JP2006028057A - Method for producing liquid epoxy compound - Google Patents

Method for producing liquid epoxy compound Download PDF

Info

Publication number
JP2006028057A
JP2006028057A JP2004207088A JP2004207088A JP2006028057A JP 2006028057 A JP2006028057 A JP 2006028057A JP 2004207088 A JP2004207088 A JP 2004207088A JP 2004207088 A JP2004207088 A JP 2004207088A JP 2006028057 A JP2006028057 A JP 2006028057A
Authority
JP
Japan
Prior art keywords
formula
liquid epoxy
epoxy compound
compound represented
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004207088A
Other languages
Japanese (ja)
Inventor
Yasushi Matsumura
康史 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2004207088A priority Critical patent/JP2006028057A/en
Publication of JP2006028057A publication Critical patent/JP2006028057A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Epoxy Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an advantageous method for producing a high purity liquid epoxy compound which can maintain a low viscosity applicable to various applications of diluents, particularly liquid sealing media in the application of electronic materials and can improve reliability. <P>SOLUTION: The liquid epoxy compound represented by formula (2) and having an epoxy equivalent of 125-132 and a total chlorine content of ≤100 ppm is produced by epoxidizing an diallyl ether compound represented by formula (1) with a hydrogen peroxide solution in the presence of potassium carbonate. Here, the diallyl ether compound can be obtained by reacting a dihydroxy compound represented by formula (3) (wherein X is a hydroxyl group) with an allyl halide or a dihalide compound represented by formula (3) (wherein X is a halogen) with allyl alcohol. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、低粘度であることにより作業性に優れると共に加熱により容易に硬化し、優れた機械的特性、電気的特性を具備する二官能液状エポキシ樹脂の製造方法に関する。この液状エポキシ樹脂は、種々用途の希釈剤、特に電子材料用途の液状材料に有用である。   The present invention relates to a method for producing a bifunctional liquid epoxy resin that is excellent in workability due to low viscosity and is easily cured by heating and has excellent mechanical and electrical characteristics. This liquid epoxy resin is useful as a diluent for various applications, particularly as a liquid material for electronic materials.

液状エポキシ化合物(エポキシ樹脂ともいう)は、可溶性と機械的物性が優れるため、種々の用途のバインダーとして用いられている。しかし、機械的物性の向上を求める場合においてはフィラー等の配合を増加させる手法が一般的であるが、粘度が上昇して作業性が悪化する。これを防ぐためには、バインダー成分の低粘度化が必要となる。バインダー成分の主成分であるエポキシ化合物において、硬化物の機械的物性の維持、向上と低粘度化は一般に相反する関係にあり、これらの解決のため液状エポキシ樹脂が反応性希釈剤として用いられている。例えば、エチレングリコールグリシジルエーテル、プロピレングリコールグリシジルエーテル、グリセリングリシジルエーテル、トリメチロールプロパングリシジルエーテル、ペンタエリスリトールグリシジルエーテル、シクロヘキサンジメタノールグリシジルエーテル、フェニルグリシジルエーテル、レゾルシングリシジルエーテル、キシリレングリコールグリシジルエーテル(特許文献1〜3)などである。   Liquid epoxy compounds (also referred to as epoxy resins) are excellent in solubility and mechanical properties, and are therefore used as binders for various applications. However, in order to improve the mechanical properties, a method of increasing the blending of fillers and the like is common, but the viscosity increases and workability deteriorates. In order to prevent this, it is necessary to lower the viscosity of the binder component. In the epoxy compound that is the main component of the binder component, maintaining and improving the mechanical properties of the cured product and reducing the viscosity are generally in a contradictory relationship, and liquid epoxy resin is used as a reactive diluent to solve these problems. Yes. For example, ethylene glycol glycidyl ether, propylene glycol glycidyl ether, glycerin glycidyl ether, trimethylolpropane glycidyl ether, pentaerythritol glycidyl ether, cyclohexanedimethanol glycidyl ether, phenyl glycidyl ether, resorching glycidyl ether, xylylene glycol glycidyl ether (Patent Document 1) ~ 3).

特開平4−53821号公報JP-A-4-53821 特開昭59−206429号公報JP 59-206429 A 特開平4−142326号公報JP-A-4-142326 特開2004−83711号公報JP 2004-83711 A

近年のデジタル機器においては、データの大容量化、処理速度の高速化等の性能向上により、配線基板及び部品パッケージの高密度化が進み、半導体素子等の実装技術の革新から液状封止材の適用が拡大し、それに使用される反応性希釈剤においても更なる性能向上が強く求められてきている。   In recent digital devices, the density of wiring boards and component packages has increased due to performance improvements such as higher data capacity and higher processing speed. The application has been expanded, and further improvement in performance has been strongly demanded for the reactive diluent used in the application.

上記の化合物中、脂肪族環式及び脂肪族系のエポキシ樹脂は最も低粘度の部類にあり優れた希釈効果を有する。しかし、脂肪族環式及び脂肪族系のエポキシ樹脂は、アルコール性水酸基のグリシジルエーテル化時の収率が悪く、未反応アルコール性水酸基が残存する。
一方フェノールノボラック等のフェノール類系のエポキシ樹脂は比較的低塩素量であるが官能基数の増加に伴う粘度の増加が著しく、官能基の数が3以上のものは粘度が高くなり希釈剤としての効果を期待できない。
Among the above compounds, aliphatic cyclic and aliphatic epoxy resins are in the lowest viscosity class and have an excellent dilution effect. However, aliphatic cyclic and aliphatic epoxy resins have poor yields when glycidyl etherification of alcoholic hydroxyl groups, and unreacted alcoholic hydroxyl groups remain.
On the other hand, phenolic epoxy resins such as phenol novolac have a relatively low chlorine content, but the viscosity increases with an increase in the number of functional groups. I cannot expect the effect.

ところで、特許文献4にはパラキシリレングリコールグリシジルエーテル(略称、PXGGE)が、良好な反応性の粘度低下剤となることが記載されている他、その合成例も記載されている。特許文献4に記載のPXGGEの合成方法は、パラキシリレングリコール(略称、PXG)を、アルカリ水溶液及びテトラブチルアンモニウムブロマイドの存在下に、アリルハライドと反応させてパラキシリレングリコールアリルエーテル化物(略称、PXGAE)を得て、次に、塩化メチレン溶媒中で、PXGAEとm−クロロ過安息香酸(略称、mCPBA)を反応させて目的とするPXGGEを得る方法である。この方法で得られたPXGGEは、無色透明の液状物質であり、エポキシ当量が130g/eq、水酸基濃度が0.1eq/kg未満、全塩素量が30ppmであったと報告されている。しかし、この方法は、PXGAEを酸化してPXGGEとする工程に酸化剤や反応収率等に改善の余地がある。すなわち、酸化反応にmCPBAを用いた場合、1)爆発する危険性があり、多量の使用が困難、2)高価な薬品である、3)反応に使用する溶媒にジクロロメタン等のハロゲン化溶剤を用いなければならない、4)mCPBA構造にクロルが入っていることから、PXGGE中の全塩素量が高くなる可能性がある等の問題点があった。   By the way, Patent Document 4 describes that paraxylylene glycol glycidyl ether (abbreviation, PXGGE) is a highly reactive viscosity reducing agent, and also describes a synthesis example thereof. In the method for synthesizing PXGGE described in Patent Document 4, paraxylylene glycol (abbreviation, PXG) is reacted with allyl halide in the presence of an alkaline aqueous solution and tetrabutylammonium bromide to form paraxylylene glycol allyl ether (abbreviation). PXGAE), and then reacting PXGAE with m-chloroperbenzoic acid (abbreviation, mCPBA) in a methylene chloride solvent to obtain the desired PXGGE. PXGGE obtained by this method is a colorless and transparent liquid substance, and is reported to have an epoxy equivalent of 130 g / eq, a hydroxyl group concentration of less than 0.1 eq / kg, and a total chlorine content of 30 ppm. However, this method has room for improvement in the oxidizing agent and reaction yield in the process of oxidizing PXGAE to PXGGE. In other words, when mCPBA is used for the oxidation reaction, 1) there is a risk of explosion, it is difficult to use a large amount, 2) it is an expensive chemical, and 3) a halogenated solvent such as dichloromethane is used as the solvent for the reaction. 4) Since chloro contained in the mCPBA structure, there was a problem that the total amount of chlorine in PXGGE might increase.

本発明の課題は、種々用途の希釈剤、特に電子材料用途の液状封止材に適用可能な低粘度を維持し、信頼性向上が可能な高純度液状エポキシ化合物の製造方法を提供することである。   An object of the present invention is to provide a method for producing a high-purity liquid epoxy compound capable of maintaining a low viscosity and improving reliability, which can be applied to a diluent for various uses, particularly a liquid sealing material for electronic materials. is there.

本発明は、下記式(1)で表されるジアリルエーテル化合物を炭酸カリウムの存在下、過酸化水素水でエポキシ化することを特徴とする下記式(2)で表される液状エポキシ化合物の製造方法である。ここで、ジアリルエーテル化合物は、下記式(3)で表されるジヒドロキシ化合物又はジハライド化合物と、アリルハライド又はアリルアルコールを反応させて得ることができる。そして、この製造方法で得られる液状エポキシ化合物は、エポキシ当量が125〜132であり、全塩素量が100ppm以下であることが好ましい。

Figure 2006028057
(但し、Xはヒドロキシ基又はハロゲンを示す) The present invention provides a liquid epoxy compound represented by the following formula (2), wherein the diallyl ether compound represented by the following formula (1) is epoxidized with hydrogen peroxide in the presence of potassium carbonate. Is the method. Here, the diallyl ether compound can be obtained by reacting a dihydroxy compound or dihalide compound represented by the following formula (3) with allyl halide or allyl alcohol. The liquid epoxy compound obtained by this production method preferably has an epoxy equivalent of 125 to 132 and a total chlorine content of 100 ppm or less.
Figure 2006028057
(However, X represents a hydroxy group or a halogen)

本発明の製造方法で製造する液状エポキシ化合物は、上記式(2)で表されるパラキシリレングリコールグリシジルエーテル(PXGGE)である。このPXGGEは、式(3)で表されるジヒドロキシ化合物(PXG)又はジハライド化合物(p-ジ-ハロメチル-ベンゼン;略称PHB)と、アリルハライド又はアリルアルコールとを反応させるなどして得られた一般式(1)で表されるPXGAEを炭酸カリウムの存在下、過酸化水素水でエポキシ化(酸化)することにより得られる。   The liquid epoxy compound produced by the production method of the present invention is paraxylylene glycol glycidyl ether (PXGGE) represented by the above formula (2). This PXGGE is generally obtained by reacting a dihydroxy compound (PXG) or a dihalide compound (p-di-halomethyl-benzene; abbreviated PHB) represented by the formula (3) with allyl halide or allyl alcohol. It can be obtained by epoxidizing (oxidizing) PXGAE represented by the formula (1) with hydrogen peroxide in the presence of potassium carbonate.

一般式(1)で表されるPXGAEの製造方法には制限はないが、式(3)で表されるPXG又はPHBとアリルハライド又はアリルアルコールとを反応させる方法が適する。この場合、PXGはアリルハライドと反応させ、PHBはアリルアルコールと反応させる。   Although there is no restriction | limiting in the manufacturing method of PXGAE represented by General formula (1), The method of making PXG or PHB represented by Formula (3) react with allyl halide or allyl alcohol is suitable. In this case, PXG is reacted with allyl halide and PHB is reacted with allyl alcohol.

PXGからPXGAEの合成は、例えば次のように行うことができる。PXGと、アリルクロライドやアリルブロマイド等のアリルハライドをジメチルスルフオキシドに溶解後、テトラブチルアンモニウムブロマイド等のテトラアルキルアンモニウムハライド又はテトラフェニルアンモニウムクロライド等のテトラアリールアンモニウムハライドのような四級アンモニウム塩を添加し、反応温度を40℃以下に保ちながら水酸化ナトリウム等のアルカリ水溶液を滴下する。滴下終了後、30〜40℃で約6時間反応を行う。   The synthesis of PXGE from PXG can be performed, for example, as follows. After dissolving PXG and allyl halide such as allyl chloride and allyl bromide in dimethylsulfoxide, a quaternary ammonium salt such as tetraalkylammonium halide such as tetrabutylammonium bromide or tetraarylammonium halide such as tetraphenylammonium chloride. Then, an aqueous alkali solution such as sodium hydroxide is added dropwise while maintaining the reaction temperature at 40 ° C. or lower. After completion of dropping, the reaction is carried out at 30 to 40 ° C. for about 6 hours.

上記アルカリ水溶液としては、水酸化ナトリウム、水酸化カルシウム、水酸化カリウム等の水溶液が好ましい。アルカリの使用量としては、PXGの水酸基1当量に対し2〜8当量、より好ましくは4〜6当量がよい。また、触媒である四級アンモニウム塩の添加量は、PXG1モルに対して0.001〜0.1モルが好ましい。更に、アリルハライドの使用量は、PXG1モルに対して2〜4モルが好ましい。   As the alkaline aqueous solution, aqueous solutions of sodium hydroxide, calcium hydroxide, potassium hydroxide and the like are preferable. As the usage-amount of an alkali, 2-8 equivalent with respect to 1 equivalent of hydroxyl groups of PXG, More preferably, 4-6 equivalent is good. Moreover, the addition amount of the quaternary ammonium salt which is a catalyst has preferable 0.001-0.1 mol with respect to 1 mol of PXG. Furthermore, the amount of allyl halide used is preferably 2 to 4 moles with respect to 1 mole of PXG.

アリル化反応終了後、反応液を室温付近に冷却し、トルエン等の有機溶剤を加えることで分液処理した後、得られた有機層を濃縮、更には蒸留やシリカゲルショートカラムによる精製をすることにより、上記式(1)で表されるPXGAEを得ることができる。このPXGAEの純度は95%以上、好ましくは98%以上とすることがよい。   After completion of the allylation reaction, the reaction solution is cooled to around room temperature, separated by adding an organic solvent such as toluene, and then the obtained organic layer is concentrated and further purified by distillation or a silica gel short column. Thus, PXGAE represented by the above formula (1) can be obtained. The purity of this PXGAE is 95% or more, preferably 98% or more.

また、PHBから、式(1)で表されるPXGAEの合成は、例えば次のように行うことができる。PHBと、アリルアルコールをジメチルスルフオキシドに溶解後、テトラブチルアンモニウムブロマイド等のテトラアルキルアンモニウムハライド又はテトラフェニルアンモニウムクロライド等のテトラアリールアンモニウムハライドのような四級アンモニウム塩を添加し、反応温度を80℃以下に保ちながら水酸化ナトリウム等のアルカリ水溶液を滴下する。滴下終了後、80℃で約4時間反応を行う。   Moreover, the synthesis | combination of PXGAE represented by Formula (1) from PHB can be performed as follows, for example. After dissolving PHB and allyl alcohol in dimethylsulfoxide, a quaternary ammonium salt such as tetraalkylammonium halide such as tetrabutylammonium bromide or tetraarylammonium halide such as tetraphenylammonium chloride is added, and the reaction temperature is increased to 80. An alkaline aqueous solution such as sodium hydroxide is added dropwise while keeping the temperature below ℃. After completion of dropping, the reaction is carried out at 80 ° C. for about 4 hours.

上記アルカリ水溶液としては、水酸化ナトリウム、水酸化カルシウム、水酸化カリウム等の水溶液が好ましい。アルカリの使用量としては、アリルアルコールに対し2〜10倍当量、より好ましくは4〜8倍当量がよい。また、触媒である四級アンモニウム塩の添加量は、PHB1モルに対して0.001〜0.1モルが好ましい。更に、アリルアルコールの添加量は、PHB1モルに対して2〜6モルが好ましい。   As the alkaline aqueous solution, aqueous solutions of sodium hydroxide, calcium hydroxide, potassium hydroxide and the like are preferable. As the usage-amount of an alkali, 2-10 times equivalent with respect to allyl alcohol, More preferably, 4-8 times equivalent is good. Moreover, the addition amount of the quaternary ammonium salt as a catalyst is preferably 0.001 to 0.1 mol with respect to 1 mol of PHB. Furthermore, the addition amount of allyl alcohol is preferably 2 to 6 mol with respect to 1 mol of PHB.

上記のようにして得られた式(1)で表されるジアリルエーテル化合物のPXGAEから式(2)で表されるエポキシ化合物PXGGEの合成は、例えば次のように行うことができる。PXGAEにメタノール、エタノール等のアルコール、アセトニトリル、ベンゾニトリル等のニトリル化合物等の溶剤と、炭酸カリウムを加え、攪拌下、5〜40%、好ましくは30〜35%の過酸化水素水を滴下し、滴下終了後、0.5〜10時間、好ましくは1〜6時間エポキシ化反応を行う。酸化剤としての過酸化水素水の添加量は、PXGAE1モルに対して、5〜15倍モルになるよう加えることが望ましい。反応温度は液相を保持する温度が採用されるが、通常45℃以下、好ましくは常温付近の20〜40℃の範囲である。低温では反応が進行せず、高温では副反応が激しくなる。   The epoxy compound PXGGE represented by the formula (2) can be synthesized from the diallyl ether compound PXGAE represented by the formula (1) obtained as described above, for example, as follows. To PXGAE, a solvent such as alcohol such as methanol and ethanol, a nitrile compound such as acetonitrile and benzonitrile, and potassium carbonate are added. Under stirring, 5 to 40%, preferably 30 to 35% hydrogen peroxide solution is dropped, After completion of dropping, the epoxidation reaction is carried out for 0.5 to 10 hours, preferably 1 to 6 hours. It is desirable to add the hydrogen peroxide solution as the oxidizing agent in an amount of 5 to 15 times mol per mol of PXGAE. Although the temperature at which the liquid phase is maintained is adopted as the reaction temperature, it is usually 45 ° C. or lower, preferably 20 to 40 ° C. near normal temperature. The reaction does not proceed at low temperatures, and side reactions become intense at high temperatures.

エポキシ化反応に使用する有機溶剤としては、メタノール、エタノール等のアルコール類とアセトニトリル、ベンゾニトリル等のニトリル類の混合物が好ましい。アルコール類とニトリル類の混合比は、モル比で、アルコール:ニトリル=0:100〜90:10が好ましく、特に50:50〜80:20が好ましい。上記溶剤中に溶解させるPXGAEの濃度としては、0.1〜1.5mol/Lの範囲が好ましく、特に0.2〜1.0mol/Lの範囲が好ましい。炭酸カリウムの添加量は、PXGAE1モルに対して、0.2〜4モルが好ましく、1.6〜2.4モルの範囲がより好ましい。   The organic solvent used for the epoxidation reaction is preferably a mixture of alcohols such as methanol and ethanol and nitriles such as acetonitrile and benzonitrile. The mixing ratio of alcohols and nitriles is preferably a molar ratio of alcohol: nitrile = 0: 100 to 90:10, particularly preferably 50:50 to 80:20. The concentration of PXGAE dissolved in the solvent is preferably in the range of 0.1 to 1.5 mol / L, particularly preferably in the range of 0.2 to 1.0 mol / L. 0.2-4 mol is preferable with respect to 1 mol of PXGAE, and, as for the addition amount of potassium carbonate, the range of 1.6-2.4 mol is more preferable.

エポキシ化反応終了後、トルエン等の有機溶剤を加えることで分液処理した後、亜硫酸ナトリウム水溶液、飽和食塩水で洗浄し、乾燥後、有機層を濃縮することにより式(2)で表されるエポキシ化合物PXGGEを得ることができる。   After completion of the epoxidation reaction, a liquid separation treatment is performed by adding an organic solvent such as toluene, followed by washing with an aqueous sodium sulfite solution and saturated brine, drying, and then concentration of the organic layer is expressed by the formula (2). An epoxy compound PXGGE can be obtained.

本発明の製造方法で得られた液状エポキシ化合物は未反応物が少ないため、高純度の生成物となる。従って、エポキシ当量(Eq)もほぼ理論値近傍に制御可能となる。好ましくは、化学式から計算される分子量Mを分子中のエポキシ基の数2で除した値Eq'と、得られた液状エポキシ化合物のエポキシ当量Eqとの比(Eq/Eq')が95〜100%の範囲にある。具体的には、液状エポキシ化合物のエポキシ当量は125〜132の範囲である。   Since the liquid epoxy compound obtained by the production method of the present invention has few unreacted substances, it becomes a high-purity product. Therefore, the epoxy equivalent (Eq) can also be controlled in the vicinity of the theoretical value. Preferably, the ratio (Eq / Eq ′) of the value Eq ′ obtained by dividing the molecular weight M calculated from the chemical formula by the number 2 of epoxy groups in the molecule and the epoxy equivalent Eq of the obtained liquid epoxy compound is 95-100. % Range. Specifically, the epoxy equivalent of the liquid epoxy compound is in the range of 125 to 132.

本発明の製造方法で得られる液状エポキシ化合物は未反応物が少なく、エピクロルヒドリンを用いる従来法の副反応に起因する残留塩素量が少なく、全塩素量で100ppm以下であり、更に電子材料用途などに用いる場合は好ましくは50ppm以下とすることができる。本発明のエポキシ化合物は、95%以上、好ましくは98%以上、より好ましくは99%以上が式(2)で表されるPXGGEであり、塩素化合物等の少量の不純物を含む。   The liquid epoxy compound obtained by the production method of the present invention has few unreacted materials, has a small amount of residual chlorine due to side reactions of the conventional method using epichlorohydrin, and has a total chlorine amount of 100 ppm or less. When used, it can be preferably 50 ppm or less. The epoxy compound of the present invention is PXGGE represented by the formula (2) at 95% or more, preferably 98% or more, and more preferably 99% or more, and contains a small amount of impurities such as a chlorine compound.

本発明の製造方法で得られる液状エポキシ化合物は、公知の酸無水物系、カチオン重合触媒、アミン系、イミダゾール系などのエポキシ硬化剤を配合することにより硬化物とすることができる。また、他の硬化性組成物に反応性希釈剤として配合することもできる。   The liquid epoxy compound obtained by the production method of the present invention can be made into a cured product by blending a known acid anhydride type, cationic polymerization catalyst, amine type or imidazole type epoxy curing agent. Moreover, it can also mix | blend with another curable composition as a reactive diluent.

本発明の製造方法によれば、高純度のエポキシ化合物を比較的高収率で得ることができる。そして、エポキシ化反応で、取扱い易く安価な過酸化水素水を使用することで、安全性を高めることができ、更に、塩素等のハロゲンが液状エポキシ化合物中に混入する危険性もなくなる。また、溶媒は、メタノール、エタノール等のアルコール類とアセトニトリル、ベンゾニトリル等のニトリル類の混合溶媒を用いることができ、ハロゲン系溶剤の使用を必要としない。本発明のエポキシ化合物は、低塩素量及び二官能構造を同時に具備しているため、種々用途の希釈剤、特に電子材料用途の液状封止材に有用である。   According to the production method of the present invention, a high-purity epoxy compound can be obtained in a relatively high yield. And, by using an inexpensive hydrogen peroxide solution that is easy to handle in the epoxidation reaction, safety can be improved, and further, there is no risk of halogen such as chlorine being mixed into the liquid epoxy compound. The solvent can be a mixed solvent of alcohols such as methanol and ethanol and nitriles such as acetonitrile and benzonitrile, and does not require the use of a halogen-based solvent. Since the epoxy compound of the present invention has a low chlorine content and a bifunctional structure at the same time, it is useful as a diluent for various uses, particularly as a liquid sealing material for electronic materials.

以下に、実施例及び比較例を掲げて本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

合成した液状エポキシ化合物のエポキシ当量、粘度、全塩素量は以下の方法により測定し評価した。
エポキシ当量:過塩素酸法(JIS K7236)により算出した。
粘度:25℃での粘度をE型粘度計にて測定した。
加水分解性塩素量:エポキシ樹脂4gを蒸留水200gで121℃、2気圧の条件で20時間抽出を行い、抽出液中の塩素イオン量をイオンクロマトグラフィーにて定量を行った。
The epoxy equivalent, viscosity, and total chlorine content of the synthesized liquid epoxy compound were measured and evaluated by the following methods.
Epoxy equivalent: Calculated by the perchloric acid method (JIS K7236).
Viscosity: The viscosity at 25 ° C. was measured with an E-type viscometer.
Hydrolyzable chlorine content: 4 g of epoxy resin was extracted with 200 g of distilled water at 121 ° C. and 2 atm for 20 hours, and the amount of chlorine ions in the extract was quantified by ion chromatography.

合成例1
攪拌機、温度計、還流冷却器、滴下装置を備えた内容量2Lの四つ口ガラス製フラスコに、45.2gのPXG、27gのジメチルスルホキシド(DMSO)、1.1gのテトラブチルアンモニウムブロマイド、75gのアリルクロライドを入れ、室温で攪拌下、47%水酸化ナトリウム水溶液150gを1時間かけて滴下する。滴下終了後、6時間室温で攪拌する。反応終了後、110gの水と65gのトルエン、32gの5%塩酸水溶液を加える。分液後、有機層を飽和食塩水100gで3回洗浄し、これを無水硫酸マグネシウムで乾燥する。乾燥剤を除き溶媒を濃縮すると、71.3gの濃縮物が得られた。これを減圧下で蒸留して(沸点137−139℃/3mmHg)、62.4gのPXGAEを得た。収率87.4%、GC純度98%。
Synthesis example 1
To a 2 L four-neck glass flask equipped with a stirrer, thermometer, reflux condenser, and dropping device, 45.2 g of PXG, 27 g of dimethyl sulfoxide (DMSO), 1.1 g of tetrabutylammonium bromide, 75 g Of allyl chloride was added and 150 g of 47% aqueous sodium hydroxide solution was added dropwise over 1 hour with stirring at room temperature. After completion of dropping, the mixture is stirred for 6 hours at room temperature. After completion of the reaction, 110 g of water, 65 g of toluene and 32 g of 5% aqueous hydrochloric acid are added. After separation, the organic layer is washed 3 times with 100 g of saturated brine and dried over anhydrous magnesium sulfate. Concentration of the solvent without the desiccant gave 71.3 g of concentrate. This was distilled under reduced pressure (boiling point 137-139 ° C./3 mmHg) to obtain 62.4 g of PXGAE. Yield 87.4%, GC purity 98%.

合成例2
57.3gのα,α'−ジクロロ−p−キシレン、27gのDMSO、1.1gのテトラブチルアンモニウムブロマイド、45.6gのアリルアルコールを入れ、80℃で攪拌下、47%水酸化ナトリウム水溶液165gを1.2時間かけて滴下する。滴下終了後、80℃4時間攪拌する。反応終了後、110gの水と65gのトルエン、40gの5%塩酸水溶液を加える。分液後、合成例1と同様にして、有機層を飽和食塩水で洗浄し、これを無水硫酸マグネシウムで乾燥し、乾燥剤を除き、溶媒を濃縮すると、74.2gの濃縮物が得られた。これを減圧下で蒸留して)、60.6gのPXGAEを得た。収率84.9%、GC純度98%。
Synthesis example 2
57.3 g of α, α′-dichloro-p-xylene, 27 g of DMSO, 1.1 g of tetrabutylammonium bromide and 45.6 g of allyl alcohol were added and 165 g of 47% aqueous sodium hydroxide solution was stirred at 80 ° C. Is added dropwise over 1.2 hours. After completion of dropping, the mixture is stirred at 80 ° C. for 4 hours. After completion of the reaction, 110 g of water, 65 g of toluene and 40 g of 5% hydrochloric acid aqueous solution are added. After separation, the organic layer was washed with a saturated saline solution in the same manner as in Synthesis Example 1, dried over anhydrous magnesium sulfate, the desiccant was removed, and the solvent was concentrated to obtain 74.2 g of concentrate. It was. This was distilled under reduced pressure) to obtain 60.6 g of PXGAE. Yield 84.9%, GC purity 98%.

合成例3
攪拌機、温度計、還流冷却器、滴下装置を備えた内容量5Lの四つ口ガラス製フラスコに、62.4gのPXGAE(合成例1で得たもの)、408gのメタノール、168gのアセトニトリル、80gの炭酸カリウムを入れる。室温で攪拌下、反応系内が20〜40℃の温度範囲になるように調節しながら30〜35%の過酸化水素水380mlを滴下する。滴下終了後、室温で3時間攪拌する。反応終了後、24gの塩化ナトリウム、326gのトルエンを加え1時間攪拌する。分液後有機層は、432gの10%亜硫酸ナトリウム水溶液、374gの飽和食塩水で洗浄し、これを無水硫酸マグネシウムで乾燥する。乾燥剤を除き溶媒を濃縮すると、50gの濃縮液が得られた。これを減圧下で蒸留して(沸点182−185℃/5mmHg)、48gのPXGGEを得た。収率67%、GC純度98%であった。加水分解性塩素量は18ppmで、25℃での粘度は25cpsであった。合成例2で得たPXGAEを用いた場合も、ほぼ同様な収率、純度でPXGGEを得た。
Synthesis example 3
In a 5 L four-neck glass flask equipped with a stirrer, thermometer, reflux condenser and dropping device, 62.4 g of PXGAE (obtained in Synthesis Example 1), 408 g of methanol, 168 g of acetonitrile, 80 g Of potassium carbonate. While stirring at room temperature, 380 ml of 30-35% hydrogen peroxide solution is added dropwise while adjusting the temperature of the reaction system to be in the temperature range of 20-40 ° C. After completion of dropping, the mixture is stirred at room temperature for 3 hours. After completion of the reaction, 24 g of sodium chloride and 326 g of toluene are added and stirred for 1 hour. After separation, the organic layer is washed with 432 g of 10% aqueous sodium sulfite solution and 374 g of saturated saline, and dried over anhydrous magnesium sulfate. When the desiccant was removed and the solvent was concentrated, 50 g of concentrated liquid was obtained. This was distilled under reduced pressure (boiling point 182-185 ° C./5 mmHg) to obtain 48 g of PXGGE. The yield was 67% and the GC purity was 98%. The amount of hydrolyzable chlorine was 18 ppm, and the viscosity at 25 ° C. was 25 cps. When PXGAE obtained in Synthesis Example 2 was used, PXGGE was obtained with substantially the same yield and purity.

Claims (4)

下記式(1)
Figure 2006028057
で表されるジアリルエーテル化合物を炭酸カリウムの存在下、過酸化水素水でエポキシ化することを特徴とする下記式(2)
Figure 2006028057
で表される液状エポキシ化合物の製造方法。
Following formula (1)
Figure 2006028057
Wherein the diallyl ether compound represented by formula (2) is epoxidized with hydrogen peroxide in the presence of potassium carbonate:
Figure 2006028057
The manufacturing method of the liquid epoxy compound represented by these.
ジアリルエーテル化合物が、下記式(3)
Figure 2006028057
(但し、Xはヒドロキシ基又はハロゲンを示す)で表され、Xがヒドロキシ基であるジヒドロキシ化合物と、アリルハライドとを反応させて得られたものである請求項1に記載の液状エポキシ化合物の製造方法。
The diallyl ether compound is represented by the following formula (3)
Figure 2006028057
2. The liquid epoxy compound according to claim 1, wherein X is a hydroxy group or halogen, and is obtained by reacting a dihydroxy compound in which X is a hydroxy group with allyl halide. Method.
ジアリルエーテル化合物が、下記式(3)
Figure 2006028057
(但し、Xはヒドロキシ基又はハロゲンを示す)で表され、Xがハロゲンであるジハライド化合物と、アリルアルコールを反応させて得られたものである請求項1に記載の液状エポキシ化合物の製造方法。
The diallyl ether compound is represented by the following formula (3)
Figure 2006028057
The method for producing a liquid epoxy compound according to claim 1, wherein X is a hydroxy group or halogen, and is obtained by reacting a dihalide compound in which X is halogen and allyl alcohol.
エポキシ当量が125〜132であり、全塩素量が100ppm以下である請求項1に記載の液状エポキシ化合物の製造方法。   The method for producing a liquid epoxy compound according to claim 1, wherein the epoxy equivalent is 125 to 132 and the total chlorine content is 100 ppm or less.
JP2004207088A 2004-07-14 2004-07-14 Method for producing liquid epoxy compound Withdrawn JP2006028057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004207088A JP2006028057A (en) 2004-07-14 2004-07-14 Method for producing liquid epoxy compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004207088A JP2006028057A (en) 2004-07-14 2004-07-14 Method for producing liquid epoxy compound

Publications (1)

Publication Number Publication Date
JP2006028057A true JP2006028057A (en) 2006-02-02

Family

ID=35894830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004207088A Withdrawn JP2006028057A (en) 2004-07-14 2004-07-14 Method for producing liquid epoxy compound

Country Status (1)

Country Link
JP (1) JP2006028057A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011078091A1 (en) * 2009-12-24 2011-06-30 昭和電工株式会社 Process for production of epoxy compound
JP2011213716A (en) * 2010-03-15 2011-10-27 Mitsubishi Chemicals Corp Method for producing polyallyloxy compound and method for producing polyglycidyloxy compound
JP2012028136A (en) * 2010-07-22 2012-02-09 Showa Denko Kk Conductive particle dispersed body for conductive film formation, method of manufacturing printed wiring board, and conductive film formation method
WO2016063957A1 (en) * 2014-10-22 2016-04-28 スガイ化学工業株式会社 Decalin derivative and method for producing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011078091A1 (en) * 2009-12-24 2011-06-30 昭和電工株式会社 Process for production of epoxy compound
CN102666519A (en) * 2009-12-24 2012-09-12 昭和电工株式会社 Process for production of epoxy compound
EP2518061A1 (en) * 2009-12-24 2012-10-31 Showa Denko K.K. Process for production of epoxy compound
EP2518061A4 (en) * 2009-12-24 2014-04-02 Showa Denko Kk Process for production of epoxy compound
US8993791B2 (en) 2009-12-24 2015-03-31 Showa Denko K.K. Process for producing epoxy compounds
JP5787770B2 (en) * 2009-12-24 2015-09-30 昭和電工株式会社 Method for producing epoxy compound
JP2011213716A (en) * 2010-03-15 2011-10-27 Mitsubishi Chemicals Corp Method for producing polyallyloxy compound and method for producing polyglycidyloxy compound
JP2012028136A (en) * 2010-07-22 2012-02-09 Showa Denko Kk Conductive particle dispersed body for conductive film formation, method of manufacturing printed wiring board, and conductive film formation method
WO2016063957A1 (en) * 2014-10-22 2016-04-28 スガイ化学工業株式会社 Decalin derivative and method for producing same
JPWO2016063957A1 (en) * 2014-10-22 2017-08-03 スガイ化学工業株式会社 Decalin derivative and method for producing the same

Similar Documents

Publication Publication Date Title
KR101716634B1 (en) Epoxy resin, epoxy resin composition, and cured object
WO2011027802A1 (en) Diepoxy compound, process for producing same, and composition containing the diepoxy compound
CN110891998B (en) Epoxy resin, epoxy resin composition containing same, and cured product using same
WO2011034114A1 (en) Diepoxy compound, method for producing same, and composition containing said diepoxy compound
JP2003533569A (en) Method for producing hydroxyester derivative intermediate and epoxy resin produced therefrom
JP5130728B2 (en) Epoxy resin purification method
WO2011078060A1 (en) Process for production of glycidyl ether compounds, and monoallyl monoglycidyl ether compound
KR0180927B1 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP2006028057A (en) Method for producing liquid epoxy compound
JP5901521B2 (en) Method for producing epoxy compound
KR100411859B1 (en) Epoxy resins, epoxy resin compositions and cured products thereof
JPWO2018083881A1 (en) Method for producing polyvalent glycidyl compound
EP1538147B1 (en) Method of producing glycidyl 2-hydroxyisobutyrate
KR101520059B1 (en) Epoxy resins containing low-concentration halogen and method for preparing the same
JP2009209117A (en) Epoxy compound, method for producing the same, epoxy resin composition and cured product thereof
JP2008285544A (en) Epoxy compound containing fluorene ring and its manufacturing method
JP4581397B2 (en) Epoxy resin composition and cured product thereof
JP3905772B2 (en) New multifunctional epoxy compounds
JP2587739B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP4743824B2 (en) Liquid epoxy resin, epoxy resin composition and cured product thereof
JP4397084B2 (en) Novel alicyclic group-containing compound and production method thereof
JP2016084295A (en) Polyhydroxy compound and producing method thereof
TWI739402B (en) Product of glycidyl ether of a mono or polyhydric phenol, epoxy resin composition, and process for producing product of glycidyl ether of a mono or polyhydric phenol
JP4899257B2 (en) Phenol resin, epoxy resin, epoxy resin composition and cured product thereof.
JP4186153B2 (en) Epoxy resin composition, cured product thereof, semiconductor sealing material, and resin composition for electronic circuit board

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002