WO2015046940A1 - 알루미늄 합금 조성물, 이를 포함하는 부식내구성이 향상된 알루미늄 압출 튜브와 핀 재 및 이로 구성된 열교환기 - Google Patents

알루미늄 합금 조성물, 이를 포함하는 부식내구성이 향상된 알루미늄 압출 튜브와 핀 재 및 이로 구성된 열교환기 Download PDF

Info

Publication number
WO2015046940A1
WO2015046940A1 PCT/KR2014/009001 KR2014009001W WO2015046940A1 WO 2015046940 A1 WO2015046940 A1 WO 2015046940A1 KR 2014009001 W KR2014009001 W KR 2014009001W WO 2015046940 A1 WO2015046940 A1 WO 2015046940A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
corrosion
aluminum alloy
alloy composition
heat exchanger
Prior art date
Application number
PCT/KR2014/009001
Other languages
English (en)
French (fr)
Inventor
김정구
박인준
Original Assignee
성균관대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교 산학협력단 filed Critical 성균관대학교 산학협력단
Priority to US15/025,166 priority Critical patent/US20160237527A1/en
Priority to CN201480050922.1A priority patent/CN105637107B/zh
Publication of WO2015046940A1 publication Critical patent/WO2015046940A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys

Definitions

  • the present invention relates to an aluminum alloy composition, an aluminum extruded tube for a heat exchanger having improved corrosion resistance and fin material and a heat exchanger including the same, and more particularly to a refrigerant and external condensate in a heat exchanger such as an air conditioner, a refrigerator, and a radiator.
  • the present invention relates to an aluminum extruded tube for a heat exchanger and a fin material and a heat exchanger having improved corrosion durability that suppresses penetration and breakage of a material caused by corrosion damage.
  • heat exchanger materials have been replaced from copper to aluminum due to cost, ease of processing, and corrosion resistance. This is because aluminum is light, low in price, and has high thermal conductivity.
  • pure aluminum base As the aluminum material for heat exchanger, pure aluminum base (A1XXX), which is advantageously extruded, has high thermal conductivity, and is inexpensive, and extrudeability is slightly lower than pure aluminum base, but has relatively high strength and corrosion resistance (A3XXX) ) Is used.
  • Table 1 shows the compositions of A1070 and A3003 which are conventionally mainly used as aluminum materials for heat exchangers.
  • A1070 is pure aluminum-based material and A3003 is aluminum-manganese-based material.
  • Table 1 Material name Cu Si Fe Zn Mg Mn Ti Al. A1070 0.03 0.20 0.25 0.04 0.03 0.03 0.03 Rem. A3003 0.158 0.084 0.421 0.034 0.001 1.021 0.014 Rem.
  • the A1070 material is used as a tube and fin material such as condensers of home appliances such as air conditioners and refrigerators, where high strength is not required because of low material price and extrusion cost.
  • the A3003 material is used as an extruded tube and fin material for heat exchangers such as automotive intercoolers and radiators due to its relatively high strength and corrosion resistance compared to A1070 but higher extrusion cost.
  • aluminum is a metal which is easy to be activated, but forms an oxide film on the surface in air and has high corrosion resistance.
  • a pitting corrosion will occur only in the localized area where the oxide film is damaged.
  • corrosion is intensively propagated to a part by electrochemical action with various impurities contained in the aluminum alloy. Due to the corrosion mechanism of the aluminum, the aluminum heat exchanger is locally penetrated to leak the refrigerant or the high temperature fluid therein. Therefore, there is an urgent need for development of an aluminum alloy material for heat exchangers having improved penetration resistance.
  • FIG. 1 shows a formula and intergranular corrosion mechanism of a conventional aluminum material.
  • a protective passive film is formed on the aluminum surface, and Al 2 Cu, Al 3 Fe, and the like are formed on the intermetallic face ( It is distributed at grain boundaries by intermetallic phase.
  • the potential difference between the intermetallic face such as Al 2 Cu and Al 3 Fe and the base material is generated as shown in the middle drawing, and a local circuit is formed to form a passive film. You can see that the formula begins when it is destroyed.
  • the formula then propagates as far right as the formula propagates along the grain boundary faster than the onset of the new formulation at the surface, which results in a very high penetration depth versus actual corrosion. Therefore, due to the corrosion mechanism of aluminum, the aluminum heat exchanger is locally penetrated to cause leakage of refrigerant or high temperature fluid therein.
  • Figure 2 is a view showing the corrosion propagation behavior of aluminum used as a conventional heat exchanger material, it can be seen that the penetration depth is very high due to the propagation of the formula over time as shown in the figure.
  • One object of the present invention unlike the A1070 and A3003 material used as the tube and fin material of the conventional heat exchanger, zirconium (Zr), titanium (Ti) or hafnium (Hf) to disperse the occurrence of corrosion to induce a uniform corrosion ), Or a mixture thereof, and to adjust the composition ratio of the material to improve the corrosion durability and at the same time to provide an aluminum alloy composition that does not lower the extrudability.
  • Aluminum alloy composition according to an embodiment of the present invention, copper (Cu); Iron (Fe); Any one or a mixture of zirconium (Zr), titanium (Ti) and hafnium (Hf); And the balance of the aluminum (Al) and indispensable impurities, the content of any one or a mixture of zirconium (Zr), titanium (Ti) and hafnium (Hf) is controlled to 0.05 to 0.2 wt% , The content of copper (Cu) and iron (Fe) is characterized by controlling the PHI value defined by the following equations (1) and (2) to 1.5 or less.
  • it may further comprise silicon (Si) as an impurity, the content of the silicon (Si) is preferably controlled to 0.2% by weight or less relative to the total weight of the aluminum alloy composition.
  • magnesium (Mg) as impurities, the content of the magnesium (Mg) is preferably controlled to 0.05% by weight or less relative to the total weight of the aluminum alloy composition.
  • the present invention provides an aluminum tube for heat exchanger having improved corrosion durability manufactured by the aluminum alloy composition according to the exemplary embodiment described above.
  • the present invention provides an aluminum fin material for a heat exchanger having improved corrosion durability made from the aluminum alloy composition according to the embodiment of the present invention described above.
  • the present invention provides a heat exchanger having improved corrosion durability including an aluminum tube and an aluminum fin material made of the aluminum alloy composition according to the embodiment of the present invention described above.
  • the present invention having the configuration as described above is excellent in corrosion resistance compared with the conventional aluminum material for heat exchanger A1070 and excellent in resistance to corrosion damage and penetration by external condensate and internal refrigerant. Specifically, the addition of zirconium (Zr), titanium (Ti) or hafnium (Hf), or a mixture thereof leads to uniform corrosion, thereby increasing the penetration resistance of the material compared to the formula.
  • the present invention controls the concentration of zirconium (Zr), titanium (Ti) or hafnium (Hf), and inhibits grain boundary corrosion by controlling the concentration of copper (Cu) and iron (Fe) using PHI (penetration risk index).
  • Zr zirconium
  • Ti titanium
  • Hf hafnium
  • PHI penetration risk index
  • the effects of the present invention having the configuration described above shows a similar extrusion speed (a level of 90 m / min) compared to the A1070, which is a conventional aluminum material for heat exchangers, and thus has excellent productivity and economy.
  • FIG. 1 is a schematic diagram illustrating a formula and grain boundary corrosion mechanism of a conventional aluminum material.
  • FIG. 2 is a view showing the corrosion propagation behavior of aluminum used as a conventional heat exchanger material.
  • 3A and 3B are cross-sectional views of the electrostatic potential polarization test of the A1070 specimen of 1XXX-based aluminum, which is used as a conventional heat exchanger material.
  • Figures 4a and 4b is a view showing a cross-section after the potential potential polarization test of the A3003 specimen of 3XXX-based aluminum used as a conventional heat exchanger material.
  • 6A and 6B are cross-sectional views of a specimen prepared by using an aluminum alloy composition according to an embodiment of the present invention after the potentiometric polarization test.
  • FIG. 7 is a view showing an aluminum heat exchanger according to an embodiment of the present invention.
  • Figure 8 shows a graph of the PHI and extrusion rate of the aluminum tube with the concentration of zirconium.
  • 10 is a graph showing the correlation between X factor and PHI.
  • Aluminum alloy composition according to an embodiment of the present invention is copper (Cu), iron (Fe) and zirconium (Zr), titanium (Ti) or hafnium (Hf) or mixtures thereof and the balance of aluminum (Al) and essential Contains indispensable impurities.
  • Table 2 above is the content of each component expressed in weight percent, and after controlling the copper and iron content to determine the optimal zirconium content, the corrosion durability and extrusion rate were measured while changing the content of zirconium.
  • Graphs of PHI and extrusion rates of aluminum tubes versus concentrations of zirconium based on the data in Table 2 are shown in FIG. 8.
  • PHI Penetration Hazard Index.
  • PHI is a penetration risk index calculated from the corrosion penetration depth of aluminum tubes measured after electrochemical acceleration and is used as an indicator of corrosion durability of aluminum alloys. The lower the PHI value, the better the corrosion durability of the aluminum alloy.
  • the grain boundary corrosion mechanism as zirconium (Zr), titanium (Ti) or hafnium (Hf), or a mixture thereof is included in the aluminum alloy is as follows.
  • FIG. 5 It is a schematic diagram explaining the formula and grain boundary corrosion mechanism of the aluminum material of this invention.
  • Al 2 Cu, Al 3 Fe, or the like is added to the intermetallic face by adding zirconium (Zr), titanium (Ti) or hafnium (Hf), or a mixture thereof.
  • Zr zirconium
  • Ti titanium
  • Hf hafnium
  • the cross section of the specimen was analyzed after electrochemical acceleration in the artificial acid rain environment, and the corrosion penetration depth and standard deviation were measured.
  • the specific experimental method is as follows. First, the surface of the specimen was polished using # 600 SiC paper, and then the area was controlled to 1 cm ⁇ 1 cm. The prepared specimens SO 4 2- 4ppm, Cl - 2 ppm, NO 3 - and then the pH 5 containing 1.5 ppm was immersed for 4 hours at SAR environment to stabilize the surface conditions -250mV vs. A six hour potentiostatic test at SCE potential accelerated the corrosion consistently.
  • the artificial acid ratio simulates the corrosive environment where the heat exchanger made of aluminum tube can be exposed in the atmosphere.
  • the electrochemical acceleration method is a method of purely electrochemically accelerating the same corrosion mechanism as the actual corrosive environment. Compared to the actual environment as much as possible and can accelerate the corrosion. In addition, the same acceleration energy is applied to all aluminum specimens, which is more useful for evaluating the difference in corrosion durability between specimens.
  • Table 3 The chemical composition and corrosion penetration depth after electrochemical acceleration of a total of 11 specimens are shown in Table 3 below. Specimen No. 11 in Table 3 is an alloy developed according to the present invention. When the PHI was determined based on the data in Table 3, it was confirmed that the corrosion resistance of the aluminum alloy was excellent when the PHI was 1.5 or less.
  • the PHI is controlled to be 1.5 or less, indicating a relatively low average corrosion depth and standard deviation, so that corrosion propagates close to uniform corrosion.
  • the first specimen also shows a low PHI value, it is technically very difficult to control the copper and iron concentrations as low as the first specimen, and there is a problem that economic problems occur.
  • Intentionally injecting another element into the metal is referred to as an alloying element, and is inevitably implanted due to technical and economical problems in the manufacturing process, and its presence is recognized by limiting the content to an allowable amount or less.
  • the limiting amount of the impurity element depends on the degree of harmfulness of the impurity to the metal.
  • Copper (Cu) is precipitated as Al 2 Cu, which combines with aluminum to promote the cathodic reaction of corrosion, and because it is mainly distributed continuously along the aluminum grain boundary, the cause of intergranular corrosion is that corrosion damage propagates along the grain boundary. This makes the aluminum material for heat exchanger vulnerable to penetration, so in order to suppress it, it should be controlled at a high capacity or less at room temperature.
  • Iron (Fe) combines with aluminum (Al) to form precipitates and acts as a starting point for cathodic reactions in a corrosive environment, which plays a critical role in the corrosion of aluminum. Therefore, it is necessary to minimize the content. Compared with copper, the risk of intergranular corrosion is low and high cost is removed to remove it below the low concentration.
  • FIG. 9 shows the contents of copper and iron. It is a graph showing the variation of the PHI index.
  • Cu copper
  • Fe iron
  • FIG. 9 shows the contents of copper and iron. It is a graph showing the variation of the PHI index.
  • Cu copper
  • Fe iron
  • concentrations above 0.01 wt% copper is continuously networked along the grain boundaries of aluminum and this continuity leads to corrosion of the aluminum tube propagating along the grain boundaries, making it vulnerable to penetration. Therefore, it was confirmed that copper and PHI have a linear relationship at 0.01 wt% or more.
  • the PHI is increased exponentially when it becomes 0.2 wt% or more.
  • copper is continuously networked along the grain boundaries of aluminum and this continuity leads to corrosion of the aluminum tube propagating along the grain boundaries, making it vulnerable to penetration. Therefore, it was confirmed that copper and PHI have a linear relationship at 0.01 wt% or more.
  • the PHI is increased exponentially when it becomes 0.2 wt% or more.
  • Iron is a strong corrosive impurity, but unlike copper, at low concentrations it is independently dispersed in aluminum and does not cause intergranular corrosion. At higher concentrations, however, the amount of independent precipitated phases increases, leading to continuity, and corrosion propagates continuously like grain boundary corrosion.
  • Figure 10 is a graph showing the correlation between the X factor and PHI, through which it can be seen that there is an exponential relationship between the X factor and PHI, the relationship is shown in Equation (2) below.
  • PHI is 1.5 or less, but when it is 1.5, the grain boundary corrosion is prevented, so it is suitable to be used in a heat exchanger having improved corrosion durability including an actual aluminum tube and an aluminum fin material, so it was calculated by fixing to 1.5.
  • the PHI index below 1.5 would be better, but we set it to 1.5 to get the maximum numerical range.
  • Equation (3) When PHI is 1.5 in Equation (2), X becomes 0.4311, and when the optimal zirconium range of 0.05 to 0.2 wt% is applied to Equation (1), the result of Equation (3) follows.
  • the aluminum alloy composition according to an embodiment of the present invention may include magnesium and silicon as impurities in addition to copper and iron, may also need to control the content for them, the contents are as follows.
  • Magnesium (Mg) is to form a precipitated phase with silicon (Si) to improve the strength of the material, but to form an oxide film to deteriorate brazing (Brazing) bonding needs to minimize the content of magnesium (Mg), the present invention
  • Mg (Mg) is controlled to more than 0% by weight to 0.05% by weight or less. If the content of magnesium exceeds 0.05% by weight, it is very difficult to bond by the brazing process, so it is important to control the content of magnesium to 0.05% by weight or less. In addition, it is inexpensive to make such impurities very low, so the lower limit must be more than 0 wt%.
  • the content of silicon (Si) needs to be minimized.
  • the content of silicon (Si) is more than 0% by weight and about 0.2% by weight. Control is as follows.
  • FIGS. 4A and 4B are 3XXX aluminum, which is used as a conventional heat exchanger material.
  • 6A and 6B are cross-sectional views of a specimen prepared by using an aluminum alloy composition according to an embodiment of the present invention.
  • the electrostatic potential polarization test is useful for evaluating the corrosion resistance and corrosion resistance of the material by applying and maintaining a constant potential on the specimen to accelerate corrosion.
  • the electrostatic potential polarization test was performed using an artificial acid ratio, which is an environment for simulating external condensate. After proceeding, the cross section of the specimen was observed to compare the depth of corrosion.
  • the corrosion in the case of the A1070 and A3003 specimens, the corrosion is concentrated and propagated inward along the grain boundary compared to the reference line (red line).
  • the corrosion was dispersed based on the baseline of the surface and the grain boundary corrosion did not occur, so that the corrosion proceeded in a uniform form and the penetration depth was reduced. And a significantly reduced degree of corrosion progression than A3003 specimens.
  • Table 4 is a table measuring the corrosion depth after the potential potential polarization test for the A1070 specimens, A3003 specimens and the specimens (invention alloy) made of the aluminum alloy composition according to an embodiment of the present invention.
  • the average corrosion depth of the A1070 specimens was 139.14 ⁇ m and the standard deviation was 98.63 ⁇ m.
  • the average corrosion depth of the A3003 specimens was 94.49 ⁇ m and the standard deviation was 50.07 ⁇ m.
  • the specimens (development alloy) made of the aluminum alloy composition according to the embodiment of the present invention had an average corrosion depth of 40.68 ⁇ m and a standard deviation of 14.4 ⁇ m. That is, the specimens (development alloys) made of the aluminum alloy composition according to the embodiment of the present invention have improved corrosion resistance by about 3.5 times compared to those of the A1070 specimens, and the corrosion progresses uniformly through the lower variation in corrosion depth. It can be seen that the penetration resistance against.
  • the aluminum alloy composition according to an embodiment of the present invention showed an extrusion speed of about 90 m per minute. This is equivalent to about 90 m / min of the conventional A1070 and higher than about 60-70 m / min of the A3003. That is, the aluminum alloy composition according to the embodiment of the present invention showed a higher extrudability than the conventional A3003.
  • the aluminum alloy composition according to the embodiment of the present invention can be used as the fin material of the heat exchanger as well as the extrusion tube.
  • FIG. 7 is a view showing a heat exchanger consisting of an extruded tube and a fin material, in terms of structure, there is a lamination type, tube type and drawon cap type.
  • the tube type pins therein or increases the amount of heat generated by the porous tube.
  • the extruded tube is preassembled to a fin, a plate, a side tank, etc., and then fixed with a clamp, fluxed, and passed through a brazing furnace to prepare a heat exchanger.
  • the penetration resistance of the heat exchanger to which the heat exchanger is applied is increased to increase the service life of components and to improve performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Extrusion Of Metal (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

본 발명은 구리(Cu), 철(Fe) 등을 일정 농도 이하로 제어하고, 지르코늄(Zr), 티타늄(Ti) 및 하프늄(Hf) 중 어느 하나 또는 이의 혼합물 및 잔부의 알루미늄(Al)을 더 포함하는 알루미늄 합금 조성물, 이를 포함하는 부식내구성이 향상된 알루미늄 압출 튜브와 핀 재 및 이로 구성된 열교환기에 관한 것으로, 합금원소의 첨가 및 제어로 부식지점의 분산과 입계부식 억제를 통해 균일 부식이 일어나도록 유도하여 종래의 열교환기의 튜브 및 핀 재의 공식 대비 부식내구성이 향상되며 압출성이 기존 A1070 수준으로 유지된 알루미늄 합금 조성물, 이를 포함하는 부식내구성이 향상된 열교환기용 알루미늄 압출 튜브와 핀 재 및 이로 구성된 열교환기에 관한 것이다.

Description

알루미늄 합금 조성물, 이를 포함하는 부식내구성이 향상된 알루미늄 압출 튜브와 핀 재 및 이로 구성된 열교환기
본 발명은 알루미늄 합금 조성물, 이를 포함하는 부식내구성이 향상된 열교환기용 알루미늄 압출 튜브와 핀 재 및 이로 구성된 열교환기에 관한 것으로, 보다 상세하게는 에어컨, 냉장고, 라디에이터 등의 열교환기에서 냉매 및 외부 응축수 등으로 발생하는 부식손상에 의한 소재의 관통 및 파손을 억제하는 부식 내구성이 향상된 열교환기용 알루미늄 압출 튜브와 핀 재 및 이로 구성된 열교환기에 관한 것이다.
최근 들어, 가격과 가공의 용이성, 내식성 등의 원인으로 열교환기 소재가 구리에서 알루미늄으로 대체되어 오고 있다. 왜냐하면 알루미늄 소재의 경우 가볍고 가격이 낮으며 높은 열전도성을 갖고 있기 때문이다.
열교환기용 알루미늄 소재로는 주로 압출이 유리하고 열전도도가 높으며 가격이 저렴한 순알루미늄계(A1XXX)와 압출성은 순알루미늄계에 비해 조금 낮지만 상대적으로 높은 강도와 내식성을 가지고 있는 알루미늄-망간계(A3XXX)가 사용된다.
표 1은 종래에 열교환기용 알루미늄 소재로 주로 사용된 A1070 및 A3003의 조성을 나타낸다. A1070은 순알루미늄계 소재이고, A3003은 알루미늄-망간계 소재이다.
표 1
소재명 Cu Si Fe Zn Mg Mn Ti Al.
A1070 0.03 0.20 0.25 0.04 0.03 0.03 0.03 Rem.
A3003 0.158 0.084 0.421 0.034 0.001 1.021 0.014 Rem.
상기 A1070 소재는 소재가격 및 압출단가가 저렴하여 높은 강도가 요구되지 않으며 경제성이 중요한 에어컨, 냉장고 등 가전제품의 컨덴서 등의 튜브 및 핀 재(fin material)로 사용되고 있다. 이와 대조적으로, 상기 A3003 소재는 A1070 대비 상대적인 강도 및 내식성이 우수하지만 압출 단가가 다소 높아 자동차용 인터쿨러 및 라디에어터 등의 열교환기용 압출 튜브 및 핀 재로 사용되고 있다.
한편, 알루미늄은 활성화되기 쉬운 금속이지만, 대기 중에서 표면에 산화피막을 형성하여 높은 내식성을 가지고 있다. 그러나 알루미늄이 부식될 경우 산화피막이 손상되는 국부적인 영역에서만 부식이 발생되는 공식(Pitting Corrosion)이 발생하게 된다. 또한 알루미늄 합금 내부에 포함되어 있는 다양한 불순물과의 전기화학적 작용에 의하여 부식이 일부분에 집중적으로 전파되게 된다. 이러한 알루미늄의 부식메커니즘으로 인해 알루미늄 열교환기는 국부적으로 관통되어 내부의 냉매 또는 고온의 유체의 누출이 발생하게 된다. 따라서, 이러한 관통 저항성이 향상된 열교환기용 알루미늄 합금 소재의 개발이 절실히 요구되고 있다.
또한, 최근 들어, 국내 가전업체의 해외진출이 확대되고 있으나, 대기오염이 심각한 중국 및 인도 등 국가의 대도시나 해안지역에서 사용되는 알루미늄 열교환기의 누출 문제로 인해 부품 교환 등의 경제적 손실이 발생하고, 제품 신뢰도가 저하되는 문제가 있다.
도 1은 기존의 알루미늄 소재의 공식 및 입계부식 메커니즘을 도시한다. 도 1의 맨 좌측에서 보는 것처럼, 캐소오딕 사이트(cathodic site)의 입계 분포를 보면, 알루미늄 표면에 보호성 패시브 필름(passive film)이 형성되고 Al2Cu, Al3Fe 등이 인터메탈릭 페이스(intermetallic phase)로 입계에 분포하고 있다. 이후 부식이 시작되어 공식이 개시(pitting initiation)되면, 가운데 도면과 같이 Al2Cu, Al3Fe와 같은 인터메탈릭 페이스와 모재 간의 전위차가 발생되고, 로컬 서키트(local circuit)가 형성되어 패시브 필름이 파괴되면서 공식이 개시됨을 확인할 수 있다. 이후 맨 오른쪽과 같이 공식이 전파되는데, 표면에서 새로운 공식의 개시 속도보다 입계를 따라서 공식이 전파되는 속도가 더 빠르게 되고, 이에 의해 실제 부식량 대비 관통 깊이가 매우 높다. 따라서, 이러한 알루미늄의 부식메커니즘으로 인해 알루미늄 열교환기는 국부적으로 관통되어 내부의 냉매 또는 고온의 유체의 누출이 발생하게 된다.
도 2는 기존의 열교환기 소재로 사용되고 있는 알루미늄의 부식 전파 거동을 나타내는 도면이고, 도면에서 보는 것처럼 시간이 흐름에 따라 공식의 전파에 의해 관통 깊이가 매우 높게 나타남을 확인할 수 있다.
본 발명의 일 목적은 종래의 열교환기의 튜브 및 핀 재로 사용되는 A1070 소재 및 A3003 소재와 달리, 부식발생을 분산시켜 균일 부식이 일어나도록 유도하는 지르코늄(Zr), 티타늄(Ti) 또는 하프늄(Hf), 또는 이들의 혼합물을 첨가하고, 소재의 조성비를 조절함으로써 부식내구성을 향상시키며 동시에 압출성을 저하시키지 않는 알루미늄 합금 조성물을 제공하는 것이다.
본 발명의 다른 목적은 상기의 알루미늄 합금 조성물을 포함하여 부식내구성이 향상된 열교환기용 알루미늄 압출 튜브와 핀 재 및 이로 구성된 열교환기를 제공하는 것이다.
본 발명의 일 실시예에 따른 알루미늄 합금 조성물은, 구리(Cu); 철(Fe); 지르코늄(Zr), 티타늄(Ti) 및 하 프늄(Hf) 중 어느 하나 또는 이의 혼합물; 및 잔부의 상기 알루미늄(Al)과 필수불가결한 불순물을 포함 하고, 지르코늄(Zr), 티타늄(Ti) 및 하프늄(Hf) 중 어느 하나 또는 이의 혼합물의 함량은 0.05 내지 0. 2 중량%으로 제어되며, 구리(Cu)와 철(Fe)의 함량은 하기 수학식 (1) 및 (2)에 의해 정의된 PHI 값을 1 .5로 이하로 제어하는 것을 특징으로 한다.
Figure PCTKR2014009001-appb-I000001
(1)
Figure PCTKR2014009001-appb-I000002
(2)
이 경우 불순물로 실리콘(Si)을 추가로 포함할 수 있고, 상기 실리콘(Si)의 함량은 상기 알루미늄 합금 조성물 전체 중량 대비 0.2 중량% 이하로 제어되는 것이 바람직하다.
또한, 불순물로 마그네슘(Mg)을 추가로 포함할 수 있고, 상기 마그네슘(Mg)의 함량은 상기 알루미늄 합금 조성물 전체 중량 대비 0.05 중량% 이하로 제어되는 것이 바람직하다.
또한, 위에서 설명된 본 발명의 일 실시예에 따른 알루미늄 합금 조성물로 제 조된 부식 내구성이 향상된 열교환기용 알루미늄 튜브를 제공한다.
또한, 위에서 설명된 본 발명의 일 실시예에 따른 알루미늄 합금 조성물로 제조된 부식 내구성이 향상된 열교환기용 알루미늄 핀 재를 제공한다.
또한, 위에서 설명된 본 발명의 일 실시예에 따른 알루미늄 합금 조성물로 제조된 알루미늄 튜브 및 알루미늄 핀재를 포함한 부식 내구성이 향상된 열교환기를 제공한다.
상기와 같은 구성을 가지는 본 발명은 종래의 열교환기용 알루미늄 소재인 A1070과 비교하여 부식내구성이 우수하여 외부 응축수 및 내부 냉매에 의한 부식손상 및 관통에 대한 저항성이 우수하다. 구체적으로는 지르코늄(Zr), 티타늄(Ti) 또는 하프늄(Hf), 또는 이들의 혼합물의 첨가로 인해 균일 부식이 일어나도록 유도하여 공식 대비 소재의 관통 저항성이 증가되는 효과가 있다.
그리고 본 발명은 지르코늄(Zr), 티타늄(Ti) 또는 하프늄(Hf)의 농도를 제어하고, PHI(관통위험지수)를 이용해 구리(Cu)와 철(Fe)의 농도 제어로 인해 입계부식을 억제하여 부식의 전파가 분산되어 소재의 관통 저항성이 증가되는 효과가 있다.
뿐만 아니라 상기와 같은 구성을 가지는 본 발명의 효과는, 종래의 열교환기용 알루미늄 소재인 A1070과 비교하여 비슷한 압출속도(분당 90m 수준)를 나타내고 있어 생산성 및 경제성이 우수하다.
또한, 열교환기의 부식내구성이 개선됨에 따라 부품의 수명이 증가되고, 성능을 유지하여 냉매 누출 저하 및 열 교환 효율을 향상시켜 에너지를 절약하는 효과가 있다.
도 1은 기존의 알루미늄 소재의 공식 및 입계부식 메커니즘을 설명하는 모식도이다.
도 2는 기존의 열교환기 소재로 사용되고 있는 알루미늄의 부식 전파 거동을 나타내는 도면이다.
도 3a 및 도 3b는 기존의 열교환기 소재로 사용되고 있는 1XXX계 알루미늄인 A1070 시편의 정전위 분극시험 후 단면을 나타낸 도면이다.
도 4a 및 도 4b는 기존의 열교환기 소재로 사용되고 있는 3XXX계 알루미늄인 A3003 시편의 정전위 분극시험 후 단면을 나타낸 도면이다.
도 5는 본 발명의 알루미늄 소재의 공식 및 입계부식 메커니즘을 설명하는 모식도이다.
도 6a 및 도 6b는 본 발명의 실시예에 따른 알루미늄 합금 조성물로 제조된 시편의 정전위 분극시험 후 단면을 나타낸 도면이다.
도 7은 본 발명의 실시예에 따른 알루미늄 열교환기를 나타낸 도면이다.
도 8은 지르코늄의 농도에 따른 알루미늄 튜브의 PHI 및 압출속도의 그래프를 나타낸다.
도 9는 구리 및 철의 함량에 따른 PHI 지수의 변동을 나타내는 그래프이다.
도 10은 X factor와 PHI 간의 상관관계를 나타내는 그래프이다.
본 발명은 다양한 변경을 가할 수 있고 여러가지 실시예를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 일실시예를 상세히 설명한다. 도면상에서 동일 부호는 동일한 요소를 지칭한다.
본 발명의 일 실시예에 따른 알루미늄 합금 조성물은 구리(Cu), 철(Fe), 그리고 지르코늄(Zr), 티타늄(Ti) 또는 하프늄(Hf) 또는 이들의 혼합물 및 잔부의 알루미늄(Al) 및 필수불가결한 불순물을 포함한다.
이 경우 지르코늄(Zr), 티타늄(Ti) 또는 하프늄(Hf) 또는 이들의 혼합물의 경우, 이러한 성분은 입자 크기(Grain Size)를 미세화하여 강도를 향상시킬 뿐만 아니라, 소재 내부의 전위차를 발생시켜 부식의 개시지점으로 작동하는 석출물들을 미세하게 분산시켜 국부적으로 격렬하게 생기는 예측 곤란한 부식의 한 형태인 공식(Pitting Corrosion)의 발생을 억제하고 균일 부식이 일어나도록 유도한다. 이와 같은 균일 부식을 유도하기 위한 이러한 성분의 최적 함량을 살펴본 결과 아래 표 2와 같은 최적의 범위를 찾을 수 있었다.
표 2
Cu Fe Zr Al 부식깊이 평균(um) 부식깊이 표준편차 PHI 압출속도(m/min)
1 0.21 0.42 0.001 Rem. 175.59 154.7 27.171 90
2 0.19 0.38 0.06 Rem. 171.81 57.63 9.9021 90
3 0.22 0.4 0.13 Rem. 127.25 53.53 6.8121 90
4 0.19 0.39 0.21 Rem. 103.31 31.03 3.2058 84
5 0.20 0.41 0.41 Rem. 98.21 24.67 2.4225 32
위의 표 2는 중량% 단위로 나타낸 성분별 함량이고, 최적의 지르코늄 함량을 결정하기 위해 구리와 철의 함량을 제어한 후 지르코늄의 함량을 변경하면서 부식 내구성 및 압출 속도를 측정한 결과이다. 표 2의 데이터에 기초한 지르코늄의 농도에 따른 알루미늄 튜브의 PHI 및 압출속도의 그래프는 도 8에서 도시된다.
여기서 PHI란 Penetration Hazard Index의 줄임말로써 관통 위험지수라고 한다. PHI는 전기화학적 가속화 후 측정된 알루미늄 튜브의 부식 관통깊이를 통해 산출되는 관통위험지수로서 알루미늄 합금의 부식 내구성에 대한 지표로서 활용된다. 이러한 PHI 값은 낮을수록 알루미늄 합금의 부식 내구성이 좋음을 의미한다.
PHI는 아래의 식과 같이 표현된다.
PHI = (부식평균깊이)x(표준편차깊이) / 1000
PHI를 산출하기 위해 인공산성비 환경에서 전기화학적 가속화후 시편의 단면을 분석하여 부식관통깊이와 표준 편차를 측정하였다.
표 2의 결과를 살펴보면, PHI와 압출 속도를 고려할 때 최적의 지르코늄 함량은 0.05중량% 내지 0.2중량%임을 알 수 있었다. 그 이유는, 표 2의 1번 합금의 경우(지르코늄 함량이 0.05중량% 미만인 경우)에는 지르코늄의 농도가 너무 적어서 알루미늄 합금의 균열발생을 억제하지 못함을 확인하였고(왜냐하면 PHI 지수가 현저히 높음), 4번 및 5번 합금의 경우(지르코늄 함량이 0.2 중량% 초과인 경우)에는 지르코늄의 농도가 많아짐에 따라서 압출 속도가 저하되는 문제점이 있음을 확인하였기 때문이다. 본 발명의 알루미늄 합금은 균일 부식이 일어나는 것도 중요하지만 압출 속도가 유지되는 것도 중요하기 때문이다.
지르코늄(Zr), 티타늄(Ti) 또는 하프늄(Hf), 또는 이들의 혼합물이 알루미늄 합금에 포함됨에 따른 입계부식 메커니즘은 다음과 같다.
도 5는 본 발명의 알루미늄 소재의 공식 및 입계부식 메커니즘을 설명하는 모식도이다. 도 5에서 보는 것처럼, 본 발명에 의해 개발된 알루미늄 합금은, 지르코늄(Zr), 티타늄(Ti) 또는 하프늄(Hf), 또는 이들의 혼합물을 첨가함으로써 Al2Cu, Al3Fe 등이 인터메탈릭 페이스(intermetallic phase)로 입계에 분포하는 것을 감소시키고 분산을 유도하게 된다. 이는 도 1과 비교하면, 도 1에서는 입계에 대부분이 분포하고 있지만, 도 5의 좌측에서는 입계에 분포가 감소되고 분산되어 있음을 확인할 수 있다.
또한, 도 5의 가운데에서는 공식이 개시될 때 부식 지점이 또한 분산됨을 확인할 수 있다. 도 1에서는 공식이 개시되면 국부적으로 부식이 일어남을 확인할 수 있다.
마지막으로, 도 5의 우측을 보면 공식이 전파될 때 부식이 집중되지 아니하므로 내부 진행이 억제되어 공식 전파시 관통이 일어날 가능성이 없으나, 도 1의 경우에는 우측을 보면 공식이 입계를 따라 전파되고 따라서 관통 깊이가 본 발명의 알루미늄 합금보다 훨씬 깊음을 확인할 수 있다.
다음으로 알루미늄 합금 조성에 따른 PHI값을 살펴보았으며, 그 결과는 다음과 같다.
PHI를 산출하기 위해서 인공산성비 환경에서 전기화학적 가속화 후 시편의 단면을 분석하여 부식관통깊이와 표준편차를 측정하였다. 구체적인 실험방법은 다음과 같다. 먼저 시편의 표면을 #600 SiC paper를 이용하여 폴리싱한 후 면적을 1cm × 1cm로 제어하였다. 준비된 시편을 SO4 2- 4ppm, Cl- 2 ppm, NO3 - 1.5 ppm을 포함하는 pH 5의 인공산성비 환경에서 4시간 침지하여 표면상태를 안정화한 후 -250mV vs. SCE 전위에서 6시간 정전위 시험을 하여 부식을 일정하게 가속화시켰다. 인공산성비는 알루미늄 튜브로 이루어진 열교환기가 대기환경에서 노출될 수 있는 부식환경을 모사하였으며, 전기화학적 가속화 방법은 실제 부식환경과 동일한 부식메커니즘을 순수하게 전기화학적으로 가속화하는 방법으로 기존의 화학적 가속화 방법에 비해 실제환경을 최대한 모사하며 부식을 가속화할 수 있다. 또한 모든 알루미늄 시편에 동일한 가속화 에너지를 인가하기 때문에 시편에 따른 부식내구성의 차이를 평가하기에 더욱 유용하다. 총 11개의 시편의 화학적 조성과 전기화학적 가속화 후 부식관통깊이, 산출된 PHI는 다음의 표 3과 같다. 표 3에서 11번 시편이 본 발명에 따라 개발된 합금의 경우로써, 표 3의 데이터를 기초로 판단할 때 PHI는 1.5 이하인 경우 알루미늄 합금의 부식 내구성이 뛰어남을 확인하였다. 기존의 합금(표 3의 1번~10번 시편)과 개발합금(표 3의 11번 시편)의 PHI를 산출하여 비교하였을 때, PHI가 1.5 이하의 경우 상대적으로 낮은 평균부식깊이와 표준편차를 나타내어 균일부식에 가깝게 부식이 전파되어 알루미늄 튜브의 부식내구성이 충분히 향상되었다고 판단할 수 있었다.
표 3
Cu Fe Zr Al 부식관통깊이 평균(um) 부식관통깊이 표준편차 PHI
1 0.006 0.098 0 Rem. 64.74 28.01 1.813
2 0.003 0.246 0 Rem. 75.29 65.84 4.957
3 0.005 0.46 0 Rem. 156.81 92.56 14.514
4 0.158 0.421 0 Rem. 190.97 150.31 28.705
5 0.2 0.51 0 Rem. 265.59 143.72 38.171
6 0.5 0.07 0 Rem. 236.97 65.22 15.455
7 0.21 0.42 0.001 Rem. 175.59 154.7 27.171
8 0.19 0.38 0.06 Rem. 171.81 57.63 9.9021
9 0.22 0.4 0.13 Rem. 127.25 53.53 6.8121
10 0.19 0.39 0.21 Rem. 103.31 31.03 3.2058
11(개발합금) 0.005 0.2 0.1 Rem. 40.68 14.41 0.586
표 3에서 보는 것처럼, 본 발명의 개발 합금(11번 시편)의 경우에는 PHI가1.5 이하로 제어되면서 상대적으로 낮은 평균부식깊이 및 표준편차를 나타내어 균일 부식에 가깝게 부식이 전파됨을 알 수 있다. 1번 시편도 낮은 PHI 수치를 보이고 있으나, 구리 및 철의 농도를 1번 시편과 같이 낮은 함량으로 제어하는 것은 그 기술적으로 매우 어려움이 있으며 또한 경제성의 문제가 발생되는 문제점이 있다.
이하에서는 구리, 철 등과 같은 불순물의 함량을 위에서 검토한 PHI 지수 및 지르코늄의 최적 함량과의 관계에서 어떻게 제어하는 것이 가장 바람직한 것인지를 살펴보도록 하겠다.
금속 내부에 다른 원소를 의도적으로 주입하면 상기 원소를 합금원소라고 하고, 제조 과정에서 기술 및 경제성의 문제로 불가피하게 주입되며, 그 함유량을 허용량 이하로 제한함으로써 그 존재가 인정되는 것이 불순물이다. 불순물 원소의 제한량은 불순물이 금속에 미치는 유해성이 어느 정도인가에 따라 달라진다.
구리(Cu)는 알루미늄과 결합하여 부식의 음극반응을 촉진하는 Al2Cu 로 석출되며, 주로 알루미늄 입계를 따라 연속적으로 분포되기 때문에 부식손상이 입계를 따라 전파가 되는 입계부식(Intergranular Corrosion)의 원인이 되어 열교환기용 알루미늄 소재가 관통에 취약하게 하므로 이를 억제하기 위해서는 상온의 고용량 이하로 제어해야 한다.
철(Fe)은 알루미늄(Al) 등과 결합하여 석출물을 형성시키며 부식 환경에서 음극 반응의 개시지점으로 작동하여 알루미늄의 부식에 치명적인 역할을 하므로 함량을 최소화할 필요가 있는데, 석출물이 불연속적으로 분포하여 구리(Cu)에 비해 입계부식에 대한 위험도가 낮고 낮은 농도 이하로 제거시키는데 높은 비용이 발생하므로 경제성을 고려하여 제어한다.
구리 및 철은 그 상관관계에 따라 부식 환경에서 알루미늄의 부식에 치명적인 역할을 하므로, 입계 부식이 일어나지 않도록 하는 이들의 함량에 대한 상관 관계를 본 발명에서는 찾아내었다.
입계 부식 여부를 결정하는 성분으로써, 지르코늄(Zr), 티타늄(Ti) 및 하프늄(Hf) 중 어느 하나 또는 이의 혼합물 이외에 구리(Cu) 및 철(Fe)이 있으며, 도 9는 구리 및 철의 함량에 따른 PHI 지수의 변동을 나타내는 그래프이다. 구리의 경우, 0.01 중량% 이상일 경우 입계 부식이 발생하며 PHI가 증가함을 확인할 수 있었다. 0.01 중량% 이상의 농도에서 구리는 알루미늄의 입계를 따라 연속적으로 석출되며(network), 이러한 연속성은 알루미늄 튜브의 부식이 입계를 따라 전파되도록 유도하여 관통에 취약하게 한다. 따라서 0.01 중량% 이상에서 구리와 PHI는 선형적인 관계를 갖는 것을 확인하였다. 철의 경우, 0.2 중량% 이상이 되는 경우 PHI가 기하급수적으로 증가됨을 확인하였다. 0.01 중량% 이상의 농도에서 구리는 알루미늄의 입계를 따라 연속적으로 석출되며(network), 이러한 연속성은 알루미늄 튜브의 부식이 입계를 따라 전파되도록 유도하여 관통에 취약하게 한다. 따라서 0.01 중량% 이상에서 구리와 PHI는 선형적인 관계를 갖는 것을 확인하였다. 철의 경우, 0.2 중량% 이상이 되는 경우 PHI가 기하급수적으로 증가됨을 확인하였다. 철은 강력한 부식성 불순물이지만 구리와 다르게 저농도에서는 알루미늄 내에 독립적으로 분산되어(island) 입계부식을 유발하지 않는다. 그러나 농도가 높아질 경우, 독립적이었던 석출상들의 양이 증가하면서 연속성을 띄어가며 부식이 입계부식과 같이 연속적으로 전파된다. 이러한 원리에 의해 철이 0.2 중량% 이상이 되는 경우 PHI가 기하급수적으로 증가하는 관계를 갖는 것을 확인하였다. 상기 내용을 기초로 볼 때 구리 및 철의 농도와 PHI 지수의 상관관계는 임계값 이상의 구리 및 철의 농도의 합이 PHI 값의 증가 요인이 될 것으로 판단된다. 한편, 구리 및 철 이외에 위의 표 2에서 이미 검토한 것처럼 지르코늄의 함량도 입계부식 여부에 중요한 인자(지르코늄의 함량이 증가할수록 PHI는 감소되며, 최적의 함량은 위에서 검토한 것처럼 0.05 내지 0.2 중량% 임)이므로, 이를 고려해야 한다.
이러한 원리를 종합하여 고려할 때, 합금원소의 농도를 X factor(element concentration factor)라고 할 때, X factor는 PHI와의 함수로 표현되며, 그 수식(1)은 아래와 같다.
PHI = f(X)이고,
Figure PCTKR2014009001-appb-I000003
(1)
한편, 도 10은 X factor와 PHI 간의 상관관계를 나타내는 그래프이며, 이를 통해 X factor와 PHI 간에는 익스퍼낸셜(exponential) 관계에 있음을 알 수 있었고, 그 관계식은 아래 수식(2)와 같다.
Figure PCTKR2014009001-appb-I000004
(2)
이러한 수식 관계를 기초로, 이미 위에서 검토한 것처럼 PHI를 1.5 이하로 제어하고 지르코늄의 농도를 0.05 내지 0.2 중량%로 제어할 때의 관계식은 다음과 같다.
이 경우 PHI는 1.5 이하이지만, 1.5일 경우 입계 부식이 방지되어 실제 알루미늄 튜브 및 알루미늄 핀재를 포함한 부식 내구성이 향상된 열교환기에 이용되기에 적합하므로, 1.5로 고정하여 계산하였다. 1.5 아래의 PHI 지수는 더욱 좋을 것이나, 최대 수치 범위를 잡기 위해 1.5로 하였다.
위 수식 (2)에서 PHI가 1.5일 경우 X는 0.4311이 되고, 이때 최적의 지르코늄 범위인 0.05 내지 0.2 중량%를 수식 (1)에 적용할 경우 다음과 같은 수식 (3)의 결과가 나온다.
0.4598 ≤ 0.4×Cu%+0.5×exp(Fe%-0.3) ≤ 0.5580 (3)
이때 Cu와 Fe의 경우 적으면 적을수록 좋으므로 최소값은 의미가 없으며, 결국 최종적으로 다음 수식 (4)와 같이 제어되는 것이 바람직하다.
0.4×Cu% + 0.5×exp(Fe%-0.3) ≤ 0.56 (4)
한편, 본 발명의 실시예에 따른 알루미늄 합금 조성물은 구리 및 철 이외에 마그네슘 및 실리콘이 불순물로 포함될 수 있으며, 이들에 대한 함량 제어도 필요할 수 있고, 그 내용은 아래와 같다.
마그네슘(Mg)은 실리콘(Si)과 함께 석출상을 생성시켜 소재의 강도를 향상시키지만 산화막을 형성하여 브레이징(Brazing) 접합성을 악화시키므로 상기 마그네슘(Mg)의 함량을 최소화할 필요가 있는데, 본 발명에서는 상기 마그네슘(Mg)의 함량을 0 중량% 초과 0.05 중량% 이하로 제어한다. 마그네슘의 함량이 0.05 중량%를 초과하면 브레이징 공정에 의한 접합이 거의 어려우므로 마그네슘의 함량을 0.05 중량% 이하로 제어하는 것이 중요하다. 또한, 이러한 불순물을 매우 적게 하는 것은 경제성이 떨어지므로 그 하한은 0 중량% 초과일 수 밖에 없는 것이다.
실리콘(Si)은 마그네슘(Mg) 등과 반응하여 석출물을 발생시키고 부식 환경에서 음극 반응을 촉진시키므로 함량을 최소화할 필요가 있는데 본 발명에서는 상기 실리콘(Si)의 함량을 0 중량% 초과 약 0.2 중량% 이하로 제어한다.
위에서 설명한 불순물들(구리, 철, 실리콘 및 마그네슘)은 모두 부식을 감소시키기 위해 최소화시키는 것이 바람직하나, 경제성을 고려할 때 상기의 농도로만 제어되어도 아래에서 설명하는 것처럼 충분히 열교환기용 알루미늄 합금 소재로 이용 가능하므로, 위와 같은 범위로 제어하는 것이 중요하다.
도 3a 및 도 3b는 기존의 열교환기 소재로 사용되고 있는 1XXX계 알루미늄인 A1070 시편의 정전위 분극시험 후 단면을 나타낸 도면이고, 도 4a 및 도 4b는 기존의 열교환기 소재로 사용되고 있는 3XXX계 알루미늄인 A3003 시편의 정전위 분극시험 후 단면을 나타낸 도면이며, 도 6a 및 도 6b는 본 발명의 실시예에 따른 알루미늄 합금 조성물로 제조된 시편의 정전위 분극시험 후 단면을 나타낸 도면이다.
상기 정전위 분극시험은 시편에 일정한 전위를 인가 및 유지하여 부식을 가속화하는 방법으로 소재의 내식성 및 부식내구성을 평가하는데 유용한데, 외부 응축수 모사 환경인 인공산성비를 이용하여 6시간 정전위 분극시험을 진행한 후 시편의 단면을 관찰하여 부식이 진행된 깊이를 비교하였다.
도 3a, 도 3b, 도4a, 도 4b, 도 6a 및 도 6b를 참조하면, 기준선(붉은 선)과 비교하여 A1070 시편과 A3003 시편의 경우 부식이 집중되고 입계를 따라 내부로 전파되어 관통깊이가 크게 나타났으나, 본 발명의 조성을 가진 시편의 경우 표면의 기준선을 기준으로 부식이 분산되고 입계부식이 발생하지 않아 균일한 형태로 부식이 진행되었으며 관통 깊이가 감소한 것을 확인할 수 있는데, 이는 상기 A1070 시편 및 A3003 시편보다 부식진행의 정도가 크게 감소한 것을 의미한다.
표 4는 A1070 시편들, A3003 시편들 및 본 발명의 실시예에 따른 알루미늄 합금 조성물로 제작된 시편들(발명합금)에 대해 정전위 분극시험 후 부식 깊이를 측정한 표이다.
표 4
부식감육깊이 (㎛)
A1070 A3003 개발합금
1 236.03 184.25 41.56
2 262.82 58.41 30.86
3 240.00 97.25 28.34
4 37.47 49.51 39.06
5 245.58 48.54 30.86
6 57.48 124.31 34.01
7 98.27 88.41 51.64
8 42.62 157.52 62.97
9 23.78 121.24 23.30
10 147.32 35.45 64.24
평균 139.14 96.49 40.68
표준편차 98.63 50.07 14.40
표 4를 참조하면, A1070 시편들의 평균 부식 깊이는 139.14 ㎛이고 표준편차는 98.63 ㎛이었다. 그리고 A3003 시편들의 평균 부식 깊이는 94.49 ㎛이고 표준편차는 50.07 ㎛이었다. 이에 반해, 본 발명의 실시예에 따른 알루미늄 합금 조성물로 제작된 시편들(개발합금)은 평균 부식 깊이가 40.68 ㎛이고 표준편차가 14.4 ㎛이었다. 즉, 본 발명의 실시예에 따른 알루미늄 합금 조성물로 제작된 시편들(개발합금)은 내식성이 A1070 시편들 대비 약 3.5배 향상되었으며 전반적으로 부식 깊이의 편차가 낮아진 것을 통하여 부식이 균일하게 진행되어 부식에 대한 관통 저항성이 증가된 것을 알 수 있다.
또한 본 발명의 실시예에 따른 알루미늄 합금 조성물을 이용하여 시편을 제작하는 경우 분당 약 90 m 수준의 압출속도를 나타내었다. 이는 종래의 제품인 A1070의 분당 약 90 m 수준과 동등하며 A3003의 분당 약 60~70 m 수준보다 높다. 즉, 본 발명의 실시예에 따른 알루미늄 합금 조성물은 종래의 A3003에 비해 높은 압출성을 나타내었다.
이러한 본 발명의 실시예에 따른 알루미늄 합금 조성물은 압출 튜브뿐만 아니라 열교환기의 핀 재로 사용이 가능하다.
도 7은 압출 튜브와 핀 재로 구성된 열교환기를 나타낸 도면인데, 구조적인 측면에서 적층 유형, 튜브 유형 및 드로온 캡 유형 등이 있다.
특히 상기 튜브 유형은 내부에 핀을 붙이거나 다공관으로 발열량을 증가시킨다. 구체적으로 압출 튜브를 핀, 플레이트 및 사이드 탱크 등과 가조립한 뒤 클램프로 고정하여 플럭스 처리하고 브레이징로를 통과시킴으로써 열교환기를 제조한다.
이와 같이, 본 발명에 의한 열교환기용 알루미늄 합금소재의 부식내구성이 크게 향상됨에 따라 이를 적용한 열교환기의 관통 저항성이 증가하여 부품의 수명이 증가되고 성능이 개선된다.
이상에서 본 발명에 따른 실시예들이 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 범위의 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 다음의 특허청구범위에 의해서 정해져야 할 것이다.

Claims (7)

  1. 구리(Cu);
    철(Fe);
    지르코늄(Zr), 티타늄(Ti) 및 하프늄(Hf) 중 어느 하나 또는 이의 혼합물; 및
    잔부의 상기 알루미늄(Al)과 필수불가결한 불순물을 포함하고,
    지르코늄(Zr), 티타늄(Ti) 및 하프늄(Hf) 중 어느 하나 또는 이의 혼합물의 함량은 0.05 내지 0.2 중량%으로 제어되며,
    구리(Cu)와 철(Fe)의 함량은 하기 수학식 (1) 및 (2)에 의해 정의된 PHI 값을 1.5로 이하로 제어하는 것을 특징으로 하는,
    Figure PCTKR2014009001-appb-I000005
    (1)
    Figure PCTKR2014009001-appb-I000006
    (2)
    알루미늄 합금 조성물.
  2. 제 1 항에 있어서,
    실리콘(Si)을 추가로 포함하고,
    상기 실리콘(Si)의 함량은 상기 알루미늄 합금 조성물 전체 중량 대비 0.2 중량% 이하로 제어되는 것을 특징으로 하는,
    알루미늄 합금 조성물.
  3. 제 1 항에 있어서,
    마그네슘(Mg)을 추가로 포함하고,
    상기 마그네슘(Mg)의 함량은 상기 알루미늄 합금 조성물 전체 중량 대비 0.05 중량% 이하로 제어되는 것을 특징으로 하는,
    알루미늄 합금 조성물.
  4. 제 2 항에 있어서,
    마그네슘(Mg)을 추가로 포함하고,
    상기 마그네슘(Mg)의 함량은 상기 알루미늄 합금 조성물 전체 중량 대비 0.05 중량% 이하로 제어되는 것을 특징으로 하는,
    알루미늄 합금 조성물.
  5. 제 1 항 내지 제 4 항 중 어느 한 항의 알루미늄 합금 조성물로 제조된 부식 내구성이 향상된 열교환기용 알루미늄 튜브.
  6. 제 1 항 내지 제 4 항 중 어느 한 항의 알루미늄 합금 조성물로 제조된 부식 내구성이 향상된 열교환기용 알루미늄 핀 재.
  7. 제 1 항 내지 제 4 항 중 어느 한 항의 알루미늄 합금 조성물로 제조된 알루미늄 튜브 및 알루미늄 핀재를 포함한 부식 내구성이 향상된 열교환기.
PCT/KR2014/009001 2013-09-27 2014-09-26 알루미늄 합금 조성물, 이를 포함하는 부식내구성이 향상된 알루미늄 압출 튜브와 핀 재 및 이로 구성된 열교환기 WO2015046940A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/025,166 US20160237527A1 (en) 2013-09-27 2014-09-26 Aluminum alloy composition, aluminum extrusion tube and fin material with improved corrosion durability comprising same, and heat exchanger constructed of same
CN201480050922.1A CN105637107B (zh) 2013-09-27 2014-09-26 铝合金组合物、包括其的腐蚀耐久性被提高的铝挤压管

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130115043 2013-09-27
KR10-2013-0115043 2013-09-27
KR10-2014-0018389 2014-02-18
KR1020140018389A KR101465389B1 (ko) 2013-09-27 2014-02-18 알루미늄 합금 조성물, 이를 포함하는 관통저항성이 향상된 알루미늄 압출 튜브와 핀 재 및 이로 구성된 열교환기

Publications (1)

Publication Number Publication Date
WO2015046940A1 true WO2015046940A1 (ko) 2015-04-02

Family

ID=52291645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009001 WO2015046940A1 (ko) 2013-09-27 2014-09-26 알루미늄 합금 조성물, 이를 포함하는 부식내구성이 향상된 알루미늄 압출 튜브와 핀 재 및 이로 구성된 열교환기

Country Status (4)

Country Link
US (2) US20160237527A1 (ko)
KR (2) KR101465389B1 (ko)
CN (2) CN105637107B (ko)
WO (1) WO2015046940A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122999A1 (ko) * 2016-01-11 2017-07-20 성균관대학교산학협력단 열교환기용 알루미늄 핀재와 용가재 및 이를 포함하는 알루미늄 열교환기
CN108754246A (zh) * 2018-06-19 2018-11-06 江苏亨通电力特种导线有限公司 汽车冷凝管用铝合金材料及其制备方法
JP6846558B1 (ja) * 2019-09-27 2021-03-24 株式会社Uacj アルミニウム合金材及びその製造方法
KR20240044900A (ko) 2022-09-29 2024-04-05 엘지전자 주식회사 열교환기
KR102642641B1 (ko) 2023-09-12 2024-03-04 (주) 동양에이.케이코리아 Al-Zn-Mg-Cu계 알루미늄 합금 및 이의 열처리 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215728A (ja) * 1984-04-06 1985-10-29 Sukai Alum Kk 印刷用アルミニウム合金素板
JP2005126799A (ja) * 2003-10-27 2005-05-19 Mitsubishi Alum Co Ltd 耐アベック性に優れた熱交換器用アルミニウム合金フィン材
JP2013122083A (ja) * 2011-11-07 2013-06-20 Sumitomo Light Metal Ind Ltd 高強度アルミニウム合金材及びその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164264A (en) * 1979-06-08 1980-12-20 Hitachi Ltd Aqueous coating composition and heat exchanger coated with it
US4602907A (en) * 1981-08-17 1986-07-29 Foster Richard W Light pen controlled interactive video system
EP0158941B2 (en) * 1984-04-06 1997-12-17 Fuji Photo Film Co., Ltd. Aluminium alloy material plate for printing
JPH05263172A (ja) * 1992-03-17 1993-10-12 Furukawa Alum Co Ltd 熱交換器フィン材用アルミニウム合金
JPH06215728A (ja) * 1993-01-18 1994-08-05 Hitachi Ltd 一次イオンビーム調整技法
US5422191A (en) * 1994-02-14 1995-06-06 Kaiser Aluminum & Chemical Corporation Aluminum-lithium filler alloy for brazing
EP0893512A1 (en) * 1997-07-17 1999-01-27 Norsk Hydro ASA High extrudability and high corrosion resistant aluminium alloy
JP3097642B2 (ja) 1997-12-15 2000-10-10 日本軽金属株式会社 微小構造断面の熱交換器押出チューブ用アルミニウム合金および微小構造断面の熱交換器押出チューブの製造方法
JP3756439B2 (ja) 2001-10-10 2006-03-15 三菱アルミニウム株式会社 熱交換器用高強度高耐食性アルミニウム合金押出材及びその製造方法並びに熱交換器
NO20016355D0 (no) * 2001-12-21 2001-12-21 Norsk Hydro As Aluminium kjöleribbe med forbedret styrke og bestandighet
JP4275560B2 (ja) * 2004-03-22 2009-06-10 三菱アルミニウム株式会社 耐アベック性、スタック性に優れた熱交換器用アルミニウム合金フィン材
JP4955418B2 (ja) 2007-02-26 2012-06-20 古河スカイ株式会社 自然冷媒用熱交換器に用いられるアルミニウム合金押出材
CN100500904C (zh) * 2007-08-03 2009-06-17 乳源东阳光精箔有限公司 一种热交换器用铝箔及其制造方法
JP5622349B2 (ja) 2007-11-28 2014-11-12 株式会社神戸製鋼所 アルミニウム合金材およびアルミニウム合金ブレージングシート
JP4764459B2 (ja) 2008-08-28 2011-09-07 株式会社神戸製鋼所 裏面白化防止性に優れる印刷版用高強度アルミニウム合金板
JP5789401B2 (ja) * 2011-04-15 2015-10-07 株式会社神戸製鋼所 熱交換器用アルミニウムフィン材

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215728A (ja) * 1984-04-06 1985-10-29 Sukai Alum Kk 印刷用アルミニウム合金素板
JP2005126799A (ja) * 2003-10-27 2005-05-19 Mitsubishi Alum Co Ltd 耐アベック性に優れた熱交換器用アルミニウム合金フィン材
JP2013122083A (ja) * 2011-11-07 2013-06-20 Sumitomo Light Metal Ind Ltd 高強度アルミニウム合金材及びその製造方法

Also Published As

Publication number Publication date
CN105579601A (zh) 2016-05-11
CN105637107B (zh) 2017-08-25
US20160237527A1 (en) 2016-08-18
KR20150035416A (ko) 2015-04-06
CN105579601B (zh) 2017-09-22
KR101465389B1 (ko) 2014-11-25
US10465265B2 (en) 2019-11-05
CN105637107A (zh) 2016-06-01
US20160237528A1 (en) 2016-08-18
KR101586152B1 (ko) 2016-01-15

Similar Documents

Publication Publication Date Title
WO2015046940A1 (ko) 알루미늄 합금 조성물, 이를 포함하는 부식내구성이 향상된 알루미늄 압출 튜브와 핀 재 및 이로 구성된 열교환기
WO2020067678A1 (ko) 용접액화취성에 대한 저항성과 도금밀착성이 우수한 고내식 도금강판
JP2010270395A (ja) 薄肉チューブ用アルミニウム合金ろう付けシート
WO2010132018A1 (en) Aluminium brazing sheet with a high strength and excellent corrosion performance
JPS5831383B2 (ja) アルミニウム合金製熱交換器用フィン材およびその製造法
CN110330951A (zh) 一种环保型发动机冷却液及其制备方法
JP2008280544A (ja) 強度、犠牲陽極効果、および耐食性に優れるフィン材および熱交換器
KR100469929B1 (ko) 알루미늄 합금 및 그로부터 제조된 항공기 부품
BR112017007757B1 (pt) chapa de brasagem
WO2015046942A1 (ko) 관통 저항성이 향상된 열교환기용 알루미늄 합금, 이를 포함하는 관통 저항성이 향상된 알루미늄 압출 튜브와 핀 재 및 이로 구성된 열교환기
US4150980A (en) Aluminum alloy excellent in high-temperature sagging resistance and sacrificial anode property
JP4238957B2 (ja) 強度および耐食性に優れた熱交換器チューブ材用アルミニウム合金ブレージングシート
JPS6280246A (ja) 高温強度の優れた熱交換器用Al合金材
JPS6234826B2 (ko)
JP2007332424A (ja) 犠牲陽極材およびアルミニウム合金複合材
CN103352139A (zh) 铜镍合金
JPS58161743A (ja) ラジエ−タ−用銅合金
WO2023048391A1 (ko) 고 내식성 열교환기
JPS63303027A (ja) 熱交換器用アルミニウムプレ−ジングシ−ト
WO2023207757A1 (zh) 一种用于换热器的换热管及换热器
JPS5852453A (ja) 自動車用ラジエ−タ−のフイン用銅合金
WO2017122999A1 (ko) 열교환기용 알루미늄 핀재와 용가재 및 이를 포함하는 알루미늄 열교환기
CN117736701A (zh) 一种单相浸没式含氟冷却液及其应用
JPH11241132A (ja) 高耐食性アルミニウム合金製ブレージングシート
JP2014025112A (ja) 熱交換器フィン用アルミニウム合金板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848240

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15025166

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848240

Country of ref document: EP

Kind code of ref document: A1