WO2011152251A1 - Alicyclic monoallyl ether-monoglycidyl ether compound - Google Patents

Alicyclic monoallyl ether-monoglycidyl ether compound Download PDF

Info

Publication number
WO2011152251A1
WO2011152251A1 PCT/JP2011/061898 JP2011061898W WO2011152251A1 WO 2011152251 A1 WO2011152251 A1 WO 2011152251A1 JP 2011061898 W JP2011061898 W JP 2011061898W WO 2011152251 A1 WO2011152251 A1 WO 2011152251A1
Authority
WO
WIPO (PCT)
Prior art keywords
alicyclic
compound
reaction
monoglycidyl ether
ether
Prior art date
Application number
PCT/JP2011/061898
Other languages
French (fr)
Japanese (ja)
Inventor
博 内田
真尚 原
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2011152251A1 publication Critical patent/WO2011152251A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • C07D303/24Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/22Cyclic ethers having at least one atom other than carbon and hydrogen outside the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups

Definitions

  • the present invention relates to an alicyclic monoallyl ether monoglycidyl ether compound, an alicyclic trialkoxysilyl monoglycidyl ether compound, and a curable resin composition containing the compound. More specifically, the present invention is excellent in optical properties, hardness, strength, and heat resistance, and particularly includes an alicyclic skeleton that is a raw material of a curable resin composition suitable for the field of electronic materials and light-emitting diode (LED) sealing.
  • the present invention relates to an alicyclic monoallyl ether monoglycidyl ether compound, an alicyclic trialkoxysilyl monoglycidyl ether compound derived therefrom, and a curable resin composition containing the compound.
  • Epoxy resins are excellent in electrical properties, adhesiveness, heat resistance, etc., and are used in many applications such as the paint field, civil engineering field, and electrical field.
  • aromatic epoxy resins such as bisphenol A type diglycidyl ether, bisphenol F type diglycidyl ether, phenol novolac type epoxy resin, and cresol novolac type epoxy resin are water resistant, adhesive, mechanical properties, heat resistant, and electrical insulating properties. It is widely used in combination with various curing agents because of its excellent economic efficiency.
  • Patent Document 1 discloses a hydrogenated epoxy resin obtained by hydrogenating an aromatic epoxy resin, and an epoxy resin composition for electric / electronic materials containing a curing agent.
  • the following patent document 2 discloses an epoxy resin composition in which an alicyclic epoxy resin obtained by oxidizing a cyclic olefin or an epoxy resin having a nitrogen atom therein is blended.
  • the following Patent Document 3 discloses a resin composition using an epoxy resin having a silicone structure with excellent weather resistance in the main chain.
  • Patent Document 4 discloses a linear or cyclic siloxane bond and an alicyclic epoxy group (two adjacent carbon atoms forming an alicyclic skeleton and an oxygen atom, a three-membered ether (oxirane) A silicone hybrid epoxy resin having the structure)
  • Patent Document 5 discloses an epoxy silicone resin having a linear siloxane structure in the main chain and an isocyanuric group in the side chain or terminal.
  • Epoxy resin compositions are widely used in low-power white LED sealing applications because of the high hardness of the cured product and excellent handling properties and necessary durability.
  • high-power LEDs have the disadvantages that discoloration is likely to occur due to an increase in light emission and heat generation, and it is difficult to obtain a sufficient life.
  • an epoxy resin that exhibits a high glass transition temperature is used, but such an epoxy resin is highly elastic and has lower strength and deflection than a normal epoxy resin and is lit off. There is also a problem that the sealing material is easily cracked due to a sudden temperature change due to.
  • the sealing material is required to have high strength as well as further improvement in heat resistance and light resistance.
  • the compound represented by the formula (a) is an aliphatic glycidyl ether, the hardness is low and stickiness cannot be eliminated.
  • the compound represented by the formula (b) can improve the hardness and the like to some extent, but since it is a cyclohexene oxide skeleton epoxy resin, it has poor adhesion to the LED chip or package to be sealed. There is a problem.
  • the problem to be solved by the present invention is that the cured product has high hardness, has no stickiness on the surface, and has excellent transparency, heat resistance, UV resistance, and thermosetting for LED encapsulant.
  • a compound useful as a raw material of a resin composition, and a curable resin composition containing a derivative of the compound is a compound useful as a raw material of a resin composition, and a curable resin composition containing a derivative of the compound.
  • a curable resin composition containing a reaction product of a compound having a glycidyl ether structure and a silicone compound having a hydrosilyl group is suitable for LED sealing applications, and other electronic material applications such as semiconductor sealing materials and printed wiring boards. It was also found useful, and the present invention was completed.
  • R represents an alicyclic monoallyl ether monoglycidyl ether compound according to the above [1] having a C 4-8 cycloalkane skeleton.
  • R represents a divalent hydrocarbon group containing an alicyclic hydrocarbon having 4 to 20 carbon atoms
  • R ' represents a hydrocarbon group having 1 to 4 carbon atoms.
  • the curable resin composition containing the alicyclic trialkoxysilyl monoglycidyl ether compound obtained by reacting the alicyclic monoallyl ether monoglycidyl ether compound and trialkoxysilane of the present invention has a hardened cured product. , There is little cure shrinkage, no stickiness on the surface of the cured product, excellent strength and transparency, excellent heat resistance and light resistance. Therefore, the curable resin composition of the present invention is useful in the fields of electronic materials such as paints, coating agents, printing inks, resist inks, adhesives, semiconductor encapsulants, molding materials, casting materials, and electrical insulating materials. It is.
  • the curable resin composition of the present invention is particularly useful in the LED field, and is excellent as a thermosetting resin composition for LED sealing.
  • FIG. 1 is a diagram showing a general change over time of an epoxidation reaction in which diallyl ether is oxidized using an oxidizing agent.
  • FIG. 2 shows the 1 H-NMR measurement results of the alicyclic monoallyl ether monoglycidyl ether compound obtained in Example 1.
  • FIG. 3 shows the results of 13 C-NMR measurement of the alicyclic monoallyl ether monoglycidyl ether compound obtained in Example 1.
  • FIG. 4 shows the 1 H-NMR measurement results of the alicyclic trialkoxysilyl monoglycidyl ether compound obtained in Example 2.
  • FIG. 5 shows the results of 13 C-NMR measurement of the alicyclic trialkoxysilyl monoglycidyl ether compound obtained in Example 2.
  • FIG. 1 is a diagram showing a general change over time of an epoxidation reaction in which diallyl ether is oxidized using an oxidizing agent.
  • FIG. 2 shows the 1 H-NMR measurement results of the
  • FIG. 6 shows the 1 H-NMR measurement results of the epoxysilicone compound obtained in Example 3.
  • FIG. 7 shows the results of 13 C-NMR measurement of the epoxysilicone compound obtained in Example 3.
  • FIG. 8 shows the 1 H-NMR measurement results of the alicyclic monoallyl ether monoglycidyl ether compound obtained in Example 4.
  • FIG. 9 shows the results of 13 C-NMR measurement of the alicyclic monoallyl ether monoglycidyl ether compound obtained in Example 4.
  • FIG. 10 shows the 1 H-NMR measurement results of the alicyclic trialkoxysilyl monoglycidyl ether compound obtained in Example 5.
  • FIG. 11 shows the results of 13 C-NMR measurement of the alicyclic trialkoxysilyl monoglycidyl ether compound obtained in Example 5.
  • FIG. 12 shows the 1 H-NMR measurement results of the epoxysilicone compound obtained in Example 6.
  • FIG. 13 shows the results of 13 C-NMR measurement of the epoxysilicone compound obtained in Example 6.
  • the alicyclic monoallyl ether monoglycidyl ether compound according to the present invention has the following general formula (1): ⁇ Wherein R represents a C 4-20 divalent hydrocarbon group containing an alicyclic skeleton. ⁇ .
  • Such alicyclic monoallyl ether monoglycidyl ether compounds include, for example: (1) A method of partially epoxidizing the corresponding diallyl ether with hydrogen peroxide, peracid or the like, or (2) a method of etherifying the corresponding diol with allyl chloride and further glycidyl ether using epichlorohydrin, However, it is more preferable to use the method (1) in which no chlorine compound is mixed as an impurity.
  • the method of (1) is the following general formula (5): ⁇ In the formula, R represents a divalent hydrocarbon group having 4 to 20 carbon atoms including an alicyclic skeleton having 4 to 20 carbon atoms. ⁇ A method of oxidizing an alicyclic diallyl ether compound corresponding to the alicyclic monoallyl ether monoglycidyl ether compound represented by the above general formula (1), specifically, : (A) a method of epoxidation with hydrogen peroxide in an acetonitrile-alcohol solvent, (B) a method of epoxidation with a tungstic acid catalyst, or (C) a method of epoxidation with peracetic acid, However, in the method (C), a peracid that tends to explode is used, and in the method (B), the epoxy group may be hydrolyzed. Therefore, the method (A) is more preferable.
  • acetonitrile 0.5 to 10-fold mol of acetonitrile is used with respect to the corresponding diallyl ether compound, an alcohol solvent is added to a concentration of 10 to 80% by mass, and the pH is adjusted with alkali. While controlling in the range of 7.5 to 13, by dropping 0.5 to 2 times mole hydrogen peroxide to the diallyl ether compound at a temperature of 0 to 80 ° C., the desired alicyclic ring A formula monoallyl ether monoglycidyl ether compound can be obtained.
  • the alicyclic monoallyl ether monoglycidyl ether compound preferably has at least a cycloalkane skeleton composed of a 4- to 8-membered ring, more preferably a 5- to 6-membered ring, in order to ensure adhesion to an LED chip or a package. Contains one.
  • the molecular weight of the alicyclic monoallyl ether monoglycidyl ether compound is preferably 400 or less, more preferably 350 or less.
  • the molecular weight is preferably 150 or more, more preferably 220 or more.
  • Examples of such alicyclic monoallyl ether monoglycidyl ether compounds include the following formula (2): Formula (3): Or formula (4): And a compound having a structure represented by:
  • the amount of acetonitrile used is preferably 0.5 to 10-fold mol, and more preferably 1 to 6-fold mol based on the corresponding diallyl ether compound.
  • Acetonitrile reacts with hydrogen peroxide to produce a peroxide, which is said to oxidize allyl ether to give glycidyl ether, and at that time, equimolar acetamide is by-produced. . Therefore, it is necessary to remove acetamide after completion of the reaction, but this can be removed, for example, by adding a solvent such as toluene to the reaction solution and washing with water.
  • the epoxidation can be carried out with a solvent of acetonitrile alone, but the presence of alcohol is preferable because the selectivity of epoxidation is increased.
  • the alcohol is preferably a saturated alcohol having 1 to 4 carbon atoms, such as methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, and isobutanol. In consideration of solubility in water, methanol, ethanol N-propanol and isopropanol are preferable, and methanol is particularly preferable in consideration of azeotropy with acetonitrile.
  • the amount of the alcohol solvent used is preferably 10 to 80% by mass, more preferably 20 to 70% by mass with respect to the concentration of the reaction solution before hydrogen peroxide is added (dropped as an aqueous hydrogen peroxide solution). .
  • the hydrogen peroxide is preferably used in an amount of 0.5 to 2 moles, more preferably 0.75 to 1.5 or 1.75 moles per mole of the diallyl ether compound.
  • hydrogen peroxide although depending on the pH of the reaction solution described later, there is a concern that when the required amount is charged into the reaction system from the beginning, the reaction rate is high and the reaction may run out of control.
  • a method of dropping the reaction solution as a hydrogen oxide aqueous solution is desirable.
  • the hydrogen peroxide concentration of the reaction solution should be controlled to be 10% by mass or more, preferably 5% by mass or more.
  • the concentration of the aqueous hydrogen peroxide solution used is preferably 5% by mass to 60% by mass, more preferably 15% by mass to 45% by mass because the higher the concentration, the higher the productivity, but the greater the safety risk. % Range.
  • the pH of the reaction solution is preferably 7.5 to 13, more preferably 8 to 12. Further, as the aqueous hydrogen peroxide solution is dropped, the pH moves to the neutral side, so it is more preferable to add an alkali compound and keep it constant. More preferably, the pH range is controlled within 10 to 11 from the start to the end of the reaction.
  • alkali compound for adjusting the pH examples include alkali metal or alkaline earth metal hydroxides, carbonates, bicarbonates, and organic amine compounds.
  • alkali metal or alkaline earth metal hydroxides examples include alkali metal or alkaline earth metal hydroxides, carbonates, bicarbonates, and organic amine compounds.
  • the reaction is preferably performed at 0 to 80 ° C., more preferably 20 to 60 ° C.
  • the treatment can be performed by an industrially practiced treatment method.
  • a solvent such as toluene or cyclohexane is added to separate an aqueous layer and an organic layer to separate excess hydrogen peroxide.
  • the organic layer is treated with a reducing agent such as sulfite, bisulfite, and thiosulfate, and further if necessary.
  • the crude product can be obtained by washing with water and distilling off the solvent.
  • the time course of the epoxidation reaction generally follows the course as shown in FIG.
  • Monoallyl ether monoglycidyl ether can be obtained by purifying and separating the obtained crude product by a method such as column chromatography. Further, it is possible to carry out the hydrosilylation reaction described later as it is, using a crude reaction solution containing 10% by mass or more, preferably 20% by mass or more of monoallyl ether monoglycidyl ether, and industrially. Rather, it may be preferable because it saves the labor of separation.
  • the alicyclic trialkoxysilyl monoglycidyl ether compound according to the present invention has the following general formula (6): ⁇ In the formula, R represents a divalent hydrocarbon group containing an alicyclic hydrocarbon having 4 to 20 carbon atoms, and R 'represents a hydrocarbon group having 1 to 4 carbon atoms. ⁇ .
  • the alicyclic trialkoxysilyl monoglycidyl ether compound represented by the general formula (6) is obtained by replacing the alicyclic monoallyl ether monoglycidyl ether compound represented by the general formula (1) with trialkoxysilane and hydrosilyl. It can be obtained by a chemical reaction. Specifically, a trialkoxysilane such as trimethoxysilane, triethoxysilane, tri-n-propoxysilane, triisopropoxysilane, tri-n-butoxysilane, tri-tert-butoxysilane, or the like is used as the above crude product solution.
  • a trialkoxysilane such as trimethoxysilane, triethoxysilane, tri-n-propoxysilane, triisopropoxysilane, tri-n-butoxysilane, tri-tert-butoxysilane, or the like is used as the above crude product solution.
  • the reaction is carried out with the isolated monoallyl ether monoglycidyl ether or the crude product liquid as it is in the presence of a noble metal catalyst.
  • the amount of trialkoxysilane used is preferably 1 to 5 times mol and more preferably 1.5 to 4 times mol based on the alicyclic monoallyl ether monoglycidyl ether compound.
  • the catalyst various known noble metals or complex compounds thereof can be used.
  • the noble metal catalyst examples include platinum, rhodium, palladium, ruthenium, iridium and the like.
  • the noble metal catalyst is not limited to these, and two or more of them may be used as necessary.
  • noble metal complex compounds include platinum halogen compounds (PtCl 4 , H 2 PtCl 6 ⁇ 6H 2 O, Na 2 PtCl 6 ⁇ 4H 2 O, etc.), platinum-olefin complexes, platinum-alcohol complexes, platinum-alcolate complexes, platinum -Ether complexes, platinum-carbonyl complexes, platinum-ketone complexes, platinum-vinylsiloxane complexes such as platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane, bis ( ⁇ -picoline) -platinum Dichloride, trimethylenedipyridine-platinum dichloride, dicyclopentadiene-platinum dichloride, cyclooctadiene-platinum dichloride, cyclopentadiene-platinum dichloride, bis (alkynyl) bis (triphenylphosphine) platinum complex, bis (alkynyl) bis
  • the above precious metal catalysts may be dissolved alone or in advance in a solvent to be dissolved, and then charged into the reaction system.
  • the use ratio of the noble metal catalyst is not particularly limited, but is in the range of 0.1 ppm to 100,000 ppm, preferably in the range of 1 ppm to 10,000 ppm, based on the mass of the isolated monoallyl ether monoglycidyl ether or crude product liquid usually used in the reaction. .
  • the hydrosilylation reaction can proceed without a solvent, but the reaction system may be diluted with an organic solvent if necessary, and the organic solvent to be used is not particularly limited as long as it does not adversely affect the reaction.
  • the organic solvent used as necessary include halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, and 1,2-dichloroethane, and fats such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and cyclopentanone.
  • Aromatic ketones such as benzene, toluene, ortho-xylene, meta-xylene, para-xylene, chlorobenzene and dichlorobenzene, ethers such as diethylene glycol dimethyl ether and triethylene glycol dimethyl ether, esters such as ethyl acetate and n-butyl acetate Kind. Two or more of these organic solvents may be selected and used as a mixed solvent.
  • the temperature conditions for the hydrosilylation reaction are not particularly limited, but are usually 0 ° C. to 200 ° C., preferably 30 ° C. to 180 ° C. If it is less than 0 ° C., it takes time for the reaction to proceed and it is not economical. On the other hand, if it exceeds 200 ° C., the addition reaction between the epoxy group and the hydrosilyl moiety proceeds, making it difficult to control the reaction.
  • hydrosilylation reaction is performed by using at least one carbon-carbon double bond and another compound containing an epoxy group in one molecule.
  • the obtained resin may be used as a curable resin composition.
  • examples of other compounds containing at least one carbon-carbon double bond and an epoxy group in one molecule include allyl glycidyl ether, 4-vinylcyclohexene oxide, limonene oxide, and the like. Two or more kinds may be used in combination.
  • this compound is not specifically limited, From a viewpoint of function expression of the curable resin composition which concerns on this invention, with respect to 100 mass parts of isolated monoallyl ether monoglycidyl ether or crude product liquid used for reaction. 50 parts by mass or less is preferable.
  • the hydrosilylation product thus obtained that is, the alicyclic trialkoxysilyl monoglycidyl ether compound according to the present invention is subjected to a sol-gelation reaction by a known method, whereby another aspect of the present invention is achieved.
  • a curable resin composition containing an epoxy silicone compound can be obtained.
  • As a general sol-gel reaction a method of hydrolytic condensation in the presence of an acidic catalyst or a basic catalyst is used.
  • the hydrolysis condensation catalyst used in the sol-gelation reaction is not particularly limited, and a known acidic catalyst or basic catalyst can be used.
  • the acidic catalyst include hydrochloric acid, nitric acid, sulfuric acid, toluenesulfonic acid, acetic acid, phosphoric acid, oxalic acid, and citric acid.
  • the basic catalyst include sodium hydroxide, potassium hydroxide, cesium hydroxide, tetramethylammonium hydroxide, tetrabutylammonium hydroxide, and benzyltrimethylammonium hydroxide.
  • the amount of the catalyst added is not particularly limited, but is represented by the general formula (6) in order to have sufficient reactivity and to keep the ring opening and gelation of the epoxy ring low.
  • the range of 0.001 to 0.2 mol is preferable and the range of 0.005 to 0.1 mol is more preferable with respect to a total of 1 mol of hydrolyzable groups in the hydrosilylation product.
  • the reaction temperature in the sol-gelation reaction is not particularly limited because it varies depending on the reactivity of the hydrosilylation product represented by the general formula (6) as a raw material, the solvent used, etc., but the reaction rate becomes sufficiently high, and In order to suppress undesired side reactions, the range of 0 ° C. to 100 ° C. is preferable, and the range of 10 ° C. to 80 ° C. is more preferable. If the reaction temperature is too low, the reaction does not proceed efficiently, and if it is too high, side reactions such as opening of the epoxy ring may proceed.
  • the solvent to be used is not particularly limited as long as the raw material alkoxysilane and water are uniformly dissolved.
  • alcohols such as methanol, ethanol, 2-propanol, n-butanol, isobutanol, and t-butanol are used.
  • the solvent include ketone solvents such as acetone, diethyl ketone, methyl propyl ketone, methyl isobutyl ketone, and cyclohexanone. These solvents may be used alone or in combination of two or more.
  • the reaction time of the sol-gelation reaction is not particularly limited because it varies depending on the reactivity, reaction temperature, etc. of the hydrosilylation product represented by the general formula (6) as a raw material, but in order to sufficiently increase the molecular weight of the product Is preferably in the range of 1 to 40 hours.
  • the reaction time is less than 1 hour, unreacted raw materials and low molecular weight oligomers may remain.
  • the condensation reaction often does not proceed further.
  • Example 1 Synthesis of alicyclic monoallyl ether monoglycidyl ether compound
  • 1,4-cyclohexanedimethanol diallyl ether as a raw material was synthesized as follows based on Williamson synthesis.
  • 144.2 g (1.00 mol) of 1,4-cyclohexanedimethanol manufactured by Shin Nippon Rika Co., Ltd. was added, and the inside of the reactor system was purged with nitrogen, and hydroxylated.
  • the resulting reaction mixture was purified by column chromatography using silica gel (developing solvent: hexane and ethyl acetate 4: 1 (volume ratio) mixed solution) to obtain monoallyl ether monoglycidyl ether.
  • the 1 H-NMR and 13 C-NMR of the purified product are shown in FIGS. 2 and 3, respectively.
  • Example 2 Synthesis of alicyclic trialkoxysilyl monoglycidyl ether compound
  • Example 3 Synthesis of epoxy silicone compound
  • a 100 mL eggplant flask equipped with a dropping funnel was charged with 10 g of 2-propanol, 1.87 g of distilled water, and 0.19 g of a 25% aqueous solution of tetramethylammonium hydroxide (manufactured by Showa Denko KK) and mixed uniformly. The temperature rose.
  • the dropping funnel was charged with 7 g of the mixture containing the trialkoxysilyl monoglycidyl ether compound obtained in Example 2 as the main component and 10 g of 2-propanol, and dropped into the eggplant flask at 50 ° C. over 10 minutes. After completion of dropping, the mixture was further stirred at 50 ° C.
  • Example 4 Synthesis of tricyclodecane dimethanol monoallyl monoglycidyl ether
  • 100.0 g (0.36 mol) of tricyclodecane dimethanol diallyl ether (Asahi Chemical Industry Co., Ltd.)
  • 92.3 g (2.88 mol) of methanol manufactured by Junsei Chemical Co., Ltd.
  • Example 5 Synthesis of trialkoxysilyl monoglycidyl ether compound of tricyclodecane dimethanol] 8.4 g (51 mmol) of triethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) and 15 g of toluene were placed in a 200 mL three-necked flask equipped with a dropping funnel, a reflux tube and a ball stopper, and the inside of the three-necked flask was purged with nitrogen.
  • triethoxysilane manufactured by Tokyo Chemical Industry Co., Ltd.
  • Example 6 Synthesis of epoxy silicone compound
  • a 100 mL eggplant flask equipped with a dropping funnel was charged with 5 g of 2-propanol, 0.20 g of distilled water, and 0.08 g of a 25% aqueous solution of tetramethylammonium hydroxide (manufactured by Showa Denko KK) and mixed uniformly. The temperature rose.
  • the dropping funnel was charged with 1 g of a mixture containing the trialkoxysilyl monoglycidyl ether compound obtained in Example 5 as a main component and 5 g of 2-propanol, and dropped into the eggplant flask at 50 ° C. over 10 minutes. After completion of dropping, the mixture was further stirred at 50 ° C. for 5 hours.
  • the curable resin composition containing the alicyclic trialkoxysilyl monoglycidyl ether compound obtained by reacting the alicyclic monoallyl ether monoglycidyl ether compound and trialkoxysilane according to the present invention has a hardened product.
  • the curable resin composition according to the present invention is used in the fields of electronic materials such as paints, coating agents, printing inks, resist inks, adhesives, semiconductor encapsulants, molding materials, casting materials, and electrical insulating materials.
  • the curable resin composition of the present invention is particularly useful in the LED field, and is excellent as a thermosetting resin composition for LED sealing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epoxy Resins (AREA)
  • Epoxy Compounds (AREA)
  • Silicon Polymers (AREA)

Abstract

Provided is a compound that is useful as a raw material for a thermosetting resin composition for an LED encapsulant, said compound being a hardened material with high hardness, lacking stickiness on the surface, and having excellent transparency, heat resistance, UV resistance, and strength. The compound is an alicyclic monoallyl ether-monoglycidyl ether compound represented by general formula (1) below {in the formula, R represents a divalent hydrocarbon group with 4 to 20 carbons containing an alicyclic structure}. Also provided is a thermosetting resin composition containing: an alicyclic trialkoxysilyl-monoglycidyl ether compound obtained by forcing said alicyclic monoallyl ether-monoglycidyl ether compound to undergo a hydrosilylation reaction with a trialkoxysilane; and an epoxy silicone compound obtained by applying the sol-gel process to said alicyclic trialkoxysilyl-monoglycidyl ether compound.

Description

脂環式モノアリルエーテルモノグリシジルエーテル化合物Alicyclic monoallyl ether monoglycidyl ether compound
 本発明は、脂環式モノアリルエーテルモノグリシジルエーテル化合物、脂環式トリアルコキシシリルモノグリシジルエーテル化合物、及び該化合物を含む硬化性樹脂組成物に関する。さらに詳しくは、本発明は、光学特性、硬度、強度、耐熱性に優れ、特に、電子材料分野や発光ダイオード(LED)封止に適した硬化性樹脂組成物の原料となる脂環骨格を含む脂環式モノアリルエーテルモノグリシジルエーテル化合物、それから誘導される脂環式トリアルコキシシリルモノグリシジルエーテル化合物、及び該化合物を含む硬化性樹脂組成物に関する。 The present invention relates to an alicyclic monoallyl ether monoglycidyl ether compound, an alicyclic trialkoxysilyl monoglycidyl ether compound, and a curable resin composition containing the compound. More specifically, the present invention is excellent in optical properties, hardness, strength, and heat resistance, and particularly includes an alicyclic skeleton that is a raw material of a curable resin composition suitable for the field of electronic materials and light-emitting diode (LED) sealing. The present invention relates to an alicyclic monoallyl ether monoglycidyl ether compound, an alicyclic trialkoxysilyl monoglycidyl ether compound derived therefrom, and a curable resin composition containing the compound.
 エポキシ樹脂は、電気特性、接着性、耐熱性等に優れるため、塗料分野、土木分野、電気分野などの多くの用途で使用されている。特に、ビスフェノールA型ジグリシジルエーテル、ビスフェノールF型ジグリシジルエーテル、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等の芳香族エポキシ樹脂は、耐水性、接着性、機械物性、耐熱性、電気絶縁性、経済性などが優れることから種々の硬化剤と組み合わせて広く使用されている。 Epoxy resins are excellent in electrical properties, adhesiveness, heat resistance, etc., and are used in many applications such as the paint field, civil engineering field, and electrical field. In particular, aromatic epoxy resins such as bisphenol A type diglycidyl ether, bisphenol F type diglycidyl ether, phenol novolac type epoxy resin, and cresol novolac type epoxy resin are water resistant, adhesive, mechanical properties, heat resistant, and electrical insulating properties. It is widely used in combination with various curing agents because of its excellent economic efficiency.
 しかしながら、これらの樹脂は芳香環を含むことから、紫外線等により劣化しやすく、耐候性、耐光性を求められる分野では使用上の制約がある。例えば、青色、白色LED装置の分野においては、芳香族を含むエポキシ樹脂組成物を封止材として使用すると、LED素子から放出される光やLED素子が発する熱により樹脂が劣化、経時黄変し、輝度が低下するといった問題が生じている。 However, since these resins contain an aromatic ring, they are easily deteriorated by ultraviolet rays or the like, and there are restrictions in use in fields where weather resistance and light resistance are required. For example, in the field of blue and white LED devices, when an epoxy resin composition containing an aromatic is used as a sealing material, the resin deteriorates due to the light emitted from the LED element or the heat generated by the LED element, and the yellowing over time occurs. There is a problem that the luminance decreases.
 以下の特許文献1には、芳香族エポキシ樹脂を水素化して得られる水素化エポキシ樹脂、及び硬化剤を含有する電気・電子材料用エポキシ樹脂組成物が開示されている。
 また、以下の特許文献2には、環状オレフィンを酸化して得られる脂環式エポキシ樹脂又は窒素原子を内部に有するエポキシ樹脂を配合したエポキシ樹脂組成物が開示されている。
 一方、以下の特許文献3には、耐候性に優れるシリコーン構造を主鎖に持つエポキシ樹脂を用いた樹脂組成物が開示されている。
 また、以下の特許文献4及び非特許文献1には、直鎖又は環状のシロキサン結合と脂環式エポキシ基(脂環骨格を形成する隣接する炭素原子2つと酸素原子による3員環エーテル(オキシラン)構造)を有するシリコーンハイブリッドエポキシ樹脂が開示されている。
 さらに、特許文献5には、直鎖シロキサン構造を主鎖に有し、側鎖又は末端にイソシアヌル基を有するエポキシシリコーン樹脂が開示されている。
Patent Document 1 below discloses a hydrogenated epoxy resin obtained by hydrogenating an aromatic epoxy resin, and an epoxy resin composition for electric / electronic materials containing a curing agent.
Moreover, the following patent document 2 discloses an epoxy resin composition in which an alicyclic epoxy resin obtained by oxidizing a cyclic olefin or an epoxy resin having a nitrogen atom therein is blended.
On the other hand, the following Patent Document 3 discloses a resin composition using an epoxy resin having a silicone structure with excellent weather resistance in the main chain.
Further, in Patent Document 4 and Non-Patent Document 1 below, a linear or cyclic siloxane bond and an alicyclic epoxy group (two adjacent carbon atoms forming an alicyclic skeleton and an oxygen atom, a three-membered ether (oxirane) A silicone hybrid epoxy resin having the structure) is disclosed.
Furthermore, Patent Document 5 discloses an epoxy silicone resin having a linear siloxane structure in the main chain and an isocyanuric group in the side chain or terminal.
特許第3537119号公報Japanese Patent No. 3537119 特開2000-196151号公報JP 2000-196151 A 特開2005-263869号公報JP 2005-263869 A 特開2006-290998号公報JP 2006-290998 A 特開2004-99751号公報JP 2004-99751 A
 エポキシ樹脂組成物は、その硬化物の硬度が高いため、ハンドリング性に優れており、必要な耐久性が得られるため、低出力の白色LED封止用途では広く用いられている。
 しかしながら、高出力化LEDにおいては、発光量や発熱量の増加により変色を生じやすく、十分な寿命を得ることが難しいという短所を有している。発熱量の増加による変色を防ぐために、高いガラス転移温度を発現するエポキシ樹脂が使用されるが、このようなエポキシ樹脂は高弾性である上、強度、たわみが通常のエポキシ樹脂より低く、消灯点灯による急激な温度変化などで封止材が割れやすいなどの問題もある。加えて、近年のLEDの発光波長の短波長化により、連続使用すると変色を生じて発光出力が低下しやすいなどの問題も有している。このため、封止材には更なる耐熱性、耐光性の改善と同時に、高い強度を有することが求められている。
Epoxy resin compositions are widely used in low-power white LED sealing applications because of the high hardness of the cured product and excellent handling properties and necessary durability.
However, high-power LEDs have the disadvantages that discoloration is likely to occur due to an increase in light emission and heat generation, and it is difficult to obtain a sufficient life. In order to prevent discoloration due to an increase in calorific value, an epoxy resin that exhibits a high glass transition temperature is used, but such an epoxy resin is highly elastic and has lower strength and deflection than a normal epoxy resin and is lit off. There is also a problem that the sealing material is easily cracked due to a sudden temperature change due to. In addition, due to the recent shortening of the light emission wavelength of LEDs, there is a problem that the light emission output is likely to be lowered due to discoloration when continuously used. For this reason, the sealing material is required to have high strength as well as further improvement in heat resistance and light resistance.
 最近では、エポキシ樹脂に代わって、耐候性に優れるシリコーン樹脂をベースにしたLED封止材の開発が行われており、ヒドロシリル基とオレフィンの付加反応による樹脂組成物や、エポキシ基を有するシリコーン樹脂を硬化剤を用いて硬化させて得られる樹脂組成物などの報告がなされている。しかしながら、シリコーン樹脂やシリコーン骨格を主鎖に持つエポキシ樹脂の多くは、シリコーン骨格に由来する高い可撓性を持つものの、硬化物の硬度が低く、表面にべたつき性を生じやすいことや、強度が低いという短所を有している。例えば、ヒドロシリル基と反応できる炭素-炭素二重結合と、エポキシ基とを有する化合物として、工業的には以下の式(a):
Figure JPOXMLDOC01-appb-C000006
、又は式(b):
Figure JPOXMLDOC01-appb-C000007
で表される構造を持つ化合物が用いられている。
Recently, LED encapsulants based on silicone resins with excellent weather resistance have been developed in place of epoxy resins. Resin compositions by addition reaction of hydrosilyl groups and olefins, and silicone resins having epoxy groups There have been reports of resin compositions obtained by curing a resin using a curing agent. However, many of the epoxy resins having a silicone resin or silicone skeleton in the main chain have high flexibility derived from the silicone skeleton, but the hardness of the cured product is low and the surface tends to be sticky, and the strength is high. It has the disadvantage of being low. For example, a compound having a carbon-carbon double bond capable of reacting with a hydrosilyl group and an epoxy group is industrially represented by the following formula (a):
Figure JPOXMLDOC01-appb-C000006
Or formula (b):
Figure JPOXMLDOC01-appb-C000007
A compound having a structure represented by is used.
 式(a)で表される化合物は、脂肪族のグリシジルエーテルであるために、硬度が低くべたつきが解消できない。
 また、式(b)で表される化合物では、硬度等はある程度改善することができるものの、シクロヘキセンオキサイド骨格のエポキシ樹脂であるため、封止する対象のLEDチップやパッケージ等との密着性が劣るという問題がある。
Since the compound represented by the formula (a) is an aliphatic glycidyl ether, the hardness is low and stickiness cannot be eliminated.
In addition, the compound represented by the formula (b) can improve the hardness and the like to some extent, but since it is a cyclohexene oxide skeleton epoxy resin, it has poor adhesion to the LED chip or package to be sealed. There is a problem.
 このように、耐候性に優れるシリコーン樹脂をベースにしたものであっても、LED封止材に要求される物性を完全に満たしているものは未だ得られておらず、十分な硬度、強度、たわみを有し、耐熱性、耐UV(紫外線)性に優れ、エポキシ樹脂と同様の量産性、ハンドリング性を有する材料が求められている。 Thus, even if it is based on a silicone resin having excellent weather resistance, it has not yet been obtained that completely satisfies the physical properties required for the LED sealing material, sufficient hardness, strength, There is a demand for a material having flexibility, excellent heat resistance and UV (ultraviolet) resistance, and mass production and handling properties similar to those of epoxy resins.
 かかる状況の下、本発明が解決しようとする課題は、硬化物の硬度が高く、表面にべたつきがなく、透明性、耐熱性、耐UV性、強度に優れるLED封止材用の熱硬化性樹脂組成物の原料として有用な化合物、該化合物の誘導体を含む硬化性樹脂組成物を提供することである。 Under such circumstances, the problem to be solved by the present invention is that the cured product has high hardness, has no stickiness on the surface, and has excellent transparency, heat resistance, UV resistance, and thermosetting for LED encapsulant. A compound useful as a raw material of a resin composition, and a curable resin composition containing a derivative of the compound.
 本発明者らは、上記課題を解決すべく鋭意検討し、実験を重ねた結果、硬度、耐熱性、耐UV性、強度を発現させるために、脂環骨格を分子内に有するモノアリルエーテルモノグリシジルエーテル構造を有する化合物とヒドロシリル基を有するシリコーン化合物との反応生成物を含む硬化性樹脂組成物が、LED封止用途に好適で、そのほかの半導体封止材やプリント配線板等の電子材料用途にも有用であることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems and repeated experiments, the present inventors have found that monoallyl ether compounds having an alicyclic skeleton in the molecule in order to develop hardness, heat resistance, UV resistance and strength. A curable resin composition containing a reaction product of a compound having a glycidyl ether structure and a silicone compound having a hydrosilyl group is suitable for LED sealing applications, and other electronic material applications such as semiconductor sealing materials and printed wiring boards. It was also found useful, and the present invention was completed.
 すなわち、本発明は以下の通りのものである。
 [1]以下の一般式(1):
Figure JPOXMLDOC01-appb-C000008
{式中、Rは、脂環骨格を含む炭素数4~20の2価の炭化水素基を表す。}で表される脂環式モノアリルエーテルモノグリシジルエーテル化合物。
That is, the present invention is as follows.
[1] The following general formula (1):
Figure JPOXMLDOC01-appb-C000008
{Wherein R represents a C 4-20 divalent hydrocarbon group containing an alicyclic skeleton. } The alicyclic monoallyl ether monoglycidyl ether compound represented by these.
 [2]式中、Rは、炭素数4~8のシクロアルカン骨格を有する、前記[1]に記載の脂環式モノアリルエーテルモノグリシジルエーテル化合物。 [2] In the formula, R represents an alicyclic monoallyl ether monoglycidyl ether compound according to the above [1] having a C 4-8 cycloalkane skeleton.
 [3]分子量が150~400である、前記[1]又は[2]に記載の脂環式モノアリルエーテルモノグリシジルエーテル化合物。 [3] The alicyclic monoallyl ether monoglycidyl ether compound according to [1] or [2], which has a molecular weight of 150 to 400.
 [4]一般式(1)で表される化合物は、以下の式(2):
Figure JPOXMLDOC01-appb-C000009
、以下の式(3):
Figure JPOXMLDOC01-appb-C000010
、又は以下の式(4):
Figure JPOXMLDOC01-appb-C000011
のいずれかで表される、前記[1]~[3]のいずれかに記載の脂環式モノアリルエーテルモノグリシジルエーテル化合物。
[4] The compound represented by the general formula (1) is represented by the following formula (2):
Figure JPOXMLDOC01-appb-C000009
The following equation (3):
Figure JPOXMLDOC01-appb-C000010
Or the following formula (4):
Figure JPOXMLDOC01-appb-C000011
The alicyclic monoallyl ether monoglycidyl ether compound according to any one of [1] to [3], which is represented by any one of:
 [5]以下の一般式(6):
Figure JPOXMLDOC01-appb-C000012
{式中、Rは、炭素数4~20の脂環式炭化水素を含む2価の炭化水素基を表し、そしてR’は、炭素数1~4の炭化水素基を表す。}で表される、脂環式トリアルコキシシリルモノグリシジルエーテル化合物。
[5] The following general formula (6):
Figure JPOXMLDOC01-appb-C000012
{In the formula, R represents a divalent hydrocarbon group containing an alicyclic hydrocarbon having 4 to 20 carbon atoms, and R 'represents a hydrocarbon group having 1 to 4 carbon atoms. } The alicyclic trialkoxysilyl monoglycidyl ether compound represented by this.
 [6]前記[5]に記載の一般式(6)で表される脂環式トリアルコキシシリルモノグリシジルエーテル化合物をゾルゲル化して得られるエポキシシリコーン化合物を含む硬化性樹脂組成物。 [6] A curable resin composition containing an epoxy silicone compound obtained by sol-gelating an alicyclic trialkoxysilyl monoglycidyl ether compound represented by the general formula (6) described in [5].
 本発明の脂環式モノアリルエーテルモノグリシジルエーテル化合物と、トリアルコキシシランとを反応させて得られる脂環式トリアルコキシシリルモノグリシジルエーテル化合物を含む硬化性樹脂組成物は、その硬化物が硬質で、硬化収縮が少なく、硬化物の表面にべたつきがなく、強度、透明性に優れ、耐熱性、耐光性に優れる。したがって、本発明の硬化性樹脂組成物は、塗料、コーティング剤、印刷インキ、レジストインキ、接着剤、半導体封止材等の電子材料分野、成型材料、注型材料及び電気絶縁材料の分野において有用である。本発明の硬化性樹脂組成物は、特に、LED分野において有用であり、LED封止用熱硬化性樹脂組成物として優れている。 The curable resin composition containing the alicyclic trialkoxysilyl monoglycidyl ether compound obtained by reacting the alicyclic monoallyl ether monoglycidyl ether compound and trialkoxysilane of the present invention has a hardened cured product. , There is little cure shrinkage, no stickiness on the surface of the cured product, excellent strength and transparency, excellent heat resistance and light resistance. Therefore, the curable resin composition of the present invention is useful in the fields of electronic materials such as paints, coating agents, printing inks, resist inks, adhesives, semiconductor encapsulants, molding materials, casting materials, and electrical insulating materials. It is. The curable resin composition of the present invention is particularly useful in the LED field, and is excellent as a thermosetting resin composition for LED sealing.
図1は、ジアリルエーテルを酸化剤を用いて酸化するエポキシ化反応の一般的な経時変化を示す図である。FIG. 1 is a diagram showing a general change over time of an epoxidation reaction in which diallyl ether is oxidized using an oxidizing agent. 図2は、実施例1で得られた脂環式モノアリルエーテルモノグリシジルエーテル化合物のH-NMRの測定結果を示す。FIG. 2 shows the 1 H-NMR measurement results of the alicyclic monoallyl ether monoglycidyl ether compound obtained in Example 1. 図3は、実施例1で得られた脂環式モノアリルエーテルモノグリシジルエーテル化合物の13C-NMRの測定結果を示す。FIG. 3 shows the results of 13 C-NMR measurement of the alicyclic monoallyl ether monoglycidyl ether compound obtained in Example 1. 図4は、実施例2で得られた脂環式トリアルコキシシリルモノグリシジルエーテル化合物のH-NMRの測定結果を示す。FIG. 4 shows the 1 H-NMR measurement results of the alicyclic trialkoxysilyl monoglycidyl ether compound obtained in Example 2. 図5は、実施例2で得られた脂環式トリアルコキシシリルモノグリシジルエーテル化合物の13C-NMRの測定結果を示す。FIG. 5 shows the results of 13 C-NMR measurement of the alicyclic trialkoxysilyl monoglycidyl ether compound obtained in Example 2. 図6は、実施例3で得られたエポキシシリコーン化合物のH-NMRの測定結果を示す。FIG. 6 shows the 1 H-NMR measurement results of the epoxysilicone compound obtained in Example 3. 図7は、実施例3で得られたエポキシシリコーン化合物の13C-NMRの測定結果を示す。FIG. 7 shows the results of 13 C-NMR measurement of the epoxysilicone compound obtained in Example 3. 図8は、実施例4で得られた脂環式モノアリルエーテルモノグリシジルエーテル化合物のH-NMRの測定結果を示す。FIG. 8 shows the 1 H-NMR measurement results of the alicyclic monoallyl ether monoglycidyl ether compound obtained in Example 4. 図9は、実施例4で得られた脂環式モノアリルエーテルモノグリシジルエーテル化合物の13C-NMRの測定結果を示す。FIG. 9 shows the results of 13 C-NMR measurement of the alicyclic monoallyl ether monoglycidyl ether compound obtained in Example 4. 図10は、実施例5で得られた脂環式トリアルコキシシリルモノグリシジルエーテル化合物のH-NMRの測定結果を示す。FIG. 10 shows the 1 H-NMR measurement results of the alicyclic trialkoxysilyl monoglycidyl ether compound obtained in Example 5. 図11は、実施例5で得られた脂環式トリアルコキシシリルモノグリシジルエーテル化合物の13C-NMRの測定結果を示す。FIG. 11 shows the results of 13 C-NMR measurement of the alicyclic trialkoxysilyl monoglycidyl ether compound obtained in Example 5. 図12は、実施例6で得られたエポキシシリコーン化合物のH-NMRの測定結果を示す。FIG. 12 shows the 1 H-NMR measurement results of the epoxysilicone compound obtained in Example 6. 図13は、実施例6で得られたエポキシシリコーン化合物の13C-NMRの測定結果を示す。FIG. 13 shows the results of 13 C-NMR measurement of the epoxysilicone compound obtained in Example 6.
 以下、本発明について詳細に説明する。
 本発明に係る脂環式モノアリルエーテルモノグリシジルエーテル化合物は、以下の一般式(1):
Figure JPOXMLDOC01-appb-C000013
{式中、Rは、脂環骨格を含む炭素数4~20の2価の炭化水素基を表す。}で表される。
 かかる脂環式モノアリルエーテルモノグリシジルエーテル化合物は、例えば、以下の:
 (1)対応するジアリルエーテルを過酸化水素、過酸等で部分エポキシ化して得る方法、又は
 (2)対応するジオールをアリルクロライドによりエーテル化し、更にエピクロルヒドリンを用いてグリシジルエーテル化する方法、
により合成することができるが、不純物として塩素化合物が混入しない(1)の方法を用いることがより好ましい。
Hereinafter, the present invention will be described in detail.
The alicyclic monoallyl ether monoglycidyl ether compound according to the present invention has the following general formula (1):
Figure JPOXMLDOC01-appb-C000013
{Wherein R represents a C 4-20 divalent hydrocarbon group containing an alicyclic skeleton. }.
Such alicyclic monoallyl ether monoglycidyl ether compounds include, for example:
(1) A method of partially epoxidizing the corresponding diallyl ether with hydrogen peroxide, peracid or the like, or (2) a method of etherifying the corresponding diol with allyl chloride and further glycidyl ether using epichlorohydrin,
However, it is more preferable to use the method (1) in which no chlorine compound is mixed as an impurity.
 前記(1)の方法は、以下の一般式(5):
Figure JPOXMLDOC01-appb-C000014
{式中、Rは、炭素数4~20の脂環骨格を含む炭素数4~20の2価の炭化水素基を表す。}
で表される、前記した一般式(1)で表される脂環式モノアリルエーテルモノグリシジルエーテル化合物に対応する脂環式ジアリルエーテル化合物を酸化する方法であって、具体的には、以下の:
 (A)アセトニトリル-アルコール溶媒中で、過酸化水素によりエポキシ化を行う方法、
 (B)タングステン酸触媒でエポキシ化を行う方法、又は
 (C)過酢酸によるエポキシ化を行う方法、
が挙げられるが、(C)の方法では爆発しやすい過酸を用い、また(B)の方法ではエポキシ基の加水分解を伴うことがあるため、(A)の方法がより好ましい。
The method of (1) is the following general formula (5):
Figure JPOXMLDOC01-appb-C000014
{In the formula, R represents a divalent hydrocarbon group having 4 to 20 carbon atoms including an alicyclic skeleton having 4 to 20 carbon atoms. }
A method of oxidizing an alicyclic diallyl ether compound corresponding to the alicyclic monoallyl ether monoglycidyl ether compound represented by the above general formula (1), specifically, :
(A) a method of epoxidation with hydrogen peroxide in an acetonitrile-alcohol solvent,
(B) a method of epoxidation with a tungstic acid catalyst, or (C) a method of epoxidation with peracetic acid,
However, in the method (C), a peracid that tends to explode is used, and in the method (B), the epoxy group may be hydrolyzed. Therefore, the method (A) is more preferable.
 (A)の方法としては、対応するジアリルエーテル化合物に対して0.5~10倍モルのアセトニトリルを用い、アルコール溶媒を10~80質量%の濃度になるように添加して、アルカリによりpHを7.5~13の範囲に制御しながら、ジアリルエーテル化合物に対して0.5倍~2倍モルの過酸化水素を、0℃から80℃の温度で滴下することにより、目的とする脂環式モノアリルエーテルモノグリシジルエーテル化合物を得ることができる。 As the method (A), 0.5 to 10-fold mol of acetonitrile is used with respect to the corresponding diallyl ether compound, an alcohol solvent is added to a concentration of 10 to 80% by mass, and the pH is adjusted with alkali. While controlling in the range of 7.5 to 13, by dropping 0.5 to 2 times mole hydrogen peroxide to the diallyl ether compound at a temperature of 0 to 80 ° C., the desired alicyclic ring A formula monoallyl ether monoglycidyl ether compound can be obtained.
 脂環式モノアリルエーテルモノグリシジルエーテル化合物は、LEDチップやパッケージ等との密着性を確保するために、好ましくは4から8員環、より好ましくは5から6員環からなるシクロアルカン骨格を少なくとも一個含む。
 また、耐熱性を確保する観点から、脂環式モノアリルエーテルモノグリシジルエーテル化合物の分子量は、好ましくは400以下、より好ましくは350以下である。一方、該分子量が小さすぎると、硬化時に収縮率が大きくなりひずみが入りやすくなるため、該分子量は、好ましくは150以上、より好ましくは220以上である。
The alicyclic monoallyl ether monoglycidyl ether compound preferably has at least a cycloalkane skeleton composed of a 4- to 8-membered ring, more preferably a 5- to 6-membered ring, in order to ensure adhesion to an LED chip or a package. Contains one.
Moreover, from the viewpoint of ensuring heat resistance, the molecular weight of the alicyclic monoallyl ether monoglycidyl ether compound is preferably 400 or less, more preferably 350 or less. On the other hand, if the molecular weight is too small, the shrinkage rate is increased at the time of curing and distortion tends to occur. Therefore, the molecular weight is preferably 150 or more, more preferably 220 or more.
 このような脂環式モノアリルエーテルモノグリシジルエーテル化合物の例としては、以下の式(2):
Figure JPOXMLDOC01-appb-C000015
、式(3):
Figure JPOXMLDOC01-appb-C000016
、又は式(4):
Figure JPOXMLDOC01-appb-C000017
で表される構造を持つ化合物が挙げられる。
Examples of such alicyclic monoallyl ether monoglycidyl ether compounds include the following formula (2):
Figure JPOXMLDOC01-appb-C000015
Formula (3):
Figure JPOXMLDOC01-appb-C000016
Or formula (4):
Figure JPOXMLDOC01-appb-C000017
And a compound having a structure represented by:
 前記(A)の方法において、アセトニトリルの使用量が少ないと目的とするエポキシ化合物の収率が低くなり、一方、過剰であると副生成物が多くなる上に過酸化水素の利用効率も悪くなる。したがって、アセトニトリルの使用量は、対応するジアリルエーテル化合物に対して0.5~10倍モルが好ましく、1~6倍モルの範囲がより好ましい。 In the method (A), when the amount of acetonitrile used is small, the yield of the target epoxy compound is low. On the other hand, when it is excessive, the amount of by-products increases and the utilization efficiency of hydrogen peroxide deteriorates. . Therefore, the amount of acetonitrile used is preferably 0.5 to 10-fold mol, and more preferably 1 to 6-fold mol based on the corresponding diallyl ether compound.
 なお、アセトニトリルは過酸化水素と反応して過酸化物を生成し、その過酸化物がアリルエーテルを酸化してグリシジルエーテルを与えると言われており、その際に等モルのアセトアミドを副生する。そのため、反応終了後にアセトアミドの除去は必要であるが、これは例えば反応液にトルエンのような溶媒を添加して、水で洗浄することにより除去することができる。 Acetonitrile reacts with hydrogen peroxide to produce a peroxide, which is said to oxidize allyl ether to give glycidyl ether, and at that time, equimolar acetamide is by-produced. . Therefore, it is necessary to remove acetamide after completion of the reaction, but this can be removed, for example, by adding a solvent such as toluene to the reaction solution and washing with water.
 また、前記(A)の方法においては、エポキシ化を行う際にアセトニトリル単独溶媒でも実施することができるが、アルコールを共存させたほうがエポキシ化の選択率が上がるので、好ましい。アルコールとしては炭素数1~4の飽和アルコールが好ましく、例えばメタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、sec-ブタノール、イソブタノールが挙げられ、水への溶解性を考慮するとメタノール、エタノール、n-プロパノール、イソプロパノールが好ましく、アセトニトリルとの共沸まで考慮すると特にメタノールが好ましい。 In the method (A), the epoxidation can be carried out with a solvent of acetonitrile alone, but the presence of alcohol is preferable because the selectivity of epoxidation is increased. The alcohol is preferably a saturated alcohol having 1 to 4 carbon atoms, such as methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, and isobutanol. In consideration of solubility in water, methanol, ethanol N-propanol and isopropanol are preferable, and methanol is particularly preferable in consideration of azeotropy with acetonitrile.
 アルコール溶媒の使用量が少ないと使用する効果が出ず、一方、多いと反応速度が遅くなる。したがって、アルコール溶媒の使用量は、過酸化水素の添加(過酸化水素水溶液として滴下)前の状態で、反応液濃度の10~80質量%とすることが好ましく、20~70質量%がより好ましい。 If the amount of alcohol solvent used is small, the effect of using it will not be obtained. Therefore, the amount of the alcohol solvent used is preferably 10 to 80% by mass, more preferably 20 to 70% by mass with respect to the concentration of the reaction solution before hydrogen peroxide is added (dropped as an aqueous hydrogen peroxide solution). .
 前記(A)の方法において、過酸化水素の使用量が少ないと目的とするモノアリルエーテルモノグリシジルエーテルを得ることができないし、一方、多いと目的物のモノアリルエーテルモノグリシジルエーテルからジグリシジルエーテルまで酸化されてしまうため、好ましくない。したがって、ジアリルエーテル化合物に対して、好ましくは0.5倍から2倍モルの、より好ましくは0.75倍モルから1.5又は1.75倍モルの過酸化水素を用いる。過酸化水素に関しては、後述する反応液のpHにもよるが、必要量を最初から反応系内に仕込んだ場合には、反応速度が速く反応暴走等を起こしてしまう懸念があるために、過酸化水素水溶液として反応液に滴下していく方法が望ましい。その際、過酸化水素が反応系内に蓄積することを避けるため、反応液の過酸化水素濃度は10質量%以上に、好ましくは5質量%以上にならないように制御したほうがよい。また、使用する過酸化水素水溶液の濃度は、濃度が高いほうが生産性は良くなるものの安全面の危険性が増すので、好ましくは5質量%~60質量%、より好ましくは15質量%~45質量%の範囲とする。 In the method (A), if the amount of hydrogen peroxide used is small, the target monoallyl ether monoglycidyl ether cannot be obtained. On the other hand, if it is large, the target monoallyl ether monoglycidyl ether is converted to diglycidyl ether. It is not preferable because it is oxidized to the point. Therefore, the hydrogen peroxide is preferably used in an amount of 0.5 to 2 moles, more preferably 0.75 to 1.5 or 1.75 moles per mole of the diallyl ether compound. Regarding hydrogen peroxide, although depending on the pH of the reaction solution described later, there is a concern that when the required amount is charged into the reaction system from the beginning, the reaction rate is high and the reaction may run out of control. A method of dropping the reaction solution as a hydrogen oxide aqueous solution is desirable. At this time, in order to avoid accumulation of hydrogen peroxide in the reaction system, the hydrogen peroxide concentration of the reaction solution should be controlled to be 10% by mass or more, preferably 5% by mass or more. The concentration of the aqueous hydrogen peroxide solution used is preferably 5% by mass to 60% by mass, more preferably 15% by mass to 45% by mass because the higher the concentration, the higher the productivity, but the greater the safety risk. % Range.
 また、前記したエポキシ化反応はpHの影響を受けるため、アルカリ側で反応を行う必要がある。pHとしては中性に近いと反応速度が遅くなり、アルカリ側に偏りすぎると副反応が多くなり好ましくない。そのため、反応液のpHとしては7.5~13が好ましく、より好ましくは8~12である。さらに過酸化水素水溶液を滴下していくに従い、pHが中性側に動くので、アルカリ化合物を添加して一定に保つことがより好ましい。より好ましくは、反応開始から終了までpHの範囲を10~11以内にコントロールする。 Also, since the epoxidation reaction described above is affected by pH, it is necessary to perform the reaction on the alkali side. When the pH is close to neutral, the reaction rate is slow, and when it is too biased toward the alkali side, side reactions increase, which is not preferable. Therefore, the pH of the reaction solution is preferably 7.5 to 13, more preferably 8 to 12. Further, as the aqueous hydrogen peroxide solution is dropped, the pH moves to the neutral side, so it is more preferable to add an alkali compound and keep it constant. More preferably, the pH range is controlled within 10 to 11 from the start to the end of the reaction.
 pHを調整するアルカリ化合物としては、アルカリ金属もしくはアルカリ土類金属の水酸化物、炭酸塩、もしくは炭酸水素塩、又は有機アミン化合物が挙げられる。特に反応途中でアルカリを追添することを考慮すると、水酸化ナトリウム、水酸化カリウム、炭酸カリウムの水溶液、メタノール溶液、又はエタノール溶液を用いることが好ましい。 Examples of the alkali compound for adjusting the pH include alkali metal or alkaline earth metal hydroxides, carbonates, bicarbonates, and organic amine compounds. In consideration of adding alkali in the middle of the reaction, it is preferable to use an aqueous solution of sodium hydroxide, potassium hydroxide, potassium carbonate, methanol solution, or ethanol solution.
 反応温度が高いと副反応が増える上に過酸化水素の利用効率が悪くなるし、低いと反応速度が遅くなる。したがって、好ましくは0~80℃、より好ましくは20~60℃で反応させる。 When the reaction temperature is high, side reactions increase and the utilization efficiency of hydrogen peroxide is deteriorated. When the reaction temperature is low, the reaction rate is slow. Therefore, the reaction is preferably performed at 0 to 80 ° C., more preferably 20 to 60 ° C.
 前記(A)の方法においては、エポキシ化反応終了後、工業的に実施されている処理法で処理することができる。例えばトルエンやシクロヘキサンのような溶媒を添加して、水層と有機層を分離して過剰の過酸化水素を分離する。この後、必要に応じてアセトアミドの除去のために水洗浄をした後、有機層を亜硫酸塩、重亜硫酸塩、チオ硫酸塩のような還元剤で過酸化物を処理し、更に必要に応じて水洗浄を行い、溶媒を留去して粗生成物を得ることができる。 In the method (A), after the epoxidation reaction, the treatment can be performed by an industrially practiced treatment method. For example, a solvent such as toluene or cyclohexane is added to separate an aqueous layer and an organic layer to separate excess hydrogen peroxide. After this, after washing with water to remove acetamide if necessary, the organic layer is treated with a reducing agent such as sulfite, bisulfite, and thiosulfate, and further if necessary. The crude product can be obtained by washing with water and distilling off the solvent.
 ここでエポキシ化反応の経時変化については、一般に図1に示すような経過をたどる。モノアリルエーテルモノグリシジルエーテルを効率的に得るには、その収率が40%程度になった時点で反応を停止して、前記した反応終了操作を行うことが好ましい。
 得られた粗生成物を、カラムクロマト等の方法で精製分離することにより、モノアリルエーテルモノグリシジルエーテルを得ることができる。また、モノアリルエーテルモノグリシジルエーテルが10質量%以上、好ましくは20質量%以上含まれている粗反応液を用いて、そのまま後述するヒドロシリル化反応を行うことも可能であるし、工業的にはむしろその方が分離の手間が省けて好ましい場合もある。
Here, the time course of the epoxidation reaction generally follows the course as shown in FIG. In order to efficiently obtain monoallyl ether monoglycidyl ether, it is preferable to stop the reaction when the yield reaches about 40% and perform the above-described reaction termination operation.
Monoallyl ether monoglycidyl ether can be obtained by purifying and separating the obtained crude product by a method such as column chromatography. Further, it is possible to carry out the hydrosilylation reaction described later as it is, using a crude reaction solution containing 10% by mass or more, preferably 20% by mass or more of monoallyl ether monoglycidyl ether, and industrially. Rather, it may be preferable because it saves the labor of separation.
 本発明に係る脂環式トリアルコキシシリルモノグリシジルエーテル化合物は、以下の一般式(6):
Figure JPOXMLDOC01-appb-C000018
{式中、Rは、炭素数4~20の脂環式炭化水素を含む2価の炭化水素基を表し、そしてR’は、炭素数1~4の炭化水素基を表す。}で表される。
The alicyclic trialkoxysilyl monoglycidyl ether compound according to the present invention has the following general formula (6):
Figure JPOXMLDOC01-appb-C000018
{In the formula, R represents a divalent hydrocarbon group containing an alicyclic hydrocarbon having 4 to 20 carbon atoms, and R 'represents a hydrocarbon group having 1 to 4 carbon atoms. }.
 一般式(6)で表される脂環式トリアルコキシシリルモノグリシジルエーテル化合物は、前記した一般式(1)で表される脂環式モノアリルエーテルモノグリシジルエーテル化合物を、トリアルコキシシランと、ヒドロシリル化反応させることにより得ることができる。具体的には、トリメトキシシラン、トリエトキシシラン、トリ-n-プロポキシシラン、トリイソプロポキシシラン、トリ-n-ブトキシシラン、トリ-tert-ブトキシシランなどのトリアルコキシシランを、前記した粗生成液より単離したモノアリルエーテルモノグリシジルエーテルと、又は粗生成液とそのまま、貴金属触媒の存在下で反応させる。トリアルコキシシランの使用量は、脂環式モノアリルエーテルモノグリシジルエーテル化合物に対して、1~5倍モルが好ましく、1.5~4倍モルの範囲がより好ましい。触媒としては、公知の種々の貴金属又はその錯体化合物を使用することができる。 The alicyclic trialkoxysilyl monoglycidyl ether compound represented by the general formula (6) is obtained by replacing the alicyclic monoallyl ether monoglycidyl ether compound represented by the general formula (1) with trialkoxysilane and hydrosilyl. It can be obtained by a chemical reaction. Specifically, a trialkoxysilane such as trimethoxysilane, triethoxysilane, tri-n-propoxysilane, triisopropoxysilane, tri-n-butoxysilane, tri-tert-butoxysilane, or the like is used as the above crude product solution. The reaction is carried out with the isolated monoallyl ether monoglycidyl ether or the crude product liquid as it is in the presence of a noble metal catalyst. The amount of trialkoxysilane used is preferably 1 to 5 times mol and more preferably 1.5 to 4 times mol based on the alicyclic monoallyl ether monoglycidyl ether compound. As the catalyst, various known noble metals or complex compounds thereof can be used.
 貴金属触媒としては、例えば、白金、ロジウム、パラジウム、ルテニウム、イリジウムなどが挙げられるがこれらに限定されず、必要に応じてこれらを2種以上用いてもよい。また、これらの金属を微粒子状担体材料、例えばカーボン、活性炭、酸化アルミニウム、シリカなどに固定化したものを用いてもよい。 Examples of the noble metal catalyst include platinum, rhodium, palladium, ruthenium, iridium and the like. However, the noble metal catalyst is not limited to these, and two or more of them may be used as necessary. Moreover, you may use what fixed these metals to particulate carrier materials, for example, carbon, activated carbon, aluminum oxide, silica, etc.
 貴金属の錯体化合物としては、白金ハロゲン化合物(PtCl、HPtCl・6HO、NaPtCl・4HO等)、白金-オレフィン錯体、白金-アルコール錯体、白金-アルコラート錯体、白金-エーテル錯体、白金-カルボニル錯体、白金-ケトン錯体、白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンなどの白金-ビニルシロキサン錯体、ビス(γ-ピコリン)-白金ジクロライド、トリメチレンジピリジン-白金ジクロライド、ジシクロペンタジエン-白金ジクロライド、シクロオクタジエン-白金ジクロライド、シクロペンタジエン-白金ジクロライド、ビス(アルキニル)ビス(トリフェニルホスフィン)白金錯体、ビス(アルキニル)(シクロオクタジエン)白金錯体、塩化ロジウム、トリス(トリフェニルホスフィン)ロジウムクロライド、テトラキスアンモニウムーロジウムクロライド錯体などが挙げられるが、特に限定されず、必要に応じてこれらを2種以上用いてもよい。 Examples of noble metal complex compounds include platinum halogen compounds (PtCl 4 , H 2 PtCl 6 · 6H 2 O, Na 2 PtCl 6 · 4H 2 O, etc.), platinum-olefin complexes, platinum-alcohol complexes, platinum-alcolate complexes, platinum -Ether complexes, platinum-carbonyl complexes, platinum-ketone complexes, platinum-vinylsiloxane complexes such as platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane, bis (γ-picoline) -platinum Dichloride, trimethylenedipyridine-platinum dichloride, dicyclopentadiene-platinum dichloride, cyclooctadiene-platinum dichloride, cyclopentadiene-platinum dichloride, bis (alkynyl) bis (triphenylphosphine) platinum complex, bis (alkynyl) (cycloocta Diene) platinum complex, lodge chloride Arm, tris (triphenylphosphine) rhodium chloride, although such tetrakis ammonium over rhodium chloride complexes include, not particularly limited, may be used two or more kinds as necessary.
 上記貴金属触媒は、それぞれ単独で、あるいは溶解する溶媒に予め溶解させておき、その後反応系内に投入してもよい。貴金属触媒の使用割合は、特に限定されないが、通常反応に用いる単離したモノアリルエーテルモノグリシジルエーテル又は粗生成液の質量に対して、0.1ppm~100000ppm、好ましくは1ppmから10000ppmの範囲である。 The above precious metal catalysts may be dissolved alone or in advance in a solvent to be dissolved, and then charged into the reaction system. The use ratio of the noble metal catalyst is not particularly limited, but is in the range of 0.1 ppm to 100,000 ppm, preferably in the range of 1 ppm to 10,000 ppm, based on the mass of the isolated monoallyl ether monoglycidyl ether or crude product liquid usually used in the reaction. .
 ヒドロシリル化反応は、無溶媒でも進行させることができるが、必要に応じて有機溶媒で反応系を希釈してもよく、必要に応じて使用する有機溶媒は、反応に悪影響を与えなければ特に制限されない。必要に応じて使用する有機溶媒としては、例えば、ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタンなどのハロゲン系炭化水素類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノンなどの脂肪族ケトン類、ベンゼン、トルエン、オルトキシレン、メタキシレン、パラキシレン、クロロベンゼン、ジクロロベンゼンなどの芳香族類、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテルなどのエーテル類、酢酸エチル、酢酸-n-ブチルなどのエステル類が挙げられる。これらの有機溶媒は、2種以上を選択して混合溶媒として使用してもよい。 The hydrosilylation reaction can proceed without a solvent, but the reaction system may be diluted with an organic solvent if necessary, and the organic solvent to be used is not particularly limited as long as it does not adversely affect the reaction. Not. Examples of the organic solvent used as necessary include halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, and 1,2-dichloroethane, and fats such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and cyclopentanone. Aromatic ketones such as benzene, toluene, ortho-xylene, meta-xylene, para-xylene, chlorobenzene and dichlorobenzene, ethers such as diethylene glycol dimethyl ether and triethylene glycol dimethyl ether, esters such as ethyl acetate and n-butyl acetate Kind. Two or more of these organic solvents may be selected and used as a mixed solvent.
 ヒドロシリル化反応の温度条件は、特に限定されないが、通常0℃~200℃、好ましくは30℃~180℃である。0℃未満では反応の進行に時間を要し経済的ではなく、一方、200℃を超えるとエポキシ基とヒドロシリル部位との付加反応が進行し、反応を制御することが難しくなる。 The temperature conditions for the hydrosilylation reaction are not particularly limited, but are usually 0 ° C. to 200 ° C., preferably 30 ° C. to 180 ° C. If it is less than 0 ° C., it takes time for the reaction to proceed and it is not economical. On the other hand, if it exceeds 200 ° C., the addition reaction between the epoxy group and the hydrosilyl moiety proceeds, making it difficult to control the reaction.
 また、本発明に係る硬化性樹脂組成物の機能発現を損なわない限り、一分子中に少なくとも一つの炭素-炭素二重結合とエポキシ基を含有する他の化合物を併用してヒドロシリル化反応を行い、得られた樹脂を用いて硬化性樹脂組成物としてもよい。一分子中に少なくとも一つの炭素-炭素二重結合とエポキシ基を含有する他の化合物としては、例えば、アリルグリシジルエーテル、4-ビニルシクロヘキセンオキシド、リモネンオキシドなどが挙げられるがこれらに限定されず、2種以上を併用してもよい。かかる化合物の使用量は、特に限定されないが、本発明に係る硬化性樹脂組成物の機能発現の観点から、反応に用いる、単離したモノアリルエーテルモノグリシジルエーテル又は粗生成液100質量部に対し、50質量部以下であることが好ましい。 In addition, as long as the functional expression of the curable resin composition according to the present invention is not impaired, hydrosilylation reaction is performed by using at least one carbon-carbon double bond and another compound containing an epoxy group in one molecule. The obtained resin may be used as a curable resin composition. Examples of other compounds containing at least one carbon-carbon double bond and an epoxy group in one molecule include allyl glycidyl ether, 4-vinylcyclohexene oxide, limonene oxide, and the like. Two or more kinds may be used in combination. Although the usage-amount of this compound is not specifically limited, From a viewpoint of function expression of the curable resin composition which concerns on this invention, with respect to 100 mass parts of isolated monoallyl ether monoglycidyl ether or crude product liquid used for reaction. 50 parts by mass or less is preferable.
 このようにして得られたヒドロシリル化生成物、すなわち、本発明に係る脂環式トリアルコキシシリルモノグリシジルエーテル化合物に対して、公知の方法でゾルゲル化反応を行うことで、本発明の他の態様である、エポキシシリコーン化合物を含む硬化性樹脂組成物を得ることができる。一般的なゾルゲル反応としては、酸性触媒又は塩基性触媒存在下で加水分解縮合させる方法が用いられる。 The hydrosilylation product thus obtained, that is, the alicyclic trialkoxysilyl monoglycidyl ether compound according to the present invention is subjected to a sol-gelation reaction by a known method, whereby another aspect of the present invention is achieved. A curable resin composition containing an epoxy silicone compound can be obtained. As a general sol-gel reaction, a method of hydrolytic condensation in the presence of an acidic catalyst or a basic catalyst is used.
 ゾルゲル化反応の際に用いる加水分解縮合触媒は、特に限定されず、公知の酸性触媒又は塩基性触媒を用いることができる。酸性触媒としては、例えば、塩酸、硝酸、硫酸、トルエンスルホン酸、酢酸、リン酸、シュウ酸、クエン酸などが挙げられる。また塩基性触媒としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化テトラメチルアンモニウム、水酸化テトラブチルアンモニウム、水酸化ベンジルトリメチルアンモニウムなどが挙げられる。 The hydrolysis condensation catalyst used in the sol-gelation reaction is not particularly limited, and a known acidic catalyst or basic catalyst can be used. Examples of the acidic catalyst include hydrochloric acid, nitric acid, sulfuric acid, toluenesulfonic acid, acetic acid, phosphoric acid, oxalic acid, and citric acid. Examples of the basic catalyst include sodium hydroxide, potassium hydroxide, cesium hydroxide, tetramethylammonium hydroxide, tetrabutylammonium hydroxide, and benzyltrimethylammonium hydroxide.
 ゾルゲル化反応の際、前記触媒の添加量は、特に限定されないが、十分な反応性を有し、かつエポキシ環の開環やゲル化を低く抑えるために、前記一般式(6)で表されるヒドロシリル化生成物中の加水分解性基の合計1モルに対して、0.001~0.2モルの範囲が好ましく、0.005~0.1モルの範囲がより好ましい。 In the sol-gelation reaction, the amount of the catalyst added is not particularly limited, but is represented by the general formula (6) in order to have sufficient reactivity and to keep the ring opening and gelation of the epoxy ring low. The range of 0.001 to 0.2 mol is preferable and the range of 0.005 to 0.1 mol is more preferable with respect to a total of 1 mol of hydrolyzable groups in the hydrosilylation product.
 ゾルゲル化反応の際の反応温度は、原料とする一般式(6)で表されるヒドロシリル化生成物の反応性、用いる溶媒などによっても異なるため特に限定されないが、反応速度が十分大きくなり、且つ望まない副反応を抑制するためには、0℃~100℃の範囲が好ましく、10℃~80℃の範囲がより好ましい。反応温度が低すぎると効率的に反応が進行せず、また高すぎるとエポキシ環の開環等の副反応が進行するおそれがある。 The reaction temperature in the sol-gelation reaction is not particularly limited because it varies depending on the reactivity of the hydrosilylation product represented by the general formula (6) as a raw material, the solvent used, etc., but the reaction rate becomes sufficiently high, and In order to suppress undesired side reactions, the range of 0 ° C. to 100 ° C. is preferable, and the range of 10 ° C. to 80 ° C. is more preferable. If the reaction temperature is too low, the reaction does not proceed efficiently, and if it is too high, side reactions such as opening of the epoxy ring may proceed.
 ゾルゲル化反応では、溶媒を用いることが好ましい。用いる溶媒としては、原料のアルコキシシランと水とを均一に溶解させるものならば特に限定はされないが、例えば、メタノール、エタノール、2-プロパノール、n-ブタノール、イソブタノール、t-ブタノール等のアルコール系溶媒、アセトン、ジエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒を挙げることができる。また、これらの溶媒は単独で使用してもよく又は2種以上を混合して使用してもよい。 In the sol-gelation reaction, it is preferable to use a solvent. The solvent to be used is not particularly limited as long as the raw material alkoxysilane and water are uniformly dissolved. For example, alcohols such as methanol, ethanol, 2-propanol, n-butanol, isobutanol, and t-butanol are used. Examples of the solvent include ketone solvents such as acetone, diethyl ketone, methyl propyl ketone, methyl isobutyl ketone, and cyclohexanone. These solvents may be used alone or in combination of two or more.
 ゾルゲル化反応の反応時間は、原料とする一般式(6)で表されるヒドロシリル化生成物の反応性、反応温度などによっても異なるため特に限定されないが、生成物の分子量を十分大きくするためには、1時間~40時間の範囲とすることが好ましい。反応時間が1時間未満の場合、未反応原料や低分子量オリゴマーが残存することがあり、一方、40時間を超えて反応させたとしても、それ以上縮合反応が進行しない場合が多い。 The reaction time of the sol-gelation reaction is not particularly limited because it varies depending on the reactivity, reaction temperature, etc. of the hydrosilylation product represented by the general formula (6) as a raw material, but in order to sufficiently increase the molecular weight of the product Is preferably in the range of 1 to 40 hours. When the reaction time is less than 1 hour, unreacted raw materials and low molecular weight oligomers may remain. On the other hand, even if the reaction is continued for more than 40 hours, the condensation reaction often does not proceed further.
 以下、実施例により本発明を具体的に説明するが、本発明は実施例に制限されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to the examples.
[実施例1:脂環式モノアリルエーテルモノグリシジルエーテル化合物の合成]
 まず原料である1,4-シクロヘキサンジメタノールジアリルエーテルをウィリアムソン合成に基づき以下の通り合成した。
 撹拌機、温度計の付いた2リットル三口フラスコに1,4-シクロヘキサンジメタノール(新日本理化株式会社製)144.2g(1.00mol)を入れ、反応装置系内を窒素置換し、水酸化ナトリウム水溶液(50質量%)480.0g(6.0mol)を加え、40℃まで加熱し、テトラブチルアンモニウムブロマイド(和光純薬工業株式会社製)3.224g(0.01mol)を添加した。反応系内を約40℃に保ちながら、アリルクロライド(鹿島ケミカル株式会社製)168.3g(2.20mol)を滴下し、2時間経過後、1,4-シクロヘキサンジメタノール72.11g(0.50mol)、アリルクロライド84.17g(1.10mol)を追添した。その後、反応温度を徐々に上げながら反応を継続し、反応の進行状況を見ながらアリルクロライドを25.25g(0.33mol)ずつ追添し、反応を完結させた。反応終了後、トルエン33.7gを加え分液処理し、有機層を純水200mL/回で中性になるまで洗浄し、分液後、有機層をエバポレーターにより溶媒、アリルクロライド等を留去した。溶媒留去後、1,4-シクロヘキサンジメタノールジアリルエーテルを精密蒸留により取得した(留出温度が63.9~67.7℃(11Pa))。
 上記合成により得られたシクロヘキサンジメタノールジアリルエーテル150g(0.67mol)、アセトニトリル109.7g(2.67mol)、及びメタノール200gを、1リットル三口フラスコに仕込み、10質量%水酸化カリウム-メタノール溶液0.13gを加えて、反応液内のpHを約10.5に調整した後、内温35℃で45質量%過酸化水素水溶液83.1g(1.1mol)を、内温が40℃を超えないように6時間かけて滴下した。なお、過酸化水素を加えるとpHが下がるので、pHが10.5に維持されるように10質量%水酸化カリウム-メタノール溶液も別途滴下した(6時間後の、滴下総量は10.14gであった)。滴下終了後、35~40℃の内温になるように水浴で加熱しながら、2時間攪拌した。攪拌終了後、トルエン200gを加え、0.1質量%燐酸水溶液100gで一回、5質量%亜硫酸ナトリウム水溶液100gで3回、そして純水100gで2回洗浄した後、溶媒を留去して反応混合物を得た。得られた反応混合物をシリカゲルを用いたカラムクロマトグラフィー(展開溶媒:ヘキサンと酢酸エチルの4対1(容量比)混合溶液)により精製することで、モノアリルエーテルモノグリシジルエーテルを得た。精製物のH-NMRと13C-NMRを、それぞれ、図2と図3に示す。
[Example 1: Synthesis of alicyclic monoallyl ether monoglycidyl ether compound]
First, 1,4-cyclohexanedimethanol diallyl ether as a raw material was synthesized as follows based on Williamson synthesis.
Into a 2 liter three-necked flask equipped with a stirrer and a thermometer, 144.2 g (1.00 mol) of 1,4-cyclohexanedimethanol (manufactured by Shin Nippon Rika Co., Ltd.) was added, and the inside of the reactor system was purged with nitrogen, and hydroxylated. Sodium aqueous solution (50 mass%) 480.0g (6.0mol) was added, it heated to 40 degreeC, and tetrabutyl ammonium bromide (made by Wako Pure Chemical Industries Ltd.) 3.224g (0.01 mol) was added. While keeping the inside of the reaction system at about 40 ° C., 168.3 g (2.20 mol) of allyl chloride (manufactured by Kashima Chemical Co., Ltd.) was added dropwise, and after 2 hours, 72.11 g (0. 50 mol) and 84.17 g (1.10 mol) of allyl chloride were added. Thereafter, the reaction was continued while gradually raising the reaction temperature, and 25.25 g (0.33 mol) of allyl chloride was added while watching the progress of the reaction to complete the reaction. After completion of the reaction, 33.7 g of toluene was added to carry out a liquid separation treatment, and the organic layer was washed with pure water 200 mL / times until neutral, and after the liquid separation, the organic layer was distilled off the solvent, allyl chloride, and the like by an evaporator. . After the solvent was distilled off, 1,4-cyclohexanedimethanol diallyl ether was obtained by precision distillation (distillation temperature: 63.9 to 67.7 ° C. (11 Pa)).
150 g (0.67 mol) of cyclohexanedimethanol diallyl ether obtained by the above synthesis, 109.7 g (2.67 mol) of acetonitrile, and 200 g of methanol were charged into a 1-liter three-necked flask, and a 10 mass% potassium hydroxide-methanol solution 0 was added. .13 g was added to adjust the pH in the reaction solution to about 10.5, and then 83.1 g (1.1 mol) of a 45 mass% hydrogen peroxide aqueous solution at an internal temperature of 35 ° C. The solution was added dropwise over 6 hours. In addition, since the pH decreases when hydrogen peroxide is added, a 10% by mass potassium hydroxide-methanol solution is also added dropwise so that the pH is maintained at 10.5 (the total added amount after 10 hours is 10.14 g). there were). After completion of the dropwise addition, the mixture was stirred for 2 hours while heating in a water bath so that the internal temperature was 35 to 40 ° C. After completion of the stirring, 200 g of toluene was added, washed once with 100 g of a 0.1% by mass aqueous phosphoric acid solution three times with 100 g of a 5% by mass aqueous sodium sulfite solution and twice with 100 g of pure water, and then the solvent was distilled off to react. A mixture was obtained. The resulting reaction mixture was purified by column chromatography using silica gel (developing solvent: hexane and ethyl acetate 4: 1 (volume ratio) mixed solution) to obtain monoallyl ether monoglycidyl ether. The 1 H-NMR and 13 C-NMR of the purified product are shown in FIGS. 2 and 3, respectively.
[実施例2:脂環式トリアルコキシシリルモノグリシジルエーテル化合物の合成]
 滴下漏斗、還流管、玉栓を付けた200mLの三口フラスコに、トリエトキシシラン(東京化成工業株式会社製)13.7g(83.2mmol)、及びトルエン15gを入れ、三口フラスコ内を窒素置換した。前記滴下漏斗に、実施例1で得られたモノアリルエーテルモノグリシジルエーテルを含む反応混合物10g、Pt(dvs)の3質量%IPA溶液(エヌ・イー ケムキャット社製3%-PT-VTS-IPA溶液(ジビニルテトラメチルジシロキサン白金錯体イソプロピルアルコール溶液))5mg、及びトルエン10gを、入れ、60℃で1時間かけて三口フラスコ内に滴下した。滴下終了後、60℃でさらに5時間撹拌を継続した。得られた反応液を溶媒留去することで、トリアルコキシシリルモノグリシジルエーテル化合物を主成分として含む混合物を得た。混合物のH-NMRと13C-NMRを、それぞれ、図4と図5に示す。
[Example 2: Synthesis of alicyclic trialkoxysilyl monoglycidyl ether compound]
To a 200 mL three-necked flask equipped with a dropping funnel, a reflux tube, and a ball stopper, 13.7 g (83.2 mmol) of triethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) and 15 g of toluene were placed, and the inside of the three-necked flask was purged with nitrogen. . To the dropping funnel, 10 g of the reaction mixture containing monoallyl ether monoglycidyl ether obtained in Example 1, 3% by weight IPA solution of Pt (dvs) (3% PT-VTS-IPA solution manufactured by N.E. Chemcat) (Divinyltetramethyldisiloxane platinum complex isopropyl alcohol solution)) 5 mg and 10 g of toluene were added and dropped into a three-necked flask at 60 ° C. over 1 hour. After completion of the dropping, stirring was further continued at 60 ° C. for 5 hours. The obtained reaction liquid was evaporated to obtain a mixture containing a trialkoxysilyl monoglycidyl ether compound as a main component. 1 H-NMR and 13 C-NMR of the mixture are shown in FIGS. 4 and 5, respectively.
[実施例3:エポキシシリコーン化合物の合成]
 滴下漏斗を付けた100mLのナスフラスコに2-プロパノール10g、蒸留水1.87g、水酸化テトラメチルアンモニウムの25%水溶液(昭和電工株式会社製)0.19gを入れ均一に混合し、50℃に昇温した。前記滴下漏斗に、実施例2で得られたトリアルコキシシリルモノグリシジルエーテル化合物を主成分として含む混合物7g、2-プロパノール10gを入れ、50℃で10分かけてナスフラスコ内に滴下した。滴下終了後、50℃でさらに5時間撹拌し、14時間静置した。得られた反応液にトルエン10g、蒸留水10g、0.5質量%酢酸水溶液6gを加えた後、2-プロパノールを留去した。フラスコ内の液体をトルエン20gにより抽出した。得られた有機層を水で洗浄し、無水硫酸ナトリウムを用いて乾燥させた。無機塩をろ過し溶媒留去した後、真空ポンプを用いて乾燥させることで、エポキシシリコーン化合物を無色透明液体として得た。得られた反応混合物のH-NMRと13C-NMRを、それぞれ、図6と図7に示す。
[Example 3: Synthesis of epoxy silicone compound]
A 100 mL eggplant flask equipped with a dropping funnel was charged with 10 g of 2-propanol, 1.87 g of distilled water, and 0.19 g of a 25% aqueous solution of tetramethylammonium hydroxide (manufactured by Showa Denko KK) and mixed uniformly. The temperature rose. The dropping funnel was charged with 7 g of the mixture containing the trialkoxysilyl monoglycidyl ether compound obtained in Example 2 as the main component and 10 g of 2-propanol, and dropped into the eggplant flask at 50 ° C. over 10 minutes. After completion of dropping, the mixture was further stirred at 50 ° C. for 5 hours and allowed to stand for 14 hours. To the obtained reaction solution, 10 g of toluene, 10 g of distilled water and 6 g of 0.5 mass% acetic acid aqueous solution were added, and 2-propanol was distilled off. The liquid in the flask was extracted with 20 g of toluene. The obtained organic layer was washed with water and dried using anhydrous sodium sulfate. The inorganic salt was filtered and the solvent was distilled off, followed by drying using a vacuum pump to obtain an epoxy silicone compound as a colorless transparent liquid. 1 H-NMR and 13 C-NMR of the obtained reaction mixture are shown in FIGS. 6 and 7, respectively.
[実施例4:トリシクロデカンジメタノールモノアリルモノグリシジルエーテルの合成]
 磁気攪拌子を備えた500mLの3径ナス型フラスコに、トリシクロデカンジメタノールジアリルエーテル(旭化学工業株式会社製)100.0g(0.36mol)、アセトニトリル(純正化学株式会社製)59.4g(1.45mol)、メタノール(純正化学株式会社製)92.3g(2.88mol)を量りとった。水浴を用いて系内の温度を35℃に加温し、飽和水酸化カリウム水溶液(KOH/HO=110g/100mL)によりpHを10.5に到達させた。反応終了時まで、反応温度が40℃を超えないように飽和水酸化カリウム水溶液を随時添加しpHを10.75~10.25の範囲に制御した。45%過酸化水素水溶液(日本パーオキサイド株式会社製)44.7g(0.59mol)を100mL滴下漏斗により12時間かけて滴下後、さらに6時間攪拌して反応を終了させた。得られた反応溶液を、シリカゲルを用いたカラムクロマトグラフィーにより精製することで、トリシクロデカンジメタノールモノアリルエーテルモノグリシジルエーテルを得た。精製物のH-NMRと13C-NMRを、それぞれ、図8と図9に示す。
[Example 4: Synthesis of tricyclodecane dimethanol monoallyl monoglycidyl ether]
In a 500 mL three-diameter eggplant type flask equipped with a magnetic stirrer, 100.0 g (0.36 mol) of tricyclodecane dimethanol diallyl ether (Asahi Chemical Industry Co., Ltd.), 59.4 g of acetonitrile (manufactured by Junsei Chemical Co., Ltd.) (1.45 mol) and 92.3 g (2.88 mol) of methanol (manufactured by Junsei Chemical Co., Ltd.) were weighed. The temperature in the system was heated to 35 ° C. using a water bath, and the pH was reached to 10.5 with a saturated aqueous potassium hydroxide solution (KOH / H 2 O = 110 g / 100 mL). Until the end of the reaction, a saturated aqueous potassium hydroxide solution was added as needed so that the reaction temperature did not exceed 40 ° C., and the pH was controlled in the range of 10.75 to 10.25. 44.7 g (0.59 mol) of 45% aqueous hydrogen peroxide solution (manufactured by Nippon Peroxide Co., Ltd.) was added dropwise with a 100 mL dropping funnel over 12 hours, and then stirred for 6 hours to complete the reaction. The resulting reaction solution was purified by column chromatography using silica gel to obtain tricyclodecane dimethanol monoallyl ether monoglycidyl ether. 1 H-NMR and 13 C-NMR of the purified product are shown in FIGS. 8 and 9, respectively.
[実施例5:トリシクロデカンジメタノールのトリアルコキシシリルモノグリシジルエーテル化合物の合成]
 滴下漏斗、還流管、玉栓を付けた200mLの三口フラスコに、トリエトキシシラン(東京化成工業株式会社製)8.4g(51mmol)、トルエン15gを入れ、三口フラスコ内を窒素置換した。前記滴下漏斗に実施例4で得られたエポキシ化反応混合物10g、Pt(dvs)の3%IPA溶液(エヌ・イー ケムキャット社製3%-PT-VTS-IPA溶液(ジビニルテトラメチルジシロキサン白金錯体イソプロピルアルコール溶液))5mg、及びトルエン10gを入れ、60℃で1時間かけて三口フラスコ内に滴下した。滴下終了後、60℃でさらに5時間撹拌を継続した。得られた反応液を溶媒留去することで、トリアルコキシシリルモノグリシジルエーテル化合物を主成分として含む混合物を得た。混合物のH-NMRと13C-NMRを、それぞれ、図10と図11に示す。
[Example 5: Synthesis of trialkoxysilyl monoglycidyl ether compound of tricyclodecane dimethanol]
8.4 g (51 mmol) of triethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) and 15 g of toluene were placed in a 200 mL three-necked flask equipped with a dropping funnel, a reflux tube and a ball stopper, and the inside of the three-necked flask was purged with nitrogen. To the dropping funnel, 10 g of the epoxidation reaction mixture obtained in Example 4, 3% IPA solution of Pt (dvs) (3% PT-VTS-IPA solution (divinyltetramethyldisiloxane platinum complex manufactured by N.E. Chemcat) 5 mg of isopropyl alcohol solution)) and 10 g of toluene were added and dropped into a three-necked flask at 60 ° C. over 1 hour. After completion of the dropping, stirring was further continued at 60 ° C. for 5 hours. The obtained reaction liquid was evaporated to obtain a mixture containing a trialkoxysilyl monoglycidyl ether compound as a main component. 1 H-NMR and 13 C-NMR of the mixture are shown in FIGS. 10 and 11, respectively.
[実施例6:エポキシシリコーン化合物の合成]
 滴下漏斗を付けた100mLのナスフラスコに2-プロパノール5g、蒸留水0.20g、水酸化テトラメチルアンモニウムの25%水溶液(昭和電工株式会社製)0.08gを入れ均一に混合し、50℃に昇温した。前記滴下漏斗に、実施例5で得られたトリアルコキシシリルモノグリシジルエーテル化合物を主成分として含む混合物1g、2-プロパノール5gを入れ、50℃で10分かけてナスフラスコ内に滴下した。滴下終了後、50℃でさらに5時間撹拌した。得られた反応液にトルエン5g、蒸留水5g、0.5%酢酸水溶液2.4gを加えた後、2-プロパノールを留去した。フラスコ内の液体をトルエン10gにより抽出した。得られた有機層を水で洗浄し、無水硫酸ナトリウムを用いて乾燥させた。無機塩をろ過し溶媒留去した後、真空ポンプを用いて乾燥させることで、エポキシシリコーン化合物を無色透明液体として得た。反応混合物のH-NMRと13C-NMRを、それぞれ、図12と図13に示す。
[Example 6: Synthesis of epoxy silicone compound]
A 100 mL eggplant flask equipped with a dropping funnel was charged with 5 g of 2-propanol, 0.20 g of distilled water, and 0.08 g of a 25% aqueous solution of tetramethylammonium hydroxide (manufactured by Showa Denko KK) and mixed uniformly. The temperature rose. The dropping funnel was charged with 1 g of a mixture containing the trialkoxysilyl monoglycidyl ether compound obtained in Example 5 as a main component and 5 g of 2-propanol, and dropped into the eggplant flask at 50 ° C. over 10 minutes. After completion of dropping, the mixture was further stirred at 50 ° C. for 5 hours. After adding 5 g of toluene, 5 g of distilled water, and 2.4 g of 0.5% acetic acid aqueous solution to the obtained reaction solution, 2-propanol was distilled off. The liquid in the flask was extracted with 10 g of toluene. The obtained organic layer was washed with water and dried using anhydrous sodium sulfate. The inorganic salt was filtered and the solvent was distilled off, followed by drying using a vacuum pump to obtain an epoxy silicone compound as a colorless transparent liquid. 1 H-NMR and 13 C-NMR of the reaction mixture are shown in FIGS. 12 and 13, respectively.
 本発明に係る脂環式モノアリルエーテルモノグリシジルエーテル化合物と、トリアルコキシシランとを反応させて得られる脂環式トリアルコキシシリルモノグリシジルエーテル化合物を含む硬化性樹脂組成物は、その硬化物が硬質で、硬化収縮が少なく、硬化物の表面にべたつきがなく、強度、透明性に優れ、耐熱性、耐光性に優れる。したがって、本発明に係る硬化性樹脂組成物は、塗料、コーティング剤、印刷インキ、レジストインキ、接着剤、半導体封止材等の電子材料分野、成型材料、注型材料及び電気絶縁材料の分野において有用である。本発明の硬化性樹脂組成物は、特に、LED分野において有用であり、LED封止用熱硬化性樹脂組成物として優れている。 The curable resin composition containing the alicyclic trialkoxysilyl monoglycidyl ether compound obtained by reacting the alicyclic monoallyl ether monoglycidyl ether compound and trialkoxysilane according to the present invention has a hardened product. In addition, there is little cure shrinkage, no stickiness on the surface of the cured product, excellent strength and transparency, and excellent heat resistance and light resistance. Therefore, the curable resin composition according to the present invention is used in the fields of electronic materials such as paints, coating agents, printing inks, resist inks, adhesives, semiconductor encapsulants, molding materials, casting materials, and electrical insulating materials. Useful. The curable resin composition of the present invention is particularly useful in the LED field, and is excellent as a thermosetting resin composition for LED sealing.

Claims (6)

  1.  以下の一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    {式中、Rは、脂環骨格を含む炭素数4~20の2価の炭化水素基を表す。}で表される脂環式モノアリルエーテルモノグリシジルエーテル化合物。
    The following general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    {Wherein R represents a C 4-20 divalent hydrocarbon group containing an alicyclic skeleton. } The alicyclic monoallyl ether monoglycidyl ether compound represented by these.
  2.  式中、Rは、炭素数4~8のシクロアルカン骨格を有する、請求項1に記載の脂環式モノアリルエーテルモノグリシジルエーテル化合物。 The alicyclic monoallyl ether monoglycidyl ether compound according to claim 1, wherein R has a cycloalkane skeleton having 4 to 8 carbon atoms.
  3.  分子量が150~400である、請求項1又は2に記載の脂環式モノアリルエーテルモノグリシジルエーテル化合物。 The alicyclic monoallyl ether monoglycidyl ether compound according to claim 1 or 2, having a molecular weight of 150 to 400.
  4.  一般式(1)で表される化合物は、以下の式(2):
    Figure JPOXMLDOC01-appb-C000002
    、以下の式(3):
    Figure JPOXMLDOC01-appb-C000003
    、又は以下の式(4):
    Figure JPOXMLDOC01-appb-C000004
    のいずれかで表される、請求項1~3のいずれか1項に記載の脂環式モノアリルエーテルモノグリシジルエーテル化合物。
    The compound represented by the general formula (1) is represented by the following formula (2):
    Figure JPOXMLDOC01-appb-C000002
    The following equation (3):
    Figure JPOXMLDOC01-appb-C000003
    Or the following formula (4):
    Figure JPOXMLDOC01-appb-C000004
    The alicyclic monoallyl ether monoglycidyl ether compound according to any one of claims 1 to 3, represented by any one of:
  5.  以下の一般式(6):
    Figure JPOXMLDOC01-appb-C000005
    {式中、Rは、炭素数4~20の脂環式炭化水素を含む2価の炭化水素基を表し、そしてR’は、炭素数1~4の炭化水素基を表す。}で表される、脂環式トリアルコキシシリルモノグリシジルエーテル化合物。
    The following general formula (6):
    Figure JPOXMLDOC01-appb-C000005
    {In the formula, R represents a divalent hydrocarbon group containing an alicyclic hydrocarbon having 4 to 20 carbon atoms, and R 'represents a hydrocarbon group having 1 to 4 carbon atoms. } The alicyclic trialkoxysilyl monoglycidyl ether compound represented by this.
  6.  請求項5に記載の一般式(6)で表される脂環式トリアルコキシシリルモノグリシジルエーテル化合物をゾルゲル化して得られるエポキシシリコーン化合物を含む硬化性樹脂組成物。 A curable resin composition comprising an epoxy silicone compound obtained by sol-gelating an alicyclic trialkoxysilyl monoglycidyl ether compound represented by the general formula (6) according to claim 5.
PCT/JP2011/061898 2010-06-03 2011-05-24 Alicyclic monoallyl ether-monoglycidyl ether compound WO2011152251A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-127857 2010-06-03
JP2010127857A JP2014024753A (en) 2010-06-03 2010-06-03 Alicyclic monoaryl ether monoglycidyl ether compound

Publications (1)

Publication Number Publication Date
WO2011152251A1 true WO2011152251A1 (en) 2011-12-08

Family

ID=45066628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061898 WO2011152251A1 (en) 2010-06-03 2011-05-24 Alicyclic monoallyl ether-monoglycidyl ether compound

Country Status (3)

Country Link
JP (1) JP2014024753A (en)
TW (1) TWI444372B (en)
WO (1) WO2011152251A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3787452A (en) * 1971-06-29 1974-01-22 Ciba Geigy Corp Epoxysilanes
DE4003621C1 (en) * 1990-02-07 1990-12-20 Th. Goldschmidt Ag, 4300 Essen, De Silane poly:oxy:alkylene glycidyl ether - for improving e.g. epoxy] resins and inorganic materials e.g. glass fibres
EP0741134A1 (en) * 1995-05-05 1996-11-06 ENICHEM S.p.A. Unsaturated glycidyl esters and their use as polyolefin modifiers
WO1998012186A1 (en) * 1996-09-18 1998-03-26 Daiso Co., Ltd. Process for the preparation of glycidyl ethers
KR20090072379A (en) * 2007-12-28 2009-07-02 주식회사 동진쎄미켐 The reactive monomers for a polyimide precursor and a polyimide precursor using the same
JP2010106009A (en) * 2008-09-30 2010-05-13 Sanyo Chem Ind Ltd Method for producing epoxy compound

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3787452A (en) * 1971-06-29 1974-01-22 Ciba Geigy Corp Epoxysilanes
DE4003621C1 (en) * 1990-02-07 1990-12-20 Th. Goldschmidt Ag, 4300 Essen, De Silane poly:oxy:alkylene glycidyl ether - for improving e.g. epoxy] resins and inorganic materials e.g. glass fibres
EP0741134A1 (en) * 1995-05-05 1996-11-06 ENICHEM S.p.A. Unsaturated glycidyl esters and their use as polyolefin modifiers
WO1998012186A1 (en) * 1996-09-18 1998-03-26 Daiso Co., Ltd. Process for the preparation of glycidyl ethers
KR20090072379A (en) * 2007-12-28 2009-07-02 주식회사 동진쎄미켐 The reactive monomers for a polyimide precursor and a polyimide precursor using the same
JP2010106009A (en) * 2008-09-30 2010-05-13 Sanyo Chem Ind Ltd Method for producing epoxy compound

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KITAORI, K. ET AL.: "CsF in organic synthesis. Regioselective nucleophilic reactions of phenols with oxiranes leading to enantiopure P-blockers", TETRAHEDRON, vol. 55, no. 50, 1999, pages 14381 - 14390 *
KITAORI, K. ET AL.: "CsF in organic synthesis. The first and convenient synthesis of enantiopure bisoprolol by use of glycidyl nosylate", TETRAHEDRON LETTERS, vol. 39, no. 20, 1998, pages 3173 - 3176 *

Also Published As

Publication number Publication date
TW201202211A (en) 2012-01-16
JP2014024753A (en) 2014-02-06
TWI444372B (en) 2014-07-11

Similar Documents

Publication Publication Date Title
JP5354868B2 (en) Method for producing alicyclic diepoxy compound, method for producing epoxy resin composition, and method for producing cured product
US9777107B2 (en) Silicone-modified epoxy resin and composition and cured article thereof
JP5109873B2 (en) Thermosetting resin composition
TW202104199A (en) Alicyclic epoxy compound product
KR101415113B1 (en) Process for production of glycidyl ether compounds, and monoallyl monoglycidyl ether compound
US20090137774A1 (en) Adamantane derivative, resin composition containing same, and optoelectronic component using same
WO2019138988A1 (en) Alicyclic epoxy compound product
JP6238701B2 (en) Method for producing polyvalent glycidyl compound
WO2011152251A1 (en) Alicyclic monoallyl ether-monoglycidyl ether compound
JP6514685B2 (en) Silicone modified epoxy resin, composition containing the epoxy resin, and cured product thereof
JP5139857B2 (en) Curable resin composition containing epoxy silicone resin
JP6238699B2 (en) Method for producing polyvalent glycidyl compound
JP4899818B2 (en) Alicyclic diepoxy compound, method for producing alicyclic diepoxy compound, curing composition and cured product
JP4966014B2 (en) Curable diamantane compound
TWI523846B (en) Preparation of Epoxy Compounds
JP5449802B2 (en) Epoxy silicone resin having alicyclic structure and curable resin composition
JP5770975B2 (en) Polysilsesquioxane compound, optical device sealing material and use thereof
JP4841529B2 (en) Modified polysiloxane
JP5473636B2 (en) Isocyanurate compounds
JP6849971B2 (en) Silicone modified epoxy resin and its composition and cured product
JP2018002595A (en) Organosilicon compound and resin composition
JP2016117837A (en) Curable resin composition, cured product thereof and curing agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP