiphenyl, dihydroxynaphthalene, bis (hydroxyphenyl) fluorene, methane type trisphenols, trisphenols, phenol-aldehyde novolac resin, alkyl-substituted phenol- Aldehyde novolak resins, polycyclopentadiene modified phenol resin, and is obtained by allyl etherifying
  • polyphenol polyallyl ether compounds having 3 or more phenolic hydroxyl groups are preferable.
  • examples of such compounds include methane type trisphenols, trisphenols, phenol-aldehyde novolak resins, alkyl-substituted phenol-aldehyde novolak resins, Examples thereof include allyl etherified part or all of phenolic hydroxyl groups such as polycyclopentadiene-modified phenol resin and polyvinylphenol.
  • (Methane-type) trisphenols and (alkyl-substituted) phenol-aldehyde novolak resins can be synthesized by, for example, condensing an aromatic hydrocarbon having a phenolic hydroxyl group with an aldehyde compound or a ketone compound, Widely manufactured industrially.
  • Polycyclopentadiene-modified phenolic resin and polyvinylphenol can also be synthesized according to the following reaction formula and are industrially produced.
  • the polyallyl ether compound of polyphenol can be obtained by allyl etherification of the polyphenol by a known method using allyl chloride, allyl alcohol, and allyl acetate.
  • allyl alcohol Preference is given to using allyl acetate.
  • solvents include aromatic hydrocarbons, aliphatic hydrocarbons, and alicyclic hydrocarbon solvents, among which toluene, o-xylene, m-xylene, p-xylene, hexane, octane, cyclohexane, methylcyclohexane Is preferred.
  • concentration to be used if it is used excessively, the substrate concentration becomes dilute and the productivity is low, and the reaction rate is also slowed.
  • the optimum concentration varies depending on the substrate, it is preferably in the range of 5 to 800 parts by weight, more preferably in the range of 30 to 300 parts by weight, based on 100 parts by weight of the polyphenol polyallyl ether compound used.
  • the reaction temperature is usually in the range of 0 to 180 ° C., preferably in the range of 50 to 120 ° C.
  • the addition time of the hydrogen peroxide and the phosphorus compound added as needed varies depending on the reaction scale, but in the case of a 1 liter glass scale, it takes 30 minutes to 2 hours and is 1 in the case of an industrial scale of 10 m 3. It is desirable to perform the addition over a period of 20 hours. After completion of the addition, the reaction is usually terminated by stirring for 1 to 4 hours.
  • FIG. 1 is an example thereof, which can be implemented by the following procedure. (1) The reaction solution is allowed to stand after the epoxidation reaction.
  • the container to be allowed to stand may be a reactor or another container.
  • the container to be allowed to stand may be a reactor or another container.
  • the upper organic layer and the aqueous layer are separated.
  • the separated aqueous layer is concentrated to increase the tungsten catalyst concentration and / or a new catalyst is added.
  • a catalyst is newly added, a phosphorus compound and / or a quaternary ammonium salt and further a tungsten compound are added to the separated aqueous layer as necessary.
  • an aqueous layer containing a newly prepared catalyst can be used instead of the separated aqueous layer.
  • the reason why it is preferable to separate the reaction solution into two layers during the reaction as described above, and to mix the separated organic layer and the aqueous layer with the catalyst concentration readjusted to repeat the reaction is that hydrogen peroxide is removed during the epoxidation reaction.
  • the aqueous layer containing a catalyst such as tungsten is diluted with water contained in the aqueous hydrogen peroxide solution when dropped as an aqueous solution, and the catalytic activity decreases.
  • ⁇ -aminoalkylphosphonic acids are used, they are consumed and decomposed during the reaction, so it is desirable to add them during recycling.
  • FIG. 1 is an example of a method of intermittently separating the aqueous layer and the organic layer of the reaction solution, but the operation can also be carried out continuously using a continuous reactor as shown in FIG.
  • a continuous reactor a tubular reactor can generally be used, and it is more preferable if the organic layer-water layer such as a microreactor is designed to be mixed well.
  • it can implement similarly by extracting continuously, even in a stirring tank, supplying a reaction liquid continuously. After continuously extracting the reaction solution in this way, the organic layer and the aqueous layer are separated into two layers, and then the organic layer is recycled while adding new raw materials and solvents as necessary, and the aqueous layer is necessary.
  • the catalyst components are added and hydrogen peroxide is added and recycled. In this case, a part of the reaction solution is extracted and sent to the next step (reaction tank for increasing the conversion rate to the target value, purification step).
  • an organic solvent such as ethyl acetate, toluene, cyclohexane and hexane is further added as necessary, and the organic layer is treated with a reducing agent such as sodium bisulfite, sodium sulfite and sodium thiosulfate, After decomposing hydrogen peroxide, after washing, extraction, and purification as necessary, the solution is left as it is or in a solution with another solvent by exchanging the solvent, or without solvent.
  • a polyglycidyl ether compound it can be used for a desired use.
  • Example 1 A solution prepared by previously dissolving 0.409 g (1.24 mmol) of sodium tungstate in 0.409 g of pure water and 0.241 g (2.48 mmol) of 35% aqueous hydrogen peroxide was prepared.
  • 10 g of the polyallyl cresol novolak resin obtained in Synthesis Example 1 (0.062 mol as the allyl group)
  • 10 g of toluene 0.290 g (0.620 mmol) of methyl trioctylammonium hydrogen sulfate
  • 0.0688 g (0.620 mmol) of aminomethylphosphonic acid and a tungstic acid solution prepared in advance were added, and the bath temperature was heated to 80 ° C.
  • Examples 2-6 Comparative Examples 1-2
  • the reaction was performed in the same manner as in Example 1 except that the catalysts shown in Table 1 below were used.
  • the results are shown in Table 1 below.
  • Example 7 A solution prepared by previously dissolving 0.438 g (1.33 mmol) of sodium tungstate in 0.438 g of pure water and 0.258 g (2.66 mmol) of 35% aqueous hydrogen peroxide solution was prepared.
  • Example 8 A solution prepared by previously dissolving 0.409 g (1.24 mmol) of sodium tungstate in 0.409 g of pure water and 0.241 g (2.48 mmol) of 35% aqueous hydrogen peroxide was prepared.
  • reaction solution was cooled to room temperature, transferred to a separatory funnel, the aqueous layer was separated, the toluene layer was returned to the reaction flask, 0.0344 g (0.310 mmol) of aminomethylphosphonic acid, The remaining one of the two parts was placed and the bath temperature was reheated to 80 ° C.
  • the bath temperature reached 90 ° C, 12.1 g (0.124 mol) of an aqueous hydrogen peroxide solution was added dropwise over 30 minutes, and then the reaction was continued at a bath temperature of 80 ° C for 4 hours. A part of the reaction solution was sampled, toluene was distilled off, and then the epoxy equivalent was measured.
  • Example 5 shows that epoxidation has progressed.
  • Example 9 A solution prepared by previously dissolving 0.235 g (0.713 mmol) of sodium tungstate in 0.235 g of pure water and 0.139 g (1.43 mmol) of 35% aqueous hydrogen peroxide solution was prepared.
  • 10 g (0.0357 mol) of the diallyl ether distillate of bisphenol-F obtained in Synthesis Example 3 10 g of toluene, 0.167 g (0.357 mmol) of methyltrioctylammonium hydrogensulfate ), 0.0396 g (0.357 mmol) of aminomethylphosphonic acid, and a previously prepared tungstic acid solution were added, and the bath temperature was heated to 80 ° C.
  • Example 10 A solution prepared by previously dissolving 0.214 g (0.648 mmol) of sodium tungstate in 0.214 g of pure water and 0.126 g (1.30 mmol) of 35% aqueous hydrogen peroxide was prepared.
  • Example 11 A solution prepared by previously dissolving 0.214 g (0.648 mmol) of sodium tungstate in 0.214 g of pure water and 0.126 g (1.30 mmol) of 35% aqueous hydrogen peroxide was prepared.
  • Example 12 A solution prepared by previously dissolving 0.214 g (0.648 mmol) of sodium tungstate in 0.214 g of pure water and 0.126 g (1.30 mmol) of 35% aqueous hydrogen peroxide was prepared.
  • Example 13 to 15 The reaction was carried out in the same manner as in Example 6 except that allyl compounds shown in Table 2 below were used. The results are shown in Table 2 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Epoxy Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

In order to provide a method for converting a carbon-carbon double bond in an aryl group of a polyaryl ether compound that is a polyaryl-etherized compound having a plurality of phenolic hydroxyl groups into an efficiently-responding polyglycidyl ether by means of epoxidation using hydrogen peroxide as a catalyst under mild conditions, the disclosed method for producing a polyglycidyl ether compound includes a step for epoxidizing a carbon-carbon double bond in an aryl group of a polyaryl ether compound of a compound having a plurality of phenolic hydroxyl groups that is the starting material, said epoxidizing using hydrogen peroxide as an oxidizing agent under the presence of a quaternary ammonium salt, a phosphorus compound, and a tungsten compound.

Description

ポリグリシジルエーテル化合物の製造方法Method for producing polyglycidyl ether compound
 本発明は、フェノール性水酸基を複数個有する化合物のポリアリルエーテル化合物のアリル基の炭素-炭素二重結合をタングステン触媒の存在下、酸化剤として過酸化水素を用いてエポキシ化するポリグリシジルエーテル化合物の製造方法に関する。 The present invention relates to a polyglycidyl ether compound in which a carbon-carbon double bond of an allyl group of a compound having a plurality of phenolic hydroxyl groups is epoxidized using hydrogen peroxide as an oxidizing agent in the presence of a tungsten catalyst. It relates to the manufacturing method.
 エポキシ樹脂として知られるポリグリシジルエーテルは、様々な分野で広く使用されており、工業的にも大規模で生産されている。ポリグリシジルエーテルの製造法としては、ビスフェノール-Aやフェノールノボラック樹脂とエピクロルヒドリンとを、触媒の存在下又は不在下、塩基性条件下で反応させて、グリシジルエーテルを得る方法がある。この製造法により製造されたグリシジルエーテルは、エレクトロニクス用途には望ましくないと考えられる有機塩素化合物の含有量が高い。そこで、過酢酸や過酸化水素を用いて、原料のフェノール化合物をアリルエーテル化した後、対応する二重結合をエポキシ化しようとする試みは古くからなされてきた。 Polyglycidyl ether known as an epoxy resin is widely used in various fields, and is industrially produced on a large scale. As a method for producing polyglycidyl ether, there is a method of obtaining glycidyl ether by reacting bisphenol-A or phenol novolac resin with epichlorohydrin in the presence or absence of a catalyst under basic conditions. The glycidyl ether produced by this production method has a high content of organochlorine compounds that are considered undesirable for electronics applications. Therefore, attempts have been made for a long time to epoxidize the corresponding double bond after allyl etherification of the starting phenolic compound using peracetic acid or hydrogen peroxide.
 以下の特許文献1には、モリブデン又はタングステン化合物と4級アンモニウム塩とリン酸を存在させてエポキシ化を行う方法が開示されているが、反応速度、収率、選択率ともに十分とはいえない。 Patent Document 1 below discloses a method of performing epoxidation in the presence of molybdenum or a tungsten compound, a quaternary ammonium salt, and phosphoric acid, but the reaction rate, yield, and selectivity are not sufficient. .
 以下の特許文献2には、コンフォメーションの制限を受けているアリルエーテルのエポキシ化が上手く行く例が開示されているが、使用できるアリルエーテルに制約があり、工業的に遍く採用できる方法ではない。 The following Patent Document 2 discloses an example in which epoxidation of allyl ether, which is subject to conformational restrictions, is successful, but there are restrictions on allyl ether that can be used, and it is not a method that can be universally adopted industrially. .
 また、以下の特許文献3には、過酸化水素を用いずに、過酸を用いる方法が開示されているが、爆発等の事故例の多い有機過酸を使用する必要がある上に、副生したカルボン酸とエポキシ樹脂が反応しやすいため、生成物を収率よく単離しにくいという問題があった。 Further, Patent Document 3 below discloses a method using peracid without using hydrogen peroxide. However, it is necessary to use organic peracid which is frequently used in accidents such as explosions. Since the produced carboxylic acid easily reacts with the epoxy resin, there is a problem that it is difficult to isolate the product with a high yield.
 その他、出発材料としての対象はポリフェノールのポリアリルエーテルではないが、以下の特許文献4には、炭酸カリウムの存在下、メタノールやアセトニトリル溶媒を用いてエポキシ化する方法が開示されている。しかしながら、ポリフェノールのポリアリルエーテルは、この方法の反応系には溶解し難いため、反応を実施することができない。また、特許文献5には特定の構造を有するα-アミノメチルホスホン酸を用いてオレフィン類を過酸化水素水と反応させるエポキシ化合物の製造方法が開示されている。しかしながら、特許文献5に記載されているオレフィンは主として低分子量のオレフィンが対象であり、ポリフェノールのポリアリルエーテルに同様に適用できる旨の記載や示唆はない。 Other than that, the starting material is not polyphenol polyallyl ether, but the following Patent Document 4 discloses a method of epoxidation using methanol or acetonitrile solvent in the presence of potassium carbonate. However, since polyallyl ether of polyphenol is difficult to dissolve in the reaction system of this method, the reaction cannot be carried out. Patent Document 5 discloses a method for producing an epoxy compound in which an olefin is reacted with a hydrogen peroxide solution using α-aminomethylphosphonic acid having a specific structure. However, the olefins described in Patent Document 5 are mainly low molecular weight olefins, and there is no description or suggestion that they can be similarly applied to polyphenol ethers of polyphenols.
 したがって、フェノール化合物をアリルエーテル化した後のポリアリルエーテルのエポキシ化反応であって、短時間で高い転化率を達成でき、収率、選択率も満足のいくものを開発する必要性が未だ在る。 Therefore, there is still a need to develop a polyallyl ether epoxidation reaction after allyl etherification of a phenol compound, which can achieve a high conversion rate in a short period of time, and which is satisfactory in yield and selectivity. The
特開昭60-60123号公報Japanese Unexamined Patent Publication No. 60-60123 特表2002-517287号公報JP-T-2002-517287 特開平7-145221号公報JP 7-145221 A 特開2006-28057号公報JP 2006-28057 A 特開平8-27136号公報JP-A-8-27136
 本発明が解決しようとする課題は、フェノール性水酸基を複数個有する化合物のポリアリルエーテル化合物のアリル基の炭素-炭素二重結合を、温和な条件下、酸化剤として過酸化水素を用いてエポキシ化することにより効率よく残留有機塩素化合物の少ない対応するポリグリシジルエーテルに変換する方法を提供することである。 The problem to be solved by the present invention is that an allyl group carbon-carbon double bond of a polyallyl ether compound having a plurality of phenolic hydroxyl groups is bonded to an epoxy using hydrogen peroxide as an oxidizing agent under mild conditions. It is an object to provide a method for efficiently converting to a corresponding polyglycidyl ether with less residual organochlorine compound.
 本発明者らは、前記課題を解決すべく鋭意研究し実験を重ねた結果、特定の触媒系の存在下で反応を実施することにより、効率よくポリグリシジルエーテル化合物が得られることを見出し、本願発明を完成するに至った。
 すなわち、本発明は、以下の[1]~[12]である。
As a result of intensive studies and experiments to solve the above problems, the present inventors have found that a polyglycidyl ether compound can be efficiently obtained by carrying out the reaction in the presence of a specific catalyst system. The invention has been completed.
That is, the present invention includes the following [1] to [12].
 [1]出発材料であるフェノール性水酸基を複数個有する化合物のポリアリルエーテル化合物のアリル基の炭素-炭素二重結合を、タングステン化合物、燐化合物及び第4級アンモニウム塩の存在下、酸化剤として過酸化水素を用いて、エポキシ化する工程を含む、ポリグリシジルエーテル化合物の製造方法。
 [2]前記フェノール性水酸基を複数個有する化合物がポリフェノールである前記[1]に記載のポリグリシジルエーテル化合物の製造方法。
[1] A carbon-carbon double bond of an allyl group of a polyallyl ether compound of a compound having a plurality of phenolic hydroxyl groups as a starting material is used as an oxidizing agent in the presence of a tungsten compound, a phosphorus compound and a quaternary ammonium salt. A method for producing a polyglycidyl ether compound, comprising a step of epoxidation using hydrogen peroxide.
[2] The method for producing a polyglycidyl ether compound according to [1], wherein the compound having a plurality of the phenolic hydroxyl groups is polyphenol.
 [3]前記ポリフェノールのポリアリルエーテル化合物が、カテコール、レゾルシノール、ハイドロキノン、ビスフェノールA(p,p’-イソプロピリデンジフェノール)、ビスフェノールF(p,p’-メチレンジフェノール)、ビスフェノールK(p,p’-ジフェノールカルボニル)、ジヒドロキシメチルスチルベン、ジヒドロキシビフェニル、テトラメチルジヒドロキシビフェニル、ジヒドロキシナフタレン、ビス(ヒドロキシフェニル)フルオレン、メタン型トリスフェノール類、トリスフェノール類、フェノール-アルデヒドノボラック樹脂、アルキル置換フェノール-アルデヒドノボラック樹脂、ポリシクロペンタジエン変性フェノール樹脂、及びポリビニルフェノールからなる群より選択される少なくとも1種のフェノール性水酸基の一部又は全部がアリルエーテル化されたものである、前記[2]に記載のポリグリシジルエーテル化合物の製造方法。 [3] The polyallyl ether compound of polyphenol is catechol, resorcinol, hydroquinone, bisphenol A (p, p′-isopropylidenediphenol), bisphenol F (p, p′-methylenediphenol), bisphenol K (p, p'-diphenolcarbonyl), dihydroxymethylstilbene, dihydroxybiphenyl, tetramethyldihydroxybiphenyl, dihydroxynaphthalene, bis (hydroxyphenyl) fluorene, methane type trisphenols, trisphenols, phenol-aldehyde novolac resin, alkyl-substituted phenol- At least one phenol selected from the group consisting of aldehyde novolac resin, polycyclopentadiene-modified phenolic resin, and polyvinylphenol The method for producing a polyglycidyl ether compound according to [2] above, wherein a part or all of the rutile hydroxyl group is allyl etherified.
 [4]前記ポリフェノールのポリアリルエーテル化合物が、フェノール性水酸基を持つ芳香族炭化水素とアルデヒド化合物とを縮合させたメタン型トリスフェノール類、フェノール-アルデヒドノボラック樹脂、及びアルキル置換フェノール-アルデヒドノボラック樹脂からなる群より選択される少なくとも1種のフェノール性水酸基の一部又は全部をアリルエーテル化したものである、前記[3]に記載のポリグリシジルエーテル化合物の製造方法。 [4] The polyallyl ether compound of polyphenol is a methane type trisphenol obtained by condensing an aromatic hydrocarbon having a phenolic hydroxyl group and an aldehyde compound, a phenol-aldehyde novolak resin, and an alkyl-substituted phenol-aldehyde novolak resin. The method for producing a polyglycidyl ether compound according to [3] above, wherein all or part of at least one phenolic hydroxyl group selected from the group is allyl etherified.
 [5]前記ポリフェノールのポリアリルエーテル化合物が、フェノール性水酸基を持つ芳香族炭化水素とジシクロペンタジエンとを縮合させたポリシクロペンタジエン変性フェノール樹脂、及びビニルフェノールを重合させたポリビニルフェノールからなる群より選択される少なくとも1種のフェノール性水酸基の一部又は全部をアリルエーテル化したものである、前記[3]に記載のポリグリシジルエーテル化合物の製造方法。 [5] The polyallyl ether compound of polyphenol is composed of a polycyclopentadiene-modified phenol resin obtained by condensing an aromatic hydrocarbon having a phenolic hydroxyl group and dicyclopentadiene, and polyvinyl phenol obtained by polymerizing vinyl phenol. The method for producing a polyglycidyl ether compound according to the above [3], wherein a part or all of at least one selected phenolic hydroxyl group is allyl etherified.
 [6]前記燐化合物が、燐酸、アミノメチルホスホン酸、α-アミノエチルホスホン酸、α-アミノプロピルホスホン酸、α-アミノブチルホスホン酸、α-アミノペンチルホスホン酸、α-アミノヘキシルホスホン酸、α-アミノヘプチルホスホン酸、α-アミノオクチルホスホン酸、α-アミノノニルホスホン酸、α-アミノ-α-フェニルメチルホスホン酸、及びニトリロトリス(メチレン)トリスホスホン酸からなる群より選択される少なくとも1種である、前記[1]~[5]のいずれかに記載のポリグリシジルエーテル化合物の製造方法。 [6] The phosphorus compound is phosphoric acid, aminomethylphosphonic acid, α-aminoethylphosphonic acid, α-aminopropylphosphonic acid, α-aminobutylphosphonic acid, α-aminopentylphosphonic acid, α-aminohexylphosphonic acid, α -At least one selected from the group consisting of aminoheptylphosphonic acid, α-aminooctylphosphonic acid, α-aminononylphosphonic acid, α-amino-α-phenylmethylphosphonic acid, and nitrilotris (methylene) trisphosphonic acid A method for producing a polyglycidyl ether compound according to any one of [1] to [5].
 [7]前記燐化合物がニトリロトリス(メチレン)トリスホスホン酸である、前記[6]に記載のポリグリシジルエーテル化合物の製造方法。 [7] The method for producing a polyglycidyl ether compound according to [6], wherein the phosphorus compound is nitrilotris (methylene) trisphosphonic acid.
 [8]前記タングステン化合物が、タングステン酸、タングステン酸アルカリ、タングステン酸アンモニウム、リンタングステン酸、及びケイタングステン酸からなる群より選択される少なくとも1種である、前記[1]~[7]のいずれかに記載のポリグリシジルエーテル化合物の製造方法。 [8] Any of the above [1] to [7], wherein the tungsten compound is at least one selected from the group consisting of tungstic acid, alkali tungstate, ammonium tungstate, phosphotungstic acid, and silicotungstic acid. A process for producing the polyglycidyl ether compound according to claim 1.
 [9]前記第4級アンモニウム塩が、第4級アンモニウムの硫酸塩、硫酸水素塩、及び硝酸塩からなる群より選択される少なくとも1種である、前記[1]~[8]のいずれかに記載のポリグリシジルエーテル化合物の製造方法。 [9] The above [1] to [8], wherein the quaternary ammonium salt is at least one selected from the group consisting of quaternary ammonium sulfate, hydrogen sulfate, and nitrate. The manufacturing method of the polyglycidyl ether compound of description.
 [10]前記タングステン化合物中のタングステン原子対燐化合物のモル比が、1:0.1~1:10の範囲である、前記[1]~[9]のいずれかに記載のポリグリシジルエーテル化合物の製造方法。 [10] The polyglycidyl ether compound according to any one of [1] to [9], wherein the molar ratio of the tungsten atom to the phosphorus compound in the tungsten compound is in the range of 1: 0.1 to 1:10. Manufacturing method.
 [11]前記フェノール性水酸基を複数個有する化合物のポリアリルエーテル化合物のアリル基の炭素-炭素二重結合対過酸化水素のモル比が、1:0.5~1:4の範囲である、前記[1]~[10]のいずれかに記載のポリグリシジルエーテル化合物の製造方法。 [11] The molar ratio of the allyl group carbon-carbon double bond to hydrogen peroxide of the polyallyl ether compound of the compound having a plurality of phenolic hydroxyl groups is in the range of 1: 0.5 to 1: 4. The method for producing a polyglycidyl ether compound according to any one of [1] to [10].
 [12]前記エポキシ化工程において、過酸化水素、及び必要に応じて燐化合物を追添する、前記[1]~[11]のいずれかに記載のポリグリシジルエーテル化合物の製造方法。 [12] The method for producing a polyglycidyl ether compound according to any one of [1] to [11], wherein hydrogen peroxide and, if necessary, a phosphorus compound are additionally added in the epoxidation step.
 本発明のポリグリシジルエーテル化合物の製造方法によれば、エピクロルヒドリンを原料に用いる必要がないので、得られたエポキシ化合物への有機塩素化合物の混入がほとんどなく、特に電子材料(特に封止材やソルダ-レジスト材料)の原料として、また農薬・医薬の中間体や可塑剤、接着剤、塗料樹脂といった各種ポリマーの原料として化学工業をはじめ、各種の産業分野で幅広く用いられる有用な物質であるグリシジルエーテル型のエポキシ樹脂を、対応するポリアリルエーテル類と過酸化水素水の反応から簡便な操作で安全に、収率良く、かつ低コストで製造できる。従って、本発明は工業的に多大な効果をもたらす。 According to the method for producing a polyglycidyl ether compound of the present invention, it is not necessary to use epichlorohydrin as a raw material, so there is almost no organic chlorine compound mixed in the obtained epoxy compound, and particularly an electronic material (especially an encapsulant or solder). -Glycidyl ether, which is a useful substance widely used in various industrial fields including chemical industry as a raw material for resist materials) and as a raw material for various polymers such as intermediates for agricultural chemicals and pharmaceuticals, plasticizers, adhesives and paint resins. Type epoxy resin can be produced safely, with good yield and at low cost by a simple operation from the reaction of the corresponding polyallyl ether and hydrogen peroxide solution. Therefore, the present invention has a great industrial effect.
本発明のポリグリシジルエーテル化合物の製造方法における好ましい製造フローの一例を説明する概略図である。It is the schematic explaining an example of the preferable manufacturing flow in the manufacturing method of the polyglycidyl ether compound of this invention. 本発明のポリグリシジルエーテル化合物の製造方法における好ましい製造フローの他の一例を説明する概略図である。It is the schematic explaining another example of the preferable manufacturing flow in the manufacturing method of the polyglycidyl ether compound of this invention.
 以下本発明を詳細に説明する。
 本発明のポリグリシジルエーテル化合物の製造方法は、タングステン化合物、燐化合物及び第4級アンモニウム塩の存在下、酸化剤として過酸化水素を用いて、フェノール性水酸基を複数個有する化合物のポリアリルエーテル化合物のアリル基の炭素-炭素二重結合をエポキシ化することを特徴とする。
The present invention will be described in detail below.
The method for producing a polyglycidyl ether compound of the present invention comprises a polyallyl ether compound of a compound having a plurality of phenolic hydroxyl groups using hydrogen peroxide as an oxidizing agent in the presence of a tungsten compound, a phosphorus compound and a quaternary ammonium salt. The carbon-carbon double bond of the allyl group is epoxidized.
 本発明の製造方法において酸化剤として用いる過酸化水素の供給源である過酸化水素水溶液の濃度には特に制限はないが、一般的には1~80質量%、好ましくは20~65質量%の範囲から選ばれる。無論、工業的な生産性の観点からは過酸化水素は高濃度のほうが好ましいが、高濃度の過酸化水素を用いないほうが安全上は好ましいことは言うまでもない。 There is no particular limitation on the concentration of the hydrogen peroxide aqueous solution that is a supply source of hydrogen peroxide used as the oxidizing agent in the production method of the present invention, but it is generally 1 to 80% by mass, preferably 20 to 65% by mass. Selected from a range. Of course, from the viewpoint of industrial productivity, hydrogen peroxide is preferably a high concentration, but it is needless to say that it is preferable not to use a high concentration of hydrogen peroxide for safety.
 また、過酸化水素水溶液の使用量についても、特に制限はないが、少なくとも使用した過酸化水素のモル当量以上はアリル基をエポキシ化することはできない。そのため、フェノール性水酸基を複数個有する化合物のポリアリルエーテル化合物のアリル基の炭素-炭素二重結合を全てエポキシ化する場合には、その炭素-炭素二重結合に対して等モル以上の過酸化水素が必要であるが、部分的にエポキシ化を行う場合には等モルより少ない量の過酸化水素の使用量とすることもできる。また、反応系が酸性のためにエポキシ基の加水分解が進行しやすい傾向があるので、エポキシ化の収率を上げることを目的としたときに、過酸化水素を過剰に用いすぎて同伴する水分量が増えることは避けるべきである。また、過酸化水素をあまりに過剰に用いると、反応後の未反応の過酸化水素の処理も問題になるので、過酸化水素の量は、エポキシ化しようとする基質である、フェノール性水酸基を複数個有する化合物のポリアリルエーテル化合物のアリル基の炭素-炭素二重結合数を基準として0.5~10モル当量の範囲とすることが好ましく、より好ましくは0.5~4モル当量の範囲であり、さらにより好ましくは1~4モル当量の範囲である。 Also, the amount of aqueous hydrogen peroxide used is not particularly limited, but at least the molar equivalent of hydrogen peroxide used cannot epoxidize the allyl group. Therefore, when all the carbon-carbon double bonds of the allyl group of the polyallyl ether compound of the compound having a plurality of phenolic hydroxyl groups are epoxidized, the peroxidation is more than equimolar with respect to the carbon-carbon double bond. Although hydrogen is required, when partially epoxidizing, the amount of hydrogen peroxide used may be less than an equimolar amount. In addition, because the reaction system is acidic, the hydrolysis of the epoxy group tends to proceed easily. Therefore, when the purpose is to increase the yield of epoxidation, excessive amounts of hydrogen peroxide are entrained. An increase in volume should be avoided. In addition, if hydrogen peroxide is used in an excessive amount, the treatment of unreacted hydrogen peroxide after the reaction also becomes a problem. Therefore, the amount of hydrogen peroxide depends on the number of phenolic hydroxyl groups that are substrates to be epoxidized. The number of carbon-carbon double bonds of the allyl group of the polyallyl ether compound of the compound is preferably in the range of 0.5 to 10 molar equivalents, more preferably in the range of 0.5 to 4 molar equivalents. And even more preferably in the range of 1 to 4 molar equivalents.
 触媒として用いるタングステン化合物としては、水中でタングステン酸アニオンを生成する化合物、例えば、タングステン酸、三酸化タングステン、三硫化タングステン、六塩化タングステン、ケイタングステン酸、リンタングステン酸、タングステン酸アンモニウム、タングステン酸アルカリ、例えば、タングステン酸カリウム二水和物、タングステン酸ナトリウム二水和物等が挙げられるが、タングステン酸、タングステン酸アルカリ(例えばタングステン酸ナトリウム二水和物)、タングステン酸アンモニウム、リンタングステン酸、ケイタングステン酸等が好ましい。これらタングステン化合物類は単独で使用しても、2種以上を混合使用してもよい。その使用量は、基質のフェノール性水酸基を複数個有する化合物のポリアリルエーテル化合物のアリル基の炭素-炭素二重結合数を基準として、タングステン原子が0.001~20モル%、好ましくは0.1~20モル%となる範囲である。 Tungsten compounds used as catalysts include compounds that generate tungstate anions in water, such as tungstic acid, tungsten trioxide, tungsten trisulfide, tungsten hexachloride, silicotungstic acid, phosphotungstic acid, ammonium tungstate, and alkali tungstate. Examples include potassium tungstate dihydrate, sodium tungstate dihydrate, etc., but tungstic acid, alkali tungstate (for example, sodium tungstate dihydrate), ammonium tungstate, phosphotungstic acid, silica Tungstic acid or the like is preferable. These tungsten compounds may be used alone or in combination of two or more. The amount used is 0.001 to 20 mol% of tungsten atoms based on the number of carbon-carbon double bonds of the allyl group of the polyallyl ether compound of the compound having a plurality of phenolic hydroxyl groups as the substrate, preferably 0.8. The range is 1 to 20 mol%.
 また、タングステン化合物の反応液への添加方法としては、予め純水に溶解した後、タングステン化合物に対して0.5倍モルから10倍モルの範囲の過酸化水素水溶液と混合した形態で添加することが望ましい。この処理を行わない場合には反応液のpHによってはタングステン化合物が固体状で存在することになり、過酸化水素水溶液の滴下直後には反応が進行せず、ある程度の量の過酸化水素水溶液が添加された後で、タングステン化合物が溶解し急に反応が進行するために、選択率が悪化する場合がある。 As a method for adding the tungsten compound to the reaction solution, the tungsten compound is previously dissolved in pure water, and then added in a form mixed with a hydrogen peroxide aqueous solution in a range of 0.5 to 10 times moles of the tungsten compound. It is desirable. If this treatment is not performed, the tungsten compound exists in a solid state depending on the pH of the reaction solution, and the reaction does not proceed immediately after the dropwise addition of the aqueous hydrogen peroxide solution. After the addition, the tungsten compound dissolves and the reaction proceeds suddenly, so that the selectivity may deteriorate.
 燐化合物の具体例としては、燐酸、アミノメチルホスホン酸、α-アミノエチルホスホン酸、α-アミノプロピルホスホン酸、α-アミノブチルホスホン酸、α-アミノペンチルホスホン酸、α-アミノヘキシルホスホン酸、α-アミノヘプチルホスホン酸、α-アミノオクチルホスホン酸、α-アミノノニルホスホン酸、α-アミノ-α-フェニルメチルホスホン酸、ニトリロトリス(メチレン)トリスホスホン酸などが挙げられる。特にこれらの中で燐酸、アミノメチルホスホン酸、ニトリロトリス(メチレン)トリスホスホン酸が好ましく、アミノメチルホスホン酸、ニトリロトリス(メチレン)トリスホスホン酸がより好ましく、ニトリロトリス(メチレン)トリスホスホン酸がさらにより好ましい。これらの燐化合物は、単独で使用しても、2種以上を混合使用してもよい。その使用量が少ないとエポキシ化触媒としての効果が低く、多いと製品への残存が問題となるので、基質のフェノール性水酸基を複数個有する化合物のポリアリルエーテルのアリル基の炭素-炭素二重結合数を基準として0.001~10モル%の範囲が好ましく、0.1~5モル%の範囲がより好ましい。 Specific examples of the phosphorus compound include phosphoric acid, aminomethylphosphonic acid, α-aminoethylphosphonic acid, α-aminopropylphosphonic acid, α-aminobutylphosphonic acid, α-aminopentylphosphonic acid, α-aminohexylphosphonic acid, α -Aminoheptylphosphonic acid, α-aminooctylphosphonic acid, α-aminononylphosphonic acid, α-amino-α-phenylmethylphosphonic acid, nitrilotris (methylene) trisphosphonic acid and the like. Among these, phosphoric acid, aminomethylphosphonic acid and nitrilotris (methylene) trisphosphonic acid are preferable, aminomethylphosphonic acid and nitrilotris (methylene) trisphosphonic acid are more preferable, and nitrilotris (methylene) trisphosphonic acid is even more preferable. . These phosphorus compounds may be used alone or in combination of two or more. If the amount used is small, the effect as an epoxidation catalyst is low, and if it is large, the remaining in the product becomes a problem. Therefore, the carbon-carbon double of the allyl group of the polyallyl ether of the compound having a plurality of phenolic hydroxyl groups of the substrate. A range of 0.001 to 10 mol% is preferable based on the number of bonds, and a range of 0.1 to 5 mol% is more preferable.
 タングステン化合物と燐化合物の使用量の比は、タングステン化合物中のタングステン原子と燐化合物のモル比が、1:0.01~1:100の範囲であることが好ましく、1:0.1~1:10の範囲であることがより好ましい。 The ratio of the amount of the tungsten compound and the phosphorus compound used is such that the molar ratio of the tungsten atom to the phosphorus compound in the tungsten compound is in the range of 1: 0.01 to 1: 100, and 1: 0.1 to 1 The range of 10 is more preferable.
 本発明において第4級アンモニウム塩は、相間移動触媒として作用する。第4級アンモニウム塩の中でも硫酸塩、硫酸水素塩、硝酸塩が好ましい。第4級アンモニウムイオンとしては、例えば、テトラへキシルアンモニウムイオン、テトラオクチルアンモニウムイオン、メチルトリオクチルアンモニウムイオン、テトラブチルアンモニウムイオン、エチルトリオクチルアンモニウムイオン、セチルピリジニウムイオン等が挙げられる。第4級アンモニウム塩として、硫酸水素テトラへキシルアンモニウム、硫酸水素テトラオクチルアンモニウム、硫酸水素メチルトリオクチルアンモニウム等が好ましい。これら硫酸水素第4級アンモニウムは、単独で使用しても、二種以上を混合使用してもよい。その使用量が少ないと相間移動触媒としての効果が低く、多いと製品への残存が問題となるので、基質のフェノール性水酸基を複数個有する化合物のポリアリルエーテル化合物のアリル基の炭素-炭素二重結合数を基準として0.001~10モル%の範囲が好ましく、0.1~5モル%の範囲がより好ましい。 In the present invention, the quaternary ammonium salt acts as a phase transfer catalyst. Of the quaternary ammonium salts, sulfate, hydrogen sulfate, and nitrate are preferable. Examples of the quaternary ammonium ion include tetrahexyl ammonium ion, tetraoctyl ammonium ion, methyl trioctyl ammonium ion, tetrabutyl ammonium ion, ethyl trioctyl ammonium ion, cetyl pyridinium ion, and the like. As the quaternary ammonium salt, tetrahexylammonium hydrogen sulfate, tetraoctylammonium hydrogensulfate, methyltrioctylammonium hydrogensulfate and the like are preferable. These quaternary ammonium hydrogen sulfates may be used alone or in combination of two or more. If the amount used is small, the effect as a phase transfer catalyst is low, and if it is large, the remaining in the product becomes a problem. Therefore, the allyl group carbon-carbon two-carbon compound of the compound having a plurality of phenolic hydroxyl groups of the substrate is used. A range of 0.001 to 10 mol% is preferable based on the number of heavy bonds, and a range of 0.1 to 5 mol% is more preferable.
 エポキシ化を行う基質、すなわち、本発明の方法の出発材料は、フェノール性水酸基を複数個有する化合物のポリアリルエーテル化合物、好ましくはポリフェノールのポリアリルエーテル化合物であり、具体的にはカテコール、レゾルシノール、ハイドロキノン、ビスフェノールA(p,p’-イソプロピリデンジフェノール)、ビスフェノールF(p,p’-メチレンジフェノール)、ビスフェノールK(p,p’-ジフェノールカルボニル)、ジヒドロキシメチルスチルベン、ジヒドロキシビフェニル、テトラメチルジヒドロキシビフェニル、ジヒドロキシナフタレン、ビス(ヒドロキシフェニル)フルオレン、メタン型トリスフェノール類、トリスフェノール類、フェノール-アルデヒドノボラック樹脂、アルキル置換フェノール-アルデヒドノボラック樹脂、ポリシクロペンタジエン変性フェノール樹脂、及びポリビニルフェノールからなる群より選択される少なくとも1種のフェノール性水酸基の一部又は全部をアリルエーテル化したものである。 The substrate to be epoxidized, that is, the starting material of the method of the present invention is a polyallyl ether compound of a compound having a plurality of phenolic hydroxyl groups, preferably a polyallyl ether compound of polyphenol, specifically catechol, resorcinol, Hydroquinone, bisphenol A (p, p'-isopropylidenediphenol), bisphenol F (p, p'-methylenediphenol), bisphenol K (p, p'-diphenolcarbonyl), dihydroxymethylstilbene, dihydroxybiphenyl, tetra Methyldihydroxybiphenyl, dihydroxynaphthalene, bis (hydroxyphenyl) fluorene, methane type trisphenols, trisphenols, phenol-aldehyde novolac resin, alkyl-substituted phenol- Aldehyde novolak resins, polycyclopentadiene modified phenol resin, and is obtained by allyl etherifying a part or all of at least one phenolic hydroxyl group is selected from the group consisting of polyvinyl phenol.
 これらの中でもフェノール性水酸基を3個以上持つポリフェノールのポリアリルエーテル化合物が好ましく、このようなものとしてはメタン型トリスフェノール類、トリスフェノール類、フェノール-アルデヒドノボラック樹脂、アルキル置換フェノール-アルデヒドノボラック樹脂、ポリシクロペンタジエン変性フェノール樹脂、ポリビニルフェノール等の、フェノール性水酸基の一部又は全部をアリルエーテル化したものが挙げられる。 Among these, polyphenol polyallyl ether compounds having 3 or more phenolic hydroxyl groups are preferable. Examples of such compounds include methane type trisphenols, trisphenols, phenol-aldehyde novolak resins, alkyl-substituted phenol-aldehyde novolak resins, Examples thereof include allyl etherified part or all of phenolic hydroxyl groups such as polycyclopentadiene-modified phenol resin and polyvinylphenol.
 (メタン型)トリスフェノール類、(アルキル置換)フェノール-アルデヒドノボラック樹脂は、例えば、以下のようにフェノール性水酸基を持つ芳香族炭化水素とアルデヒド化合物又はケトン化合物を縮合させて合成することができ、工業的に広く製造されている。 (Methane-type) trisphenols and (alkyl-substituted) phenol-aldehyde novolak resins can be synthesized by, for example, condensing an aromatic hydrocarbon having a phenolic hydroxyl group with an aldehyde compound or a ketone compound, Widely manufactured industrially.
(メタン型)トリスフェノール類の合成反応式Synthetic reaction formula of (methane type) trisphenols
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(アルキル置換)フェノール-アルデヒドノボラック樹脂の合成反応式Synthetic reaction formula of (alkyl-substituted) phenol-aldehyde novolak resin
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 ポリシクロペンタジエン変性フェノール樹脂、ポリビニルフェノールも、以下の反応式にしたがって合成することができ、工業的に製造されている。 Polycyclopentadiene-modified phenolic resin and polyvinylphenol can also be synthesized according to the following reaction formula and are industrially produced.
ポリシクロペンタジエン変性フェノール樹脂の合成反応式Synthetic reaction formula of polycyclopentadiene modified phenolic resin
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
ポリビニルフェノールの合成反応式Synthetic reaction formula of polyvinylphenol
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 ポリフェノールのポリアリルエーテル化合物は、アリルクロライド、アリルアルコール、酢酸アリルを用いて、前記ポリフェノールを公知の方法によりアリルエーテル化することにより得ることができるが、エレクトロニクス用途で使用する材料にはアリルアルコール、酢酸アリルを用いることが好ましい。 The polyallyl ether compound of polyphenol can be obtained by allyl etherification of the polyphenol by a known method using allyl chloride, allyl alcohol, and allyl acetate. However, allyl alcohol, Preference is given to using allyl acetate.
 これらのポリフェノールのポリアリルエーテル化合物は、非常に粘稠な液体であるか又は固形であり、無溶媒ではエポキシ化を行うことができない。そのために、溶媒を使用する必要がある。好ましい溶媒としては、芳香族炭化水素、脂肪族炭化水素、脂環族炭化水素溶媒が挙げられ、その中でも特にトルエン、o-キシレン、m-キシレン、p-キシレン、ヘキサン、オクタン、シクロヘキサン、メチルシクロヘキサンが好ましい。使用する濃度に関しては、過剰に用いると基質濃度が希薄になり生産性が低いばかりでなく、反応速度も遅くなる。また、過少であると粘度を下げる効果が低い。基質によって最適濃度は異なるが、使用するポリフェノールのポリアリルエーテル化合物100質量部に対して5質量部~800質量部の範囲が好ましく、30質量部~300質量部の範囲がより好ましい。 These polyphenol polyallyl ether compounds are very viscous liquids or solids and cannot be epoxidized without solvent. Therefore, it is necessary to use a solvent. Preferred solvents include aromatic hydrocarbons, aliphatic hydrocarbons, and alicyclic hydrocarbon solvents, among which toluene, o-xylene, m-xylene, p-xylene, hexane, octane, cyclohexane, methylcyclohexane Is preferred. Regarding the concentration to be used, if it is used excessively, the substrate concentration becomes dilute and the productivity is low, and the reaction rate is also slowed. On the other hand, if the amount is too small, the effect of reducing the viscosity is low. Although the optimum concentration varies depending on the substrate, it is preferably in the range of 5 to 800 parts by weight, more preferably in the range of 30 to 300 parts by weight, based on 100 parts by weight of the polyphenol polyallyl ether compound used.
 本発明のポリグリシジルエーテル化合物の製造方法において、反応温度が低いと反応速度が遅くなる上に、反応系の粘度が高粘度になり、ひどい場合には原料が析出することがあり、また、高い場合には、副反応が起こりやすくなり好ましくない。そのため、反応温度は、通常、0~180℃の範囲、好ましくは50~120℃の範囲である。 In the method for producing a polyglycidyl ether compound of the present invention, when the reaction temperature is low, the reaction rate becomes slow, the viscosity of the reaction system becomes high, and in severe cases, the raw material may precipitate, and it is high In some cases, side reactions are likely to occur, which is not preferable. Therefore, the reaction temperature is usually in the range of 0 to 180 ° C., preferably in the range of 50 to 120 ° C.
 過酸化水素の仕込み方法としては、最初に所定量を仕込むよりも反応系内にエポキシ化が進行していることを確認しつつ、少しずつ加えていくことが望ましい。このような方法をとれば、反応器内で過酸化水素が異常分解して酸素ガスが発生したとしても、過酸化水素の蓄積量が少なく圧力上昇を最小限にとどめることができる。したがって、本発明の方法におけるエポキシ化においては、好ましくは、過酸化水素、及び必要に応じて燐化合物が追添される。
 過酸化水素、及び必要に応じて追添される燐化合物の添加時間は、反応スケールによって異なるが、1リットルのガラススケールの場合、30分から2時間かけて、10mの工業スケールの場合で1時間から20時間かけて添加を行うことが望ましい。
 添加終了後、通常、1時間から4時間攪拌を行い、反応を終了させる。
As a method for charging hydrogen peroxide, it is desirable to add it little by little while confirming that epoxidation is proceeding in the reaction system rather than charging a predetermined amount first. By adopting such a method, even if hydrogen peroxide is abnormally decomposed in the reactor and oxygen gas is generated, the amount of hydrogen peroxide accumulated is small and the pressure rise can be minimized. Therefore, in the epoxidation in the method of the present invention, preferably, hydrogen peroxide and, if necessary, a phosphorus compound are added.
The addition time of the hydrogen peroxide and the phosphorus compound added as needed varies depending on the reaction scale, but in the case of a 1 liter glass scale, it takes 30 minutes to 2 hours and is 1 in the case of an industrial scale of 10 m 3. It is desirable to perform the addition over a period of 20 hours.
After completion of the addition, the reaction is usually terminated by stirring for 1 to 4 hours.
 また、反応途中で反応液の水層と有機層を分離し、水層として得られる未使用のタングステン化合物-燐化合物水溶液、又はエポキシ化に使用したタングステン化合物触媒水溶液を濃縮したものを再度使用して、エポキシ化反応を行うことが望ましい。図1はその一例であり、以下のような手順で実施できる。
(1)エポキシ化反応後反応液を静置する。静置する容器は反応器でも別の容器でも良い。(2)静置後、上層の有機層と水層を分離する。(3)触媒濃度を再調整する。例えば、分離した水層を濃縮しタングステン触媒濃度を高める、および/または、新たに触媒を追添する。新たに触媒を追添する場合には、燐化合物及び/又は第4級アンモニウム塩、さらにタングステン化合物を必要に応じて上記分離した水層に追添する。また、上記分離した水層の代わりに新たに調製した触媒を含む水層を使用することもできる。(4)上記のように触媒濃度を再調整した触媒(水層)を上記分離された有機層に混合して再度エポキシ化反応する。その後上記(1)~(4)の操作を所望の転化率が得られるまで繰り返す。
 上記のように反応途中で反応液を二層分離し、分離した有機層と触媒濃度を再調整した水層とを再度混合し反応を繰り返すことが好ましい理由は、エポキシ化反応時に過酸化水素を水溶液として滴下する際に過酸化水素水溶液に含まれる水によりタングステン等の触媒を含有する水層が希釈され、触媒活性が低下するためである。触媒を有効活用するためには、水層を濃縮してタングステン濃度を上げてからリサイクルすることが好ましい。特にα-アミノアルキルホスホン酸類を用いた場合には、これらは反応途中で消費分解されていくので、リサイクル時に追添することが望ましい。
 上記図1は間欠的に反応液の水層と有機層を分離する方法の例であるが、図2のように連続反応器を使用して連続的に操作を実施することもできる。
 連続反応器は一般には管状リアクターを用いることが出来、特にマイクロリアクターのような有機層-水層がよりよく混合されるように設計されているものであれば、更に好ましい。また、攪拌槽でも反応液を連続供給しながら、連続的に抜き出すことにより同様に実施することが出来る。
 このように反応液を連続的に抜き出した後、有機層と水層を二層分離して、その後、有機層は必要に応じて新規原料、溶媒を追添しながらリサイクルし、水層は必要に応じて濃縮、触媒成分の追添を行い、過酸化水素を追添してリサイクルする。
 なお、この場合には反応液を一部抜き出して、次工程(転化率を目的の値まで高めるための反応槽、精製工程)に送る。
During the reaction, the aqueous layer and the organic layer of the reaction solution are separated, and an unused tungsten compound-phosphorus compound aqueous solution obtained as an aqueous layer or a concentrated tungsten compound catalyst aqueous solution used for epoxidation is reused. Therefore, it is desirable to perform an epoxidation reaction. FIG. 1 is an example thereof, which can be implemented by the following procedure.
(1) The reaction solution is allowed to stand after the epoxidation reaction. The container to be allowed to stand may be a reactor or another container. (2) After standing, the upper organic layer and the aqueous layer are separated. (3) Readjust the catalyst concentration. For example, the separated aqueous layer is concentrated to increase the tungsten catalyst concentration and / or a new catalyst is added. When a catalyst is newly added, a phosphorus compound and / or a quaternary ammonium salt and further a tungsten compound are added to the separated aqueous layer as necessary. In addition, an aqueous layer containing a newly prepared catalyst can be used instead of the separated aqueous layer. (4) The catalyst (water layer) whose catalyst concentration has been readjusted as described above is mixed with the separated organic layer and epoxidized again. Thereafter, the operations (1) to (4) are repeated until a desired conversion rate is obtained.
The reason why it is preferable to separate the reaction solution into two layers during the reaction as described above, and to mix the separated organic layer and the aqueous layer with the catalyst concentration readjusted to repeat the reaction is that hydrogen peroxide is removed during the epoxidation reaction. This is because the aqueous layer containing a catalyst such as tungsten is diluted with water contained in the aqueous hydrogen peroxide solution when dropped as an aqueous solution, and the catalytic activity decreases. In order to effectively use the catalyst, it is preferable to recycle after concentrating the aqueous layer to increase the tungsten concentration. In particular, when α-aminoalkylphosphonic acids are used, they are consumed and decomposed during the reaction, so it is desirable to add them during recycling.
FIG. 1 is an example of a method of intermittently separating the aqueous layer and the organic layer of the reaction solution, but the operation can also be carried out continuously using a continuous reactor as shown in FIG.
As the continuous reactor, a tubular reactor can generally be used, and it is more preferable if the organic layer-water layer such as a microreactor is designed to be mixed well. Moreover, it can implement similarly by extracting continuously, even in a stirring tank, supplying a reaction liquid continuously.
After continuously extracting the reaction solution in this way, the organic layer and the aqueous layer are separated into two layers, and then the organic layer is recycled while adding new raw materials and solvents as necessary, and the aqueous layer is necessary. Depending on the concentration, the catalyst components are added and hydrogen peroxide is added and recycled.
In this case, a part of the reaction solution is extracted and sent to the next step (reaction tank for increasing the conversion rate to the target value, purification step).
 エポキシ化反応後には、必要により酢酸エチル、トルエン、シクロヘキサン、ヘキサンのような有機溶媒を更に追添し、有機層を重亜硫酸ナトリウム、亜硫酸ナトリウム、チオ硫酸ナトリウムのような還元剤により処理して、過酸化水素を分解した後、必要に応じて水洗、抽出、精製を行った後、そのままの溶液状態若しくは溶媒を交換して他の溶媒での溶液状態で、又は溶媒を留去した無溶媒のポリグリシジルエーテル化合物として、所望の用途で用いることができる。 After the epoxidation reaction, an organic solvent such as ethyl acetate, toluene, cyclohexane and hexane is further added as necessary, and the organic layer is treated with a reducing agent such as sodium bisulfite, sodium sulfite and sodium thiosulfate, After decomposing hydrogen peroxide, after washing, extraction, and purification as necessary, the solution is left as it is or in a solution with another solvent by exchanging the solvent, or without solvent. As a polyglycidyl ether compound, it can be used for a desired use.
 以下、実施例により本発明を具体的に説明するが、本発明は以下の実施例にのみ制限されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to the following examples.
(合成例1)ポリアリルクレゾールノボラック樹脂の合成
 2000mlのナス型フラスコに、クレゾールノボラック樹脂CRG-951(昭和高分子(株)製 水酸基当量118)200.0g、50%含水5%-Pd/C-STDタイプ(エヌ・イーケムキャット(株)製)3.61g(0.847mmol)、トリフェニルホスフィン(北興化学(株)製)2.22g(8.47mmol)、炭酸カリウム(旭硝子(株)製)234g(1.69mol)、酢酸アリル(昭和電工(株)製)187g(1.86mol)、及びイソプロパノール200gを入れ、窒素雰囲気中、85℃で8時間反応させた。反応後、一部サンプリングし、酢酸エチルで希釈後、純水で洗浄液が中性になるまで洗浄後、イソプロパノール、酢酸エチルを留去し、JIS K0070に準拠して水酸基価を測定し、水酸基がほぼ消費されていることを確認した。
(Synthesis Example 1) Synthesis of polyallyl cresol novolak resin In a 2000 ml eggplant-shaped flask, 200.0 g of cresol novolak resin CRG-951 (hydroxyl equivalent 118 produced by Showa Polymer Co., Ltd.), 50% water content 5% -Pd / C- STD type (manufactured by N.E. Chemcat Co., Ltd.) 3.61 g (0.847 mmol), triphenylphosphine (manufactured by Hokuko Chemical Co., Ltd.) 2.22 g (8.47 mmol), potassium carbonate (manufactured by Asahi Glass Co., Ltd.) 234 g (1.69 mol) ), Allyl acetate (produced by Showa Denko KK) 187 g (1.86 mol), and isopropanol 200 g were added and reacted at 85 ° C. for 8 hours in a nitrogen atmosphere. After the reaction, a part is sampled, diluted with ethyl acetate, washed with pure water until the washing solution becomes neutral, then isopropanol and ethyl acetate are distilled off, and the hydroxyl value is measured according to JIS K0070. It was confirmed that it was almost consumed.
 この後、反応液にトルエン400gを加え、Pd/Cと析出した固体を濾過により除き、エバポレーターにより、イソプロパノールとトルエンを留去し、クレゾールノボラック樹脂のポリアリルエーテル260gを得た。このポリアリルエーテルのヨウ素価をJIS K0070に準拠して測定した結果157であった。 Thereafter, 400 g of toluene was added to the reaction solution, Pd / C and the precipitated solid were removed by filtration, and isopropanol and toluene were distilled off by an evaporator to obtain 260 g of polyallyl ether of cresol novolac resin. As a result of measuring the iodine value of this polyallyl ether in accordance with JIS K0070, it was 157.
(合成例2)ポリアリルメタン型トリスフェノール樹脂の合成
 2000mlのナス型フラスコに、メタン型トリスフェノール樹脂NCR-231(昭和高分子(株)製、水酸基当量106)200g、50%含水5%-Pd/C-STDタイプ(エヌ・イーケムキャット(株)製)4.02g(0.943mmol)、トリフェニルホスフィン(北興化学(株)製)2.47g(9.43mmol)、炭酸カリウム(旭硝子(株)製)261g(1.89mol)、酢酸アリル(昭和電工(株)製)208g(2.08mol)、及びイソプロパノール200gを入れ、窒素雰囲気中、85℃で8時間反応させた。反応後、一部サンプリングし、酢酸エチルで希釈後、純水で洗浄液が中性になるまで洗浄後、イソプロパノール、酢酸エチルを留去し、JIS K0070に準拠して水酸基価を測定し、水酸基がほぼ消費されていることを確認した。
(Synthesis Example 2) Synthesis of polyallylmethane type trisphenol resin In a 2000 ml eggplant type flask, 200 g of methane type trisphenol resin NCR-231 (manufactured by Showa Polymer Co., Ltd., hydroxyl equivalent 106), 50% water content 5%- Pd / C-STD type (NEC Chemcat Co., Ltd.) 4.02 g (0.943 mmol), triphenylphosphine (Hokuko Chemical Co., Ltd.) 2.47 g (9.43 mmol), potassium carbonate (Asahi Glass Co., Ltd.) 261 g (1.89 mol), 208 g (2.08 mol) of allyl acetate (manufactured by Showa Denko KK) and 200 g of isopropanol were added and reacted at 85 ° C. for 8 hours in a nitrogen atmosphere. After the reaction, a part is sampled, diluted with ethyl acetate, washed with pure water until the washing solution becomes neutral, then isopropanol and ethyl acetate are distilled off, and the hydroxyl value is measured according to JIS K0070. It was confirmed that it was almost consumed.
 この後、反応液にトルエン400gを加え、Pd/Cと析出した固体を濾過により除き、エバポレーターにより、イソプロパノールとトルエンを留去し、メタン型トリスフェノール樹脂のポリアリルエーテル271gを得た。このポリアリルエーテルのヨウ素価をJIS K0070に準拠して測定した結果168であった。 Thereafter, 400 g of toluene was added to the reaction solution, Pd / C and the precipitated solid were removed by filtration, and isopropanol and toluene were distilled off by an evaporator to obtain 271 g of polyallyl ether of methane type trisphenol resin. As a result of measuring iodine value of this polyallyl ether in accordance with JIS K0070, it was 168.
(合成例3)ビスフェノール-Fのジアリルエーテルの合成
 2000mlのナス型フラスコに、ビスフェノール-F-ST(三井化学(株)製)200g(0.999mol)、50%含水5%-Pd/C-STDタイプ(エヌ・イーケムキャット(株)製)2.13g(0.499mmol)、トリフェニルホスフィン(北興化学(株)製)2.62g(9.99mmol)、炭酸カリウム(旭硝子(株)製)276g(2.00mol)、酢酸アリル(昭和電工(株)製)220g(2.20mol)、及びイソプロパノール200gを入れ、窒素雰囲気中、85℃で8時間反応させた。反応後、一部サンプリングし、酢酸エチルで希釈後、ガスクロマトグラフィーによる分析で、ビスフェノール-Fジアリルエーテル対モノアリルエーテルの比率が99:1までになっていることを確認した。
(Synthesis Example 3) Synthesis of diallyl ether of bisphenol-F In a 2000 ml eggplant type flask, 200 g (0.999 mol) of bisphenol-F-ST (manufactured by Mitsui Chemicals), 50% water content 5% -Pd / C-STD Type (made by N.E. Chemcat Co., Ltd.) 2.13 g (0.499 mmol), triphenylphosphine (made by Hokuko Chemical Co., Ltd.) 2.62 g (9.99 mmol), potassium carbonate (made by Asahi Glass Co., Ltd.) 276 g (2.00 mol) Then, 220 g (2.20 mol) of allyl acetate (manufactured by Showa Denko KK) and 200 g of isopropanol were added and reacted at 85 ° C. for 8 hours in a nitrogen atmosphere. After the reaction, a part was sampled, diluted with ethyl acetate, and analyzed by gas chromatography, and it was confirmed that the ratio of bisphenol-F diallyl ether to monoallyl ether was 99: 1.
 この後、反応液にトルエン400gを加え、Pd/Cと析出した固体を濾過により除き、エバポレーターにより、イソプロパノールとトルエンを留去した。この反応及び後処理操作を4回行った後、反応生成物を全て合わせて分子蒸留装置(大科工業(株)製)にかけることより、留出物748g(単離収率66%、ビスフェノール-Fジアリルエーテル98.7%残りはモノアリルエーテル)、非留出物368g(ビスフェノール-Fジアリルエーテル88%)を得た。 Thereafter, 400 g of toluene was added to the reaction solution, Pd / C and the precipitated solid were removed by filtration, and isopropanol and toluene were distilled off by an evaporator. After performing this reaction and the post-treatment operation four times, all the reaction products were combined and applied to a molecular distillation apparatus (manufactured by Daishin Kogyo Co., Ltd.), so that 748 g of distillate (isolation yield 66%, bisphenol) -F diallyl ether 98.7% the remainder was monoallyl ether), and 368 g of non-distilled product (bisphenol-F diallyl ether 88%) was obtained.
(実施例1)
 予めタングステン酸ナトリウム0.409g(1.24mmol)を、純水0.409g、及び35%過酸化水素水溶液0.241g(2.48mmol)に溶解したものを調製した。
 滴下ロート、ジムロート冷却管を備えた100mLの三ツ口フラスコに、合成例1で得たポリアリルクレゾールノボラック樹脂10g(アリル基として0.062mol)、トルエン10g、硫酸水素メチルトリオクチルアンモニウム0.290g(0.620mmol)、アミノメチルホスホン酸0.0688g(0.620mmol)、及び予め調製したタングステン酸溶液を入れ、バス温を80℃に加熱した。バス温が80℃になった時点で過酸化水素水溶液12.1g(0.124mol)を30分かけて滴下し、その後4時間バス温80℃で反応を継続した。
 反応終了後、反応液を一部サンプリングし、トルエンを留去した後、エポキシ当量を測定したところ、288であった。なお、ヨウ素価から計算した二重結合がすべてエポキシ化された場合のエポキシ当量は177である。
Example 1
A solution prepared by previously dissolving 0.409 g (1.24 mmol) of sodium tungstate in 0.409 g of pure water and 0.241 g (2.48 mmol) of 35% aqueous hydrogen peroxide was prepared.
In a 100 mL three-necked flask equipped with a dropping funnel and a Dimroth condenser, 10 g of the polyallyl cresol novolak resin obtained in Synthesis Example 1 (0.062 mol as the allyl group), 10 g of toluene, 0.290 g (0.620 mmol) of methyl trioctylammonium hydrogen sulfate Then, 0.0688 g (0.620 mmol) of aminomethylphosphonic acid and a tungstic acid solution prepared in advance were added, and the bath temperature was heated to 80 ° C. When the bath temperature reached 80 ° C, 12.1 g (0.124 mol) of an aqueous hydrogen peroxide solution was added dropwise over 30 minutes, and then the reaction was continued at a bath temperature of 80 ° C for 4 hours.
After completion of the reaction, a part of the reaction solution was sampled, and after toluene was distilled off, the epoxy equivalent was measured and found to be 288. In addition, the epoxy equivalent when all double bonds calculated from the iodine value are epoxidized is 177.
(実施例2~6、比較例1~2)
 以下の表1に示す触媒を用いた他は、実施例1と同じ操作で反応を行った。その結果を以下の表1に示す。
(Examples 2-6, Comparative Examples 1-2)
The reaction was performed in the same manner as in Example 1 except that the catalysts shown in Table 1 below were used. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(実施例7)
 予めタングステン酸ナトリウム0.438g(1.33mmol)を、純水0.438g、及び35%過酸化水素水溶液0.258g(2.66mmol)に溶解したものを調製した。
 滴下ロート、ジムロート冷却管を備えた100mLの三ツ口フラスコに、合成例2で得たポリアリルメタン型トリスフェノール樹脂10g(アリル基として0.0664mol)、トルエン10g、硫酸水素メチルトリオクチルアンモニウム0.310g(0.664mmol)、アミノメチルホスホン酸0.0737g(0.664mmol)、及び予め調製したタングステン酸溶液を入れ、バス温を80℃に加熱した。バス温が80℃になった時点で過酸化水素水溶液12.9g(0.133mol)を30分かけて滴下し、その後4時間バス温80℃で反応を継続した。
 反応終了後、反応液を一部サンプリングし、トルエンを留去した後、エポキシ当量を測定したところ、264であった。なお、ヨウ素価から計算した二重結合がすべてエポキシ化された場合のエポキシ当量は167である。
(Example 7)
A solution prepared by previously dissolving 0.438 g (1.33 mmol) of sodium tungstate in 0.438 g of pure water and 0.258 g (2.66 mmol) of 35% aqueous hydrogen peroxide solution was prepared.
To a 100 mL three-necked flask equipped with a dropping funnel and a Dimroth condenser, 10 g of the polyallylmethane type trisphenol resin obtained in Synthesis Example 2 (0.0664 mol as the allyl group), 10 g of toluene, 0.310 g of methyl trioctylammonium hydrogen sulfate (0.664 mmol), 0.0737 g (0.664 mmol) of aminomethylphosphonic acid, and a tungstic acid solution prepared in advance, and the bath temperature was heated to 80 ° C. When the bath temperature reached 80 ° C., 12.9 g (0.133 mol) of an aqueous hydrogen peroxide solution was added dropwise over 30 minutes, and then the reaction was continued at a bath temperature of 80 ° C. for 4 hours.
After completion of the reaction, a part of the reaction solution was sampled, and after toluene was distilled off, the epoxy equivalent was measured and found to be 264. In addition, the epoxy equivalent when all the double bonds calculated from the iodine value are epoxidized is 167.
(実施例8)
 予めタングステン酸ナトリウム0.409g(1.24mmol)を、純水0.409g、及び35%過酸化水素水溶液0.241g(2.48mmol)に溶解したものを調製した。
 滴下ロート、ジムロート冷却管を備えた100mLの三ツ口フラスコに、合成例1で得たポリアリルクレゾールノボラック樹脂10g、トルエン10g、硫酸水素メチルトリオクチルアンモニウム0.290g(0.620mmol)、アミノメチルホスホン酸0.0344g(0.310mmol)、及び予め調製したタングステン酸溶液を二分割した片方を入れ、バス温を80℃に加熱した。バス温が80℃になった時点で過酸化水素水溶液12.1g(0.124mol)を30分かけて滴下し、その後4時間バス温80℃で反応を継続した。
(Example 8)
A solution prepared by previously dissolving 0.409 g (1.24 mmol) of sodium tungstate in 0.409 g of pure water and 0.241 g (2.48 mmol) of 35% aqueous hydrogen peroxide was prepared.
Into a 100 mL three-necked flask equipped with a dropping funnel and a Dimroth condenser, 10 g of the polyallyl cresol novolak resin obtained in Synthesis Example 1, 10 g of toluene, 0.290 g (0.620 mmol) of methyl trioctylammonium hydrogen sulfate, 0.0344 g of aminomethylphosphonic acid ( 0.310 mmol) and one portion of the previously prepared tungstic acid solution divided into two, and the bath temperature was heated to 80 ° C. When the bath temperature reached 80 ° C, 12.1 g (0.124 mol) of an aqueous hydrogen peroxide solution was added dropwise over 30 minutes, and then the reaction was continued at a bath temperature of 80 ° C for 4 hours.
 4時間経過後、反応液を室温まで冷却し分液ロートに移し、水層を分離した後、トルエン層を反応フラスコに戻し、アミノメチルホスホン酸0.0344g(0.310mmol)、予め調製したタングステン酸溶液を二分割した残りの片方を入れ、バス温を80℃に再加熱した。バス温が90℃になった時点で過酸化水素水溶液12.1g(0.124mol)を30分かけて滴下し、その後4時間バス温80℃で反応を継続した。反応液を一部サンプリングし、トルエンを留去した後、エポキシ当量を測定したところ、208であった。実施例5よりエポキシ化が進行していることがわかる。 After 4 hours, the reaction solution was cooled to room temperature, transferred to a separatory funnel, the aqueous layer was separated, the toluene layer was returned to the reaction flask, 0.0344 g (0.310 mmol) of aminomethylphosphonic acid, The remaining one of the two parts was placed and the bath temperature was reheated to 80 ° C. When the bath temperature reached 90 ° C, 12.1 g (0.124 mol) of an aqueous hydrogen peroxide solution was added dropwise over 30 minutes, and then the reaction was continued at a bath temperature of 80 ° C for 4 hours. A part of the reaction solution was sampled, toluene was distilled off, and then the epoxy equivalent was measured. Example 5 shows that epoxidation has progressed.
(実施例9)
 予めタングステン酸ナトリウム0.235g(0.713mmol)を、純水0.235g、及び35%過酸化水素水溶液0.139g(1.43mmol)に溶解したものを調製した。
 滴下ロート、ジムロート冷却管を備えた100mLの三ツ口フラスコに、合成例3で得たビスフェノール-Fのジアリルエーテル留出液10g(0.0357mol)、トルエン10g、硫酸水素メチルトリオクチルアンモニウム0.167g(0.357mmol)、アミノメチルホスホン酸0.0396g(0.357mmol)、及び予め調製したタングステン酸溶液を入れ、バス温を80℃に加熱した。バス温が80℃になった時点で過酸化水素水溶液8.32g(0.0856mol)を30分かけて滴下し、その後4時間バス温80℃で反応を継続した。
 反応液を一部サンプリングし、ガスクロで分析を行ったところ、ビスフェノール-Fのジアリルエーテルの留出液の転化率は95%で、モノエポキサイドの収率は33%、ジエポキサイドの収率は58%であった。
Example 9
A solution prepared by previously dissolving 0.235 g (0.713 mmol) of sodium tungstate in 0.235 g of pure water and 0.139 g (1.43 mmol) of 35% aqueous hydrogen peroxide solution was prepared.
In a 100 mL three-necked flask equipped with a dropping funnel and a Dimroth condenser, 10 g (0.0357 mol) of the diallyl ether distillate of bisphenol-F obtained in Synthesis Example 3, 10 g of toluene, 0.167 g (0.357 mmol) of methyltrioctylammonium hydrogensulfate ), 0.0396 g (0.357 mmol) of aminomethylphosphonic acid, and a previously prepared tungstic acid solution were added, and the bath temperature was heated to 80 ° C. When the bath temperature reached 80 ° C., 8.32 g (0.0856 mol) of an aqueous hydrogen peroxide solution was added dropwise over 30 minutes, and then the reaction was continued at a bath temperature of 80 ° C. for 4 hours.
When a part of the reaction solution was sampled and analyzed by gas chromatography, the conversion rate of the diaryl ether of bisphenol-F was 95%, the yield of monoepoxide was 33%, and the yield of diepoxide was 58. %Met.
(実施例10)
 予めタングステン酸ナトリウム0.214g(0.648mmol)を、純水0.214g、及び35%過酸化水素水溶液0.126g(1.30mmol)に溶解したものを調製した。
 滴下ロート、ジムロート冷却管を備えた100mLの三ツ口フラスコに、ビスフェノール-Aジアリルエーテル(中国:菜玉化工有限公司製)10g(0.0324mol)、トルエン10g、硫酸水素メチルトリオクチルアンモニウム0.151g(0.324mmol)、アミノメチルホスホン酸0.0360g(0.324mmol)、及び予め調製したタングステン酸溶液を入れ、バス温を80℃に加熱した。バス温が80℃になった時点で過酸化水素水溶液7.56g(0.0778mol)を30分かけて滴下し、その後4時間バス温80℃で反応を継続した。
 反応液を一部サンプリングし、ガスクロで分析を行ったところ、ビスフェノール-Aジアリルエーテルの転化率は93%で、モノエポキサイドの収率は36%、ジエポキサイドの収率は55%であった。
(Example 10)
A solution prepared by previously dissolving 0.214 g (0.648 mmol) of sodium tungstate in 0.214 g of pure water and 0.126 g (1.30 mmol) of 35% aqueous hydrogen peroxide was prepared.
In a 100 mL three-necked flask equipped with a dropping funnel and a Dimroth condenser, 10 g (0.0324 mol) of bisphenol-A diallyl ether (China: Natama Chemical Co., Ltd.), 10 g of toluene, 0.151 g (0.324 mmol) of methyl trioctylammonium hydrogen sulfate ), 0.0360 g (0.324 mmol) of aminomethylphosphonic acid, and a previously prepared tungstic acid solution were added, and the bath temperature was heated to 80 ° C. When the bath temperature reached 80 ° C, 7.56 g (0.0778 mol) of an aqueous hydrogen peroxide solution was added dropwise over 30 minutes, and then the reaction was continued at a bath temperature of 80 ° C for 4 hours.
When a part of the reaction solution was sampled and analyzed by gas chromatography, the conversion rate of bisphenol-A diallyl ether was 93%, the yield of monoepoxide was 36%, and the yield of diepoxide was 55%.
(実施例11)
 予めタングステン酸ナトリウム0.214g(0.648mmol)を、純水0.214g、及び35%過酸化水素水溶液0.126g(1.30mmol)に溶解したものを調製した。
 滴下ロート、ジムロート冷却管を備えた100mLの三ツ口フラスコに、ビスフェノール-Aジアリルエーテル(中国:菜玉化工有限公司製)10g(0.0324mol)、トルエン10g、硫酸水素メチルトリオクチルアンモニウム0.151g(0.324mmol)、アミノメチルホスホン酸0.0180g(0.162mmol)、及び予め調製したタングステン酸溶液の半量を入れ、バス温を80℃に加熱した。バス温が80℃になった時点で過酸化水素水溶液3.78g(0.0389mol)を15分かけて滴下し、その後4時間バス温80℃で反応を継続した。
 反応液を一部サンプリングし、ガスクロで分析を行ったところ、ビスフェノール-Aジアリルエーテルの転化率は82%で、モノエポキサイドの収率は61%、ジエポキサイドの収率は19%であった。
 反応終了後、反応液を分液ロートに移し、下層から触媒液(水層)を分離し上層の有機層を反応フラスコに戻した。
 前記タングステン酸溶液の残りの半量と、アミノメチルホスホン酸0.0180g(0.162mmol)を加え、バス温を80℃に加熱した。バス温が80℃になった時点で過酸化水素水溶液3.78g(0.0389mol)を15分かけて滴下し、その後4時間バス温80℃で反応を継続した。
 反応液を一部サンプリングし、ガスクロで分析を行ったところ、ビスフェノール-Aジアリルエーテルの転化率は99%で、モノエポキサイドの収率は6%、ジエポキサイドの収率は89%であった。
(Example 11)
A solution prepared by previously dissolving 0.214 g (0.648 mmol) of sodium tungstate in 0.214 g of pure water and 0.126 g (1.30 mmol) of 35% aqueous hydrogen peroxide was prepared.
In a 100 mL three-necked flask equipped with a dropping funnel and a Dimroth condenser, 10 g (0.0324 mol) of bisphenol-A diallyl ether (China: Natama Chemical Co., Ltd.), 10 g of toluene, 0.151 g (0.324 mmol) of methyl trioctylammonium hydrogen sulfate ), 0.0180 g (0.162 mmol) of aminomethylphosphonic acid, and half of the tungstic acid solution prepared in advance, and the bath temperature was heated to 80 ° C. When the bath temperature reached 80 ° C, 3.78 g (0.0389 mol) of an aqueous hydrogen peroxide solution was added dropwise over 15 minutes, and then the reaction was continued at a bath temperature of 80 ° C for 4 hours.
When a part of the reaction solution was sampled and analyzed by gas chromatography, the conversion of bisphenol-A diallyl ether was 82%, the yield of monoepoxide was 61%, and the yield of diepoxide was 19%.
After completion of the reaction, the reaction solution was transferred to a separating funnel, the catalyst solution (aqueous layer) was separated from the lower layer, and the upper organic layer was returned to the reaction flask.
The remaining half of the tungstic acid solution and 0.0180 g (0.162 mmol) of aminomethylphosphonic acid were added, and the bath temperature was heated to 80 ° C. When the bath temperature reached 80 ° C, 3.78 g (0.0389 mol) of an aqueous hydrogen peroxide solution was added dropwise over 15 minutes, and then the reaction was continued at a bath temperature of 80 ° C for 4 hours.
When a part of the reaction solution was sampled and analyzed by gas chromatography, the conversion of bisphenol-A diallyl ether was 99%, the yield of monoepoxide was 6%, and the yield of diepoxide was 89%.
(実施例12)
 予めタングステン酸ナトリウム0.214g(0.648mmol)を、純水0.214g、及び35%過酸化水素水溶液0.126g(1.30mmol)に溶解したものを調製した。
 滴下ロート、ジムロート冷却管を備えた100mLの三ツ口フラスコに、ビスフェノール-Aジアリルエーテル(中国:菜玉化工有限公司製)10g(0.0324mol)、トルエン10g、硫酸水素メチルトリオクチルアンモニウム0.151g(0.324mmol)、アミノメチルホスホン酸0.0360g(0.324mmol)、及び予め調製したタングステン酸溶液を入れ、バス温を80℃に加熱した。バス温が80℃になった時点で過酸化水素水溶液3.78g(0.0389mol)を30分かけて滴下し、その後4時間バス温80℃で反応を継続した。
 反応液を一部サンプリングし、ガスクロで分析を行ったところ、ビスフェノール-Aジアリルエーテルの転化率は87%で、モノエポキサイドの収率は56%、ジエポキサイドの収率は29%であった。
 反応終了後、反応液を分液ロートに移し、下層から触媒液(水層)を分離し上層の有機層を反応フラスコに戻した。
 水層からエバポレーターを用いて2.3gの水を留去し、反応フラスコに戻し、バス温を80℃に加熱した。バス温が80℃になった時点で過酸化水素水溶液3.78g(0.0389mol)を15分かけて滴下し、その後4時間バス温80℃で反応を継続した。
 反応液を一部サンプリングし、ガスクロで分析を行ったところ、ビスフェノール-Aジアリルエーテルの転化率は94%で、モノエポキサイドの収率は33%、ジエポキサイドの収率は54%であった。
(Example 12)
A solution prepared by previously dissolving 0.214 g (0.648 mmol) of sodium tungstate in 0.214 g of pure water and 0.126 g (1.30 mmol) of 35% aqueous hydrogen peroxide was prepared.
In a 100 mL three-necked flask equipped with a dropping funnel and a Dimroth condenser, 10 g (0.0324 mol) of bisphenol-A diallyl ether (China: Natama Chemical Co., Ltd.), 10 g of toluene, 0.151 g (0.324 mmol) of methyl trioctylammonium hydrogen sulfate ), 0.0360 g (0.324 mmol) of aminomethylphosphonic acid, and a previously prepared tungstic acid solution were added, and the bath temperature was heated to 80 ° C. When the bath temperature reached 80 ° C., 3.78 g (0.0389 mol) of an aqueous hydrogen peroxide solution was added dropwise over 30 minutes, and then the reaction was continued at a bath temperature of 80 ° C. for 4 hours.
When a part of the reaction solution was sampled and analyzed by gas chromatography, the conversion rate of bisphenol-A diallyl ether was 87%, the yield of monoepoxide was 56%, and the yield of diepoxide was 29%.
After completion of the reaction, the reaction solution was transferred to a separating funnel, the catalyst solution (aqueous layer) was separated from the lower layer, and the upper organic layer was returned to the reaction flask.
An evaporator was used to distill off 2.3 g of water from the aqueous layer, and the mixture was returned to the reaction flask and the bath temperature was heated to 80 ° C. When the bath temperature reached 80 ° C, 3.78 g (0.0389 mol) of an aqueous hydrogen peroxide solution was added dropwise over 15 minutes, and then the reaction was continued at a bath temperature of 80 ° C for 4 hours.
When a part of the reaction solution was sampled and analyzed by gas chromatography, the conversion rate of bisphenol-A diallyl ether was 94%, the yield of monoepoxide was 33%, and the yield of diepoxide was 54%.
(実施例13~15)
 以下の表2に示すアリル化合物を用いた他は、実施例6と同じ操作で反応を行った。その結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000006
(Examples 13 to 15)
The reaction was carried out in the same manner as in Example 6 except that allyl compounds shown in Table 2 below were used. The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000006

Claims (12)

  1.  出発材料であるフェノール性水酸基を複数個有する化合物のポリアリルエーテル化合物のアリル基の炭素-炭素二重結合を、タングステン化合物、燐化合物及び第4級アンモニウム塩の存在下、酸化剤として過酸化水素を用いて、エポキシ化する工程を含む、ポリグリシジルエーテル化合物の製造方法。 The carbon-carbon double bond of the allyl group of the polyallyl ether compound of the compound having a plurality of phenolic hydroxyl groups as a starting material is hydrogen peroxide as an oxidizing agent in the presence of a tungsten compound, a phosphorus compound and a quaternary ammonium salt. The manufacturing method of a polyglycidyl ether compound including the process of epoxidizing using.
  2.  前記フェノール性水酸基を複数個有する化合物がポリフェノールである請求項1に記載のポリグリシジルエーテル化合物の製造方法。 The method for producing a polyglycidyl ether compound according to claim 1, wherein the compound having a plurality of phenolic hydroxyl groups is polyphenol.
  3.  前記ポリフェノールのポリアリルエーテル化合物が、カテコール、レゾルシノール、ハイドロキノン、ビスフェノールA(p,p’-イソプロピリデンジフェノール)、ビスフェノールF(p,p’-メチレンジフェノール)、ビスフェノールK(p,p’-ジフェノールカルボニル)、ジヒドロキシメチルスチルベン、ジヒドロキシビフェニル、テトラメチルジヒドロキシビフェニル、ジヒドロキシナフタレン、ビス(ヒドロキシフェニル)フルオレン、メタン型トリスフェノール類、トリスフェノール類、フェノール-アルデヒドノボラック樹脂、アルキル置換フェノール-アルデヒドノボラック樹脂、ポリシクロペンタジエン変性フェノール樹脂、及びポリビニルフェノールからなる群より選択される少なくとも1種のフェノール性水酸基の一部又は全部がアリルエーテル化されたものである、請求項2に記載のポリグリシジルエーテル化合物の製造方法。 The polyallyl ether compound of polyphenol is catechol, resorcinol, hydroquinone, bisphenol A (p, p'-isopropylidenediphenol), bisphenol F (p, p'-methylenediphenol), bisphenol K (p, p'- Diphenolcarbonyl), dihydroxymethylstilbene, dihydroxybiphenyl, tetramethyldihydroxybiphenyl, dihydroxynaphthalene, bis (hydroxyphenyl) fluorene, methane type trisphenols, trisphenols, phenol-aldehyde novolak resin, alkyl-substituted phenol-aldehyde novolak resin , Polycyclopentadiene modified phenolic resin, and at least one phenolic water selected from the group consisting of polyvinylphenol The method for producing a polyglycidyl ether compound according to claim 2, wherein a part or all of the acid groups are allyl etherified.
  4.  前記ポリフェノールのポリアリルエーテル化合物が、フェノール性水酸基を持つ芳香族炭化水素とアルデヒド化合物とを縮合させたメタン型トリスフェノール類、フェノール-アルデヒドノボラック樹脂、及びアルキル置換フェノール-アルデヒドノボラック樹脂からなる群より選択される少なくとも1種のフェノール性水酸基の一部又は全部をアリルエーテル化したものである、請求項3に記載のポリグリシジルエーテル化合物の製造方法。 The polyallyl ether compound of polyphenol is selected from the group consisting of methane-type trisphenols obtained by condensing an aromatic hydrocarbon having a phenolic hydroxyl group and an aldehyde compound, a phenol-aldehyde novolak resin, and an alkyl-substituted phenol-aldehyde novolak resin. The method for producing a polyglycidyl ether compound according to claim 3, wherein a part or all of at least one selected phenolic hydroxyl group is allyl etherified.
  5.  前記ポリフェノールのポリアリルエーテル化合物が、フェノール性水酸基を持つ芳香族炭化水素とジシクロペンタジエンとを縮合させたポリシクロペンタジエン変性フェノール樹脂、及びビニルフェノールを重合させたポリビニルフェノールからなる群より選択される少なくとも1種のフェノール性水酸基の一部又は全部をアリルエーテル化したものである、請求項3に記載のポリグリシジルエーテル化合物の製造方法。 The polyallyl ether compound of the polyphenol is selected from the group consisting of a polycyclopentadiene-modified phenol resin obtained by condensing an aromatic hydrocarbon having a phenolic hydroxyl group and dicyclopentadiene, and a polyvinyl phenol obtained by polymerizing vinyl phenol. The method for producing a polyglycidyl ether compound according to claim 3, wherein all or at least one phenolic hydroxyl group is allyl etherified.
  6.  前記燐化合物が、燐酸、アミノメチルホスホン酸、α-アミノエチルホスホン酸、α-アミノプロピルホスホン酸、α-アミノブチルホスホン酸、α-アミノペンチルホスホン酸、α-アミノヘキシルホスホン酸、α-アミノヘプチルホスホン酸、α-アミノオクチルホスホン酸、α-アミノノニルホスホン酸、α-アミノ-α-フェニルメチルホスホン酸、及びニトリロトリス(メチレン)トリスホスホン酸からなる群より選択される少なくとも1種である、請求項1~5のいずれか1項に記載のポリグリシジルエーテル化合物の製造方法。 The phosphorus compound is phosphoric acid, aminomethylphosphonic acid, α-aminoethylphosphonic acid, α-aminopropylphosphonic acid, α-aminobutylphosphonic acid, α-aminopentylphosphonic acid, α-aminohexylphosphonic acid, α-aminoheptyl The phosphonic acid, α-aminooctylphosphonic acid, α-aminononylphosphonic acid, α-amino-α-phenylmethylphosphonic acid, and at least one selected from the group consisting of nitrilotris (methylene) trisphosphonic acid, Item 6. The method for producing a polyglycidyl ether compound according to any one of Items 1 to 5.
  7.  前記燐化合物がニトリロトリス(メチレン)トリスホスホン酸である、請求項6に記載のポリグリシジルエーテル化合物の製造方法。 The method for producing a polyglycidyl ether compound according to claim 6, wherein the phosphorus compound is nitrilotris (methylene) trisphosphonic acid.
  8.  前記タングステン化合物が、タングステン酸、タングステン酸アルカリ、タングステン酸アンモニウム、リンタングステン酸、及びケイタングステン酸からなる群より選択される少なくとも1種である、請求項1~7のいずれか1項に記載のポリグリシジルエーテル化合物の製造方法。 The tungsten compound according to any one of claims 1 to 7, wherein the tungsten compound is at least one selected from the group consisting of tungstic acid, alkali tungstate, ammonium tungstate, phosphotungstic acid, and silicotungstic acid. A method for producing a polyglycidyl ether compound.
  9.  前記第4級アンモニウム塩が、第4級アンモニウムの硫酸塩、硫酸水素塩、及び硝酸塩からなる群より選択される少なくとも1種である、請求項1~8のいずれか1項に記載のポリグリシジルエーテル化合物の製造方法。 The polyglycidyl according to any one of claims 1 to 8, wherein the quaternary ammonium salt is at least one selected from the group consisting of quaternary ammonium sulfate, hydrogen sulfate, and nitrate. A method for producing an ether compound.
  10.  前記タングステン化合物中のタングステン原子対燐化合物のモル比が、1:0.1~1:10の範囲である、請求項1~9のいずれか1項に記載のポリグリシジルエーテル化合物の製造方法。 The method for producing a polyglycidyl ether compound according to any one of claims 1 to 9, wherein the molar ratio of the tungsten atom to the phosphorus compound in the tungsten compound is in the range of 1: 0.1 to 1:10.
  11.  前記フェノール性水酸基を複数個有する化合物のポリアリルエーテル化合物のアリル基の炭素-炭素二重結合対過酸化水素のモル比が、1:0.5~1:4の範囲である、請求項1~10のいずれか1項に記載のポリグリシジルエーテル化合物の製造方法。 The molar ratio of the carbon-carbon double bond of the allyl group to hydrogen peroxide in the polyallyl ether compound of the compound having a plurality of phenolic hydroxyl groups is in the range of 1: 0.5 to 1: 4. 11. A process for producing a polyglycidyl ether compound according to any one of 1 to 10.
  12.  前記エポキシ化工程において、過酸化水素、及び必要に応じて燐化合物を追添する、請求項1~11のいずれか1項に記載のポリグリシジルエーテル化合物の製造方法。 The method for producing a polyglycidyl ether compound according to any one of claims 1 to 11, wherein hydrogen peroxide and, if necessary, a phosphorus compound are additionally added in the epoxidation step.
PCT/JP2010/063658 2009-08-13 2010-08-11 Method for producing polyglycidyl ether compound WO2011019061A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011526781A JPWO2011019061A1 (en) 2009-08-13 2010-08-11 Method for producing polyglycidyl ether compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009187760 2009-08-13
JP2009-187760 2009-08-13

Publications (1)

Publication Number Publication Date
WO2011019061A1 true WO2011019061A1 (en) 2011-02-17

Family

ID=43586236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063658 WO2011019061A1 (en) 2009-08-13 2010-08-11 Method for producing polyglycidyl ether compound

Country Status (2)

Country Link
JP (1) JPWO2011019061A1 (en)
WO (1) WO2011019061A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130203068A1 (en) * 2012-02-06 2013-08-08 Perkinelmer Biosignal, Inc. Dual-acceptor time-resolved-fret
JP2014240377A (en) * 2013-05-13 2014-12-25 昭和電工株式会社 Method for producing polyvalent glycidyl compound
JP2014240376A (en) * 2013-05-13 2014-12-25 昭和電工株式会社 Method for producing polyvalent glycidyl compound
KR20150002630A (en) 2012-03-30 2015-01-07 미쓰비시 가가꾸 가부시키가이샤 Method for manufacturing epoxy compound, and catalyst composition for epoxylating reaction
WO2015052925A1 (en) * 2013-10-09 2015-04-16 日本化薬株式会社 Method for producing epoxy resin, epoxy resin, curable resin composition, and cured product
JP2016094353A (en) * 2014-11-12 2016-05-26 昭和電工株式会社 Method for producing polyvalent glycidyl compound
EP4130088A4 (en) * 2020-03-23 2024-04-17 Nippon Kayaku Kk Epoxy resin, epoxy compounds, epoxy resin composition, resin sheet, prepreg, carbon-fiber-reinforced composite material, and phenolic resin

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060123A (en) * 1983-09-13 1985-04-06 Sumitomo Chem Co Ltd Production of epoxy compound
JPH07252373A (en) * 1994-08-22 1995-10-03 Nippon Petrochem Co Ltd Cloth or mat base impregnated with erpoxy resin composition and used as electric insulating material
JPH10511722A (en) * 1994-12-23 1998-11-10 ザ ダウ ケミカル カンパニー Method for producing epoxy compound
JP2002517387A (en) * 1998-05-29 2002-06-18 ザ ダウ ケミカル カンパニー Epoxidation of aryl allyl ethers
JP2002317021A (en) * 2001-01-15 2002-10-31 Rp Topla Ltd Radical curing resin composition, method for producing the composition and molded product comprising the composition
DE10136884A1 (en) * 2001-07-24 2003-02-13 Inst Angewandte Chemie Berlin Highly active peroxotungsten catalyst used in oxidation reactions in both solvent- and halogen-free systems, contains a nitrogen-containing phosphonic acid (or its alkali or ammonium salt) as stabilizer
WO2003029322A1 (en) * 2001-09-28 2003-04-10 Mitsui Chemicals, Inc. Curing agent composition for epoxy resins, epoxy resin composition and use thereof
JP2003292583A (en) * 2002-03-29 2003-10-15 Hitachi Chem Co Ltd Epoxy resin molding material and electronic part device
JP2010053348A (en) * 2008-07-30 2010-03-11 Sanyo Chem Ind Ltd Method of producing epoxy compound

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3662038B2 (en) * 1994-07-14 2005-06-22 三井化学株式会社 Method for producing epoxy compound

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060123A (en) * 1983-09-13 1985-04-06 Sumitomo Chem Co Ltd Production of epoxy compound
JPH07252373A (en) * 1994-08-22 1995-10-03 Nippon Petrochem Co Ltd Cloth or mat base impregnated with erpoxy resin composition and used as electric insulating material
JPH10511722A (en) * 1994-12-23 1998-11-10 ザ ダウ ケミカル カンパニー Method for producing epoxy compound
JP2002517387A (en) * 1998-05-29 2002-06-18 ザ ダウ ケミカル カンパニー Epoxidation of aryl allyl ethers
JP2002317021A (en) * 2001-01-15 2002-10-31 Rp Topla Ltd Radical curing resin composition, method for producing the composition and molded product comprising the composition
DE10136884A1 (en) * 2001-07-24 2003-02-13 Inst Angewandte Chemie Berlin Highly active peroxotungsten catalyst used in oxidation reactions in both solvent- and halogen-free systems, contains a nitrogen-containing phosphonic acid (or its alkali or ammonium salt) as stabilizer
WO2003029322A1 (en) * 2001-09-28 2003-04-10 Mitsui Chemicals, Inc. Curing agent composition for epoxy resins, epoxy resin composition and use thereof
JP2003292583A (en) * 2002-03-29 2003-10-15 Hitachi Chem Co Ltd Epoxy resin molding material and electronic part device
JP2010053348A (en) * 2008-07-30 2010-03-11 Sanyo Chem Ind Ltd Method of producing epoxy compound

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130203068A1 (en) * 2012-02-06 2013-08-08 Perkinelmer Biosignal, Inc. Dual-acceptor time-resolved-fret
KR20150002630A (en) 2012-03-30 2015-01-07 미쓰비시 가가꾸 가부시키가이샤 Method for manufacturing epoxy compound, and catalyst composition for epoxylating reaction
US9650353B2 (en) 2012-03-30 2017-05-16 Mitsubishi Chemical Corporation Method for producing epoxy compound and catalyst composition for epoxidation reaction
US10730846B2 (en) 2012-03-30 2020-08-04 Mitsubishi Chemical Corporation Method of producing epoxy compound and catalyst composition for epoxidation reaction
JP2014240377A (en) * 2013-05-13 2014-12-25 昭和電工株式会社 Method for producing polyvalent glycidyl compound
JP2014240376A (en) * 2013-05-13 2014-12-25 昭和電工株式会社 Method for producing polyvalent glycidyl compound
WO2015052925A1 (en) * 2013-10-09 2015-04-16 日本化薬株式会社 Method for producing epoxy resin, epoxy resin, curable resin composition, and cured product
JPWO2015052925A1 (en) * 2013-10-09 2017-03-09 日本化薬株式会社 Epoxy resin production method, epoxy resin, curable resin composition, and cured product
JP2016094353A (en) * 2014-11-12 2016-05-26 昭和電工株式会社 Method for producing polyvalent glycidyl compound
EP4130088A4 (en) * 2020-03-23 2024-04-17 Nippon Kayaku Kk Epoxy resin, epoxy compounds, epoxy resin composition, resin sheet, prepreg, carbon-fiber-reinforced composite material, and phenolic resin

Also Published As

Publication number Publication date
JPWO2011019061A1 (en) 2013-01-17

Similar Documents

Publication Publication Date Title
WO2011019061A1 (en) Method for producing polyglycidyl ether compound
JP5606327B2 (en) Method for producing epoxy compound
JP6143332B2 (en) Allyl ether resin and method for producing the same
JP6515230B2 (en) Allyl ether resin and epoxy resin
TWI461414B (en) Process for producing epoxy compound
KR101415113B1 (en) Process for production of glycidyl ether compounds, and monoallyl monoglycidyl ether compound
JP2013542170A (en) Production process of divinylarene dioxide
JP6238701B2 (en) Method for producing polyvalent glycidyl compound
JP5901521B2 (en) Method for producing epoxy compound
JP6238699B2 (en) Method for producing polyvalent glycidyl compound
TWI679196B (en) Method for producing polyvalent glycidyl compound
US9394265B2 (en) Method for producing alkyldiol monoglycidyl ether
JP2007308416A (en) Method of manufacturing bifunctional epoxy monomer by selective oxidation of diolefin compound
JP5392759B2 (en) Alicyclic diepoxy compound, method for producing alicyclic diepoxy compound, epoxy resin composition and cured product
JP5745258B2 (en) Method for producing glycidyl ether compound
JP6351487B2 (en) Method for producing polyvalent glycidyl compound
JP6609902B2 (en) Method for producing epoxy compound
JP2016094353A5 (en)
EP2669306B1 (en) Process for manufacturing an epoxy resin
WO2009014852A2 (en) Process for epoxidizing crude polyenes
JP2010155804A (en) Method for purifying epoxy compound
Kaczmarczyk et al. Important Parameters of Epoxidation of 1, 4‐bis (allyloxy) butane in Aqueous‐Organic Phase Transfer Catalytic System
CN103003255A (en) Process and assembly for producing alkylene oxides and glycol ethers
JP2008285447A (en) Method for producing diepoxy compound
WO2015123092A1 (en) Epoxidation process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10808244

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011526781

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10808244

Country of ref document: EP

Kind code of ref document: A1