JPH0521925B2 - - Google Patents

Info

Publication number
JPH0521925B2
JPH0521925B2 JP61224841A JP22484186A JPH0521925B2 JP H0521925 B2 JPH0521925 B2 JP H0521925B2 JP 61224841 A JP61224841 A JP 61224841A JP 22484186 A JP22484186 A JP 22484186A JP H0521925 B2 JPH0521925 B2 JP H0521925B2
Authority
JP
Japan
Prior art keywords
formula
product
tetranuclear
reaction
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61224841A
Other languages
Japanese (ja)
Other versions
JPS6381118A (en
Inventor
Susumu Nagao
Toshio Takahashi
Masao Komaki
Hiromi Morita
Shigeru Mogi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP22484186A priority Critical patent/JPS6381118A/en
Publication of JPS6381118A publication Critical patent/JPS6381118A/en
Publication of JPH0521925B2 publication Critical patent/JPH0521925B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、4核体フエノール類ノボラツク型エ
ポキシ化合物の製造法に関する。 〔従来の技術〕 一般にエポキシ樹脂は電気機器材料、塗料、接
着剤、土木建築材料、各種複合材料などに広く使
用され、耐熱性、作業性に優れているものが望ま
れている。 〔発明が解決しようとする課題〕 4核体フエノール類ノボラツク型エポキシ化合
物は、作業性に優れ、耐熱性に優れた硬化物を与
えるが、その効率的な簡単な合成法は知られてい
ない。 〔課題を解決するための手段〕 本発明者らは4核体フエノール類ノボラツク型
エポキシ化合物の簡単で経済的な合成法を見出
し、本発明を完成した。 即ち、本発明は、式 で表されるo−クレゾール2核体ジメチロール化
合物と、式 (式中、Rは水素原子又は炭素数10以下のアルキ
ル基であり、nは1、2または3を示す。) で表わされるフエノール類を酸触媒の存在下に脱
水縮合させて、式 (式中、R、nは前記と同じ意味を表わす。) で表わされる4核体フエノール類ノボラツクを
得、これに式 (式中、Xはハロゲン原子を表わす) で表わされるエピハロゲン化合物を塩基性化合物
の存在下で反応させることを特徴とする、式 (式中、R、nは前記と同じ意味を表わす。) で表わされる4核体フエノール類ノボラツク型エ
ポキシ化合物の製造法に関する。 式(3)で表わされる4核体フエノール類ノボラツ
クは式(1)で表わされるo−クレゾール2核体ジメ
チロール化合物と式(2)で表わされるフエノール類
を酸触媒の存在下に脱水縮合させることにより製
造される。酸触媒としては、塩酸、硫酸、リン
酸、p−トルエンスルホン酸、シユウ酸等が使用
でき、酸触媒は化合物(1)の0.1〜30重量%用いる
のが好ましい。又、フエノール類は化合物(1)に対
して2−15モル倍用いるのが好ましい。反応は、
無溶媒でも、ベンゼン、トルエン、メチルイソブ
チルケトン等の溶媒中で行うこともできる。反応
温度は20〜150℃の範囲が好ましい。反応終了後、
使用した触媒を水洗等により除去し、溶媒及び過
剰のフエノール類を減圧下に留去することによ
り、4核体フエノール類ノボラツク(3)を得ること
ができる。 式(5)で表わされる4核体フエノール類ノボラツ
ク型エポキシ化合物は、前記の方法により得られ
た4核体フエノール類ノボラツク(3)に式(4)で表わ
されるエピハロゲン化合物を塩基性化合物の存在
下で反応させることにより容易に得られる。 前記式(2)、(3)及び(5)においてRで表わされるア
ルキル基としては、メチル基、エチル基、n−プ
ロピル基、i−プロピル基、n−ブチル基、t−
ブチル基、n−ノニル基等が例示される。特に好
ましいRとしては水素原子、炭素数1〜6のアル
キル基が挙げられる。 従つて、式(3)で表わされる4核体フエノール類
ノボラツクとしては、具体的にはo−クレゾール
の4核体、o−クレゾールとフエノールの4核
体、o−クレゾールとm−クレゾールの4核体、
o−クレゾールとp−クレゾールの4核体、o−
クレゾールとp−t−ブチルクレゾールの4核
体、o−クレゾールとp−n−ノニルフエノール
の4核体、o−クレゾールと2,4−及び/又は
2,6−キシレノールの4核体等が例示される。 前記式(4)において、Xで表わされるハロゲン原
子としてはCl、Br、I等が挙げられ、式(4)の化
合物としては、具体的には、エピクロルヒドリ
ン、エピブロムヒドリン、エピヨードヒドリン等
が挙げられ、これらの混合物も用いることができ
るが工業的にはエピクロルヒドリンが好適に使用
される。 4核体フエノール類ノボラツク(3)と式(4)で示さ
れるエピハロゲン化合物の反応は公知の方法によ
り行うことが出来る。 4核体フエノール類ノボラツク(3)と、フエノー
ル類ノボラツクの水酸基当量に対して過剰モル量
のエピハロゲン化合物とをテトラメチルアンモニ
ウムクロリド、テトラメチルアンモニウムブロミ
ド、トリエチルアンモニウムクロリドなどの第4
級アンモニウム塩または水酸化ナトリウム、水酸
化カリウムなどのアルカリ金属水酸化物などの存
在下で反応させ、第4級アンモニウム塩などを用
いた場合は開環付加反応の段階で反応がとまるの
で次いで上記アルカリ金属水酸化物を加えて閉環
反応させる。 また最初からアルカリ金属水酸化物を加えて反
応させる場合は、開環付加反応および閉環反応を
一気に行わせる。 エピハロゲン化合物の使用割合は4核体フエノ
ール類ノボラツク(3)の水酸基当量1に対して通常
1〜50モル、好ましくは3〜15モルの範囲であ
る。 アルカリ金属水酸化物の使用量は4核体フエノ
ール類ノボラツク(3)の水酸基当量1に対して通常
0.8〜1.5モル、好ましくは0.9〜1.3モルの範囲で
あり、第4級アンモニウム塩を使用する場合その
使用量は4核体フエノール類ノボラツク(3)の水酸
基当量1に対して通常0.001〜1モル、好ましく
は0.005〜0.5モルの範囲である。 反応温度は通常30〜130℃好ましくは40〜120℃
である。 また反応で生成した水を反応系外に除去しなが
ら反応を進行させることもできる。 反応終了後副生した塩を、水洗、ろ過等により
除去し過剰のエピハロゲン化合物を留去すること
により化合物(5)が得られる。 上記のようにして反応を行うことにより、化合
物(5)が得られるが、反応生成物中には、他の多核
体の副生物も含まれてくる。通常、反応生成物中
には、化合物(5)が30重量%以上、好ましくは35重
量%以上含まれ、一方、副生物である2核体フエ
ノール類ノボラツク型エポキシ化合物の量は通常
15重量%以下、好ましくは10重量%以下、特に好
ましくは5重量%以下である。 上記のようにして得られる反応生成物は化合物
(5)を主成分として含み、従つて、そのまま各種用
途にエポキシ樹脂として使用でき、従来のフエノ
ール類のホルムアルデヒドから得られたノボラツ
クのエポキシ樹脂に比べて軟化温度が低く、硬化
物は高い耐熱性を有する。 なお、前記2核体フエノール類ノボラツク型エ
ポキシ化合物としては、式(S) で表わされる化合物か挙げられる。 本発明の方法で得られる4核体フエノール類エ
ポキシ化合物(5)は単独で又は他のエポキシ化合物
との併用で、通常のエポキシ樹脂と同様に、脂肪
族ポリアミン、芳香族ポリアミン、ポリアミドポ
リアミン等のポリアミン系硬化剤、無水ヘキサヒ
ドロフタル酸、無水メチルテトラヒドロフタル酸
等の酸無水物系硬化剤、フエノールノボラツク、
クレゾールノボラツク等のフエノール系硬化剤、
三フツ化ホウ素等のルイス酸又はそれらの塩類、
ジシアンジアミド類等の硬化剤等により硬化させ
ることができる。又、必要に応じて硬化促進剤、
無機又は有機の充填剤等の種々の配合剤を添加す
ることができる。 本発明の方法で得られる化合物(5)は、耐熱性の
要求される広範な分野に用いることができる。 具体的には、絶縁材料、積層板、封止材料、成
型材料、複合材料等を例示することができる。 〔実施例〕 以下、本発明を実施例で説明する。 実施例 A 温度計、撹拌機を付けたガラス容器にo−クレ
ゾール2核体ジメチロール化合物〔化合物()〕
200g(0.69モル)及びo−クレゾール750g
(6.9モル)を仕込み窒素雰囲気下で室温で撹拌し
た。 p−トルエンスルホン酸2g(o−クレゾール
2核体ジメチロール化合物に対し1.0重量%)を
発熱に注意し、液温が50℃を越えないように徐々
に添加した。 添加後油浴上で50℃まで加温し2時間反応させ
た後、メチルイソブチルケトン500ml加えて2
の分液ロートに移し水洗した。洗浄水が中性を示
すまで水洗後、有機層を減圧下濃縮し、淡黄点粘
性物(A)306gを得た。このものは室温に放置する
と固化した。生成物(A)の軟化温度(JIS K2425環
球法)は81.0℃で水酸基当量(g/mol)は119
であつた。 実施例 B 実施例Aにおいて、o−クレゾールの代りにフ
エノール650g(6.91モル)を用いた以外は実施
例Aと同様に反応させ黄色固体(B)288gを得た。
生成物(B)の軟化温度は84.2℃であつた。 実施例 C 実施例Aにおいて、o−クレゾールの代りにp
−t−ブチルフエノール1035g(6.9モル)を用
い、又、溶媒としてメチルイソブチルケトン1500
mlを加え反応温度を80℃とした以外は実施例Aと
同様に反応させた黄色固体(C)361gを得た。生成
物(C)の軟化温度は103℃であつた。 実施例 D 実施例Aにおいてo−クレゾールの代りに2,
6−キシレノール842g(6.9モル)を用い、又、
溶媒としてメチルイソブチルケトン1500mlを加え
反応温度を80℃とした以外は実施例Aと同様に反
応して黄色固体(D)335gを得た。生成物(D)の軟化
温度は82.7℃で水酸基当量(g/mol)は127で
あつた。 実施例 E o−クレゾールを298g(2.76モル)用い又、
溶媒としてメチルイソブチルケトン600mlを加え
た以外は実施例Aと同様に反応させ、黄色固体(E)
313gを得た。 生成物(E)の軟化温度は88.3℃で水酸基当量
(g/mol)は120であつた。 実施例A〜Eで得られた生成物(A)、(B)、(C)、(D)
及び(E)をGPCで分析した結果、4核体及び2核
体フエノール類ノボラツクの含有量は次のとおり
であつた。 生成物 4核体含有量 2核体含有量 (重量%) (重量%) (A) 84 0.7 (B) 80 0.8 (C) 70 0.1以下 (D) 85 2.3 (E) 54 1.1 なお分析条件は次のとおり。 GPC装置:島津製作所 (カラム:TSK−G−3000XL(1本)+TSK−
G−2000XL(2本))溶媒:テトラヒドロフラン
1ml/分 検出:UV(254nm) 実施例 1 温度計、撹拌装置、滴下ロート及び生成水分離
装置のついた1の反応器に、実施例Aで得た生
成物(A)(水酸基当量(g/mol)119)150g及び
エピクロルヒドリン475gを仕込み窒素置換を行
つた後、48%水酸化ナトリウム水溶液106.8gを
5時間かけて滴下した。滴下中は反応温度60℃、
圧力100〜150mmHgの条件下で生成水及び水酸化
ナトリウム水溶液の水をエピクロルヒドリンとの
共沸により連続的に反応系外に除去し、エピクロ
ルヒドリンは系内に戻した。 ついで過剰の未反応エピクロルヒドリンを減圧
下に回収した後、メチルイソブチルケトン500ml
を加え100mlの水で水層が中性を示すまで洗浄し
た。メチルイソブチルケトン層を減圧下濃縮し、
淡黄色の固体(A1)210.7gを得た。 生成物(A1)の軟化温度(JIS K2425)54.0℃
でエポキシ当量(g/mol)は183であつた。 溶媒としてテトラヒドロフラン(THF)を用
いて生成物(A1)をGPC分析したところ第1図
に示される分子量分布曲線を得た(分析条件は合
成例と同じ)。 この条件でのビスフエノールFの現われるリテ
ンシヨンタイムは24.7分で、メインピークのリテ
ンシヨンタイムはベンゼン核を4個有する4核体
のリテンシヨンタイムに相当し、第1図よりメイ
ンピークの組成量は53重量%であつた。 生成物(A1)のマススペクトル(FAB−MS)
でM+692が得られたことにより次の構造を有する
成分が主成分であることがわかつた。 又、第1図より生成物(A1)は2核体フエノ
ール類ノボラツク型エポキシ化合物を1.7重量%
含んでいることがわかつた。 実施例 2 生成物(A)の代りに実施例Bで得た生成物(B)(水
酸基当量(g/mol)112)141gを用いた以外は
実施例1と同様に反応して黄色固体(B1)202g
を得た。 生成物(B1)の軟化温度は50.2℃でエポキシ
当量(g/mol)は176であつた。 生成物(B1)のGPC分析(分析条件は合成例
と同じ)による分子量分布曲線を第2図に示した
が、メインピークのリテンシヨンタイムはベンゼ
ン核4個有する4核体のリテンシヨンタイムに相
当し、メインピークの組成量は61重量%であつ
た。 生成物(B1)のマススペクトル(FAB−MS)
でM+664が得られたことより、次の構造を有する
成分が主成分であることがわかつた。 又、第2図より、生成物(B1)は2核体フエ
ノール類ノボラツク型エポキシ化合物を1.3重量
%含んでいることがわかつた。 実施例 3 合成例(A)の代りに実施例Cで得た生成物(C)(水
酸基当量(g/mol)140)177gを用いた以外は
実施例1と同様に反応して黄色固体(C1)231g
を得た。 生成物(C1)の軟化温度は65.6℃でエポキシ当
量(g/mol)は215であつた。 生成物(C1)のGPC分析(分析条件は合成例
と同じ)による分子量分布曲線を第3図に示した
が、メインピークのリテンシヨンタイムはベンゼ
ン核4個を有する4核体のリテンシヨンタイムに
相当し、メインピークの組成量は65重量%であつ
た。 生成物(C1)のマススペクトル(FAB−MS)
でM+776が得られたことにより、次の構造を有す
る成分が主成分であることがわかつた。 又、第3図より、生成物(C1)における2核
体フエノール類ノボラツク型エポキシ化合物の含
有量は0.1重量%以下であつた。 実施例 4 生成物(A)の代りに実施例Dで得た生成物(D)159
g(水酸基当量(g/mol)127)を用いた以外
は実施例1と同様に反応して黄色固体(D1)218
gを得た。 生成物(D1)の軟化温度は52.3℃で、エポキ
シ当量(g/mol)は184であつた。 生成物(D1)のGPC分析(分析条件は合成例
と同じ)による分子量分布曲線を第4図に示した
が、メインピークのリテンシヨンタイムはベンゼ
ン核4個有する4核体のリテンシヨンタイムに相
当したメインピークの組成量は75重量%であつ
た。 生成物(D1)のマススペクトル(FAB−MS)
でM+720が得られたことにより次の構造を有する
化合物が主成分であることがわかつた 又、第4図より、生成物(D1)は2核体フエ
ノール類ノボラツク型エポキシ化合物を2.0重量
%含んでいることがわかつた。 実施例 5 生成物(A)の代りに実施例Eで得た生成物(E)150
g(水酸基当量120)を用いた以外は実施例1と
同様に反応させて黄色固体(E1)209gを得た。 生成物(E1)の軟化温度58.6℃でエポキシ当量
(g/mol)は186であつた。 生成物(E1)のGPC分析(分析条件は合成例
と同じ)による分子量分布曲線を第5図に示し
た。メインピークのリテンシヨンタイムは実施例
1と同じであつたが、実施例1に比べ高分子化合
物が多く、メインピークの組成量は37重量%であ
つた。 又、第5図より、生成物(E1)は2核体フエ
ノール類ノボラツク型エポキシ化合物を2.4重量
%含んでいることがわかつた。 参考例 1 第1表に示す割合でフエノールノボラツク(日
本化薬(株)製、軟化温度85℃)に実施例1、2、
3、4及び5で得られた4核体フエノール類ノボ
ラツク型エポキシ化合物を主成分とする生成物
(A1)、(B1)、(C1)、(D1)、及び(E1)を配合
し、2−メチルイミダゾールを触媒に用いて加熱
硬化させた。 比較例として実施例1、2、3、4及び5で得
られた生成物(A1)〜(E1)の代りに第1表に
示す割合で下記の市販のo−クレゾールノボラツ
ク型エポキシ樹脂を用いて加熱硬化した。 EOCN 102O:日本化薬(株)製、エポキシ当量
(g/mol)202、軟化温度67℃、4核体及び2
核体をそれぞれ9.9、13.2重量%含む、〔GPCに
よる分子量分布曲線を第6図に示す(分析条件
は合成例と同じ)〕 EOCN 102S:日本化薬(株)製、エポキシ当量
(g/mol)212、軟化温度51.6℃、4核体及び
2核体をそれぞれ12.5、16.6重量%含む。 ビスフエノールFのエポキシ化合物(E−
BisF) 日本化薬(株)製、エポキシ当量(g/mol)168、
液状 以上の硬化物についてガラス転移温度(Tg)
及び熱変形温度(HDT)を測定し、その結果を
第1表に示した。第1表から明らかなように、本
発明の4核体フエノール類ノボラツク型エポキシ
化合物を用いた場合、得られる硬化物は耐熱性に
優れていることがわかる。
[Industrial Field of Application] The present invention relates to a method for producing a tetranuclear phenol novolak type epoxy compound. [Prior Art] Generally, epoxy resins are widely used in electrical equipment materials, paints, adhesives, civil engineering and construction materials, various composite materials, etc., and are desired to have excellent heat resistance and workability. [Problems to be Solved by the Invention] Tetranuclear phenol novolac type epoxy compounds provide cured products with excellent workability and excellent heat resistance, but an efficient and simple method for synthesizing them is not known. [Means for Solving the Problems] The present inventors have discovered a simple and economical method for synthesizing a tetranuclear phenolic novolak type epoxy compound, and have completed the present invention. That is, the present invention provides the formula An o-cresol dinuclear dimethylol compound represented by the formula (In the formula, R is a hydrogen atom or an alkyl group having 10 or less carbon atoms, and n represents 1, 2, or 3.) The phenols represented by the formula are dehydrated and condensed in the presence of an acid catalyst to form the formula (In the formula, R and n represent the same meanings as above.) A tetranuclear phenol novolak represented by the formula (wherein, X represents a halogen atom) is characterized by reacting an epihalogen compound represented by the following in the presence of a basic compound: (In the formula, R and n have the same meanings as above.) The present invention relates to a method for producing a tetranuclear phenol novolak type epoxy compound represented by the following formula. The tetranuclear phenol novolak represented by formula (3) is obtained by dehydrating condensation of the o-cresol dinuclear dimethylol compound represented by formula (1) and the phenol represented by formula (2) in the presence of an acid catalyst. Manufactured by. As the acid catalyst, hydrochloric acid, sulfuric acid, phosphoric acid, p-toluenesulfonic acid, oxalic acid, etc. can be used, and the acid catalyst is preferably used in an amount of 0.1 to 30% by weight of compound (1). Further, it is preferable to use phenols in an amount of 2 to 15 times the mole of compound (1). The reaction is
It can be carried out without a solvent or in a solvent such as benzene, toluene, methyl isobutyl ketone, etc. The reaction temperature is preferably in the range of 20 to 150°C. After the reaction is complete,
The used catalyst is removed by washing with water or the like, and the solvent and excess phenols are distilled off under reduced pressure to obtain the tetranuclear phenol novolak (3). The tetranuclear phenol novolak type epoxy compound represented by formula (5) is obtained by adding an epihalogen compound represented by formula (4) to the tetranuclear phenol novolak (3) obtained by the above method as a basic compound. It can be easily obtained by reacting in the presence of The alkyl group represented by R in the above formulas (2), (3) and (5) includes methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, t-
Examples include butyl group and n-nonyl group. Particularly preferable examples of R include a hydrogen atom and an alkyl group having 1 to 6 carbon atoms. Therefore, the tetranuclear phenol novolak represented by formula (3) specifically includes the tetranuclear substance of o-cresol, the tetranuclear substance of o-cresol and phenol, and the tetranuclear substance of o-cresol and m-cresol. nuclear body,
Tetranuclear bodies of o-cresol and p-cresol, o-
Tetranuclear bodies of cresol and pt-butylcresol, tetranuclear bodies of o-cresol and pn-nonylphenol, tetranuclear bodies of o-cresol and 2,4- and/or 2,6-xylenol, etc. Illustrated. In the above formula (4), examples of the halogen atom represented by Although mixtures thereof can also be used, epichlorohydrin is preferably used industrially. The reaction between the tetranuclear phenol novolac (3) and the epihalogen compound represented by formula (4) can be carried out by a known method. A quaternary compound such as tetramethylammonium chloride, tetramethylammonium bromide, triethylammonium chloride, etc.
The reaction is carried out in the presence of a quaternary ammonium salt or an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide.If a quaternary ammonium salt is used, the reaction stops at the stage of the ring-opening addition reaction. Add an alkali metal hydroxide to cause a ring-closing reaction. In addition, when the alkali metal hydroxide is added and reacted from the beginning, the ring-opening addition reaction and the ring-closing reaction are performed at once. The proportion of the epihalogen compound to be used is generally 1 to 50 mol, preferably 3 to 15 mol, per 1 hydroxyl equivalent of the tetranuclear phenol novolac (3). The amount of alkali metal hydroxide used is usually 1 hydroxyl equivalent of the tetranuclear phenol novolak (3).
The amount is in the range of 0.8 to 1.5 mol, preferably 0.9 to 1.3 mol, and when a quaternary ammonium salt is used, the amount used is usually 0.001 to 1 mol per 1 hydroxyl equivalent of the tetranuclear phenol novolak (3). , preferably in the range of 0.005 to 0.5 mol. Reaction temperature is usually 30-130℃, preferably 40-120℃
It is. Furthermore, the reaction can be allowed to proceed while removing water produced in the reaction from the reaction system. After the completion of the reaction, the by-produced salt is removed by washing with water, filtration, etc., and the excess epihalogen compound is distilled off to obtain compound (5). Compound (5) is obtained by carrying out the reaction as described above, but the reaction product also contains other polynuclear by-products. Usually, the reaction product contains 30% by weight or more of compound (5), preferably 35% by weight or more, while the amount of the by-product dinuclear phenol novolak type epoxy compound is usually
It is not more than 15% by weight, preferably not more than 10% by weight, particularly preferably not more than 5% by weight. The reaction product obtained as above is a compound
(5) as the main component, therefore, it can be used as an epoxy resin for various purposes as is, and has a lower softening temperature than conventional novolak epoxy resins obtained from formaldehyde of phenols, and the cured product has high heat resistance. has. In addition, as the dinuclear phenol novolac type epoxy compound, formula (S) Compounds represented by: The tetranuclear phenol epoxy compound (5) obtained by the method of the present invention can be used alone or in combination with other epoxy compounds to produce aliphatic polyamines, aromatic polyamines, polyamide polyamines, etc., as well as ordinary epoxy resins. Polyamine curing agents, acid anhydride curing agents such as hexahydrophthalic anhydride and methyltetrahydrophthalic anhydride, phenol novolac,
Phenolic curing agents such as cresol novolak,
Lewis acids such as boron trifluoride or their salts,
It can be cured with a curing agent such as dicyandiamide. In addition, if necessary, a curing accelerator,
Various additives such as inorganic or organic fillers can be added. Compound (5) obtained by the method of the present invention can be used in a wide range of fields requiring heat resistance. Specifically, insulating materials, laminates, sealing materials, molding materials, composite materials, etc. can be exemplified. [Example] The present invention will be explained below with reference to Examples. Example A O-cresol dinuclear dimethylol compound [compound ()] in a glass container equipped with a thermometer and a stirrer
200g (0.69mol) and 750g o-cresol
(6.9 mol) was charged and stirred at room temperature under nitrogen atmosphere. 2 g of p-toluenesulfonic acid (1.0% by weight based on the o-cresol dinuclear dimethylol compound) was gradually added while being careful not to generate heat so that the liquid temperature did not exceed 50°C. After the addition, heat to 50℃ on an oil bath and react for 2 hours, then add 500ml of methyl isobutyl ketone and
The mixture was transferred to a separatory funnel and washed with water. After washing with water until the washing water became neutral, the organic layer was concentrated under reduced pressure to obtain 306 g of a pale yellow viscous substance (A). This solidified when left at room temperature. The softening temperature (JIS K2425 ring and ball method) of product (A) is 81.0°C and the hydroxyl equivalent (g/mol) is 119.
It was hot. Example B A reaction was carried out in the same manner as in Example A except that 650 g (6.91 mol) of phenol was used instead of o-cresol to obtain 288 g of a yellow solid (B).
The softening temperature of product (B) was 84.2°C. Example C In Example A, instead of o-cresol, p
- Using 1035 g (6.9 mol) of t-butylphenol, and 1500 g of methyl isobutyl ketone as a solvent.
361 g of a yellow solid (C) was obtained by reacting in the same manner as in Example A, except that the reaction temperature was changed to 80°C. The softening temperature of product (C) was 103°C. Example D In Example A, instead of o-cresol, 2,
Using 842 g (6.9 mol) of 6-xylenol,
The reaction was carried out in the same manner as in Example A except that 1500 ml of methyl isobutyl ketone was added as a solvent and the reaction temperature was 80° C. to obtain 335 g of a yellow solid (D). Product (D) had a softening temperature of 82.7°C and a hydroxyl equivalent (g/mol) of 127. Example E: Using 298 g (2.76 mol) of o-cresol,
The reaction was carried out in the same manner as in Example A except that 600 ml of methyl isobutyl ketone was added as a solvent, and a yellow solid (E) was obtained.
313g was obtained. The softening temperature of the product (E) was 88.3°C and the hydroxyl equivalent (g/mol) was 120. Products (A), (B), (C), (D) obtained in Examples A to E
As a result of GPC analysis of and (E), the contents of tetranuclear and dinuclear phenol novolaks were as follows. Product Tetranuclear content Dinuclear content (wt%) (wt%) (A) 84 0.7 (B) 80 0.8 (C) 70 0.1 or less (D) 85 2.3 (E) 54 1.1 The analysis conditions are as follows. GPC device: Shimadzu (Column: TSK-G-3000XL (1 piece) + TSK-
G-2000XL (2 bottles)) Solvent: Tetrahydrofuran 1 ml/min Detection: UV (254 nm) Example 1 Into reactor 1 equipped with a thermometer, a stirring device, a dropping funnel, and a product water separation device, the sample obtained in Example A was added. After charging 150 g of product (A) (hydroxyl equivalent (g/mol) 119) and 475 g of epichlorohydrin and purging with nitrogen, 106.8 g of a 48% aqueous sodium hydroxide solution was added dropwise over 5 hours. The reaction temperature was 60℃ during the dropping process.
Under pressure conditions of 100 to 150 mmHg, the produced water and the water in the aqueous sodium hydroxide solution were continuously removed from the reaction system by azeotropy with epichlorohydrin, and epichlorohydrin was returned to the system. Then, after recovering excess unreacted epichlorohydrin under reduced pressure, 500 ml of methyl isobutyl ketone was added.
was added and washed with 100 ml of water until the aqueous layer became neutral. The methyl isobutyl ketone layer was concentrated under reduced pressure,
210.7 g of pale yellow solid (A1) was obtained. Softening temperature of product (A1) (JIS K2425) 54.0℃
The epoxy equivalent (g/mol) was 183. When the product (A1) was analyzed by GPC using tetrahydrofuran (THF) as a solvent, the molecular weight distribution curve shown in FIG. 1 was obtained (the analysis conditions were the same as in the synthesis example). Under these conditions, the retention time at which bisphenol F appears is 24.7 minutes, and the retention time of the main peak corresponds to that of a tetranuclear substance having four benzene nuclei. was 53% by weight. Mass spectrum (FAB-MS) of product (A1)
By obtaining M + 692, we found that the main component was a component with the following structure. Also, from Figure 1, the product (A1) contains 1.7% by weight of a dinuclear phenolic novolac type epoxy compound.
It was found that it contains Example 2 A reaction was carried out in the same manner as in Example 1 except that 141 g of the product (B) obtained in Example B (hydroxyl group equivalent (g/mol) 112) was used instead of product (A) to produce a yellow solid ( B1) 202g
I got it. The product (B1) had a softening temperature of 50.2°C and an epoxy equivalent (g/mol) of 176. Figure 2 shows the molecular weight distribution curve of product (B1) obtained by GPC analysis (analysis conditions are the same as the synthesis example), and the retention time of the main peak is similar to that of a tetranuclear substance with four benzene nuclei. Correspondingly, the composition amount of the main peak was 61% by weight. Mass spectrum (FAB-MS) of product (B1)
Since M + 664 was obtained, it was found that the main component was a component having the following structure. Further, from FIG. 2, it was found that the product (B1) contained 1.3% by weight of a dinuclear phenolic novolac type epoxy compound. Example 3 A yellow solid ( C1) 231g
I got it. The product (C1) had a softening temperature of 65.6°C and an epoxy equivalent (g/mol) of 215. Figure 3 shows the molecular weight distribution curve of the product (C1) obtained by GPC analysis (the analysis conditions are the same as the synthesis example), and the retention time of the main peak is the retention time of a tetranuclear substance with four benzene nuclei. The composition amount of the main peak was 65% by weight. Mass spectrum (FAB-MS) of product (C1)
By obtaining M + 776, we found that the main component was a component with the following structure. Moreover, from FIG. 3, the content of the dinuclear phenol novolac type epoxy compound in the product (C1) was 0.1% by weight or less. Example 4 Product (D) obtained in Example D instead of product (A)159
The reaction was carried out in the same manner as in Example 1 except that g (hydroxyl equivalent (g/mol) 127) was used to obtain a yellow solid (D1) 218
I got g. The softening temperature of the product (D1) was 52.3°C, and the epoxy equivalent (g/mol) was 184. Figure 4 shows the molecular weight distribution curve of product (D1) obtained by GPC analysis (analysis conditions are the same as the synthesis example), and the retention time of the main peak is similar to that of a tetranuclear substance with four benzene nuclei. The corresponding main peak composition was 75% by weight. Mass spectrum (FAB-MS) of product (D1)
By obtaining M + 720, we found that the main component was a compound with the following structure. Further, from FIG. 4, it was found that the product (D1) contained 2.0% by weight of a dinuclear phenol novolac type epoxy compound. Example 5 Product (E) obtained in Example E instead of product (A) 150
The reaction was carried out in the same manner as in Example 1 except that g (hydroxyl group equivalent: 120) was used to obtain 209 g of a yellow solid (E1). The product (E1) had a softening temperature of 58.6°C and an epoxy equivalent (g/mol) of 186. FIG. 5 shows the molecular weight distribution curve of the product (E1) by GPC analysis (analysis conditions are the same as in the synthesis example). The retention time of the main peak was the same as in Example 1, but the amount of high molecular compounds was larger than in Example 1, and the composition amount of the main peak was 37% by weight. Further, from FIG. 5, it was found that the product (E1) contained 2.4% by weight of a dinuclear phenolic novolac type epoxy compound. Reference Example 1 Examples 1, 2,
Products (A1), (B1), (C1), (D1), and (E1) containing the tetranuclear phenolic novolak type epoxy compounds obtained in 3, 4, and 5 as main components are blended, and 2 - Heat curing using methylimidazole as a catalyst. As a comparative example, the following commercially available o-cresol novolak type epoxy resins were used in place of the products (A1) to (E1) obtained in Examples 1, 2, 3, 4, and 5 in the proportions shown in Table 1. The material was cured by heating. EOCN 102O: manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent (g/mol) 202, softening temperature 67°C, tetranuclear and two
EOCN 102S: Nippon Kayaku Co., Ltd., epoxy equivalent (g/mol) containing 9.9 and 13.2% by weight of nuclear bodies, respectively. ) 212, softening temperature 51.6°C, containing 12.5 and 16.6% by weight of tetranuclear and dinuclear bodies, respectively. Epoxy compound of bisphenol F (E-
BisF) manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent (g/mol) 168,
Glass transition temperature (Tg) for liquid or higher cured products
and heat distortion temperature (HDT) were measured, and the results are shown in Table 1. As is clear from Table 1, when the tetranuclear phenol novolac type epoxy compound of the present invention is used, the resulting cured product has excellent heat resistance.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、4核体フエノール類ノ
ボラツク型エポキシ化合物を容易に得ることがで
き、生成物は軟化温度が低いため取り扱い易く、
作業性が優れ、又、これを用いて得られる硬化物
は耐熱性に優れている。
According to the method of the present invention, a tetranuclear phenol novolak type epoxy compound can be easily obtained, and the product has a low softening temperature and is therefore easy to handle.
It has excellent workability, and the cured product obtained using it has excellent heat resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図は、実施例1〜5で得られた生
成物(A1)、(B1)、(C1)、(D1)、(E1)及び比
較のために用いたEOCN1020の分子量分布曲線で
ある。
Figures 1 to 6 show the molecular weight distributions of the products (A1), (B1), (C1), (D1), and (E1) obtained in Examples 1 to 5 and EOCN1020 used for comparison. It is a curve.

Claims (1)

【特許請求の範囲】 1 式 で表されるo−クレゾール2核体ジメチロール化
合物と、式 (式中、Rは水素原子又は、炭素数10以下のアル
キル基であり、nは1、2または3を示す。)で
表わされるフエノール類を酸触媒の存在下に脱水
縮合させて、式 (式中、R、nは前記と同じ意味を表わす。) で表わされる4核体フエノール類ノボラツクを
得、これに式 (式中、Xはハロゲン原子を表わす) で表わされるエピハロゲン化合物を塩基性化合物
の存在下で反応させることを特徴とする、式 (式中、R、nは前記と同じ意味を表わす。) で表わされる4核体フエノール類ノボラツク型エ
ポキシ化合物の製造法。
[Claims] 1 formula An o-cresol dinuclear dimethylol compound represented by the formula (In the formula, R is a hydrogen atom or an alkyl group having 10 or less carbon atoms, and n represents 1, 2, or 3.) The phenols represented by the formula are dehydrated and condensed in the presence of an acid catalyst. (In the formula, R and n represent the same meanings as above.) A tetranuclear phenol novolak represented by the formula (wherein, X represents a halogen atom) is characterized by reacting an epihalogen compound represented by the following in the presence of a basic compound: (In the formula, R and n have the same meanings as above.) A method for producing a tetranuclear phenol novolak type epoxy compound represented by the following.
JP22484186A 1986-09-25 1986-09-25 Novolak type epoxy resin of phenols Granted JPS6381118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22484186A JPS6381118A (en) 1986-09-25 1986-09-25 Novolak type epoxy resin of phenols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22484186A JPS6381118A (en) 1986-09-25 1986-09-25 Novolak type epoxy resin of phenols

Publications (2)

Publication Number Publication Date
JPS6381118A JPS6381118A (en) 1988-04-12
JPH0521925B2 true JPH0521925B2 (en) 1993-03-26

Family

ID=16820013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22484186A Granted JPS6381118A (en) 1986-09-25 1986-09-25 Novolak type epoxy resin of phenols

Country Status (1)

Country Link
JP (1) JPS6381118A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101446081B1 (en) * 2013-11-26 2014-10-01 주식회사 진영뉴웍스 Spray nozzle structure for silver mirror coating and spray apparatus comprising the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63301218A (en) * 1987-06-02 1988-12-08 Asahi Chiba Kk Epoxy resin composition
JPH0760920B2 (en) * 1990-11-16 1995-06-28 東芝ケミカル株式会社 Epoxy resin composition and copper clad laminate
JP2823057B2 (en) * 1990-12-20 1998-11-11 日本化薬株式会社 Manufacturing method of epoxy resin
SG63691A1 (en) * 1996-02-09 1999-03-30 Nippon Kayaku Kk Epoxy resin epoxy resin composition and hardened product thereof
JP3904315B2 (en) * 1998-01-28 2007-04-11 株式会社Adeka Polyol resin composition
KR100563509B1 (en) * 1998-09-25 2006-03-23 신에쓰 가가꾸 고교 가부시끼가이샤 Epoxy Resin Compositions, and Laminated Films and Semiconductor Devices Using the Epoxy Resin Compositions
JP3672009B2 (en) * 1999-04-14 2005-07-13 信越化学工業株式会社 Epoxy resin composition and laminated film and semiconductor device using this epoxy resin composition
PL2818492T3 (en) * 2013-06-28 2018-07-31 3M Innovative Properties Company use of epoxy-based adhesive compositions for filling gaps

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219755A (en) * 1975-08-05 1977-02-15 Dow Chemical Co Epoxy novolak resin production method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219755A (en) * 1975-08-05 1977-02-15 Dow Chemical Co Epoxy novolak resin production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101446081B1 (en) * 2013-11-26 2014-10-01 주식회사 진영뉴웍스 Spray nozzle structure for silver mirror coating and spray apparatus comprising the same

Also Published As

Publication number Publication date
JPS6381118A (en) 1988-04-12

Similar Documents

Publication Publication Date Title
JPH0521925B2 (en)
JP2631560B2 (en) Novolak epoxy resins with phenols and their production
JP3021148B2 (en) Epoxy resin, resin composition and cured product
JP3982661B2 (en) Naphthol resin, epoxy resin, epoxy resin composition and cured product thereof
JPS63264622A (en) Polyfunctional epoxy resin
JPH04323214A (en) Novolak resin, its production, epoxy resin, resin composition and its cured product
JPH11171954A (en) Production of naphthol resin
JPH03220219A (en) Phenol novolac compound, resin, resin composition, and cured product
JP2823056B2 (en) Epoxy resin composition and cured product thereof
JP2887213B2 (en) New compounds, resins, resin compositions and cured products
JP2865439B2 (en) Epoxy resin and its cured product
JPH0730151B2 (en) Method for producing phenolic novolac composition
JPH09268218A (en) Production of epoxy resin, epoxy resin composition and irs cured material
JP2000273144A (en) Preparation of epoxy resin
JP2887214B2 (en) Naphthol compound, its production method, epoxy compound, composition and cured product
JP3075496B2 (en) Polyphenol resin, polyphenol epoxy resin and production method thereof
JP2736560B2 (en) Phenolic novolak epoxy resin and its cured product
JPH09169834A (en) Novolak resin, epoxy resin, epoxy resin composition, and cured item thereof
JPH0570552A (en) Epoxy resin composition
JPS629128B2 (en)
JPH0794522B2 (en) Novolac type resin and its manufacturing method
JPH04275317A (en) New novolak type resin and its production
JP3192471B2 (en) Epoxy resin, resin composition and cured product
JPH04337314A (en) New epoxy resin, resin composition and cured material thereof
JPH04366117A (en) New resin, production thereof, resin composition, and cured article

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees