JPH044326B2 - - Google Patents

Info

Publication number
JPH044326B2
JPH044326B2 JP22096882A JP22096882A JPH044326B2 JP H044326 B2 JPH044326 B2 JP H044326B2 JP 22096882 A JP22096882 A JP 22096882A JP 22096882 A JP22096882 A JP 22096882A JP H044326 B2 JPH044326 B2 JP H044326B2
Authority
JP
Japan
Prior art keywords
epoxy resin
dob
resin
formaldehyde
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22096882A
Other languages
Japanese (ja)
Other versions
JPS59109514A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP22096882A priority Critical patent/JPS59109514A/en
Publication of JPS59109514A publication Critical patent/JPS59109514A/en
Publication of JPH044326B2 publication Critical patent/JPH044326B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/08Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols from phenol-aldehyde condensates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規エポキシ樹脂およびその製造方法
に関する。更に詳しくは、本発明は2,2′−ジヒ
ドロキシビフエニル(以下2,2′−DOBと略記
する。)ホルムアルデヒド樹脂のグリシジルエー
テル化物であるエポキシ樹脂およびその製造方法
に関する。 エポキシ樹脂とは1分子中に少なくとも2個以
上のエポキシ基を有する化合物の総称で、文献に
発表された化合物は数多いが、実用的には限られ
ている。たとえば、ビスフエノールとエピクロル
ヒドリンとから得られるいわゆるビスフエノール
A型エポキシ樹脂は、工業的に優れた合成樹脂と
して、塗料、電気、土木、建築、接着などの分野
に広く用いられている。 しかしながら、ビスフエノールA型エポキシ樹
脂は、1分子中にグリシジルエーテル基を2個し
か含有することができないため、硬化時の架橋密
度が比較的小さく、硬化物の耐熱性、耐水性にお
いてなお満足されるものではない。 また近年では、特に電気、電子分野において、
耐熱性、耐湿性、耐水性、電気特性の更に優れた
エポキシ樹脂の出現が期待されている。 本発明者らは、以上の諸要求を満たすエポキシ
樹脂を開発すべく鋭意検討の結果、2,2′−
DOB・ホルムアルデヒド樹脂のグリシジルエー
テル化物である新規なエポキシ樹脂が上述した諸
要求を満すことを見出し本発明を完成するに至つ
た。 すなわち、本発明は式(1) (式中、nは0〜3の数を表わす。) で示されるエポキシ樹脂、および2,2′−DOB
とホルムアルデヒドを酸触媒の存在下に反応させ
て得られる2,2′−DOB・ホルムアルデヒド樹
脂と1−ハロ−2,3−エポキシプロパンをアル
カリの存在下に反応させることを特徴とするエポ
キシ樹脂の製造方法を提供する。 本発明によるエポキシ樹脂は、従来のエポキシ
樹脂の欠点を解決し、耐熱性、耐湿性、耐水性、
電気特性に優れるため、従来、エポキシ樹脂が使
用されている分野において広く使用することがで
き、特に電子・電気工業分野において有用であ
る。 本発明のエポキシ樹脂を製造するに当り、2,
2′−DOB・ホルムアルデヒド樹脂は、2,2′−
DOBとホルムアルデヒドとを酸触媒の存在下に
反応させることにより、容易に製造することがで
きる。 酸触媒としては、鉱酸、脂肪族カルボン酸、芳
香族カルボン酸、脂肪族スルホン酸、芳香族スル
ホン酸などが例示される。これらの触媒の使用量
は2,2′−DOBに対し0.5〜10重量%、通常は1
〜5重量%である。 ホルムアルデヒドの使用量は2,2′−DOB1モ
ルに対して0.01〜10モル、好適には0.2〜4モル
である。ホルムアルデヒドの使用量が0.01モル比
より少ない場合は2,2′−DOB・ホルムアルデ
ヒド樹脂の収率が低くなり、一方10モル比を越え
る場合は、2,2′−DOB・ホルムアルデヒド樹
脂の分子量が増大し過ぎ、トルエン、ケトン類あ
るいは、エピクロルヒドリンなどに溶解し難くな
り、従つて本発明の工業的に有利なエポキシ樹脂
が得難くなる。 2,2′−DOBとホルムアルデヒドとの反応は
非溶媒下に実施できるが好ましくは水あるいはベ
ンゼン、トルエンなどの不活性有機溶剤等の溶媒
の存在下に実施される。 反応温度は50〜200℃、好ましくは70〜130℃で
あるが、特にベンゼン、トルエンなどの溶剤と水
との共沸下に水を分離しながら反応させるのが好
ましい。反応時間は1〜6時間、通常2〜4時間
である。 反応終了後、生成物を水洗し触媒を除去して
2,2′−DOB・ホルムアルデヒド樹脂を得る。 このようにして得られた2,2′−DOB・ホル
ムアルデヒド樹脂は、次いで1−ハロ−2,3−
エポキシプロパンとアルカリの存在下に反応させ
てエポキシ化する。 エポキシ化反応に用いられる1−ハロ−2,3
−エポキシプロパンとしては1−クロル−2,3
−エポキシプロパンが工業的に有利であり、通
常、2,2′−DOB・ホルムアルデヒド樹脂中の
水酸基1当量当り1〜20モル、好ましくは5〜7
モル用いられる。 エポキシ化反応に用いられるアルカリとして
は、水酸化ナトリウム、水酸化カリウムなどが例
示され、通常2,2′−DOB・ホルムアルデヒド
樹脂中の水酸基1当量当り0.9〜1.5当量好ましく
は1.0〜1.2当量用いられる。 反応温度は50〜200℃、好ましくは70〜130℃で
あり、通常、この反応は1−ハロ−2,3−エポ
キシプロパンの還流温度で行われる。反応時間は
3〜10時間、通常は4〜7時間である。 本エポキシ化反応においては、第4級アンモニ
ウム化合物のような触媒を共存させることが好ま
しい。 反応終了後、通常の後処理を行い、過剰の1−
ハロ−2,3−エポキシプロパンの回収、無機塩
の除去、トツピング等を施し、目的のエポキシ樹
脂を得ることができる。 このようにして得られるエポキシ樹脂は2,
2′−ビス(2,3−エポキシプロポキシ)ビフエ
ニルのメチレン架橋体を主体とする化合物で式(1)
の構造式を有し塩酸−ジオキサン法によるエポキ
シ当量は150g/eq〜400g/eq(好ましくは150
g/eq)R&B法による軟化点は、30℃〜200℃
(好ましくは50℃〜150℃)である。 次に本発明を実施例により具体的に説明する。
例中、%は重量%を示す。 実施例 1 2,2′−DOB186g(1.0モル)、ベンゼン186
ml、80%パラホルムアルデヒド12g(0.3モル)
及びパラトルエンスルホン酸1.86gを混合し、84
〜89℃で水を系外に除去しながら4時間、縮合重
合反応を行なつた。反応混合物を温水200ml/回
で3回水洗したのち、ベンゼンを蒸留回収し、微
黄色樹脂状物188gを得た。この樹脂状物の軟化
点は90℃、水酸価は580mgKOH/gであつた。ま
たNMRより、この樹脂状物は、δ値で3.8〜
4.2ppmの範囲でメチレン基の存在が確認でき、
6.8〜7.4ppmの範囲にフエニル基が確認できる。
かくして得られた2,2′−DOB・ホルムアルデ
ヒド樹脂150gに1−クロル−2,3−エポキシ
プロパン(以下ECHと略記する。)を925g(10
モル)、トリエチルベンジルアンモニウムクロラ
イドを1g、及び50%水酸化ナトリウム水溶液
127g(1.6モル)を加えて加熱、ECH還流条件下
に加熱し、水を系外に除去しながら4時間反応さ
せた。さらに減圧条件下でECHを蒸留回収し、
残留物をトルエン1000mlに溶解し、3%水酸化ナ
トリウム水溶液300gを加えて86〜89℃で1時間
撹拌し続け、静置し分液する操作を2回くり返し
た。次いで1%第1リン酸ナトリウム水溶液300
gを加えて、83〜86℃で30分間撹拌し、静置、分
液後、有機層を水300ml/回で2回水洗した。有
機層からトルエンを蒸留回収後150℃、10mmHgの
減圧圧条件下で低沸点物質を蒸留除去して、淡黄
色の樹脂を226g得た。このものの性状を表−1
に示す。 実施例 2 2,2′−DOB186g(1.0モル)、ベンゼン186
ml、80%パラホルムアルデヒド17g(0.45モル)、
及びパラトルエンスルホン酸1.86gを混合し、実
施例−1と同様にして微黄色樹脂状物176gを得
た。この樹脂状物の軟化点は117℃、水酸価は577
mgKOH/gであつた。また、NMRよりδ値で
3.8〜4.2ppmにメチレン基、6.8〜7.4ppmにフエ
ニル基が確認された。かくして得られた2,2′−
DOB・ホルムアルデヒド樹脂150gに925g(10
モル)のECH、トリエチルベンジルアンモニウ
ムクロライドを1g、及び50%水酸化ナトリウム
水溶液127g(1.6モル)を加え実施例−1と同様
にして淡黄色の樹脂を208g得た。このものの性
状を表−1に示す。
The present invention relates to a new epoxy resin and a method for producing the same. More specifically, the present invention relates to an epoxy resin which is a glycidyl etherified product of 2,2'-dihydroxybiphenyl (hereinafter abbreviated as 2,2'-DOB) formaldehyde resin, and a method for producing the same. Epoxy resin is a general term for compounds having at least two or more epoxy groups in one molecule, and although many compounds have been published in the literature, their practical use is limited. For example, so-called bisphenol A type epoxy resin obtained from bisphenol and epichlorohydrin is widely used as an industrially excellent synthetic resin in fields such as paints, electricity, civil engineering, architecture, and adhesives. However, since bisphenol A type epoxy resin can only contain two glycidyl ether groups in one molecule, the crosslinking density during curing is relatively low, and the heat resistance and water resistance of the cured product are still not satisfactory. It's not something you can do. In recent years, especially in the electrical and electronic fields,
Epoxy resins with even better heat resistance, moisture resistance, water resistance, and electrical properties are expected to emerge. As a result of intensive studies to develop an epoxy resin that satisfies the above requirements, the present inventors found that 2,2'-
The present inventors have discovered that a new epoxy resin, which is a glycidyl etherified product of DOB/formaldehyde resin, satisfies the above-mentioned requirements and has completed the present invention. That is, the present invention is based on formula (1) (In the formula, n represents a number from 0 to 3.) and 2,2'-DOB
and formaldehyde in the presence of an acid catalyst, and 1-halo-2,3-epoxypropane is reacted in the presence of an alkali. A manufacturing method is provided. The epoxy resin according to the present invention solves the drawbacks of conventional epoxy resins, and has excellent heat resistance, moisture resistance, water resistance,
Because of its excellent electrical properties, it can be widely used in fields where epoxy resins have traditionally been used, and is particularly useful in the electronic and electrical industry fields. In producing the epoxy resin of the present invention, 2.
2′-DOB formaldehyde resin is 2,2′-
It can be easily produced by reacting DOB and formaldehyde in the presence of an acid catalyst. Examples of acid catalysts include mineral acids, aliphatic carboxylic acids, aromatic carboxylic acids, aliphatic sulfonic acids, and aromatic sulfonic acids. The amount of these catalysts used is 0.5 to 10% by weight based on 2,2'-DOB, usually 1
~5% by weight. The amount of formaldehyde used is 0.01 to 10 mol, preferably 0.2 to 4 mol, per 1 mol of 2,2'-DOB. If the amount of formaldehyde used is less than 0.01 molar ratio, the yield of 2,2'-DOB/formaldehyde resin will be low, while if it exceeds 10 molar ratio, the molecular weight of 2,2'-DOB/formaldehyde resin will increase. If too much is used, it becomes difficult to dissolve in toluene, ketones or epichlorohydrin, and therefore it becomes difficult to obtain the industrially advantageous epoxy resin of the present invention. The reaction between 2,2'-DOB and formaldehyde can be carried out in the absence of a solvent, but is preferably carried out in the presence of a solvent such as water or an inert organic solvent such as benzene or toluene. The reaction temperature is 50 to 200°C, preferably 70 to 130°C, and it is particularly preferable to carry out the reaction under azeotropy between a solvent such as benzene or toluene and water while separating water. The reaction time is 1 to 6 hours, usually 2 to 4 hours. After the reaction is completed, the product is washed with water to remove the catalyst to obtain 2,2'-DOB/formaldehyde resin. The 2,2'-DOB formaldehyde resin thus obtained is then 1-halo-2,3-
Epoxidize by reacting with epoxypropane in the presence of an alkali. 1-halo-2,3 used in epoxidation reaction
-1-chloro-2,3 as epoxypropane
-Epoxypropane is industrially advantageous and is usually 1 to 20 mol, preferably 5 to 7 mol per equivalent of hydroxyl group in the 2,2'-DOB/formaldehyde resin.
mole used. Examples of the alkali used in the epoxidation reaction include sodium hydroxide and potassium hydroxide, and it is usually used in an amount of 0.9 to 1.5 equivalents, preferably 1.0 to 1.2 equivalents, per equivalent of hydroxyl group in the 2,2'-DOB/formaldehyde resin. . The reaction temperature is 50 to 200°C, preferably 70 to 130°C, and the reaction is usually carried out at the reflux temperature of 1-halo-2,3-epoxypropane. The reaction time is 3 to 10 hours, usually 4 to 7 hours. In this epoxidation reaction, it is preferable to coexist a catalyst such as a quaternary ammonium compound. After the reaction is complete, carry out the usual post-treatment to remove excess 1-
The desired epoxy resin can be obtained by recovering halo-2,3-epoxypropane, removing inorganic salts, topping, and the like. The epoxy resin obtained in this way is 2,
A compound mainly consisting of a methylene bridge of 2'-bis(2,3-epoxypropoxy)biphenyl with formula (1)
It has a structural formula of 150 g/eq to 400 g/eq (preferably 150
g/eq) Softening point by R&B method is 30℃~200℃
(preferably 50°C to 150°C). Next, the present invention will be specifically explained using examples.
In the examples, % indicates weight %. Example 1 2,2'-DOB 186g (1.0 mol), benzene 186
ml, 80% paraformaldehyde 12g (0.3 mol)
and 1.86g of para-toluenesulfonic acid, 84
The condensation polymerization reaction was carried out at ~89°C for 4 hours while removing water from the system. After washing the reaction mixture three times with 200 ml of warm water each time, benzene was distilled and recovered to obtain 188 g of a pale yellow resinous substance. This resinous material had a softening point of 90° C. and a hydroxyl value of 580 mgKOH/g. Also, from NMR, this resinous material has a δ value of 3.8~
The presence of methylene groups can be confirmed in the range of 4.2 ppm,
Phenyl groups can be confirmed in the range of 6.8 to 7.4 ppm.
To 150 g of the 2,2'-DOB/formaldehyde resin thus obtained, 925 g (10
mol), 1 g of triethylbenzylammonium chloride, and 50% aqueous sodium hydroxide solution
127 g (1.6 mol) was added and heated under ECH reflux conditions, and the mixture was reacted for 4 hours while removing water from the system. Furthermore, ECH is distilled and recovered under reduced pressure conditions.
The residue was dissolved in 1000 ml of toluene, 300 g of a 3% aqueous sodium hydroxide solution was added, the mixture was continuously stirred at 86 to 89° C. for 1 hour, and the operation of standing still and separating the liquids was repeated twice. Then 1% monosodium phosphate aqueous solution 300
The mixture was stirred at 83 to 86°C for 30 minutes, allowed to stand, and after liquid separation, the organic layer was washed twice with 300 ml of water/time. After distilling and recovering toluene from the organic layer, low-boiling substances were distilled off at 150° C. under reduced pressure conditions of 10 mmHg to obtain 226 g of pale yellow resin. Table 1 shows the properties of this product.
Shown below. Example 2 2,2′-DOB 186 g (1.0 mol), benzene 186
ml, 80% paraformaldehyde 17 g (0.45 mol),
and 1.86 g of para-toluenesulfonic acid were mixed to obtain 176 g of a pale yellow resinous substance in the same manner as in Example-1. The softening point of this resinous material is 117℃, and the hydroxyl value is 577.
It was mgKOH/g. In addition, the δ value from NMR
Methylene groups were confirmed at 3.8 to 4.2 ppm, and phenyl groups were confirmed at 6.8 to 7.4 ppm. Thus obtained 2,2′−
925g (10
mol) of ECH, 1 g of triethylbenzylammonium chloride, and 127 g (1.6 mol) of a 50% aqueous sodium hydroxide solution were added, and 208 g of a pale yellow resin was obtained in the same manner as in Example-1. The properties of this product are shown in Table-1.

【表】【table】

【表】 エポキシ当量 塩酸−ジオキサン

参考例 1 実施例−1で得られたエポキシ樹脂100gにフ
エノールノボラツク樹脂60g、2−フエニル−4
−メチルイミダゾール1g、ステアリン酸カルシ
ウム1gとシリカ粉370gを加え100℃2本ロール
で5分混練し、冷却後、粉砕して成型材料を得
た。 この成型材料を、160℃の加熱プレスにより圧
力30Kg/cm-1で10分間成型した。かくして得られ
た成型物の性能を表−2に示す。 参考例 2 実施例−2で得られたエポキシ樹脂100gにフ
エノールノボラツク樹脂55g、2−フエニル−4
−メチルイミダゾール1g、ステアリン酸カルシ
ウム1gとシリカ粉360gを加えて参考例1と同
様にして成型物を得得た。かくして得られた成型
物について参考例1と同様に測定した結果を表−
2に示す。 比較例 1 スミ −エポキシ樹脂ESA−011(ビスフエノ
ールA型エポキシ樹脂、エポキシ当量480g/eq
住友化学社品) 100gにフエノールノボラツク樹脂23g、2−
フエニル−4−メチルイミダゾール1g、ステア
リン酸カルシウム1gとシリカ粉290gを加え参
考例1と同様に成型物を得た。このものについて
参考例1と同様に性能を測定した結果を表−2に
示した。 表−2に示すように本発明によるエポキシ樹脂
は耐熱性、耐水性、耐湿性、電気特性に優れ、工
業材料として極めて有効なエポキシ樹脂であるこ
とが判明した。
[Table] Epoxy equivalent hydrochloric acid-dioxane
Method reference example 1 60 g of phenol novolac resin and 2-phenyl-4 were added to 100 g of the epoxy resin obtained in Example-1.
- 1 g of methylimidazole, 1 g of calcium stearate and 370 g of silica powder were added and kneaded at 100°C for 5 minutes using two rolls. After cooling, the mixture was pulverized to obtain a molding material. This molding material was molded for 10 minutes at a pressure of 30 Kg/cm -1 using a hot press at 160°C. The performance of the molded product thus obtained is shown in Table 2. Reference Example 2 55 g of phenol novolak resin and 2-phenyl-4 were added to 100 g of the epoxy resin obtained in Example-2.
- A molded product was obtained in the same manner as in Reference Example 1 by adding 1 g of methylimidazole, 1 g of calcium stearate, and 360 g of silica powder. The results of measurements of the thus obtained molded product in the same manner as in Reference Example 1 are shown in Table-
Shown in 2. Comparative example 1 Sumi-epoxy resin ESA-011 (bisphenol A type epoxy resin, epoxy equivalent 480g/eq
Sumitomo Chemical Co., Ltd. product) 23g of phenol novolak resin per 100g, 2-
A molded product was obtained in the same manner as in Reference Example 1 by adding 1 g of phenyl-4-methylimidazole, 1 g of calcium stearate, and 290 g of silica powder. The performance of this product was measured in the same manner as in Reference Example 1, and the results are shown in Table 2. As shown in Table 2, the epoxy resin according to the present invention has excellent heat resistance, water resistance, moisture resistance, and electrical properties, and has been found to be an extremely effective epoxy resin as an industrial material.

【表】【table】

Claims (1)

【特許請求の範囲】 1 下式 (式中、nは0〜3の数を表わす。) で示されるエポキシ樹脂。 2 2,2′−ジヒドロキシビフエニルとホルムア
ルデヒドを酸触媒の存在下に反応させて得られる
2,2′−ジヒドロキシビフエニル・ホルムアルデ
ヒド樹脂と1−ハロ−2,3−エポキシプロパン
をアルカリの存在下に反応させることを特徴とす
るエポキシ樹脂の製造方法。
[Claims] 1. The following formula (In the formula, n represents a number from 0 to 3.) An epoxy resin represented by: 2 2,2'-dihydroxybiphenyl formaldehyde resin obtained by reacting 2,2'-dihydroxybiphenyl and formaldehyde in the presence of an acid catalyst and 1-halo-2,3-epoxypropane in the presence of an alkali. A method for producing an epoxy resin characterized by reacting with.
JP22096882A 1982-12-15 1982-12-15 Epoxy resin and its production Granted JPS59109514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22096882A JPS59109514A (en) 1982-12-15 1982-12-15 Epoxy resin and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22096882A JPS59109514A (en) 1982-12-15 1982-12-15 Epoxy resin and its production

Publications (2)

Publication Number Publication Date
JPS59109514A JPS59109514A (en) 1984-06-25
JPH044326B2 true JPH044326B2 (en) 1992-01-28

Family

ID=16759374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22096882A Granted JPS59109514A (en) 1982-12-15 1982-12-15 Epoxy resin and its production

Country Status (1)

Country Link
JP (1) JPS59109514A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5902805B2 (en) * 2011-05-02 2016-04-13 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. Coating composition comprising 2,2'-biphenol

Also Published As

Publication number Publication date
JPS59109514A (en) 1984-06-25

Similar Documents

Publication Publication Date Title
US4284574A (en) Diglycidyl ethers of di-secondary alcohols, their preparation, and curable compositions containing them
JPS643217B2 (en)
JP2952094B2 (en) Epoxy compound
US3004951A (en) Diglycidyl ether of dihydroxypoly-chlorobiphenyls and epoxy resins therefrom
JPS58219173A (en) Bifunctional epoxide and epoxy resin
JP2001511170A (en) Method for producing epoxy compound
US3928288A (en) Epoxy novolac resins having a narrow molecular weight distribution and process therefor
EP0458296B1 (en) Modified epoxy resins having acetylenically unsaturated functions
EP0095609B1 (en) Epoxy resins and process for preparing the same
JPH044326B2 (en)
KR910004902B1 (en) Phenol ethers containing epoxide groups
JPH0521925B2 (en)
US4211715A (en) Epoxy resins and process for producing the same
JPS6252764B2 (en)
EP1538147B1 (en) Method of producing glycidyl 2-hydroxyisobutyrate
US3867346A (en) Process for the production of liquid epoxy-novolak resins and product thereof
JP2865439B2 (en) Epoxy resin and its cured product
JPH0528234B2 (en)
JPS629128B2 (en)
EP0458417A2 (en) Adducts of phenolic compounds and cyclic terpenes and derivatives of said adducts
JP2823056B2 (en) Epoxy resin composition and cured product thereof
US3290269A (en) Naphthyldimethylene spaced phenyl glycidyl ethers
SU639882A1 (en) Polypropyleneglycol-3,4-epoxyhexahydrobenzoates as oligomers for synthesis of heat- and impact-proof highly elastic epoxypolymers
JP3395023B2 (en) Epoxy resin mixture containing advancement catalyst
KR100296490B1 (en) Epoxy Resin Compositions Containing Chain Extension Catalysts