JP2014240377A - Method for producing polyvalent glycidyl compound - Google Patents

Method for producing polyvalent glycidyl compound Download PDF

Info

Publication number
JP2014240377A
JP2014240377A JP2013245282A JP2013245282A JP2014240377A JP 2014240377 A JP2014240377 A JP 2014240377A JP 2013245282 A JP2013245282 A JP 2013245282A JP 2013245282 A JP2013245282 A JP 2013245282A JP 2014240377 A JP2014240377 A JP 2014240377A
Authority
JP
Japan
Prior art keywords
group
compound
acid
reaction
alkenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013245282A
Other languages
Japanese (ja)
Other versions
JP6238701B2 (en
Inventor
千佳 山下
Chika Yamashita
千佳 山下
圭孝 石橋
Yoshitaka Ishibashi
圭孝 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2013245282A priority Critical patent/JP6238701B2/en
Publication of JP2014240377A publication Critical patent/JP2014240377A/en
Application granted granted Critical
Publication of JP6238701B2 publication Critical patent/JP6238701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Epoxy Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of efficiently producing a polyvalent glycidyl compound by oxidation of a 2-alkenyl ether group and a 2-alkenyl group of a compound having a 2-alkenyl ether group and a 2-alkenyl group in the molecule by using a hydrogen peroxide aqueous solution as an oxidant.SOLUTION: There is provided a method for producing a polyvalent glycidyl compound by controlling a pH of a reaction solution containing a glycidyl ether compound having two or more substituted or unsubstituted 2-alkenyl groups and one or more substituted or unsubstituted 2-alkenyl ether groups in the molecule to 1.0 to 4.0 in the presence of a tungsten compound as a catalyst, a quaternary ammonium salt and two or more acids containing at least phosphoric acid using a hydrogen peroxide aqueous solution as an oxidant, adding a hydrogen peroxide aqueous solution to the reaction solution over 0.1 to 2 hours, and after the completion of addition of the hydrogen peroxide aqueous solution, terminating the reaction for 2 to 6 hours.

Description

本発明は、多価グリシジル(エポキシ)化合物の製造方法に関する。さらに詳しくは、硬度、強度、耐熱性に優れ、特に、電子材料分野に適した硬化性樹脂組成物の原料となる多価グリシジル化合物の製造方法に関する。   The present invention relates to a method for producing a polyvalent glycidyl (epoxy) compound. More specifically, the present invention relates to a method for producing a polyvalent glycidyl compound which is excellent in hardness, strength and heat resistance, and which is a raw material for a curable resin composition particularly suitable for the field of electronic materials.

グリシジル(エポキシ)化合物は電気特性、接着性、耐熱性などに優れるために、塗料分野、土木分野、電気分野などの多くの用途で使用されている。特に、ビスフェノールA型ジグリシジルエーテル、ビスフェノールF型ジグリシジルエーテル、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などの芳香族グリシジル(エポキシ)化合物は、耐水性、接着性、機械物性、耐熱性、電気絶縁性、経済性などが優れることから種々の硬化剤と組み合わせて広く使用されている。   Glycidyl (epoxy) compounds are excellent in electrical properties, adhesiveness, heat resistance, and the like, and thus are used in many applications such as the paint field, civil engineering field, and electrical field. In particular, aromatic glycidyl (epoxy) compounds such as bisphenol A type diglycidyl ether, bisphenol F type diglycidyl ether, phenol novolac type epoxy resin, cresol novolac type epoxy resin are water resistant, adhesive, mechanical properties, heat resistant, It is widely used in combination with various curing agents because of its excellent electrical insulation and economy.

グリシジル化合物及び硬化剤を含む樹脂の物性を向上させるため、グリシジル化合物は目的物性に合うように分子設計される。例えば、ビスフェノールA型ジグリシジルエーテルにおいては、基本骨格のフェノール部位の芳香環を水素化し、脂肪族シクロヘキサン骨格に誘導することで、硬化物の光学特性(透明性)が向上する、又は硬化時の流動性が向上することが知られている。フェノールノボラック型エポキシ樹脂においては、グリシジル化合物の重合度、分子量分布などを調整することで、硬化時の流動性を変化させたり、硬化物の耐熱性、接着性などを制御したりすることができる。   In order to improve the physical properties of the resin containing the glycidyl compound and the curing agent, the glycidyl compound is molecularly designed to meet the target physical properties. For example, in bisphenol A type diglycidyl ether, the aromatic ring of the phenol moiety of the basic skeleton is hydrogenated and induced to an aliphatic cyclohexane skeleton, thereby improving the optical properties (transparency) of the cured product, or at the time of curing. It is known that fluidity is improved. In phenol novolac type epoxy resin, by adjusting the polymerization degree, molecular weight distribution, etc. of glycidyl compound, it is possible to change the fluidity at the time of curing or to control the heat resistance, adhesiveness, etc. of the cured product. .

グリシジル化合物及び硬化剤を含む樹脂の硬化物の耐熱性、接着性などを向上させる手法として、グリシジル化合物の多官能化が知られている。樹脂中の反応性官能基の密度(一分子あたりに含まれる官能基の量)を増加させることで、グリシジル化合物と硬化剤の間の反応架橋点を増加することができる。硬化物の単位体積当たりの架橋密度が増加するため、分子のミクロ運動が制御されて硬化物の外部影響に対する耐性が高まる。その結果、硬化物の耐熱性の向上、硬化物への剛性、接着性などの付与が可能となる。   Multifunctionalization of a glycidyl compound is known as a technique for improving the heat resistance and adhesion of a cured product of a resin containing a glycidyl compound and a curing agent. Increasing the density of reactive functional groups in the resin (the amount of functional groups contained per molecule) can increase the reactive crosslinking point between the glycidyl compound and the curing agent. Since the crosslink density per unit volume of the cured product is increased, the micro-motion of the molecule is controlled, and the resistance to the external influence of the cured product is increased. As a result, it becomes possible to improve the heat resistance of the cured product, and to impart rigidity, adhesion, etc. to the cured product.

グリシジル化合物の多官能化の一つの手法として、芳香環骨格を有するグリシジル化合物の芳香環骨格に2つ以上のグリシジル基を導入し、架橋密度を向上させる方法が知られている。例えば、特許文献1(特開昭63−142019号公報)には、ビスフェノールを基本骨格とする化合物のフェノール部位に結合したグリシジルエーテル基に対し、オルト位又はパラ位にグリシジル基を有する多価グリシジル化合物が金属への良好な接着性、低吸湿性、良好な機械的特性を有することが開示されている。これらの化合物は、ビスフェノール−Fなどのフェノール類を出発原料として、フェノールヒドロキシ基の2−アルケニル化、それによって生じた2−アルケニルエーテル基のクライゼン転位によるオルト位又はパラ位の2−アルケニル化、続くエピクロロヒドリンを用いるグリシジルエーテル化、及び側鎖2−アルケニル基の酸化(グリシジル化)により合成されている。   As one technique for polyfunctionalization of a glycidyl compound, a method is known in which two or more glycidyl groups are introduced into the aromatic ring skeleton of the glycidyl compound having an aromatic ring skeleton to improve the crosslinking density. For example, Patent Document 1 (Japanese Patent Laid-Open No. 63-142019) discloses a polyvalent glycidyl group having a glycidyl group at the ortho-position or para-position with respect to the glycidyl ether group bonded to the phenol moiety of a compound having bisphenol as a basic skeleton. It is disclosed that the compounds have good adhesion to metals, low hygroscopicity, and good mechanical properties. These compounds are obtained by starting from phenols such as bisphenol-F, 2-alkenylation of the phenol hydroxy group, and 2-alkenylation of the ortho or para position by Claisen rearrangement of the resulting 2-alkenyl ether group, It is synthesized by subsequent glycidyl etherification using epichlorohydrin and oxidation of the side chain 2-alkenyl group (glycidylation).

しかしながら、最終段階で行われる酸化(グリシジル化)反応においては、反応点である2−アルケニル基に対し、過酢酸、過ギ酸、m−クロロ過安息香酸、ペルオキソフタル酸などの有機過酸化物、又は過モリブデン酸、過バナジン酸、過タングステン酸などの無機過酸化物を化学当量以上必要とするため、目的物からこれら酸化剤の残渣を除去することが困難である、あるいは酸化剤のコストが高く、工業的に実現性に乏しい場合があった。また、合成過程においてエピクロロヒドリンを使用するため、官能基数の多い化合物を製造する場合、エピクロロヒドリンの使用量の増加に伴い生成物中の有機塩素化合物の含有量が増加する。   However, in the oxidation (glycidylation) reaction performed in the final stage, an organic peroxide such as peracetic acid, performic acid, m-chloroperbenzoic acid, peroxophthalic acid, etc., with respect to the 2-alkenyl group that is the reaction point, Or, since an inorganic peroxide such as permolybdic acid, pervanadic acid, pertungstic acid or the like is required in a chemical equivalent or more, it is difficult to remove these oxidant residues from the target product, or the cost of the oxidant is low. In some cases, it is expensive and industrially unfeasible. In addition, since epichlorohydrin is used in the synthesis process, when a compound having a large number of functional groups is produced, the content of the organic chlorine compound in the product increases as the amount of epichlorohydrin used increases.

有機塩素化合物の混入を回避するためには、グリシジル(エポキシ)化合物の合成にエピクロロヒドリンを使用しない方法を用いることが有効である。例えば、芳香環骨格を有する多価グリシジル化合物の合成方法として、2−アルケニルフェニルエーテルのクライゼン転位によるオルト位又はパラ位の2−アルケニル化、生成したフェノール性ヒドロキシ基の2−アルケニルエーテル化、2−アルケニルエーテル基及びそのオルト位又はパラ位の2−アルケニル基の同時酸化(グリシジル化)を含む方法が考えられる。この方法によれば、エピクロロヒドリンを使用しないため、原理的にグリシジル化合物中の塩素量を大幅に低減することが可能となる。しかし、2−アルケニルエーテル基とそのオルト位又はパラ位の2−アルケニル基の同時酸化は、これらの基の反応性が異なるため一般に反応制御が困難であり、これまでに知られていない。   In order to avoid contamination with organic chlorine compounds, it is effective to use a method that does not use epichlorohydrin for the synthesis of glycidyl (epoxy) compounds. For example, as a method for synthesizing a polyvalent glycidyl compound having an aromatic ring skeleton, 2-alkenylation of ortho- or para-position by Claisen rearrangement of 2-alkenylphenyl ether, 2-alkenyl etherification of the generated phenolic hydroxy group, 2 A method involving simultaneous oxidation (glycidylation) of an alkenyl ether group and its ortho- or para-alkenyl group is conceivable. According to this method, since no epichlorohydrin is used, in principle, the amount of chlorine in the glycidyl compound can be greatly reduced. However, simultaneous oxidation of a 2-alkenyl ether group and a 2-alkenyl group in the ortho-position or para-position thereof is generally difficult to control because of the reactivity of these groups, and has not been known so far.

特開昭63−142019号公報Japanese Patent Laid-Open No. 63-142019

本発明は、過酸化水素水溶液を酸化剤として用いて分子内に2−アルケニルエーテル基と2−アルケニル基を有する化合物の2−アルケニルエーテル基と2−アルケニル基を酸化することにより多価グリシジル化合物を効率的に製造する方法を提供するものである。   The present invention relates to a polyvalent glycidyl compound by oxidizing a 2-alkenyl ether group and a 2-alkenyl group of a compound having a 2-alkenyl ether group and a 2-alkenyl group in the molecule using an aqueous hydrogen peroxide solution as an oxidizing agent. The present invention provides a method for efficiently producing the above.

本発明者らは、前記課題を解決するために鋭意研究し、実験を重ねた結果、基質として分子内に2つ以上の2−アルケニル基及び1つ以上の2−アルケニルエーテル基を有する化合物を、過酸化水素水溶液を酸化剤として用いて、触媒としてタングステン化合物、第四級アンモニウム塩、及び少なくともリン酸を含む2種類以上の酸の存在下、反応液のpH、反応液への過酸化水素水溶液の添加時間及びその後の反応時間を所定の範囲に制御することにより、高効率かつ高純度で分子内に3つ以上のグリシジル基を有する多価グリシジル化合物を得ることができることを見出し、本発明を完成するに至った。   As a result of intensive studies and experiments conducted in order to solve the above-mentioned problems, the present inventors have found a compound having two or more 2-alkenyl groups and one or more 2-alkenyl ether groups in the molecule as a substrate. In the presence of two or more kinds of acids including a tungsten compound as a catalyst, a quaternary ammonium salt, and at least phosphoric acid, an aqueous hydrogen peroxide solution is used as an oxidizing agent, the pH of the reaction solution, hydrogen peroxide into the reaction solution It was found that a polyvalent glycidyl compound having three or more glycidyl groups in the molecule can be obtained with high efficiency and high purity by controlling the addition time of the aqueous solution and the subsequent reaction time within a predetermined range. It came to complete.

すなわち、本発明は以下のとおりのものである。
[1]分子内に2つ以上の置換又は非置換の2−アルケニル基及び1つ以上の置換又は非置換の2−アルケニルエーテル基を有する2−アルケニルエーテル化合物を、過酸化水素水溶液を酸化剤として用いて、触媒としてタングステン化合物、第四級アンモニウム塩、及び少なくともリン酸を含む2種類以上の酸の存在下、前記2−アルケニルエーテル化合物を含む反応液のpHを1.0〜4.0に制御し、前記反応液へ過酸化水素水溶液を0.1〜2時間かけて添加し、過酸化水素水溶液の添加終了後、2〜6時間で反応を停止することを特徴とする多価グリシジル化合物の製造方法。
[2]前記2−アルケニルエーテル化合物が、分子内に芳香環を含み、芳香環に直結した1つ以上の置換又は非置換の2−アルケニルエーテル基と芳香環に直結した2つ以上の置換又は非置換の2−アルケニル基を有し、かつ前記置換又は非置換の2−アルケニルエーテル基に対してオルト位又はパラ位に置換又は非置換の2−アルケニル基が位置する化合物である[1]に記載の多価グリシジル化合物の製造方法。
[3]前記2−アルケニルエーテル化合物が、一般式(1):

Figure 2014240377
(式中、R及びRは、各々独立して、下記式(2)で表される基であり、Qは、各々独立して、式:−CR−で表されるアルキレン基、炭素数3〜12のシクロアルキレン基、炭素数6〜10の単独芳香環からなるアリーレン基若しくは2〜3の炭素数6〜10の芳香環が結合してなるアリーレン基、炭素数7〜12の二価の脂環式縮合環、又はこれらを組み合わせた二価基であり、R及びRは各々独立して、水素原子、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数3〜12のシクロアルキル基、又は炭素数6〜10のアリール基であり、nは0〜50の整数を表す。式(2)中のR、R及びRは、各々独立して、水素原子、炭素数1〜10のアルキル基、炭素数3〜12のシクロアルキル基又は炭素数6〜10のアリール基を表す。)で表される化合物である[1]又は[2]のいずれかに記載の多価グリシジル化合物の製造方法。
Figure 2014240377
[4]前記2−アルケニルエーテル化合物が、ビスフェノール−A、ビスフェノール−F、フェノールノボラック、トリフェニルメタンフェノール、ビフェニルアラルキル型フェノール、フェニルアラルキル型フェノール、又は無置換のテトラヒドロジシクロペンタジエン骨格のフェノール若しくは両端にCHが結合した無置換のテトラヒドロジシクロペンタジエン骨格のフェノールのいずれかの基本骨格を有し、ORに対してRがオルト位又はパラ位に位置する2−アルケニルエーテル化合物である[3]に記載の多価グリシジル化合物の製造方法。
[5]前記タングステン化合物が、タングステン酸ナトリウムとタングステン酸の混合物、タングステン酸ナトリウムと鉱酸の混合物、又はタングステン酸とアルカリ化合物の混合物である[1]〜[4]のいずれかに記載の多価グリシジル化合物の製造方法。
[6]前記第四級アンモニウム塩の窒素原子に結合した置換基の炭素数の合計が6以上50以下である[1]〜[5]のいずれかに記載の多価グリシジル化合物の製造方法。
[7]リン酸以外の前記酸が、ポリリン酸、ピロリン酸、スルホン酸、硝酸、硫酸、塩酸、及びホウ酸からなる群から選択される少なくとも一種の鉱酸又はベンゼンスルホン酸、p−トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、及びトリフルオロ酢酸からなる群から選択される少なくとも一種の有機酸である[1]〜[6]のいずれかに記載の多価グリシジル化合物の製造方法。 That is, the present invention is as follows.
[1] A 2-alkenyl ether compound having two or more substituted or unsubstituted 2-alkenyl groups and one or more substituted or unsubstituted 2-alkenyl ether groups in a molecule, an aqueous hydrogen peroxide solution as an oxidizing agent In the presence of two or more acids including a tungsten compound, a quaternary ammonium salt, and at least phosphoric acid as a catalyst, the pH of the reaction solution containing the 2-alkenyl ether compound is set to 1.0 to 4.0. And a hydrogen peroxide aqueous solution is added to the reaction solution over a period of 0.1 to 2 hours, and the reaction is stopped in 2 to 6 hours after the addition of the hydrogen peroxide aqueous solution is completed. Compound production method.
[2] The 2-alkenyl ether compound contains an aromatic ring in the molecule, and one or more substituted or unsubstituted 2-alkenyl ether groups directly bonded to the aromatic ring and two or more substituted or directly bonded to the aromatic ring A compound having an unsubstituted 2-alkenyl group and having a substituted or unsubstituted 2-alkenyl group positioned in the ortho-position or para-position relative to the substituted or unsubstituted 2-alkenyl ether group [1] A method for producing the polyvalent glycidyl compound described in 1.
[3] The 2-alkenyl ether compound is represented by the general formula (1):
Figure 2014240377
Wherein R 1 and R 2 are each independently a group represented by the following formula (2), and Q are each independently an alkylene represented by the formula: —CR 3 R 4 —. Group, a C3-C12 cycloalkylene group, an arylene group composed of a single aromatic ring having 6 to 10 carbon atoms, or an arylene group formed by bonding 2-3 aromatic rings having 6 to 10 carbon atoms, C7- 12 divalent alicyclic condensed rings, or a divalent group obtained by combining these, R 3 and R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or 2 to 10 carbon atoms. An alkenyl group, a cycloalkyl group having 3 to 12 carbon atoms, or an aryl group having 6 to 10 carbon atoms, and n represents an integer of 0 to 50. R 5 , R 6 and R 7 in formula (2) Each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloaryl having 3 to 12 carbon atoms. Method for producing a polyglycidyl compound according to any one of the representative Kill group or an aryl group having 6 to 10 carbon atoms.) Is a compound represented by [1] or [2].
Figure 2014240377
[4] The 2-alkenyl ether compound is bisphenol-A, bisphenol-F, phenol novolak, triphenylmethanephenol, biphenyl aralkyl type phenol, phenyl aralkyl type phenol, or phenol of an unsubstituted tetrahydrodicyclopentadiene skeleton or both ends. It is a 2-alkenyl ether compound having a basic skeleton of any of the phenols of an unsubstituted tetrahydrodicyclopentadiene skeleton in which CH 2 is bonded to R 1 and R 2 is located in the ortho or para position with respect to OR 1 [ [3] The method for producing a polyvalent glycidyl compound according to [3].
[5] The multiple tungsten according to any one of [1] to [4], wherein the tungsten compound is a mixture of sodium tungstate and tungstic acid, a mixture of sodium tungstate and mineral acid, or a mixture of tungstic acid and an alkali compound. For producing a monovalent glycidyl compound.
[6] The method for producing a polyvalent glycidyl compound according to any one of [1] to [5], wherein the total number of carbon atoms of the substituents bonded to the nitrogen atom of the quaternary ammonium salt is 6 or more and 50 or less.
[7] The acid other than phosphoric acid is at least one mineral acid selected from the group consisting of polyphosphoric acid, pyrophosphoric acid, sulfonic acid, nitric acid, sulfuric acid, hydrochloric acid, and boric acid, benzenesulfonic acid, p-toluenesulfone The method for producing a polyvalent glycidyl compound according to any one of [1] to [6], which is at least one organic acid selected from the group consisting of an acid, methanesulfonic acid, trifluoromethanesulfonic acid, and trifluoroacetic acid.

本発明の多価グリシジル化合物の製造方法によれば、目的物から酸化剤由来残渣の除去が簡便化できるとともに、安価な過酸化水素水溶液を酸化剤として使用するため、製造コストを低減できる。また、反応液のpHを制御し、反応中に生成するグリシジル基の加水分解に寄与する酸性水溶液と生成物との接触時間を制御することで、副生する加水分解物の生成量を低減することができ、高純度で多価グリシジル化合物を得ることができる。そのため、本発明により工業的に有用な多価グリシジル化合物を効率的に製造することができる。また、反応工程において、有機塩素化合物を使用しないため、高い電気的信頼性が求められる電子デバイスへの適用が可能である。   According to the method for producing a polyvalent glycidyl compound of the present invention, removal of an oxidant-derived residue from a target product can be simplified, and an inexpensive aqueous hydrogen peroxide solution is used as an oxidant, so that the production cost can be reduced. In addition, by controlling the pH of the reaction solution and controlling the contact time between the acidic aqueous solution that contributes to hydrolysis of the glycidyl group generated during the reaction and the product, the amount of hydrolyzate produced as a by-product is reduced. The polyvalent glycidyl compound can be obtained with high purity. Therefore, an industrially useful polyvalent glycidyl compound can be efficiently produced by the present invention. In addition, since an organic chlorine compound is not used in the reaction process, it can be applied to electronic devices that require high electrical reliability.

実施例1で得られた生成物のH−NMRスペクトルである。1 is a 1 H-NMR spectrum of the product obtained in Example 1. 実施例2で得られた生成物のH−NMRスペクトルである。2 is a 1 H-NMR spectrum of the product obtained in Example 2. 実施例3で得られた生成物のH−NMRスペクトルである。2 is a 1 H-NMR spectrum of the product obtained in Example 3. 比較例4で得られた生成物のH−NMRスペクトル(下段)及び目的物(式(5))のH−NMRスペクトル(上段)である。It is the 1 H-NMR spectrum (lower part) of the product obtained in Comparative Example 4 and the 1 H-NMR spectrum (upper part) of the target product (formula (5)).

以下、本発明を詳細に説明する。本発明の多価グリシジル化合物の製造方法は、分子内に2つ以上の置換又は非置換の2−アルケニル基及び1つ以上の置換又は非置換の2−アルケニルエーテル基を有する2−アルケニルエーテル化合物を、過酸化水素水溶液を酸化剤として用いて、触媒としてタングステン化合物、第四級アンモニウム塩、及び少なくともリン酸を含む2種類以上の酸の存在下、前記2−アルケニルエーテル化合物を含む反応液のpHを1.0〜4.0に制御し、前記反応液へ過酸化水素水溶液を0.1〜2時間かけて添加し、過酸化水素水溶液の添加終了後、2〜6時間で反応を停止することを特徴とする。詳細は後述するが、本発明では分子内に存在する2−アルケニル基及び2−アルケニルエーテル基中の炭素−炭素二重結合を酸化(グリシジル化)することで3つ以上のグリシジル基を有する多価グリシジル化合物を製造する。本明細書において「グリシジル基」とは、置換又は非置換のグリシジル基に加えてグリシジル骨格を有する置換又は非置換のグリシジルエーテル基をも含む。すなわち、「3つ以上のグリシジル基」とは置換又は非置換のグリシジル基と置換又は非置換のグリシジルエーテル基の総数が3つ以上であることを意味する。本明細書において「2−アルケニルエーテル基」とは、2−アルケニルオキシ基を意味する。   Hereinafter, the present invention will be described in detail. The method for producing a polyvalent glycidyl compound of the present invention comprises a 2-alkenyl ether compound having two or more substituted or unsubstituted 2-alkenyl groups and one or more substituted or unsubstituted 2-alkenyl ether groups in the molecule. Of the reaction solution containing the 2-alkenyl ether compound in the presence of two or more acids including a tungsten compound, a quaternary ammonium salt, and at least phosphoric acid, using an aqueous hydrogen peroxide solution as an oxidizing agent. The pH is controlled to 1.0 to 4.0, and an aqueous hydrogen peroxide solution is added to the reaction solution over 0.1 to 2 hours. After the addition of the aqueous hydrogen peroxide solution is completed, the reaction is stopped in 2 to 6 hours. It is characterized by doing. Although details will be described later, in the present invention, a polyalkenyl group having three or more glycidyl groups by oxidizing (glycidylation) the carbon-carbon double bond in the 2-alkenyl group and 2-alkenyl ether group present in the molecule. A monovalent glycidyl compound is produced. In the present specification, the “glycidyl group” includes a substituted or unsubstituted glycidyl ether group having a glycidyl skeleton in addition to a substituted or unsubstituted glycidyl group. That is, “three or more glycidyl groups” means that the total number of substituted or unsubstituted glycidyl groups and substituted or unsubstituted glycidyl ether groups is three or more. In the present specification, the “2-alkenyl ether group” means a 2-alkenyloxy group.

本発明において酸化反応に用いられる反応基質は、分子内に2つ以上の置換又は非置換の2−アルケニル基及び1つ以上の置換又は非置換の2−アルケニルエーテル基を有する2−アルケニルエーテル化合物であれば特に制限はないが、分子内に芳香環を含み、芳香環に直結した1つ以上の置換又は非置換の2−アルケニルエーテル基と芳香環に直結した2つ以上の置換又は非置換の2−アルケニル基を有し、かつ置換又は非置換の2−アルケニルエーテル基に対してオルト位又はパラ位に置換又は非置換の2−アルケニル基が位置する化合物が比較的容易に入手できる点で好ましい。例えば、好適な2−アルケニルエーテル化合物として以下の一般式(1)で表される化合物が挙げられる。

Figure 2014240377
式中、R及びRは、各々独立して、下記式(2)で表される基であり、Qは、各々独立して、式:−CR−で表されるアルキレン基、炭素数3〜12のシクロアルキレン基、炭素数6〜10の単独芳香環からなるアリーレン基若しくは2〜3の炭素数6〜10の芳香環が結合してなるアリーレン基(例えば、2つの芳香環が結合してなるアリーレン基としてビフェニル骨格を有するアリーレン基が、3つの芳香環が結合してなるアリーレン基としてトリフェニル骨格を有するアリーレン基が挙げられる)、炭素数7〜12の二価の脂環式縮合環、又はこれらを組み合わせた二価基であり、R及びRは各々独立して、水素原子、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数3〜12のシクロアルキル基、又は炭素数6〜10のアリール基であり、nは0〜50の整数を表す。式(2)中のR、R及びRは、各々独立して、水素原子、炭素数1〜10のアルキル基、炭素数3〜12のシクロアルキル基又は炭素数6〜10のアリール基を表す。なお、式(2)及び式(3)中の*は、酸素原子又は芳香環を構成する炭素原子との結合部であることを意味する。
Figure 2014240377
The reaction substrate used for the oxidation reaction in the present invention is a 2-alkenyl ether compound having two or more substituted or unsubstituted 2-alkenyl groups and one or more substituted or unsubstituted 2-alkenyl ether groups in the molecule. If there is no particular limitation, there is an aromatic ring in the molecule, and one or more substituted or unsubstituted 2-alkenyl ether groups directly connected to the aromatic ring and two or more substituted or unsubstituted directly connected to the aromatic ring And a compound in which a substituted or unsubstituted 2-alkenyl group is located at the ortho-position or para-position relative to a substituted or unsubstituted 2-alkenyl ether group is relatively easily available Is preferable. For example, a suitable 2-alkenyl ether compound includes a compound represented by the following general formula (1).
Figure 2014240377
In the formula, R 1 and R 2 are each independently a group represented by the following formula (2), and Q are each independently an alkylene group represented by the formula: —CR 3 R 4 —. A cycloalkylene group having 3 to 12 carbon atoms, an arylene group consisting of a single aromatic ring having 6 to 10 carbon atoms, or an arylene group formed by bonding an aromatic ring having 2 to 3 carbon atoms and 6 to 10 carbon atoms (for example, two aromatic An arylene group having a biphenyl skeleton as an arylene group formed by bonding of rings includes an arylene group having a triphenyl skeleton as an arylene group formed by bonding three aromatic rings), and a divalent divalent having 7 to 12 carbon atoms. An alicyclic condensed ring, or a divalent group obtained by combining these, R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, carbon Cycloal of the number 3-12 Group, or an aryl group having a carbon number of 6 to 10, n is an integer of 0 to 50. R 5 , R 6 and R 7 in formula (2) are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms or an aryl having 6 to 10 carbon atoms. Represents a group. In addition, * in Formula (2) and Formula (3) means that it is a coupling | bond part with the carbon atom which comprises an oxygen atom or an aromatic ring.
Figure 2014240377

上記一般式(1)で表される具体的な2−アルケニルエーテル化合物として、R及びRの好ましいものとしてはR〜R10が全て水素原子の式(2)又は式(3)で表される基が挙げられる。Qの好ましいものとしては、式:−CR−で表されるアルキレン基としてR及びRが各々独立して、水素原子、炭素数が1〜10のアルキル基、フェニル基、又はナフチル基であるものが挙げられる。炭素数3〜12のシクロアルキレン基の好ましいものとしてはシクロヘキシリデン基、炭素数6〜10の単独芳香環からなるアリーレン基若しくは2〜3の炭素数6〜10の芳香環が結合してなるアリーレン基の好ましいものとしてはフェニレン基、及びビフェニルジイル基が挙げられる。炭素数7〜12の二価の脂環式縮合環の好ましいものとしては二価のテトラヒドロジシクロペンタジエン環が挙げられる。これらを組み合わせた二価基の好ましいものとしては、−CH−Ph−Ph−CH−基(本明細書においてPhは無置換のベンゼン環を意味する)、及び−CH−Ph−CH−基が挙げられる。好ましい具体的な化合物としては、ビスフェノール−A、ビスフェノール−F、フェノールノボラック、トリフェニルメタンフェノール、CH−Ph−Ph−CH骨格のビフェニルアラルキル型フェノール、CH−Ph−CH骨格のフェニルアラルキル型フェノール、又は無置換のテトラヒドロジシクロペンタジエン骨格のフェノール若しくは両端にCHが結合した無置換のテトラヒドロジシクロペンタジエン骨格のフェノールのいずれかの基本骨格を有し、ORに対してRがオルト位又はパラ位に位置する2−アルケニルエーテル化合物が挙げられる。また、上記一般式(1)で表される2−アルケニルエーテル化合物以外の2−アルケニルエーテル化合物として、一般式(1)のフェノール骨格の代わりにナフタレン骨格を有する化合物、例えばナフタレンノボラックも挙げられる。 As a specific 2-alkenyl ether compound represented by the general formula (1), R 1 and R 2 are preferably R 5 to R 10 in the hydrogen atom formula (2) or the formula (3). And the group represented. As preferable examples of Q, as an alkylene group represented by the formula: —CR 3 R 4 —, R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a phenyl group, or The thing which is a naphthyl group is mentioned. Preferred examples of the cycloalkylene group having 3 to 12 carbon atoms include a cyclohexylidene group, an arylene group consisting of a single aromatic ring having 6 to 10 carbon atoms, or an aromatic ring having 2 to 3 carbon atoms and 6 to 10 carbon atoms. Preferable examples of the arylene group include a phenylene group and a biphenyldiyl group. Preferable examples of the divalent alicyclic condensed ring having 7 to 12 carbon atoms include a divalent tetrahydrodicyclopentadiene ring. Preferred examples of the divalent group in which these are combined include a —CH 2 —Ph—Ph—CH 2 — group (in this specification, Ph means an unsubstituted benzene ring), and —CH 2 —Ph—CH. 2 -groups are mentioned. Preferred specific compounds, bisphenol -A, bisphenol -F, phenol novolac, triphenylmethane phenol, the CH 2 -Ph-Ph-CH 2 backbone biphenyl aralkyl type phenol, CH 2 -Ph-CH 2 backbone phenyl It has a basic skeleton of either aralkyl type phenol, phenol of unsubstituted tetrahydrodicyclopentadiene skeleton or phenol of unsubstituted tetrahydrodicyclopentadiene skeleton having CH 2 bonded to both ends, and R 2 with respect to OR 1 2-alkenyl ether compounds in which is located in the ortho or para position. Examples of the 2-alkenyl ether compound other than the 2-alkenyl ether compound represented by the general formula (1) include a compound having a naphthalene skeleton instead of the phenol skeleton of the general formula (1), for example, naphthalene novolak.

一例として、4,4’−ジヒドロキシジフェニルジメチルメタン(ビスフェノール−A)、4,4’−ジヒドロキシジフェニルメタン(ビスフェノール−F)などのビスフェノール化合物、フェノール及びホルムアルデヒドをベースとしたノボラックなどの公知のポリフェノールを用い、これを相当する2−アルケニルエーテル化合物に変換した後、続けてクライゼン転位を経て、フェノール化合物に誘導化することによりフェノール性水酸基のオルト位又はパラ位に2−アルケニル基が位置する化合物を得ることができる。このフェノール化合物を再度相当する2−アルケニルエーテル化合物に変換することにより一般式(1)で表される化合物を得ることができる。   As an example, bisphenol compounds such as 4,4′-dihydroxydiphenyldimethylmethane (bisphenol-A) and 4,4′-dihydroxydiphenylmethane (bisphenol-F), and known polyphenols such as novolak based on phenol and formaldehyde are used. Then, after converting this to the corresponding 2-alkenyl ether compound, it is derivatized to a phenol compound through a Claisen rearrangement to obtain a compound in which the 2-alkenyl group is located at the ortho-position or para-position of the phenolic hydroxyl group. be able to. The compound represented by the general formula (1) can be obtained by converting this phenol compound into the corresponding 2-alkenyl ether compound again.

クライゼン転位段階までの反応は、市販のフェノール化合物を出発物質として用い、下記に示す2−アルケニルエーテル化、続く加熱条件下での転位により変換し、続く2−アルケニルエーテル化合物への変換工程は、例えば米国特許第5578740号公報に記載されたカルボン酸アリルをアリル化剤として金属触媒を用いる方法が知られている。そこでは、オルト位が2−アルケニル化されたフェノールは、アリルエーテル化反応により、分子内に2−アルケニル基を2つ以上有するアリルエーテル化合物へと変換される。   The reaction up to the Claisen rearrangement step is carried out using a commercially available phenol compound as a starting material, and converted by 2-alkenyl etherification, followed by rearrangement under heating conditions, followed by a conversion step to a 2-alkenyl ether compound, For example, a method using a metal catalyst using allyl carboxylate described in US Pat. No. 5,578,740 as an allylating agent is known. In this case, phenol in which the ortho position is 2-alkenylated is converted to an allyl ether compound having two or more 2-alkenyl groups in the molecule by an allyl etherification reaction.

2−アルケニルエーテル化においては、生成物の2−アルケニルエーテル化合物中の塩素含有量を低くするため、2−アルケニル化剤として塩化2−アルケニルの使用は避けることが好ましい。2−アルケニル化剤として、例えば、酢酸アリル、アリルアルコール、炭酸アリル、カルバミン酸アリルなどが挙げられるが、工業的に安価な、酢酸アリル及びアリルアルコールが望ましい。フェノール性水酸基の2−アルケニル化の例としては、例えば、J. Muzartら, J. Organomet. Chem., 326, pp. C23−C28 (1987)などに金属触媒を用いてアリルエーテル体へと変換する方法が開示されている。   In 2-alkenyl etherification, it is preferable to avoid the use of 2-alkenyl chloride as a 2-alkenylating agent in order to reduce the chlorine content in the product 2-alkenyl ether compound. Examples of the 2-alkenylating agent include allyl acetate, allyl alcohol, allyl carbonate, allyl carbamate and the like, and industrially inexpensive allyl acetate and allyl alcohol are preferable. Examples of 2-alkenylation of phenolic hydroxyl groups include, for example, J. Org. Muzart et al., J. MoI. Organomet. Chem. , 326, pp. C23-C28 (1987) and the like disclose a method for converting to an allyl ether form using a metal catalyst.

本発明の多価グリシジル化合物の製造方法においては、反応基質である上記2−アルケニルエーテル化合物の2−アルケニル基の炭素−炭素二重結合を、過酸化水素水溶液を酸化剤として用いて酸化(グリシジル化)する。過酸化水素水溶液の濃度には特に制限はないが、一般的には約1〜約80質量%、好ましくは約20〜約60質量%の範囲から選ばれる。工業的な生産性の観点、及び分離の際の操作性・コストの点からは過酸化水素水溶液は高濃度のほうが好ましいが、一方で過度に高濃度の、及び/又は過剰量の過酸化水素水溶液を用いないほうが経済性、安全性などの観点で好ましい。   In the method for producing a polyvalent glycidyl compound of the present invention, the carbon-carbon double bond of the 2-alkenyl group of the 2-alkenyl ether compound, which is a reaction substrate, is oxidized (glycidyl) using an aqueous hydrogen peroxide solution as an oxidizing agent. ). The concentration of the aqueous hydrogen peroxide solution is not particularly limited, but is generally selected from the range of about 1 to about 80% by mass, preferably about 20 to about 60% by mass. From the viewpoint of industrial productivity and operability and cost during separation, a high concentration of the aqueous hydrogen peroxide solution is preferable, but an excessively high concentration and / or an excessive amount of hydrogen peroxide is preferable. It is preferable not to use an aqueous solution from the viewpoints of economy and safety.

過酸化水素水溶液の使用量には特に制限はない。反応液中の過酸化水素濃度は反応の進行に伴い減少する。この減少に対し追添補充することにより反応液中の過酸化水素濃度を約0.1〜約30質量%、より好ましくは約5〜約10質量%の範囲内に保持することが好ましい。0.1質量%より少ないと生産性が悪くなり、一方、30質量%より多いと溶媒と水の混合組成中での爆発性が高まり危険となる場合がある。   There is no restriction | limiting in particular in the usage-amount of hydrogen peroxide aqueous solution. The hydrogen peroxide concentration in the reaction solution decreases as the reaction proceeds. It is preferable to keep the hydrogen peroxide concentration in the reaction solution within the range of about 0.1 to about 30% by mass, more preferably about 5 to about 10% by mass by supplementing and supplementing this decrease. When the amount is less than 0.1% by mass, the productivity is deteriorated. On the other hand, when the amount is more than 30% by mass, the explosive property in the mixed composition of the solvent and water may be increased and may be dangerous.

過酸化水素水溶液の反応液への添加は、添加開始から0.1〜2時間の範囲で総量を逐次又は連続的に少量ずつ行う。添加は好ましくは0.5〜1.5時間の範囲で行う。過酸化水素水溶液の添加時間が長くなる(添加速度が遅い)と、系内の過酸化水素濃度が低下し、酸化反応の効率が低下するとともに、加水分解が競合して起こるおそれがある。なお、反応初期に反応液に多量の過酸化水素水溶液を一度に添加すると反応が急激に進行し危険な場合があるため、過酸化水素水溶液は反応液を撹拌しながら反応液の過酸化水素濃度について反応で消費されているのを確認しつつ滴下することにより加えることが好ましい。   Addition of the aqueous hydrogen peroxide solution to the reaction solution is carried out little by little in succession or continuously in the range of 0.1 to 2 hours from the start of addition. The addition is preferably performed in the range of 0.5 to 1.5 hours. If the addition time of the aqueous hydrogen peroxide solution is long (addition rate is slow), the concentration of hydrogen peroxide in the system is lowered, the efficiency of the oxidation reaction is lowered, and hydrolysis may occur in competition. In addition, if a large amount of aqueous hydrogen peroxide solution is added to the reaction solution at the beginning of the reaction at a time, the reaction may suddenly proceed and may be dangerous. It is preferable to add by adding dropwise while confirming that it is consumed in the reaction.

過酸化水素水溶液の添加終了後も反応を継続する。反応液を撹拌しながら反応を継続することが好ましく、撹拌には磁気撹拌子又は撹拌翼を有するスターラーを用いることが好ましい。撹拌速度は一般に100〜2000rpmの範囲であり、好ましくは300〜1500rpmの範囲である。反応液は、反応基質である2−アルケニルエーテル化合物単体、又は有機溶媒に溶解させた2−アルケニルエーテル化合物を含む有機層と、過酸化水素を含む水層の二相系であり、この二相がエマルジョン様となるよう撹拌することが望ましい。2−アルケニル基の炭素−炭素二重結合の酸化(グリシジル化)反応の進行に伴い、グリシジル化合物が生成し、反応液の粘性は高まる。中間生成物又は最終生成物であるグリシジル化合物のグリシジル基の加水分解及びそれに起因するゲル状物の副生を防ぐため、過酸化水素水溶液の添加終了後、2〜6時間の範囲で反応を継続した後、撹拌及び加熱を停止して酸化反応を完了する。2時間未満で反応を停止すると、反応基質の2−アルケニルエーテル化合物が多く含まれ、目的物の収率が低い。6時間より長く反応を継続すると、加水分解物が主生成物となり、場合によってはゲル状物が生成することから、反応液の後処理工程が煩雑となり、目的物の収率が低下する。   The reaction is continued after the addition of the aqueous hydrogen peroxide solution. The reaction is preferably continued while stirring the reaction solution, and it is preferable to use a stirrer having a magnetic stirring bar or stirring blade for stirring. The stirring speed is generally in the range of 100 to 2000 rpm, and preferably in the range of 300 to 1500 rpm. The reaction liquid is a two-phase system of a 2-alkenyl ether compound alone, which is a reaction substrate, or an organic layer containing a 2-alkenyl ether compound dissolved in an organic solvent, and an aqueous layer containing hydrogen peroxide. It is desirable to stir so that it becomes emulsion-like. As the oxidation (glycidylation) reaction of the carbon-carbon double bond of the 2-alkenyl group proceeds, a glycidyl compound is generated, and the viscosity of the reaction solution increases. In order to prevent hydrolysis of the glycidyl group of the glycidyl compound, which is the intermediate product or the final product, and by-product formation of a gel-like product resulting therefrom, the reaction is continued for 2 to 6 hours after the addition of the hydrogen peroxide solution. After that, stirring and heating are stopped to complete the oxidation reaction. When the reaction is stopped in less than 2 hours, a large amount of 2-alkenyl ether compound as a reaction substrate is contained, and the yield of the target product is low. When the reaction is continued for longer than 6 hours, the hydrolyzate becomes the main product, and in some cases, a gel-like product is formed. Therefore, the post-treatment step of the reaction solution becomes complicated, and the yield of the target product is reduced.

過酸化水素水溶液を用いた酸化(グリシジル化)は、タングステン化合物、第四級アンモニウム塩及び少なくともリン酸を含む2種類以上の酸を含む触媒の存在下で実施することができる。これらの化合物は比較的安価であるため、過酸化水素を酸化剤として用いた2−アルケニルエーテル化合物の炭素−炭素二重結合の酸化を低コストで行うことができる。   Oxidation (glycidylation) using an aqueous hydrogen peroxide solution can be performed in the presence of a tungsten compound, a quaternary ammonium salt and a catalyst containing at least two acids including at least phosphoric acid. Since these compounds are relatively inexpensive, the oxidation of the carbon-carbon double bond of the 2-alkenyl ether compound using hydrogen peroxide as an oxidizing agent can be performed at low cost.

触媒として用いるタングステン化合物としては、水中でタングステン酸アニオンを生成する化合物が好適であり、例えば、タングステン酸、三酸化タングステン、三硫化タングステン、六塩化タングステン、リンタングステン酸、タングステン酸アンモニウム、タングステン酸カリウム二水和物、タングステン酸ナトリウム二水和物などが挙げられるが、タングステン酸、三酸化タングステン、リンタングステン酸、タングステン酸ナトリウム二水和物などが好ましい。これらタングステン化合物類は単独で使用しても2種以上を混合使用してもよい。   As the tungsten compound used as a catalyst, a compound that generates a tungstate anion in water is suitable. For example, tungstic acid, tungsten trioxide, tungsten trisulfide, tungsten hexachloride, phosphotungstic acid, ammonium tungstate, potassium tungstate Examples thereof include dihydrate and sodium tungstate dihydrate, but tungstic acid, tungsten trioxide, phosphotungstic acid, sodium tungstate dihydrate and the like are preferable. These tungsten compounds may be used alone or in combination of two or more.

これらの水中でタングステン酸アニオンを生成する化合物の触媒活性は、タングステン酸アニオン1モルに対して、約0.2〜約0.8モルの対カチオンが存在したほうが高い。このようなタングステン組成物の調製法としては、例えばタングステン酸とタングステン酸のアルカリ金属塩を、タングステン酸アニオンと対カチオンが前記比率となるように混合してもよいし、タングステン酸をアルカリ化合物(アルカリ金属又はアルカリ土類金属の水酸化物、炭酸塩など)と混合するか、タングステン酸のアルカリ金属塩又はアルカリ土類金属塩とリン酸、硫酸などの鉱酸のような酸性化合物を組み合わせてもよい。これらの好ましい具体例としては、タングステン酸ナトリウムとタングステン酸の混合物、タングステン酸ナトリウムと鉱酸の混合物、又はタングステン酸とアルカリ化合物の混合物が挙げられる。   The catalytic activity of these compounds that produce tungstate anions in water is higher when about 0.2 to about 0.8 mole of counter cation is present per mole of tungstate anion. As a method for preparing such a tungsten composition, for example, an alkali metal salt of tungstic acid and tungstic acid may be mixed so that the tungstate anion and counter cation are in the above ratio, or tungstic acid may be mixed with an alkali compound ( Mixed with alkali metal or alkaline earth metal hydroxides, carbonates, etc.) or combined with alkali metal or alkaline earth metal salts of tungstic acid and acidic compounds such as mineral acids such as phosphoric acid and sulfuric acid Also good. Specific examples of these include a mixture of sodium tungstate and tungstic acid, a mixture of sodium tungstate and mineral acid, or a mixture of tungstic acid and an alkali compound.

タングステン化合物の触媒としての使用量は、タングステン原子として、反応基質である2−アルケニルエーテル化合物の2−アルケニル基の炭素−炭素二重結合に対して、約0.0001〜約20モル%、好ましくは約0.01〜約20モル%の範囲から選ばれる。   The amount of the tungsten compound used as a catalyst is about 0.0001 to about 20 mol%, preferably as a tungsten atom, with respect to the carbon-carbon double bond of the 2-alkenyl group of the 2-alkenyl ether compound as the reaction substrate. Is selected from the range of about 0.01 to about 20 mol%.

触媒として用いる第四級アンモニウム塩としては、その窒素原子に結合した置換基の炭素数の合計が6以上50以下、好ましくは10以上40以下の第四級有機アンモニウム塩が、酸化(グリシジル化)反応の活性が高くて好ましい。   As the quaternary ammonium salt used as a catalyst, a quaternary organic ammonium salt having a total of 6 to 50, preferably 10 to 40, carbon atoms of the substituents bonded to the nitrogen atom is oxidized (glycidylated). The reaction activity is high and preferable.

第四級アンモニウム塩としては、塩化トリオクチルメチルアンモニウム、塩化トリオクチルエチルアンモニウム、塩化ジラウリルジメチルアンモニウム、塩化ラウリルトリメチルアンモニウム、塩化ステアリルトリメチルアンモニウム、塩化ラウリルジメチルベンジルアンモニウム、塩化トリカプリルメチルアンモニウム、塩化ジデシルジメチルアンモニウム、塩化テトラブチルアンモニウム、塩化ベンジルトリメチルアンモニウム、塩化ベンジルトリエチルアンモニウムなどの塩化物;臭化トリオクチルメチルアンモニウム、臭化トリオクチルエチルアンモニウム、臭化ジラウリルジメチルアンモニウム、臭化ラウリルトリメチルアンモニウム、臭化ステアリルトリメチルアンモニウム、臭化ラウリルジメチルベンジルアンモニウム、臭化トリカプリルメチルアンモニウム、臭化ジデシルジメチルアンモニウム、臭化テトラブチルアンモニウム、臭化ベンジルトリメチルアンモニウム、臭化ベンジルトリエチルアンモニウムなどの臭化物;ヨウ化トリオクチルメチルアンモニウム、ヨウ化トリオクチルエチルアンモニウム、ヨウ化ジラウリルジメチルアンモニウム、ヨウ化ラウリルトリメチルアンモニウム、ヨウ化ステアリルトリメチルアンモニウム、ヨウ化ラウリルジメチルベンジルアンモニウム、ヨウ化トリカプリルメチルアンモニウム、ヨウ化ジデシルジメチルアンモニウム、ヨウ化テトラブチルアンモニウム、ヨウ化ベンジルトリメチルアンモニウム、ヨウ化ベンジルトリエチルアンモニウムなどのヨウ化物;リン酸水素化トリオクチルメチルアンモニウム、リン酸水素化トリオクチルエチルアンモニウム、リン酸水素化ジラウリルジメチルアンモニウム、リン酸水素化ラウリルトリメチルアンモニウム、リン酸水素化ステアリルトリメチルアンモニウム、リン酸水素化ラウリルジメチルベンジルアンモニウム、リン酸水素化トリカプリルメチルアンモニウム、リン酸水素化ジデシルジメチルアンモニウム、リン酸水素化テトラブチルアンモニウム、リン酸水素化ベンジルトリメチルアンモニウム、リン酸水素化ベンジルトリエチルアンモニウムなどのリン酸水素化物;硫酸水素化トリオクチルメチルアンモニウム、硫酸水素化トリオクチルエチルアンモニウム、硫酸水素化ジラウリルジメチルアンモニウム、硫酸水素化ラウリルトリメチルアンモニウム、硫酸水素化ステアリルトリメチルアンモニウム、硫酸水素化ラウリルジメチルベンジルアンモニウム、硫酸水素化トリカプリルメチルアンモニウム、硫酸水素化ジデシルジメチルアンモニウム、硫酸水素化テトラブチルアンモニウム、硫酸水素化ベンジルトリメチルアンモニウム、硫酸水素化ベンジルトリエチルアンモニウムなどの硫酸水素化物などが挙げられる。   Quaternary ammonium salts include trioctylmethylammonium chloride, trioctylethylammonium chloride, dilauryldimethylammonium chloride, lauryltrimethylammonium chloride, stearyltrimethylammonium chloride, lauryldimethylbenzylammonium chloride, tricaprylmethylammonium chloride, dichloride chloride. Chlorides such as decyldimethylammonium chloride, tetrabutylammonium chloride, benzyltrimethylammonium chloride, benzyltriethylammonium chloride; trioctylmethylammonium bromide, trioctylethylammonium bromide, dilauryldimethylammonium bromide, lauryltrimethylammonium bromide, Stearyl trimethyl ammonium bromide, lauryl dimethyl benzyl ammonium bromide, bromide Bromides such as licaprylmethylammonium, didecyldimethylammonium bromide, tetrabutylammonium bromide, benzyltrimethylammonium bromide, benzyltriethylammonium bromide; trioctylmethylammonium iodide, trioctylethylammonium iodide, diiodide iodide Lauryldimethylammonium, lauryltrimethylammonium iodide, stearyltrimethylammonium iodide, lauryldimethylbenzylammonium iodide, tricaprylmethylammonium iodide, didecyldimethylammonium iodide, tetrabutylammonium iodide, benzyltrimethylammonium iodide, iodine Iodides such as benzyltriethylammonium iodide; trioctylmethylammonium hydrogen phosphate, hydrogen phosphate Trioctylethylammonium phosphate, dilauryldimethylammonium phosphate, lauryltrimethylammonium phosphate, stearyltrimethylammonium phosphate, lauryldimethylbenzylammonium phosphate, tricaprylmethylammonium phosphate, phosphoric acid Hydrogenated didecyldimethylammonium phosphate, tetrabutylammonium phosphate hydrogenated, benzyltrimethylammonium phosphate, benzyltriethylammonium phosphate hydrogenated phosphates; trioctylmethylammonium sulfate, trioctyl hydrogenate sulfate Ethyl ammonium, dilauryl dimethyl ammonium hydrogen sulfate, lauryl trimethyl ammonium hydrogen sulfate, stearyl trimethyl ammonium hydrogen sulfate, aqueous sulfuric acid Hydrogenated sulfates such as lauryl dimethylbenzylammonium sulfate, tricaprylmethylammonium sulfate, didecyldimethylammonium sulfate, tetrabutylammonium sulfate, benzyltrimethylammonium sulfate, benzyltriethylammonium sulfate, etc. Can be mentioned.

これらの第四級アンモニウム塩は、単独で使用しても2種以上を混合使用してもよい。その使用量は反応基質の2−アルケニルエーテル化合物の2−アルケニル基の炭素−炭素二重結合に対して約0.0001〜約10モル%が好ましく、より好ましくは約0.01〜約10モル%の範囲から選ばれる。   These quaternary ammonium salts may be used alone or in combination of two or more. The amount used is preferably about 0.0001 to about 10 mol%, more preferably about 0.01 to about 10 mol, based on the carbon-carbon double bond of the 2-alkenyl group of the 2-alkenyl ether compound of the reaction substrate. % Range.

第四級アンモニウム塩として、対アニオンに塩化物イオン、臭化物イオン又はヨウ化物イオンを有する相関移動触媒を用いた場合には、生成物中のハロゲン化物の含有量が増加する。生成物中のハロゲンに由来する不純物を低減するために、特開2010−70480号公報などに開示されている第四級アンモニウム塩除去剤を用いることができる。ハロゲン系第四級アンモニウム塩を用いて酸化反応を実施することは可能であるが、第四級アンモニウム塩の除去工程が必要となるため、操作が煩雑となる。   When a phase transfer catalyst having a chloride ion, bromide ion or iodide ion as a counter anion is used as the quaternary ammonium salt, the halide content in the product increases. In order to reduce impurities derived from halogen in the product, a quaternary ammonium salt remover disclosed in JP 2010-70480 A can be used. Although it is possible to carry out the oxidation reaction using a halogen-based quaternary ammonium salt, a step of removing the quaternary ammonium salt is required, and the operation becomes complicated.

本発明の多価グリシジル化合物の製造方法においては、助触媒としてリン酸を用いる。リン酸は、酸素原子が触媒金属であるタングステン金属中心に配位することで、活性種を生成する。また、リン酸以外の酸を併用することで、反応液のpHを1.0〜4.0に制御する。反応液のpHは1.2〜3.8であることが好ましく、1.4〜3.7であることがより好ましい。反応液のpHが4.0より高いと反応速度が低下するため生産性が低下し、一方、1.0より低い場合、グリシジル基の加水分解が進行して収率が低下する傾向がある。リン酸の使用量は反応基質の2−アルケニルエーテル化合物の2−アルケニル基の炭素−炭素二重結合に対して約0.01〜約10モル%が好ましく、より好ましくは約0.1〜約10モル%の範囲から選ばれる。   In the method for producing a polyvalent glycidyl compound of the present invention, phosphoric acid is used as a promoter. Phosphoric acid generates an active species by coordinating an oxygen atom to a tungsten metal center that is a catalytic metal. Moreover, pH of a reaction liquid is controlled to 1.0-4.0 by using acids other than phosphoric acid together. The pH of the reaction solution is preferably 1.2 to 3.8, and more preferably 1.4 to 3.7. When the pH of the reaction solution is higher than 4.0, the reaction rate is lowered and thus the productivity is lowered. On the other hand, when the pH is lower than 1.0, hydrolysis of the glycidyl group proceeds and the yield tends to be lowered. The amount of phosphoric acid used is preferably from about 0.01 to about 10 mol%, more preferably from about 0.1 to about 10 mol%, based on the carbon-carbon double bond of the 2-alkenyl group of the 2-alkenyl ether compound of the reaction substrate. It is selected from the range of 10 mol%.

リン酸以外の酸としては鉱酸又は有機酸のいずれも用いることができる。鉱酸の例としては、ポリリン酸、ピロリン酸、スルホン酸、硝酸、硫酸、塩酸、及びホウ酸が挙げられる。有機酸の例としては、ベンゼンスルホン酸、p−トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、及びトリフルオロ酢酸が挙げられる。その使用量は反応基質の2−アルケニルエーテル化合物の2−アルケニル基の炭素−炭素二重結合に対して約0.001〜約10モル%が好ましく、より好ましくは約0.01〜約10モル%の範囲から選ばれる。これらの酸の中でも緩衝効果が大きくpHを1.0〜4.0の範囲に保持しやすいため硫酸が好ましい。   As the acid other than phosphoric acid, either a mineral acid or an organic acid can be used. Examples of mineral acids include polyphosphoric acid, pyrophosphoric acid, sulfonic acid, nitric acid, sulfuric acid, hydrochloric acid, and boric acid. Examples of organic acids include benzenesulfonic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, and trifluoroacetic acid. The amount used is preferably about 0.001 to about 10 mol%, more preferably about 0.01 to about 10 mol, based on the carbon-carbon double bond of the 2-alkenyl group of the 2-alkenyl ether compound of the reaction substrate. % Range. Among these acids, sulfuric acid is preferable because of its large buffering effect and easy pH retention in the range of 1.0 to 4.0.

グリシジル化反応において、有機溶媒を用いないか必要に応じて有機溶媒を用いて、過酸化水素水溶液と前記した触媒とを混合し、反応基質の2−アルケニルエーテル化合物のグリシジル化反応を進行させることができる。溶媒を用いる場合には、反応速度が遅くなり、溶媒によっては加水分解反応などの望ましくない反応が進行しやすくなることがあるため、適切に選択する必要がある。反応基質の2−アルケニルエーテル化合物の粘度があまりに高い場合や固体である場合には必要最小限の有機溶媒を用いてもよい。用いることができる有機溶媒としては、芳香族炭化水素、脂肪族炭化水素、又は脂環式炭化水素が好ましく、例えばトルエン、キシレン、ヘキサン、オクタン、シクロヘキサンなどが挙げられる。濃度については必要最小限の使用に留めた方が製造コストなどの点で有利であり、有機溶媒の使用量は2−アルケニルエーテル化合物100質量部に対して好ましくは約300質量部以下、より好ましくは約100質量部以下である。   In the glycidylation reaction, an organic solvent is not used or an organic solvent is used as necessary, and the aqueous hydrogen peroxide solution and the above-mentioned catalyst are mixed to proceed with the glycidylation reaction of the 2-alkenyl ether compound as the reaction substrate. Can do. When a solvent is used, the reaction rate becomes slow, and depending on the solvent, an undesirable reaction such as a hydrolysis reaction may easily proceed, so it is necessary to select appropriately. When the viscosity of the 2-alkenyl ether compound as the reaction substrate is too high or is a solid, a minimum necessary organic solvent may be used. The organic solvent that can be used is preferably an aromatic hydrocarbon, an aliphatic hydrocarbon, or an alicyclic hydrocarbon, and examples thereof include toluene, xylene, hexane, octane, and cyclohexane. Regarding the concentration, it is advantageous in terms of production cost to keep the minimum necessary use, and the amount of the organic solvent used is preferably about 300 parts by mass or less, more preferably 100 parts by mass or less with respect to 100 parts by mass of the 2-alkenyl ether compound. Is about 100 parts by mass or less.

また、酸化(グリシジル化)反応において、工業的に安定に生産を行うことを考えると、触媒と基質を最初に反応器に仕込み、反応温度を極力一定に保ちつつ、過酸化水素水溶液については反応で消費されているのを確認しながら、徐々に加えていった方がよい。このような方法を採れば、反応器内で過酸化水素が異常分解して酸素ガスが発生したとしても、過酸化水素の蓄積量が少なく圧力上昇を最小限に留めることができる。   In addition, considering that industrial production is stable in the oxidation (glycidylation) reaction, the catalyst and the substrate are charged into the reactor first, and the reaction temperature is kept as constant as possible while the hydrogen peroxide solution is reacted. It is better to add gradually while confirming that it is consumed. By adopting such a method, even if hydrogen peroxide is abnormally decomposed in the reactor and oxygen gas is generated, the amount of hydrogen peroxide accumulated is small and the pressure rise can be minimized.

反応温度があまりに高いと副反応が多くなり、低すぎる場合には過酸化水素の消費速度が遅くなり、反応液中に蓄積することがあるので、反応温度は、好ましくは約40〜約100℃、より好ましくは約50℃〜約80℃の範囲で制御する。過酸化水素水溶液の添加及び添加終了後の反応のいずれも上記温度範囲で行うことが好ましい。例えば、過酸化水素水溶液の添加中は反応温度を低め(約50℃〜60℃)に設定し、添加速度を高くすることにより滴下時間を短くし、過酸化水素水溶液の添加終了後に反応温度を高め(約70℃〜80℃)の範囲に制御し、反応を進行させることで、酸化の効率を向上させることもできる。   If the reaction temperature is too high, there will be many side reactions, and if it is too low, the consumption rate of hydrogen peroxide will slow down and may accumulate in the reaction solution, so the reaction temperature is preferably about 40 to about 100 ° C. More preferably, the temperature is controlled in the range of about 50 ° C to about 80 ° C. It is preferable to perform both the addition of the aqueous hydrogen peroxide solution and the reaction after the end of the addition within the above temperature range. For example, during the addition of the aqueous hydrogen peroxide solution, the reaction temperature is set low (about 50 ° C. to 60 ° C.), the dropping time is shortened by increasing the addition rate, and the reaction temperature is lowered after the addition of the aqueous hydrogen peroxide solution. The efficiency of oxidation can also be improved by controlling the temperature within a high range (about 70 ° C. to 80 ° C.) and advancing the reaction.

反応終了後は、水層と有機層の比重差がほとんど無い場合があるが、その場合には水層に無機化合物の飽和水溶液を混合して、有機層と比重差をつけることにより有機抽出溶媒を使用しなくても二層分離を行うことができる。特にタングステン化合物の比重は重いので、水層を下層に持って来るために、本来触媒として必要な前記した使用量を超えるタングステン化合物を用いてもよい。この場合、水層からのタングステン化合物を再使用して、タングステン化合物の利用効率を高めることが望ましい。   After completion of the reaction, there may be almost no difference in specific gravity between the aqueous layer and the organic layer. In that case, an organic extraction solvent is prepared by mixing the aqueous layer with a saturated aqueous solution of an inorganic compound and making a difference in specific gravity with the organic layer. Two-layer separation can be carried out without using. In particular, since the specific gravity of the tungsten compound is heavy, in order to bring the aqueous layer to the lower layer, a tungsten compound exceeding the above-mentioned usage amount that is originally necessary as a catalyst may be used. In this case, it is desirable to increase the utilization efficiency of the tungsten compound by reusing the tungsten compound from the aqueous layer.

また、逆に基質によっては有機層の比重が1.2近くとなるものもあるので、このような場合には水を追添して、水層の比重を1に近づけることにより、上層に水層、下層に有機層を持って来ることもできる。また、反応液の抽出にトルエン、シクロヘキサン、ヘキサン、塩化メチレンなどの有機溶媒を用いて抽出を実施することもでき、状況に応じて最適な分離方法を選択することができる。   Conversely, depending on the substrate, the specific gravity of the organic layer may be close to 1.2. In such a case, water is added to bring the specific gravity of the aqueous layer closer to 1, so that It is also possible to bring an organic layer under the layer. The extraction of the reaction solution can also be carried out using an organic solvent such as toluene, cyclohexane, hexane, methylene chloride, etc., and an optimal separation method can be selected according to the situation.

このようにして水層と分離した有機層を濃縮後、蒸留、クロマト分離、再結晶や昇華などの通常の方法によって、得られた多価グリシジル化合物を取り出すことができる。   After concentrating the organic layer separated from the aqueous layer in this way, the obtained polyvalent glycidyl compound can be taken out by ordinary methods such as distillation, chromatographic separation, recrystallization and sublimation.

以下、実施例により本発明を具体的に説明するが、本発明は以下の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not restrict | limited to a following example.

合成例1:基質(4,4’−(ジメチルメチレン)ビス[2−(2−プロペニル)フェニルジアリルエーテル])の合成
500mL三口丸底フラスコに、炭酸カリウム(日本曹達株式会社製)138g(1.00mol)を純水125gに溶解した溶液、式(3)で表される4,4’−(ジメチルメチレン)ビス[2−(2−プロペニル)フェノール](大和化成株式会社製)80.6g(262mmol)、及び炭酸ナトリウム(関東化学株式会社製)52.0g(0.500mol、固体のまま)を仕込み、反応器を窒素置換し85℃に加熱した。窒素気流下、酢酸アリル(昭和電工株式会社製)220g(2.19mol)、トリフェニルホスフィン(北興化学工業株式会社製)2.62g(10.0mmol)、及び50%含水5%−Pd/C−STDタイプ(エヌ・イーケムキャット株式会社製)84.6mg(0.0200mmol)を入れ、窒素雰囲気中、105℃に昇温して4時間反応させた後、酢酸アリル22.0g(0.219mol)を追添し、加熱を12時間継続した。反応終了後、反応系を室温まで冷却したのち、純水を析出した塩がすべて溶解するまで加え、分液処理した。有機層を分離し、有機溶媒(70℃、50mmHg、2時間)を留去した。純水(200g)を添加した後、トルエン200gを加え、80℃以上の温度に保持して白色沈殿が析出していないことを確認した後、Pd/Cを濾過(1ミクロンのメンブランフィルター(アドバンテック社製KST−142−JAを用いて加圧(0.3MPa))により回収した。この濾滓をトルエン100gで洗浄するとともに、水層を分離した。50℃以上で有機層を純水200gで2度洗浄し、水層が中性であることを確認した。有機層を分離後、減圧下、濃縮し、式(4)で表される4,4’−(ジメチルメチレン)ビス[2−(2−プロペニル)フェニルジアリルエーテル]を主成分とする褐色液体(93.6g,241mmol、92.0%収率)を得た。この褐色液体をH−NMR測定した結果、式(4)で表される化合物を主成分として含むことを確認した。式(4)で表される化合物に帰属する測定データは以下のとおりである。
H−NMR{400MHz,CDCl,27℃},δ1.66(6H,s,CH),δ3.39(4H,d,PhC CH=CH),δ4.95−5.55(4H,m,PhCHCH=C ),δ5.25(2H,d,PhOCHCH=CH),δ5.42(2H,d,PhOCHCH=CH),δ5.25(4H,m,PhOCH=CH,PhCH=CH),δ6.73(d,2H,aromatic),δ6.90−7.08(m,2H,aromatic),δ7.13−7.40(2H,m,aromatic).

Figure 2014240377
Figure 2014240377
Synthesis Example 1: Synthesis of Substrate (4,4 ′-(Dimethylmethylene) bis [2- (2-propenyl) phenyldiallyl ether]) In a 500 mL three-necked round bottom flask, 138 g of potassium carbonate (manufactured by Nippon Soda Co., Ltd.) .00 mol) in 125 g of pure water, 80.6 g of 4,4 ′-(dimethylmethylene) bis [2- (2-propenyl) phenol] (manufactured by Daiwa Kasei Co., Ltd.) represented by the formula (3) (262 mmol) and 52.0 g (0.500 mol, as solid) of sodium carbonate (manufactured by Kanto Chemical Co., Inc.) were charged, and the reactor was purged with nitrogen and heated to 85 ° C. Under nitrogen flow, allyl acetate (made by Showa Denko KK) 220 g (2.19 mol), triphenylphosphine (made by Hokuko Chemical Co., Ltd.) 2.62 g (10.0 mmol), and 50% water content 5% -Pd / C -84.6 mg (0.0200 mmol) of STD type (manufactured by N.E. Chemcat Co., Ltd.) was added, heated to 105 ° C in a nitrogen atmosphere and reacted for 4 hours, and then 22.0 g (0.219 mol) of allyl acetate. ) Was added and heating was continued for 12 hours. After completion of the reaction, the reaction system was cooled to room temperature, and pure water was added until all the precipitated salts were dissolved, followed by liquid separation treatment. The organic layer was separated and the organic solvent (70 ° C., 50 mmHg, 2 hours) was distilled off. After adding pure water (200 g), 200 g of toluene was added, and the temperature was kept at 80 ° C. or higher and it was confirmed that no white precipitate was deposited. Then, Pd / C was filtered (1 micron membrane filter (Advantech)). This was recovered by pressurization (0.3 MPa) using KST-142-JA, Inc. The filter cake was washed with 100 g of toluene and the aqueous layer was separated, and the organic layer was washed with 200 g of pure water at 50 ° C. or higher. After washing twice, it was confirmed that the aqueous layer was neutral.After separating the organic layer, the organic layer was concentrated under reduced pressure, and 4,4 ′-(dimethylmethylene) bis [2- (2-propenyl) brown liquid whose main component is phenyl diallyl ether] (93.6 g, 241 mmol, 92.0% yield). the brown liquid the 1 H-NMR measurement result, equation (4) Represented by Measurement data attributable to the compound represented by the object was confirmed to contain as a main component. Equation (4) is as follows.
1 H-NMR {400 MHz, CDCl 3 , 27 ° C.}, δ 1.66 (6H, s, CH 3 ), δ 3.39 (4H, d, PhC H 2 CH═CH 2 ), δ 4.95-5.55 (4H, m, PhCH 2 CH = C H 2), δ5.25 (2H, d, PhOCH 2 CH = C H H), δ5.42 (2H, d, PhOCH 2 CH = CH H), δ5.25 (4H, m, PhOCH 2 C H = CH 2, PhCH 2 C H = CH 2), δ6.73 (d, 2H, aromatic), δ6.90-7.08 (m, 2H, aromatic), δ7. 13-7.40 (2H, m, aromatic).
Figure 2014240377
Figure 2014240377

実施例1:2,2−ビス(3−グリシジル−4−グリシジルオキシフェニル)プロパンの合成
200mL三口丸底フラスコに、上記合成例1で得られた4,4’−(ジメチルメチレン)ビス[2−(2−プロペニル)フェニルジアリルエーテル]18.1g(46.5mmol)、タングステン酸ナトリウム二水和物(日本無機化学工業株式会社製)1.53g(4.70mmol)、リン酸(和光純薬工業株式会社製)0.231g(2.35mmol)、硫酸(和光純薬工業株式会社製)0.230g(2.35mmol)、及び硫酸水素化トリオクチルメチルアンモニウム(MTOAHS、旭化学工業株式会社製)2.17g(4.70mmol)を入れ、トルエン(純正化学株式会社製)18gに溶解させた。65℃まで昇温した後、35質量%過酸化水素水溶液(菱江化成株式会社製)51.1g(0.465mol)を1時間かけて撹拌しながら滴下し、70℃でさらに2時間撹拌(撹拌速度400rpm)した。反応初期において、反応液のpHは1.5であり、2時間反応後の反応液のpHは3.7であった。反応終了後、反応液を室温まで冷却した後、純水20gを加え分液処理した。有機層を分離し、亜硫酸ナトリウム水溶液(10質量%、和光純薬工業株式会社製)15gを加えて洗浄することで残存する過酸化水素を還元した。水層を除き、純水20gを加えて再度洗浄した。有機層を単離し、有機溶媒(トルエン)を留去することによりエポキシ化合物のエポキシ当量比(E/Er=実測によるエポキシ当量/理論エポキシ当量)が1.16である生成物18.6g(41.0mmol、エポキシ当量131、収率88.2%)を得た。収率は、(上記後処理後、目的とするエポキシ化合物を含む混合物の取得量/反応率100%で酸化反応が進行した際に得られる物質量)×100)として算出した。生成物のエポキシ当量が式(5)で表される化合物の理論エポキシ当量と近いことから、生成物中にグリシジル基の加水分解物を殆ど含まないことが示唆される。この生成物をH−NMR測定した結果、式(5)で表される化合物を主成分として含むことを確認した。式(5)で表される化合物に帰属する測定データは以下のとおりである。生成物のH−NMRスペクトルを図1に示す。
H−NMR{400MHz,CDCl,27℃},δ1.64(6H,s,CH),δ2.54(2H,m,PhCHCHCHO),δ2.7−2.8(6H,m,PhC CHCHHO,PhCHCHCHO),δ2.90(4H,m,PhOC CHCHO),δ3.17(2H,m,PhOCHCHCHO),δ3.35(2H,m,PhOCHCHCHO),δ3.95(2H,m,PhCHCHO),δ4.24(2H,dd,PhOCHCHO),δ6.74(d,2H,aromatic),δ7.02−7.05(m,4H,aromatic).

Figure 2014240377
Example 1: Synthesis of 2,2-bis (3-glycidyl-4-glycidyloxyphenyl) propane Into a 200 mL three-necked round bottom flask, 4,4 '-(dimethylmethylene) bis [2 obtained in Synthesis Example 1 above was added. -(2-propenyl) phenyl diallyl ether] 18.1 g (46.5 mmol), sodium tungstate dihydrate (manufactured by Nippon Inorganic Chemical Co., Ltd.) 1.53 g (4.70 mmol), phosphoric acid (Wako Pure Chemical Industries, Ltd.) Industrial Co., Ltd.) 0.231 g (2.35 mmol), sulfuric acid (Wako Pure Chemical Industries, Ltd.) 0.230 g (2.35 mmol), and trioctylmethylammonium hydrogen sulfate (MTOAHS, manufactured by Asahi Chemical Industry Co., Ltd.) ) 2.17 g (4.70 mmol) was added and dissolved in 18 g of toluene (manufactured by Junsei Chemical Co., Ltd.). After the temperature was raised to 65 ° C., 51.1 g (0.465 mol) of a 35% by mass hydrogen peroxide aqueous solution (manufactured by Hishie Kasei Co., Ltd.) was added dropwise over 1 hour with stirring, and the mixture was further stirred at 70 ° C. for 2 hours (stirring). Speed 400 rpm). At the beginning of the reaction, the pH of the reaction solution was 1.5, and the pH of the reaction solution after 2 hours of reaction was 3.7. After completion of the reaction, the reaction solution was cooled to room temperature, and then 20 g of pure water was added to carry out a liquid separation treatment. The organic layer was separated, and the remaining hydrogen peroxide was reduced by adding and washing 15 g of an aqueous sodium sulfite solution (10% by mass, manufactured by Wako Pure Chemical Industries, Ltd.). The aqueous layer was removed, and 20 g of pure water was added and washed again. By isolating the organic layer and distilling off the organic solvent (toluene), 18.6 g (41) of a product having an epoxy equivalent ratio (E / Er = measured epoxy equivalent / theoretical epoxy equivalent) of the epoxy compound of 1.16 0.0 mmol, epoxy equivalent 131, yield 88.2%). The yield was calculated as (acquired amount of the mixture containing the target epoxy compound after the post-treatment / substance amount obtained when the oxidation reaction proceeded at a reaction rate of 100%) × 100). The epoxy equivalent of the product is close to the theoretical epoxy equivalent of the compound represented by the formula (5), which suggests that the product contains almost no hydrolyzate of glycidyl group. As a result of 1 H-NMR measurement of this product, it was confirmed that the compound represented by the formula (5) was contained as a main component. The measurement data belonging to the compound represented by the formula (5) is as follows. The 1 H-NMR spectrum of the product is shown in FIG.
1 H-NMR {400 MHz, CDCl 3 , 27 ° C.}, δ 1.64 (6H, s, CH 3 ), δ 2.54 (2H, m, PhCH 2 CHC H HO), δ 2.7-2.8 (6H) , M, PhC H 2 CHCHHO, PhCH 2 CHCH H 2 O), δ 2.90 (4H, m, PhOC H 2 CHCH 2 O), δ 3.17 (2H, m, PhOCH 2 CHC H HO), δ 3.35 ( 2H, m, PhOCH 2 CHCH H O), δ3.95 (2H, m, PhCH 2 C H CH 2 O), δ4.24 (2H, dd, PhOCH 2 C H CH 2 O), δ6.74 (d , 2H, aromatic), δ 7.02-7.05 (m, 4H, aromatic).
Figure 2014240377

合成例2:基質(オルト位又はパラ位にアリル基を有するフェノールノボラック型アリルエーテル(BRG−556−AL2と略記)の合成
2000mLの3つ口型フラスコに、炭酸カリウム(日本曹達株式会社製)171.1g(1.24mol)を純水155.6gに溶解した溶液、式(6)で表されるフェノールノボラック(ショウノール(登録商標)BRG−556、o=2〜7、平均値:5.1)(昭和電工株式会社製)500.0g、及び炭酸ナトリウム(関東化学株式会社製)65.61g(0.619mol、固体のまま)を仕込み、反応器を窒素置換し85℃に加熱した。窒素気流下、酢酸アリル(昭和電工株式会社製)272.7g(2.72mol)、トリフェニルホスフィン(北興化学工業株式会社製)3.247g(12.4mmol)、及び50%含水5%−Pd/C−STDタイプ(エヌ・イーケムキャット株式会社製)0.105g(0.0248mmol)を入れ、窒素雰囲気中、105℃に昇温して4時間反応させた後、酢酸アリル27.3g(0.273mol)を追添し、加熱を12時間継続した。その後撹拌を停止し、静置することで有機層と水層の二層に分離した。析出している塩が溶解するまで、純水(200g)を添加した後、トルエン200gを加え、80℃以上の温度に保持して白色沈殿が析出していないことを確認した後、Pd/Cを濾過(1ミクロンのメンブランフィルター(アドバンテック社製KST−142−JAを用いて加圧(0.3MPa))により回収した。この濾滓をトルエン100gで洗浄するとともに、水層を分離した。50℃以上で有機層を純水200gで2度洗浄し、水層が中性であることを確認した。有機層を分離後、減圧下、濃縮し、褐色油状物を得た(560g、定量的)。この褐色油状物をH−NMR測定した結果、式(7)で表されるフェノールノボラックアリルエーテル体(以下、BRG−556−ALと略記)を主成分として含むことを確認した。式(7)で表される化合物に帰属する測定データは以下のとおりである。
H−NMR{400MHz,CDCl,27℃},δ3.6−4.0(4H,m,PhCHPh),δ4.4−4.8(2H,m,C CH=CH),δ5.1−5.3(1H,m,CHCH=CH),δ5.3−5.5(1H,m,CHCH=CH),δ5.8−6.2(1H,m,CH=CH),δ6.6−7.3(12H,m,aromatic).

Figure 2014240377
Figure 2014240377
Synthesis Example 2 Synthesis of Substrate (Phenol Novolak-type Allyl Ether (Alleviated as BRG-556-AL2) having an Allyl Group at Ortho- or Para-Position) A solution prepared by dissolving 171.1 g (1.24 mol) in 155.6 g of pure water, phenol novolak represented by formula (6) (Shonol (registered trademark) BRG-556, o = 2 to 7, average value: 5 .1) 500.0 g (manufactured by Showa Denko KK) and 65.61 g (0.619 mol, solid) of sodium carbonate (manufactured by Kanto Chemical Co., Ltd.) were charged, and the reactor was purged with nitrogen and heated to 85 ° C. Under a nitrogen stream, allyl acetate (made by Showa Denko KK) 272.7 g (2.72 mol), triphenylphosphine (made by Hokuko Chemical Co., Ltd.) 3.247 g (12.4 mmol) and 50% water content 5% -Pd / C-STD type (manufactured by N.E. Chemcat Co., Ltd.) 0.105 g (0.0248 mmol) were added, and the temperature was raised to 105 ° C. in a nitrogen atmosphere. The reaction was continued for 4 hours, 27.3 g (0.273 mol) of allyl acetate was added, and the heating was continued for 12 hours, after which stirring was stopped and the mixture was allowed to stand to form two layers, an organic layer and an aqueous layer. After adding pure water (200 g) until the precipitated salt is dissolved, 200 g of toluene is added, and the temperature is kept at 80 ° C. or higher, and it is confirmed that no white precipitate is deposited. Pd / C was recovered by filtration (1 micron membrane filter (pressure (0.3 MPa) using KST-142-JA manufactured by Advantech)). The filter cake was washed with 100 g of toluene. The aqueous layer was separated, and the organic layer was washed twice with 200 g of pure water at 50 ° C. or higher to confirm that the aqueous layer was neutral, and the organic layer was separated and concentrated under reduced pressure to give a brown oily substance. As a result of 1 H-NMR measurement of this brown oily substance, a phenol novolak allyl ether represented by formula (7) (hereinafter abbreviated as BRG-556-AL) was used as a main component. The measurement data belonging to the compound represented by formula (7) is as follows.
1 H-NMR {400 MHz, CDCl 3 , 27 ° C.}, δ 3.6-4.0 (4H, m, PhCH 2 Ph), δ 4.4-4.8 (2H, m, C H 2 CH═CH 2 ), Δ 5.1-5.3 (1H, m, CH 2 CH═CH H ), δ 5.3-5.5 (1H, m, CH 2 CH═C H H), δ 5.8-6.2. (1H, m, CH 2 C H = CH 2), δ6.6-7.3 (12H, m, aromatic).
Figure 2014240377
Figure 2014240377

1000mLのナスフラスコに磁気撹拌子と、上記合成で得られたフェノールノボラックアリルエーテル体500gを入れ、窒素雰囲気下、190℃で加熱した。3時間後、冷却し、黒色固体を得た(550g、定量的)。この黒色固体をH−NMR測定した結果、式(8)で表されるフェノールノボラックアリル置換体(以下、BRG−556−CLと略記)を主成分として含むことを確認した。式(8)で表される化合物に帰属する測定データは以下のとおりである。
H−NMR{400MHz,CDCl,27℃},δ3.2−3.4(2H,m,C CH=CH),δ3.6−4.0(5H,m,PhCHPh,OH),δ4.6−5.0(1H,m,CHCH=CH),δ5.0−5.3(1H,m,CHCH=CH),δ5.8−6.1(1H,m,CH=CH),δ6.6−7.2(12H,m,aromatic).

Figure 2014240377
A magnetic stirring bar and 500 g of the phenol novolak allyl ether obtained in the above synthesis were placed in a 1000 mL eggplant flask and heated at 190 ° C. in a nitrogen atmosphere. After 3 hours, it was cooled to give a black solid (550 g, quantitative). As a result of 1 H-NMR measurement of this black solid, it was confirmed that it contained a phenol novolac allyl substitute represented by formula (8) (hereinafter abbreviated as BRG-556-CL) as a main component. The measurement data belonging to the compound represented by formula (8) is as follows.
1 H-NMR {400 MHz, CDCl 3 , 27 ° C.}, δ 3.2-3.4 (2H, m, C H 2 CH═CH 2 ), δ 3.6-4.0 (5H, m, PhCH 2 Ph , OH), δ4.6-5.0 (1H, m, CH 2 CH = CH H), δ5.0-5.3 (1H, m, CH 2 CH = C H H), δ5.8-6 .1 (1H, m, CH 2 C H = CH 2), δ6.6-7.2 (12H, m, aromatic).
Figure 2014240377

合成例1における4,4’−(ジメチルメチレン)ビス[2−(2−プロペニル)フェノール]を上記合成で得られたフェノールノボラックアリル置換体(BRG−556−CL)に変更した以外は合成例1と同様に酢酸アリルを用いてオルト位又はパラ位にアリル基を有するフェノールノボラック型アリルエーテルを合成し茶褐色油状物を得た(収率92%)。この茶褐色油状物をH−NMR測定した結果、式(9)で表されるオルト位又はパラ位にアリル基を有するフェノールノボラック型アリルエーテル(以下、BRG−556−AL2と略記)を主成分として含むことを確認した。式(9)で表される化合物に帰属する測定データは以下のとおりである。
H−NMR{400MHz,CDCl,27℃},δ3.4−4.0(4H,m,PhOC CH=CH,PhC CH=CH),δ4.3−4.9(4H,m,PhCHPh),δ5.2−5.3(4H,m,PhOCHCHC=H,PhCHCH=CH),δ5.3−5.5(2H,m,PhOCHCHC=H,PhCHCH=CH),δ5.8−6.2(1H,m,PhOCHC=H,PhCH=CH),δ6.5−7.3(12H,m,aromatic).

Figure 2014240377
Synthesis Example except that 4,4 ′-(dimethylmethylene) bis [2- (2-propenyl) phenol] in Synthesis Example 1 was changed to the phenol novolak allyl substitute (BRG-556-CL) obtained in the above synthesis. The phenol novolac type allyl ether having an allyl group at the ortho-position or para-position was synthesized using allyl acetate in the same manner as in 1 to obtain a brown oil (yield 92%). As a result of 1 H-NMR measurement of the brown oily substance, a phenol novolak type allyl ether (hereinafter abbreviated as BRG-556-AL2) having an allyl group at the ortho or para position represented by the formula (9) is a main component. Confirmed as including. Measurement data belonging to the compound represented by the formula (9) is as follows.
1 H-NMR {400 MHz, CDCl 3 , 27 ° C.}, δ 3.4-4.0 (4H, m, PhOC H 2 CH═CH 2 , PhC H 2 CH═CH 2 ), δ 4.3-4.9. (4H, m, PhCH 2 Ph), δ 5.2-5.3 (4H, m, PhOCH 2 CHC = H H, PhCH 2 CH = C H H), δ 5.3-5.5 (2H, m, PhOCH 2 CHC = H H, PhCH 2 CH = CH H), δ5.8-6.2 (1H, m, PhOCH 2 C H C = H 2, PhCH 2 C H = CH 2), δ6.5-7 .3 (12H, m, aromatic).
Figure 2014240377

実施例2:フェノールノボラック型多価グリシジル化合物の合成
200mL三口丸底フラスコに、上記合成例2で得られたオルト位又はパラ位にアリル基を有するフェノールノボラック型アリルエーテル(BRG−556−AL2)20g(約106mmol)、タングステン酸ナトリウム二水和物3.48g(10.6mmol)、リン酸0.52g(5.27mmol)、硫酸0.51g(5.27mmol)、及びMTOAHS4.94g(10.6mmol)を入れ、トルエン20gに溶解させた。70℃まで昇温した後、35質量%過酸化水素水溶液61.7g(0.63mol)を1時間かけて撹拌しながら滴下し、70℃でさらに2時間撹拌(撹拌速度400rpm)した。反応初期において、反応液のpHは1.4であり、2時間反応後の反応液のpHは3.4であった。反応終了後、反応液を室温まで冷却した後、純水20gを加え分液処理した。有機層を分離し、亜硫酸ナトリウム水溶液(10質量%)20gを加えて洗浄することで残存する過酸化水素を還元した。水層を除き、純水20gを加えて再度洗浄した。有機層を単離し、有機溶媒(トルエン)を留去した。エポキシ当量が182、エポキシ当量比(E/Er=実測によるエポキシ当量/理論エポキシ当量)が1.54である茶色高粘性油状物を15.3g(81.4mmol、収率76.5%)得た。この茶色高粘性油状物をH−NMR測定した結果、式(10)で表されるフェノールノボラック型多価グリシジル化合物を主成分として含むことを確認した。式(10)で表される化合物に帰属する測定データは以下のとおりである。生成物のH−NMRスペクトルを図2に示す。
H−NMR{400MHz,CDCl,27℃},δ2.5−2.8(2H,m,PhOC CHCHO),δ2.8−3.0(4H,m,PhC CHCHO,PhCHCHC O),δ3.1−3.4(2H,m,PhOCHCHC O),δ3.6−4.0(6H,m,PhCHPh,PhOCHCHO,PhCHCHO),δ6.6−7.2(12H,m,aromatic).

Figure 2014240377
Example 2: Synthesis of a phenol novolac type polyvalent glycidyl compound A phenol novolac type allyl ether (BRG-556-AL2) having an allyl group at the ortho or para position obtained in Synthesis Example 2 above in a 200 mL three-necked round bottom flask. 20 g (about 106 mmol), sodium tungstate dihydrate 3.48 g (10.6 mmol), phosphoric acid 0.52 g (5.27 mmol), sulfuric acid 0.51 g (5.27 mmol), and MTOAHS 4.94 g (10. 6 mmol) was added and dissolved in 20 g of toluene. After heating up to 70 degreeC, 61.7 g (0.63 mol) of 35 mass% hydrogen peroxide aqueous solution was dripped over 1 hour, stirring, and also it stirred at 70 degreeC for 2 hours (stirring speed 400rpm). At the beginning of the reaction, the pH of the reaction solution was 1.4, and the pH of the reaction solution after 2 hours of reaction was 3.4. After completion of the reaction, the reaction solution was cooled to room temperature, and then 20 g of pure water was added to carry out a liquid separation treatment. The organic layer was separated, and 20 g of an aqueous sodium sulfite solution (10% by mass) was added and washed to reduce the remaining hydrogen peroxide. The aqueous layer was removed, and 20 g of pure water was added and washed again. The organic layer was isolated and the organic solvent (toluene) was distilled off. 15.3 g (81.4 mmol, yield 76.5%) of a brown high-viscosity oil having an epoxy equivalent of 182 and an epoxy equivalent ratio (E / Er = measured epoxy equivalent / theoretical epoxy equivalent) of 1.54 was obtained. It was. As a result of 1 H-NMR measurement of this brown highly viscous oily substance, it was confirmed that it contained a phenol novolac type polyvalent glycidyl compound represented by the formula (10) as a main component. The measurement data belonging to the compound represented by formula (10) is as follows. The 1 H-NMR spectrum of the product is shown in FIG.
1 H-NMR {400 MHz, CDCl 3 , 27 ° C.}, δ 2.5-2.8 (2H, m, PhOC H 2 CHCH 2 O), δ 2.8-3.0 (4H, m, PhC H 2 CHCH 2 O, PhCH 2 CHC H 2 O), δ 3.1-3.4 (2H, m, PhOCH 2 CHC H 2 O), δ 3.6-4.0 (6H, m, PhCH 2 Ph, PhOCH 2 C) H CH 2 O, PhCH 2 C H CH 2 O), δ6.6-7.2 (12H, m, aromatic).
Figure 2014240377

合成例3:基質(オルト位又はパラ位にアリル基を有するトリフェニルメタンノボラック(フェノールとベンズアルデヒドの重縮合物)アリルエーテル(TRI−220−AL2と略記)の合成
原料としてショウノール(登録商標)BRG−556の代わりに式(11)で表されるトリフェニルメタンノボラック(ショウノール(登録商標)TRI−220、p=2〜7、平均値:3.1)(昭和電工株式会社製)500.0gを用いた以外は、合成例2のBRG−556−AL2と同様に三段階で基質を合成した。まず、第一の工程でトリフェニルメタンノボラックアリルエーテル体(以下、TRI−220−ALと略記)を合成し茶褐色油状物を得た(収率94%)。この茶褐色油状物をH−NMR測定した結果、式(12)で表されるトリフェニルメタンノボラックアリルエーテル体を主成分として含むことを確認した。式(12)で表される化合物に帰属する測定データは以下のとおりである。
H−NMR{400MHz,CDCl,27℃},δ3.2−3.4(2H,m,PhCHPh),δ4.5−4.6(2H,m,C CH=CH),δ5.2−5.3(1H,m,CHCH=CH),δ5.3−5.5(1H,m,CHCH=CH),δ6.0−6.1(1H,m,CH=CH),δ6.6−7.3(17H,m,aromatic).

Figure 2014240377
Figure 2014240377
Synthesis Example 3: Synthesis of substrate (triphenylmethane novolak (polycondensation product of phenol and benzaldehyde) allyl ether (abbreviated as TRI-220-AL2) having an allyl group at ortho- or para-position) Shonol (registered trademark) as a raw material Triphenylmethane novolak represented by formula (11) instead of BRG-556 (Shonol (registered trademark) TRI-220, p = 2 to 7, average value: 3.1) (manufactured by Showa Denko KK) 500 Except for using 0.0 g, the substrate was synthesized in three steps in the same manner as BRG-556-AL2 in Synthesis Example 2. First, in the first step, triphenylmethane novolak allyl ether (hereinafter referred to as TRI-220-AL) was synthesized. represented by synthesizing the abbreviated) and to give a brown oil (94% yield). the brown oil was the 1 H-NMR measurement result, equation (12) That measurement data attributable to the compound represented by the triphenylmethane novolac allyl ether member was confirmed to contain as a main component. Equation (12) is as follows.
1 H-NMR {400 MHz, CDCl 3 , 27 ° C.}, δ 3.2-3.4 (2H, m, PhCHPh), δ 4.5-4.6 (2H, m, C H 2 CH═CH 2 ), δ5.2-5.3 (1H, m, CH 2 CH═CH H ), δ 5.3-5.5 (1H, m, CH 2 CH═C H H), δ 6.0-6.1 (1H , m, CH 2 C H = CH 2), δ6.6-7.3 (17H, m, aromatic).
Figure 2014240377
Figure 2014240377

上記、BRG−556−AL2の合成同様、第二の工程でトリフェニルメタンノボラックアリル置換体(以下、TRI−220−CLと略記)体を合成し褐色油状物を得た(収率98%)。この褐色油状物をH−NMR測定した結果、式(13)で表される化合物を主成分として含むことを確認した。式(13)で表される化合物に帰属する測定データは以下のとおりである。
H−NMR{400MHz,CDCl,27℃},δ3.2−3.4(2H,m,PhCHPh),δ4.8−4.9(1H,m,CHCH=CH),δ5.0−5.2(3H,m,CHCH=CH,CHCH=CH,CHCH=CH),δ5.8−6.1(1H,m,CH=CH),δ6.6−7.4(17H,m,aromatic).

Figure 2014240377
Similar to the synthesis of BRG-556-AL2, the triphenylmethane novolak allyl substitute (hereinafter abbreviated as TRI-220-CL) was synthesized in the second step to obtain a brown oil (yield 98%). . As a result of 1 H-NMR measurement of the brown oily substance, it was confirmed that the compound represented by the formula (13) was contained as a main component. Measurement data belonging to the compound represented by the formula (13) is as follows.
1 H-NMR {400 MHz, CDCl 3 , 27 ° C.}, δ 3.2-3.4 (2H, m, PhCHPh), δ 4.8-4.9 (1H, m, CH H CH═CH 2 ), δ5 0.0-5.2 (3H, m, C H HCH═CH 2 , CH 2 CH═CH H , CH 2 CH═C H H), δ5.8-6.1 (1H, m, CH 2 C H = CH 2), δ6.6-7.4 (17H , m, aromatic).
Figure 2014240377

上記、BRG−556−AL2と同様、第三の工程でトリフェニルメタンノボラック型アリルエーテル(以下、TRI−220−AL2と略記)体を合成し褐色油状物を得た(収率98%)。この褐色油状物をH−NMR測定した結果、式(14)で表される化合物を主成分として含むことを確認した。式(14)で表される化合物に帰属する測定データは以下のとおりである。
H−NMR{400MHz,CDCl,27℃},δ2.6−2.9(2H,m,PhOC CH=CH),δ3.1−3.3(2H,m,PhCHPh),δ4.5−4.9(2H,m,PhCHCH=CH,PhOCHCH=CH),δ5.0−5.4(3H,m,PhCHCH=CH,PhOCHCH=CH,PhCHCH=C ,PhOCHCH=C ),δ5.8−6.1(2H,m,PhCH=CH,PhOCH=CH),δ6.6−7.3(17H,m,aromatic).

Figure 2014240377
Similar to BRG-556-AL2, the triphenylmethane novolak type allyl ether (hereinafter abbreviated as TRI-220-AL2) was synthesized in the third step to obtain a brown oil (yield 98%). As a result of 1 H-NMR measurement of this brown oily substance, it was confirmed that the compound represented by the formula (14) was contained as a main component. The measurement data belonging to the compound represented by formula (14) is as follows.
1 H-NMR {400 MHz, CDCl 3 , 27 ° C.}, δ 2.6-2.9 (2H, m, PhOC H 2 CH═CH 2 ), δ 3.1-3.3 (2H, m, PhCHPh), δ4.5-4.9 (2H, m, PhCH H CH═CH 2 , PhOCH H CH═CH 2 ), δ 5.0-5.4 (3H, m, PhC H HCH═CH 2 , PhOC H HCH = CH 2, PhCH 2 CH = C H 2, PhOCH 2 CH = C H 2), δ5.8-6.1 (2H, m, PhCH 2 C H = CH 2, PhOCH 2 C H = CH 2), δ6 6-7.3 (17H, m, aromatic).
Figure 2014240377

実施例3:トリフェニルメタンノボラック型多価グリシジル化合物の合成
200mL三口丸底フラスコに、上記合成例3で得られたオルト位又はパラ位にアリル基を有するトリフェニルメタンノボラック型アリルエーテル(TRI−220−AL2)15g(約48mmol)、タングステン酸ナトリウム二水和物3.48g(10.6mmol)、リン酸0.52g(5.27mmol)、硫酸0.51g(5.27mmol)、及びMTOAHS4.94g(10.6mmol)を入れ、トルエン20gに溶解させた。70℃まで昇温した後、35質量%過酸化水素水溶液61.7g(0.63mol)を1時間かけて撹拌しながら滴下し、70℃でさらに2時間撹拌(撹拌速度400rpm)した。反応初期において、反応液のpHは1.4であり、2時間反応後の反応液のpHは3.4であった。反応終了後、反応液を室温まで冷却した後、純水20gを加え分液処理した。有機層を分離し、亜硫酸ナトリウム水溶液(10質量%)20gを加えて洗浄することで残存する過酸化水素を還元した。水層を除き、純水20gを加えて再度洗浄した。有機層を単離し、有機溶媒(トルエン)を留去し、エポキシ当量が192、エポキシ当量比(E/Er=実測によるエポキシ当量/理論エポキシ当量)が1.34である茶色高粘性油状生成物を11.4g(36mmol、収率75.7%)得た。この茶色高粘性油状物をH−NMR測定した結果、式(15)で表されるトリフェニルメタンノボラック型多価グリシジル化合物を主成分として含むことを確認した。式(15)で表される化合物に帰属する測定データは以下のとおりである。生成物のH−NMRスペクトルを図3に示す。
H−NMR{400MHz,CDCl,27℃},δ2.4−2.6(2H,m,PhOC CHCHO),δ2.6−2.8(4H,m,PhC CHCHO,PhCHCHC O),δ2.8−3.0(2H,m,PhOCHCHC O),δ3.0−3.3(2H,m,PhCHPh),δ3.8−4.0(2H,m,PhOCHCHO),δ4.1−4.3(2H,m,PhCHCHO),δ6.6−7.3(12H,m,aromatic).

Figure 2014240377
Example 3: Synthesis of triphenylmethane novolak type polyvalent glycidyl compound Triphenylmethane novolak type allyl ether (TRI-) having an allyl group at the ortho-position or para-position obtained in Synthesis Example 3 above in a 200 mL three-neck round bottom flask. 220-AL2) 15 g (about 48 mmol), sodium tungstate dihydrate 3.48 g (10.6 mmol), phosphoric acid 0.52 g (5.27 mmol), sulfuric acid 0.51 g (5.27 mmol), and MTOAHS4. 94 g (10.6 mmol) was added and dissolved in 20 g of toluene. After heating up to 70 degreeC, 61.7 g (0.63 mol) of 35 mass% hydrogen peroxide aqueous solution was dripped over 1 hour, stirring, and also it stirred at 70 degreeC for 2 hours (stirring speed 400rpm). At the beginning of the reaction, the pH of the reaction solution was 1.4, and the pH of the reaction solution after 2 hours of reaction was 3.4. After completion of the reaction, the reaction solution was cooled to room temperature, and then 20 g of pure water was added to carry out a liquid separation treatment. The organic layer was separated, and 20 g of an aqueous sodium sulfite solution (10% by mass) was added and washed to reduce the remaining hydrogen peroxide. The aqueous layer was removed, and 20 g of pure water was added and washed again. The organic layer was isolated, the organic solvent (toluene) was distilled off, and a brown highly viscous oily product having an epoxy equivalent of 192 and an epoxy equivalent ratio (E / Er = measured epoxy equivalent / theoretical epoxy equivalent) of 1.34 11.4 g (36 mmol, yield 75.7%) was obtained. As a result of 1 H-NMR measurement of this brown highly viscous oily substance, it was confirmed that it contained a triphenylmethane novolak type polyvalent glycidyl compound represented by the formula (15) as a main component. Measurement data belonging to the compound represented by the formula (15) is as follows. The 1 H-NMR spectrum of the product is shown in FIG.
1 H-NMR {400 MHz, CDCl 3 , 27 ° C.}, δ 2.4-2.6 (2H, m, PhOC H 2 CHCH 2 O), δ 2.6-2.8 (4H, m, PhC H 2 CHCH 2 O, PhCH 2 CHC H 2 O), δ 2.8-3.0 (2H, m, PhOCH 2 CHC H 2 O), δ 3.0-3.3 (2H, m, PhCHPh), δ 3.8- 4.0 (2H, m, PhOCH 2 C H CH 2 O), δ4.1-4.3 (2H, m, PhCH 2 C H CH 2 O), δ6.6-7.3 (12H, m, aromatic).
Figure 2014240377

比較例1
過酸化水素水溶液添加終了後の反応時間を9時間とした以外は実施例1と同様にしてグリシジル化反応を行い、エポキシ当量が209、エポキシ当量比(E/Er=実測によるエポキシ当量/理論エポキシ当量)が1.85である生成物12g(収率66.3%)を得た。反応を長時間行ったため、ゲル状物が生成し、目的物の取得収率が下がり、エポキシ当量比も上昇した。
Comparative Example 1
The glycidylation reaction was performed in the same manner as in Example 1 except that the reaction time after the addition of the aqueous hydrogen peroxide solution was 9 hours, and the epoxy equivalent was 209, the epoxy equivalent ratio (E / Er = epoxy equivalent by measurement / theoretical epoxy) 12 g (yield 66.3%) of product with an equivalent weight of 1.85 was obtained. Since the reaction was carried out for a long time, a gel-like product was generated, the yield of the target product was decreased, and the epoxy equivalent ratio was also increased.

比較例2
過酸化水素水溶液の滴下時間を3時間、過酸化水素水溶液添加終了後の反応時間を1時間とした以外は実施例1と同様にしてグリシジル化反応を行い、エポキシ当量が337、エポキシ当量比(E/Er=実測によるエポキシ当量/理論エポキシ当量)が1.85である生成物17.2g(収率95.0%)を得た。滴下を長時間行い、過酸化水素水溶液添加終了後の反応時間を短縮すると、エポキシ当量比が上昇する。H−NMR{400MHz,CDCl,27℃}分析により、反応中間体であるアリル体含有率が実施例1に比べて約50%高いことが確認された。エポキシ当量比上昇の要因は反応効率が低いためと推定される。
Comparative Example 2
A glycidylation reaction was carried out in the same manner as in Example 1 except that the dropping time of the aqueous hydrogen peroxide solution was 3 hours and the reaction time after the addition of the aqueous hydrogen peroxide solution was 1 hour, and the epoxy equivalent was 337, the epoxy equivalent ratio ( 17.2 g (yield 95.0%) of a product having an E / Er = measured epoxy equivalent / theoretical epoxy equivalent) of 1.85 was obtained. If the dropwise addition is performed for a long time and the reaction time after completion of the addition of the aqueous hydrogen peroxide solution is shortened, the epoxy equivalent ratio increases. 1 H-NMR {400 MHz, CDCl 3 , 27 ° C.} analysis confirmed that the allyl content, which is a reaction intermediate, was about 50% higher than that in Example 1. The reason for the increase in the epoxy equivalent ratio is presumed to be the low reaction efficiency.

比較例3
リン酸の量を2倍(0.462g(4.7mmol))とし、硫酸を共存させなかった以外は実施例1と同様にしてグリシジル化反応を行った。エポキシ当量が179、エポキシ当量比(E/Er=実測によるエポキシ当量/理論エポキシ当量)が1.58である生成物18.2g(収率86.3%)を得た。酸としてリン酸のみを使用すると、エポキシ当量比が上昇する。H−NMR{400MHz,CDCl,27℃}分析により、反応中間体であるアリル体含有率が実施例1に比べて約40%高いことが確認された。エポキシ当量比上昇の要因は反応効率が低いためと推定される。
Comparative Example 3
The glycidylation reaction was carried out in the same manner as in Example 1 except that the amount of phosphoric acid was doubled (0.462 g (4.7 mmol)) and sulfuric acid was not allowed to coexist. 18.2 g (yield: 86.3%) of a product having an epoxy equivalent of 179 and an epoxy equivalent ratio (E / Er = measured epoxy equivalent / theoretical epoxy equivalent) of 1.58 was obtained. When only phosphoric acid is used as the acid, the epoxy equivalent ratio increases. 1 H-NMR {400 MHz, CDCl 3 , 27 ° C.} analysis confirmed that the allyl content, which is a reaction intermediate, was about 40% higher than that in Example 1. The reason for the increase in the epoxy equivalent ratio is presumed to be the low reaction efficiency.

比較例4
リン酸の量を10倍とし、反応液のpHを0.5程度に調整した以外は実施例1と同様にしてグリシジル化反応を行った。加水分解物と考えられるゲル状物が多量に析出(53g、含水状)し、目的物を反応液から抽出することは困難であった。ゲル状物をろ取して、酢酸エチル(50mL)、メタノール(50mL)で順次洗浄、減圧下乾燥し、褐色固体を得た。得られた生成物のH−NMRスペクトルを図4に示す。下段が生成物のH−NMRスペクトルであり、上段が目的物(式(5))のH−NMRスペクトルである。生成物中の目的物に帰属される信号の含有率は10%以下であり、90%以上が加水分解物及びその会合物(ゲル状物)に帰属される。加水分解物に帰属されると推察できる信号データは以下のとおりである。
H−NMR{400MHz,DMSO−d,27℃}δ1.60(6H,s,CH),δ3.3−3.5(2H,brm,PhCHCH(O)CH(O),PhOCHCH(O)CH(O)),δ3.6(2H,brm,PhCHCH(OH)C (OH)),δ3.8(2H,m,PhOCHCH(OH)C (OH)),δ3.9(2H,brm,PhOCH(OH)CH(OH)),δ4.4(2H,brm,PhCH(OH)CH(OH)),δ4.6(2H,brm,PhOC CH(OH)CH(OH)),δ4.9(2H,brm,PhC CH(OH)CH(OH)),δ6.8(brm,2H,aromatic),δ6.9−7.1(m,4H,aromatic).
Comparative Example 4
A glycidylation reaction was performed in the same manner as in Example 1 except that the amount of phosphoric acid was increased to 10 times and the pH of the reaction solution was adjusted to about 0.5. A large amount of a gel-like product that was considered to be a hydrolyzate was precipitated (53 g, hydrated), and it was difficult to extract the target product from the reaction solution. The gel was collected by filtration, washed successively with ethyl acetate (50 mL) and methanol (50 mL), and dried under reduced pressure to give a brown solid. A 1 H-NMR spectrum of the obtained product is shown in FIG. Lower is 1 H-NMR spectrum of the product is a 1 H-NMR spectrum of the upper is the desired product (formula (5)). The content of the signal attributed to the target product in the product is 10% or less, and 90% or more is attributed to the hydrolyzate and its associated product (gel-like product). The signal data that can be inferred to be attributed to the hydrolyzate are as follows.
1 H-NMR {400MHz, DMSO -d 6, 27 ℃} δ1.60 (6H, s, CH 3), δ3.3-3.5 (2H, brm, PhCH 2 CH (O H) CH 2 (O H), PhOCH 2 CH (O H) CH 2 (O H)), δ3.6 (2H, brm, PhCH 2 CH (OH) C H 2 (OH)), δ3.8 (2H, m, PhOCH 2 CH (OH) C H 2 ( OH)), δ3.9 (2H, brm, PhOCH 2 C H (OH) CH 2 (OH)), δ4.4 (2H, brm, PhCH 2 C H (OH) CH 2 (OH)), δ4.6 ( 2H, brm, PhOC H 2 CH (OH) CH 2 (OH)), δ4.9 (2H, brm, PhC H 2 CH (OH) CH 2 (OH)), δ6.8 (brm, 2H, aromatic), δ6.9-7 .1 (m, 4H, aromatic).

比較例5
リン酸及び硫酸の量をそれぞれ0.5倍とし、反応液のpHを5.0に調整した以外は実施例1と同様にグリシジル化反応を行い、エポキシ当量が321、エポキシ当量比(E/Er=実測によるエポキシ当量/理論エポキシ当量)が2.84である生成物19.2g(収率91.1%)を得た。反応液のpHを4.0より高くすると、エポキシ当量比が上昇する。H−NMR{400MHz,CDCl,27℃}分析により、反応中間体であるアリル体含有率が実施例1に比べて約60%高いことが確認された。エポキシ当量比上昇の要因は反応効率が低いためと推定される。
Comparative Example 5
A glycidylation reaction was conducted in the same manner as in Example 1 except that the amounts of phosphoric acid and sulfuric acid were each 0.5 times and the pH of the reaction solution was adjusted to 5.0. The epoxy equivalent was 321 and the epoxy equivalent ratio (E / 19.2 g (yield 91.1%) of a product having an Er = actually measured epoxy equivalent / theoretical epoxy equivalent) of 2.84 was obtained. When the pH of the reaction solution is higher than 4.0, the epoxy equivalent ratio increases. 1 H-NMR {400 MHz, CDCl 3 , 27 ° C.} analysis confirmed that the allyl content, which is a reaction intermediate, was about 60% higher than that in Example 1. The reason for the increase in the epoxy equivalent ratio is presumed to be the low reaction efficiency.

比較例6
リン酸を用いず代わりに硫酸を2倍量使用とし、反応液のpHを約0.5に調整した以外は実施例1と同様にグリシジル化反応を行った。エポキシ当量が182、エポキシ当量比(E/Er=実測によるエポキシ当量/理論エポキシ当量)が1.61である生成物9.2g(収率43.6%)を得た。収率低下の要因は比較例4と同様、加水分解が起こったためと推定される。
Comparative Example 6
Instead of using phosphoric acid, a glycidylation reaction was carried out in the same manner as in Example 1 except that sulfuric acid was used in an amount twice as much and the pH of the reaction solution was adjusted to about 0.5. There was obtained 9.2 g (yield 43.6%) of product having an epoxy equivalent of 182 and an epoxy equivalent ratio (E / Er = measured epoxy equivalent / theoretical epoxy equivalent) of 1.61. The cause of the decrease in yield is estimated to be due to hydrolysis as in Comparative Example 4.

本発明の多価グリシジル化合物の製造方法によれば、分子内に置換又は非置換の2−アルケニル基を2つ以上有する置換又は非置換の2−アルケニルエーテル化合物と過酸化水素水溶液との反応から、簡便な操作で安全に、高収率(グリシジルエーテル基の加水分解を抑制)かつ低コストで置換又は非置換の多価グリシジル化合物を製造できるため、工業的に有用である。   According to the method for producing a polyvalent glycidyl compound of the present invention, from the reaction between a substituted or unsubstituted 2-alkenyl ether compound having two or more substituted or unsubstituted 2-alkenyl groups in the molecule and an aqueous hydrogen peroxide solution. It is industrially useful because a substituted or unsubstituted polyvalent glycidyl compound can be produced safely with a simple operation, in a high yield (suppressing hydrolysis of the glycidyl ether group) and at a low cost.

Claims (7)

分子内に2つ以上の置換又は非置換の2−アルケニル基及び1つ以上の置換又は非置換の2−アルケニルエーテル基を有する2−アルケニルエーテル化合物を、過酸化水素水溶液を酸化剤として用いて、触媒としてタングステン化合物、第四級アンモニウム塩、及び少なくともリン酸を含む2種類以上の酸の存在下、前記2−アルケニルエーテル化合物を含む反応液のpHを1.0〜4.0に制御し、前記反応液へ過酸化水素水溶液を0.1〜2時間かけて添加し、過酸化水素水溶液の添加終了後、2〜6時間で反応を停止することを特徴とする多価グリシジル化合物の製造方法。   A 2-alkenyl ether compound having two or more substituted or unsubstituted 2-alkenyl groups and one or more substituted or unsubstituted 2-alkenyl ether groups in the molecule, using an aqueous hydrogen peroxide solution as an oxidizing agent In the presence of two or more kinds of acids including a tungsten compound, a quaternary ammonium salt, and at least phosphoric acid as a catalyst, the pH of the reaction solution containing the 2-alkenyl ether compound is controlled to 1.0 to 4.0. A hydrogen peroxide aqueous solution is added to the reaction solution over 0.1 to 2 hours, and the reaction is stopped in 2 to 6 hours after the addition of the hydrogen peroxide aqueous solution is completed. Method. 前記2−アルケニルエーテル化合物が、分子内に芳香環を含み、芳香環に直結した1つ以上の置換又は非置換の2−アルケニルエーテル基と芳香環に直結した2つ以上の置換又は非置換の2−アルケニル基を有し、かつ前記置換又は非置換の2−アルケニルエーテル基に対してオルト位又はパラ位に置換又は非置換の2−アルケニル基が位置する化合物である請求項1に記載の多価グリシジル化合物の製造方法。   The 2-alkenyl ether compound contains an aromatic ring in the molecule, and one or more substituted or unsubstituted 2-alkenyl ether groups directly connected to the aromatic ring and two or more substituted or unsubstituted direct bonds to the aromatic ring. 2. The compound according to claim 1, wherein the compound has a 2-alkenyl group and a substituted or unsubstituted 2-alkenyl group is located in the ortho-position or para-position with respect to the substituted or unsubstituted 2-alkenyl ether group. A method for producing a polyvalent glycidyl compound. 前記2−アルケニルエーテル化合物が、一般式(1):
Figure 2014240377
(式中、R及びRは、各々独立して、下記式(2)で表される基であり、Qは、各々独立して、式:−CR−で表されるアルキレン基、炭素数3〜12のシクロアルキレン基、炭素数6〜10の単独芳香環からなるアリーレン基若しくは2〜3の炭素数6〜10の芳香環が結合してなるアリーレン基、炭素数7〜12の二価の脂環式縮合環、又はこれらを組み合わせた二価基であり、R及びRは各々独立して、水素原子、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数3〜12のシクロアルキル基、又は炭素数6〜10のアリール基であり、nは0〜50の整数を表す。式(2)中のR、R及びRは、各々独立して、水素原子、炭素数1〜10のアルキル基、炭素数3〜12のシクロアルキル基又は炭素数6〜10のアリール基を表す。)で表される化合物である請求項1又は2のいずれかに記載の多価グリシジル化合物の製造方法。
Figure 2014240377
The 2-alkenyl ether compound is represented by the general formula (1):
Figure 2014240377
Wherein R 1 and R 2 are each independently a group represented by the following formula (2), and Q are each independently an alkylene represented by the formula: —CR 3 R 4 —. Group, a C3-C12 cycloalkylene group, an arylene group composed of a single aromatic ring having 6 to 10 carbon atoms, or an arylene group formed by bonding 2-3 aromatic rings having 6 to 10 carbon atoms, C7- 12 divalent alicyclic condensed rings, or a divalent group obtained by combining these, R 3 and R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or 2 to 10 carbon atoms. An alkenyl group, a cycloalkyl group having 3 to 12 carbon atoms, or an aryl group having 6 to 10 carbon atoms, and n represents an integer of 0 to 50. R 5 , R 6 and R 7 in formula (2) Each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloaryl having 3 to 12 carbon atoms. Method for producing a polyglycidyl compound according to claim 1 or 2 which is a compound represented by.) Representing a kill or aryl group having 6 to 10 carbon atoms.
Figure 2014240377
前記2−アルケニルエーテル化合物が、ビスフェノール−A、ビスフェノール−F、フェノールノボラック、トリフェニルメタンフェノール、ビフェニルアラルキル型フェノール、フェニルアラルキル型フェノール、又は無置換のテトラヒドロジシクロペンタジエン骨格のフェノール若しくは両端にCHが結合した無置換のテトラヒドロジシクロペンタジエン骨格のフェノールのいずれかの基本骨格を有し、ORに対してRがオルト位又はパラ位に位置する2−アルケニルエーテル化合物である請求項3に記載の多価グリシジル化合物の製造方法。 The 2-alkenyl ether compound is bisphenol-A, bisphenol-F, phenol novolac, triphenylmethanephenol, biphenylaralkyl type phenol, phenylaralkyl type phenol, phenol of an unsubstituted tetrahydrodicyclopentadiene skeleton, or CH 2 at both ends. An unsubstituted tetrahydrodicyclopentadiene skeleton phenol to which is bonded is a 2-alkenyl ether compound having any basic skeleton of R 2 in the ortho or para position with respect to OR 1 . The manufacturing method of the polyvalent glycidyl compound of description. 前記タングステン化合物が、タングステン酸ナトリウムとタングステン酸の混合物、タングステン酸ナトリウムと鉱酸の混合物、又はタングステン酸とアルカリ化合物の混合物である請求項1〜4のいずれか一項に記載の多価グリシジル化合物の製造方法。   The polyvalent glycidyl compound according to any one of claims 1 to 4, wherein the tungsten compound is a mixture of sodium tungstate and tungstic acid, a mixture of sodium tungstate and mineral acid, or a mixture of tungstic acid and an alkali compound. Manufacturing method. 前記第四級アンモニウム塩の窒素原子に結合した置換基の炭素数の合計が6以上50以下である請求項1〜5のいずれか一項に記載の多価グリシジル化合物の製造方法。   The method for producing a polyvalent glycidyl compound according to any one of claims 1 to 5, wherein the total number of carbon atoms of the substituents bonded to the nitrogen atom of the quaternary ammonium salt is 6 or more and 50 or less. リン酸以外の前記酸が、ポリリン酸、ピロリン酸、スルホン酸、硝酸、硫酸、塩酸、及びホウ酸からなる群から選択される少なくとも一種の鉱酸又はベンゼンスルホン酸、p−トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、及びトリフルオロ酢酸からなる群から選択される少なくとも一種の有機酸である請求項1〜6のいずれか一項に記載の多価グリシジル化合物の製造方法。   The acid other than phosphoric acid is at least one mineral acid selected from the group consisting of polyphosphoric acid, pyrophosphoric acid, sulfonic acid, nitric acid, sulfuric acid, hydrochloric acid, and boric acid, benzenesulfonic acid, p-toluenesulfonic acid, methane The method for producing a polyvalent glycidyl compound according to any one of claims 1 to 6, which is at least one organic acid selected from the group consisting of sulfonic acid, trifluoromethanesulfonic acid, and trifluoroacetic acid.
JP2013245282A 2013-05-13 2013-11-27 Method for producing polyvalent glycidyl compound Active JP6238701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013245282A JP6238701B2 (en) 2013-05-13 2013-11-27 Method for producing polyvalent glycidyl compound

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013101611 2013-05-13
JP2013101611 2013-05-13
JP2013245282A JP6238701B2 (en) 2013-05-13 2013-11-27 Method for producing polyvalent glycidyl compound

Publications (2)

Publication Number Publication Date
JP2014240377A true JP2014240377A (en) 2014-12-25
JP6238701B2 JP6238701B2 (en) 2017-11-29

Family

ID=52139842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013245282A Active JP6238701B2 (en) 2013-05-13 2013-11-27 Method for producing polyvalent glycidyl compound

Country Status (1)

Country Link
JP (1) JP6238701B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107074794A (en) * 2014-11-12 2017-08-18 昭和电工株式会社 The manufacture method of multivalence glycidyl compound
WO2018083881A1 (en) * 2016-11-07 2018-05-11 昭和電工株式会社 Method for producing polyvalent glycidyl compound
JP2018100236A (en) * 2016-12-20 2018-06-28 Dic株式会社 Method for producing naphthalene type epoxy compound and naphthalene type epoxy compound
WO2018135588A1 (en) * 2017-01-23 2018-07-26 日本化薬株式会社 Epoxy resin production method, epoxy resin, epoxy resin composition, and cured product thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060123A (en) * 1983-09-13 1985-04-06 Sumitomo Chem Co Ltd Production of epoxy compound
JP2010235649A (en) * 2009-03-30 2010-10-21 Sanyo Chem Ind Ltd Method for producing purified epoxy resin
WO2011019061A1 (en) * 2009-08-13 2011-02-17 昭和電工株式会社 Method for producing polyglycidyl ether compound
WO2013028045A2 (en) * 2011-08-25 2013-02-28 한국생산기술연구원 Epoxy compound having alkoxysilyl group, method for preparing same, composition and cured material comprising same, and usage thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060123A (en) * 1983-09-13 1985-04-06 Sumitomo Chem Co Ltd Production of epoxy compound
JP2010235649A (en) * 2009-03-30 2010-10-21 Sanyo Chem Ind Ltd Method for producing purified epoxy resin
WO2011019061A1 (en) * 2009-08-13 2011-02-17 昭和電工株式会社 Method for producing polyglycidyl ether compound
WO2013028045A2 (en) * 2011-08-25 2013-02-28 한국생산기술연구원 Epoxy compound having alkoxysilyl group, method for preparing same, composition and cured material comprising same, and usage thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107074794A (en) * 2014-11-12 2017-08-18 昭和电工株式会社 The manufacture method of multivalence glycidyl compound
EP3219708A4 (en) * 2014-11-12 2018-05-23 Showa Denko K.K. Process for producing polyvalent glycidyl compound
US10160737B2 (en) 2014-11-12 2018-12-25 Showa Denko K.K. Process for producing polyvalent glycidyl compound
WO2018083881A1 (en) * 2016-11-07 2018-05-11 昭和電工株式会社 Method for producing polyvalent glycidyl compound
KR20190034610A (en) * 2016-11-07 2019-04-02 쇼와 덴코 가부시키가이샤 Process for producing polyglycidyl compounds
CN109689634A (en) * 2016-11-07 2019-04-26 昭和电工株式会社 The manufacturing method of polynary glycidyl compound
JPWO2018083881A1 (en) * 2016-11-07 2019-09-19 昭和電工株式会社 Method for producing polyvalent glycidyl compound
TWI679196B (en) * 2016-11-07 2019-12-11 日商昭和電工股份有限公司 Method for producing polyvalent glycidyl compound
KR102204653B1 (en) * 2016-11-07 2021-01-19 쇼와 덴코 가부시키가이샤 Method for producing polyhydric glycidyl compound
JP2018100236A (en) * 2016-12-20 2018-06-28 Dic株式会社 Method for producing naphthalene type epoxy compound and naphthalene type epoxy compound
WO2018135588A1 (en) * 2017-01-23 2018-07-26 日本化薬株式会社 Epoxy resin production method, epoxy resin, epoxy resin composition, and cured product thereof

Also Published As

Publication number Publication date
JP6238701B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
JP6238701B2 (en) Method for producing polyvalent glycidyl compound
JP6143332B2 (en) Allyl ether resin and method for producing the same
JP6611729B2 (en) Method for producing polyvalent glycidyl compound
JP6692471B2 (en) Curable resin composition
JP6238699B2 (en) Method for producing polyvalent glycidyl compound
WO2011019061A1 (en) Method for producing polyglycidyl ether compound
KR101415113B1 (en) Process for production of glycidyl ether compounds, and monoallyl monoglycidyl ether compound
JP6351487B2 (en) Method for producing polyvalent glycidyl compound
JP2016094353A5 (en)
JP5901521B2 (en) Method for producing epoxy compound
RU2337753C1 (en) Modified ion exchange resin and method for obtaining bisphenols
KR940003293B1 (en) Improved process for the preparation of glycidyl compounds
KR910004902B1 (en) Phenol ethers containing epoxide groups
JP2012116782A (en) Method for producing glycidyl ether compound
JP2022517402A (en) How to prepare thiocarbonate
JP2010155804A (en) Method for purifying epoxy compound
JP2006028057A (en) Method for producing liquid epoxy compound
CA2300167A1 (en) Process for the manufacture of epoxy compounds
JP2001181227A (en) New alicyclic group-containing compound and method for producing the same
JPH11279257A (en) Production of epoxy resin
WO2011152251A1 (en) Alicyclic monoallyl ether-monoglycidyl ether compound
JP2007262291A (en) Production method for epoxy resin
JPH044326B2 (en)
JP2001181280A (en) Method for producing alicyclic group-containing epoxy compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171031

R150 Certificate of patent or registration of utility model

Ref document number: 6238701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350