WO2017122999A1 - 열교환기용 알루미늄 핀재와 용가재 및 이를 포함하는 알루미늄 열교환기 - Google Patents

열교환기용 알루미늄 핀재와 용가재 및 이를 포함하는 알루미늄 열교환기 Download PDF

Info

Publication number
WO2017122999A1
WO2017122999A1 PCT/KR2017/000362 KR2017000362W WO2017122999A1 WO 2017122999 A1 WO2017122999 A1 WO 2017122999A1 KR 2017000362 W KR2017000362 W KR 2017000362W WO 2017122999 A1 WO2017122999 A1 WO 2017122999A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
weight
aluminum
tube
heat exchanger
Prior art date
Application number
PCT/KR2017/000362
Other languages
English (en)
French (fr)
Inventor
김정구
박인준
김용상
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160167691A external-priority patent/KR20170083956A/ko
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2017122999A1 publication Critical patent/WO2017122999A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal

Definitions

  • the present invention relates to an aluminum fin material and filler material for a heat exchanger, and also relates to an aluminum heat exchanger comprising such fin material and filler material.
  • the present invention relates to a fin material and filler material designed in an optimal manner to improve the life as a heat exchanger in combination with the existing commercial tube material and aluminum alloy tube of the KR 10-1465389 of the present study group. Specifically, the composition of the fin and filler materials is adjusted to serve as a sacrificial anode for the aluminum tube.
  • the tube material for aluminum heat exchanger mainly uses 1xxx series and 3xxx series aluminum alloys to satisfy the conditions of extrudability, mechanical strength, thermal conductivity and price.
  • the aluminum alloy tube of KR 10-1465389 is a material that has improved corrosion durability compared to existing 1xxx and 3xxx aluminum alloy tubes by improving corrosion propagation form and corrosion resistance while maintaining extrusion speed and strength.
  • the tube material In order to maximize the effect of improving the corrosive life of the tube material, when the heat exchanger is combined with the fin material, the tube material must maintain a higher corrosion potential than the fin material. If the corrosion potential of the tube material is lower than that of the fin material, the aluminum tube acts as a sacrificial anode for the fin material, thereby accelerating corrosion and significantly reducing the corrosion penetration resistance. In case of the existing 1xxx- and 3xxx-based aluminum alloys, an excessive amount of Fe or Cu is added, or a Si-diffusion layer is formed on the surface of the tube by using a 4xxx-based aluminum alloy cladding and brazing process to increase the potential of the tube relative to the fin material. Has been raised.
  • the research group has developed fin materials and filler materials that can maximize the corrosion durability of existing 1XXX and 3XXX series aluminum alloys and KR 10-1465389 aluminum alloy tubes, and this fin material and filler materials will be disclosed through this patent.
  • the fin material is attached to the tube material through which the refrigerant passes in the aluminum heat exchanger, thereby increasing the heat exchange area to increase heat exchange efficiency.
  • the fin material mainly uses the same metal as the tube material and is joined to the tube material by welding or brazing. In the aluminum heat exchanger, mainly brazing is used, and the brazing material is melted between the fin material and the tube material to complete the joining process. Fins should be rollable to tens of um thick and have sufficient physical strength. It is particularly important to maintain sufficient strength after brazing.
  • the conventional fin material mainly uses a 3XXX system containing Mn, and in some cases, a high concentration of Cu or Fe is added to form a secondary phase after brazing to maintain mechanical strength.
  • Fe high concentration of 0.5 wt.% Or more
  • Fe has a problem that increases the natural corrosion potential of the aluminum fin material in the noble direction and greatly increases the corrosion rate.
  • the fin material when the heat exchanger is exposed to a corrosive environment, the fin is rapidly corroded and damaged or the surface is covered with aluminum oxide, which is a corrosion product, and the thermal conductivity decreases rapidly, thereby greatly degrading the performance of the heat exchanger.
  • the natural corrosion potential of the fin material is higher than the tube material, it acts as a cathode for the tube material to operate the tube material as a sacrificial anode.
  • the corrosion rate of the tube material is greatly increased and the corrosion penetration life is drastically reduced.
  • the filler metal serves to bond not only the fin material and the tube material but also the tube material and the manifold.
  • the filler metal should have a sufficiently low melting point and high flowability and maintain good bonding.
  • the brazing process uses Al-Si alloys (570-580), which have lower melting points than tube and fin materials (about 620), as filler metals. Brazing is currently carried out in an atmosphere or inert gas atmosphere at a temperature range of 570 ⁇ 610 °C, using a flux (flux) to remove the oxide on the aluminum surface to improve the brazing properties.
  • the filler metal is a factor that greatly affects the corrosion characteristics of the tube material.
  • the filler metal also diffuses into the tube during the brazing process and forms a galvanic circuit with the tube to affect the electrochemical reaction.
  • the spontaneous corrosion potential of the filler material when the spontaneous corrosion potential of the filler material is higher than the tube material, it can act as a cathode for the tube material, which can greatly increase the corrosion rate of the tube material. In this case, the impact of the filler metal is greater than that of the fin material.
  • the magnitude of the galvanic corrosion current in the galvanic circuit i.e.
  • the accelerated corrosion rate of the tube material, the sacrificial anode is proportional to the distance between the electrode and the resistance of the corrosive electrolyte.
  • the physical distance from the tube material affects the tube material more because the filler metal is closer than the fin material.
  • An object of the present invention is to improve the corrosion resistance of the fin material and filler material and the aluminum heat exchanger including the same, which can greatly increase the corrosion resistance of the aluminum heat exchanger when assembled with commercial aluminum tube material and aluminum alloy tube of KR 10-1465389 Is in development.
  • Aluminum alloy fin material for improving the corrosion durability of the aluminum alloy tube according to an embodiment of the present invention 0.3 to 1.0% by weight of silicon (Si); 0.2 wt% or less of iron (Fe); Up to 0.05% copper (Cu); 1.0-1.8 wt.% Manganese (Mn); 1.3 to 2.5 weight percent zinc (Zn); And the balance of aluminum (Al) and indispensable impurities.
  • the aluminum alloy of the aluminum alloy tube may be a 1XXX series or 3XXX series aluminum alloy, and the 1XXX series or 3XXX series aluminum alloy is any one of A1070, A1100, A3003, and A3102.
  • the Si is 0.5% by weight, the Cu is 0.05% by weight, the Fe is 0.2% by weight, the Mn is 1.5% by weight, the Zn is preferably 2.0% by weight.
  • Aluminum alloy filler material to improve the corrosion durability of the aluminum alloy tube according to an embodiment of the present invention 7.0 to 9.0% by weight of silicon (Si); 0.2 wt% or less of iron (Fe); Up to 0.05% copper (Cu); 0.7-2.5% zinc (Zn); And the balance of aluminum (Al) and indispensable impurities.
  • the aluminum alloy of the aluminum alloy tube may be a 1XXX series or 3XXX series aluminum alloy, and the 1XXX series or 3XXX series aluminum alloy is preferably any one of A1070, A1100, A3003, and A3102.
  • the Si is 7.5% by weight, the Cu is 0.05% by weight, the Fe is 0.2% by weight, the Zn is preferably 1.0% by weight.
  • Aluminum alloy heat exchanger according to an embodiment of the present invention, the aluminum alloy tube; 0.3 to 1.0% by weight of silicon (Si); 0.2 wt% or less of iron (Fe); Up to 0.05% copper (Cu); 1.0-1.8 wt.% Manganese (Mn); 1.3 to 2.5 weight percent zinc (Zn); And an aluminum alloy fin material comprising the remainder of aluminum (Al) and indispensable impurities; And 7.0 to 9.0 weight percent silicon (Si); 0.2 wt% or less of iron (Fe); Up to 0.05% copper (Cu); 0.7-2.5% zinc (Zn); And an aluminum alloy filler metal containing the balance of aluminum (Al) and indispensable impurities.
  • a 1XXX-based or 3XXX-based aluminum alloy may be used, and the 1XXX-based or 3XXX-based aluminum alloy may be any one of A1070, A1100, A3003, and A3102.
  • the Si is 0.5% by weight
  • the Cu is 0.05% by weight
  • the Fe is 0.2% by weight
  • the Mn is 1.5% by weight
  • the Zn is 2.0% by weight
  • the Si is 7.5% by weight
  • the Cu is 0.05% by weight
  • the Fe is 0.2% by weight
  • the Zn is preferably 1.0% by weight.
  • the penetration life is increased to 48 days or more.
  • the aluminum alloy filler metal has a potential of 20 to 50 mV relative to the aluminum alloy tube, and the aluminum alloy fin material has a potential of 20 to 50 mV compared to the aluminum alloy filler material.
  • the corrosion potential of the aluminum alloy filler metal is 0.78 to 0.83 mV.
  • the corrosion potential of the aluminum alloy fin material is 0.80 to 0.85 mV.
  • the corrosion life is increased compared to the aluminum heat exchanger using the conventional fin material and filler material.
  • the service life is significantly improved compared to commercial aluminum heat exchangers. (Based on A STM G85, leakage increased from 80 days to over 80 days)
  • Figure 1 shows the appearance of the aluminum fin and filler metal in accordance with an embodiment of the present invention.
  • the present invention provides a fin material and filler material which can greatly increase the corrosion durability of the aluminum heat exchanger configured when assembled with commercial aluminum tube material and aluminum alloy tube of KR 10-1465389, and an aluminum heat exchanger having improved corrosion durability including the same. .
  • commercial aluminum tube materials usable in the present invention include 1XXX and 3XXX systems.
  • commercial aluminum tube materials A1070, A1100, A3003, and A3102 materials are used.
  • the natural corrosion potential of each material should be tube material> filler material> fin material.
  • the filler metal decreases the corrosion rate of the tube material by acting as a sacrificial anode for the tube material and the fin material serves as a sacrificial anode for the filler material and the tube material. It is the content of the present invention to improve the corrosion penetration life of the aluminum heat exchanger through such a potential design. Specific experimental examples for each will be described further in the following examples.
  • the aluminum alloy tube of KR 10-1465389 which is the present application of the present invention, copper (Cu); Iron (Fe); Zirconium (Zr); And the balance of aluminum (Al) and indispensable impurities, the content of zirconium (Zr) is controlled to 0.05 to 0.2 wt%, and the content of copper (Cu) and iron (Fe) is It is characterized by controlling the PHI value defined by 1) and (2) to 1.5 or less.
  • the impurities may further include silicon (Si), the content of the silicon (Si) is preferably controlled to 0.2% by weight or less relative to the total weight of the aluminum alloy composition.
  • it may further include magnesium (Mg) as an impurity, the content of the magnesium (Mg) is preferably controlled to less than 0.05% by weight relative to the total weight of the aluminum alloy composition.
  • the aluminum alloy tube of KR 10-1465389 is a material that greatly improves the corrosion penetration life of the tube by converting the corrosion penetration form of aluminum propagated by intergranular corrosion into a uniform corrosion form.
  • the aluminum fin and filler metal welded together with the tube material Aluminum tube material, fin material and filler material use aluminum alloys of different composition because required physical properties are different. At this time, the electrochemical properties of each material have a big difference according to the alloy composition included.
  • the natural corrosion potential of each material should be tube material> filler material> fin material.
  • the filler metal decreases the corrosion rate of the tube material by acting as a sacrificial anode for the tube material and the fin material serves as a sacrificial anode for the filler material and the tube material. It is an object of the present invention to improve the corrosion penetration life of an aluminum heat exchanger through such a potential design.
  • an alloy that can satisfy the electrochemical requirements as well as the physical properties required for each material must be designed and combined.
  • the present invention by controlling the Cu, Fe, Zn, etc. in the pin and filler materials to control the natural corrosion potential and corrosion rate, and the existing commercial aluminum alloy tube (1XXX series, 3XXX series) and KR 10-1465389 aluminum alloy tube and We developed the optimal alloying material and heat exchanger design method by measuring the corrosion penetration life of heat exchanger assembled by the combination of fin and filler metal.
  • the electrochemical properties were measured. Corrosion potential was measured using a salt water acetic-acid test (SWAAT) solution and a reference electrode as a saturated calomel electrode (SCE) at room temperature. After 48 hours immersion, the electrochemical polarization characteristics of each material were analyzed through the coin polarization test after stabilization of the potential. As a result of the electrochemical analysis, the filler metal should have a potential of -20 to -50 mV than the tube material, and the fin material should be -20 to -50 mV relative to the filler material, based on the ambient temperature environment of the SWAAT.
  • SWAAT salt water acetic-acid test
  • SCE saturated calomel electrode
  • the penetration life was measured by conducting a leak test based on ASTM G85 of an aluminum heat exchanger using a developed material composition compared to an existing material composition.
  • Each sample was prepared using a salt water acetic-acid test (SWAAT) solution and a reference electrode as a saturated calomel electrode (SCE) at room temperature.
  • SWAAT salt water acetic-acid test
  • SCE saturated calomel electrode
  • melting point which is closely related to brazing property, was measured by differential scanning calorimetry (DSC) analysis.
  • the billet was manufactured by casting according to the aluminum alloy composition described in Korean Patent No. KR 10-1465389. Also, commercially available aluminum tube materials A1070, A1100, A3003, and A3102 were purchased and used as specimens. The composition of the specimen used in this experiment is as follows.
  • composition and measured corrosion potential of the aluminum alloy used in the experimental example described below are shown in Table 1 below. (Unit: weight%, numerical values indicated herein mean weight% unless otherwise specified)
  • the corrosion potential of the optimum filler metal depends on the tube, but in general, it is appropriate that the level is -0.78 to -0.83 mV.
  • the filler metal was cast according to the composition of Table 2 below, and then the corrosion potential and the melting point were measured.
  • the main variables are Si concentration, Cu concentration, Fe concentration and Zn concentration.
  • the optimum Si content is determined to be 7.0 to 9.0 wt.%.
  • the content of Cu is preferably as low as possible, preferably 0.05 wt.% Or less.
  • Fe is also preferably as low as possible and should be kept at least 0.2 wt.% Or less.
  • Zn is the main element that lowers the potential of the material. If the content ratio is low, the sacrificial anode effect is insufficient. If the content ratio is too high, its life is decreased and the melting point is increased. Therefore, the level of 0.7 to 2.5 wt.% Is preferred.
  • the corrosion potential of the filler material-based optimal fin material is -0.80 to -0.85 mV.
  • the pin material was cast according to the composition shown in Table 3 below to prepare a specimen to measure the corrosion potential.
  • the main variables are Cu concentration, Fe concentration and Zn concentration.
  • the content of Cu is preferably as low as possible, preferably 0.05 wt.% Or less.
  • Fe is also preferably as low as possible and should be kept at least 0.2 wt.% Or less.
  • Mn is the main element for increasing the mechanical strength of the fin material, but the effect on the dislocation is not large. This is because the dislocation of the Al-Mn precipitated phase is similar to that of the base metal.
  • Zn is a major element that lowers the dislocation of the material. If the content ratio is low, the sacrificial anode effect is insufficient, and if the content ratio is too high, its life is decreased and workability is decreased. Therefore, the level of 1.3 to 2.5 wt.% Is preferred.
  • the penetration life was measured by conducting a leak test based on ASTM G 85 of an aluminum heat exchanger using a developed material composition compared to an existing material composition. At this time, the penetration life of the tube material which is not composed of the heat exchanger was measured and the effects of the fin material and filler material were evaluated by comparing with the penetration life of the heat exchanger according to the fin material and filler material.
  • the filler metal and fin material used for the combination were made of filler material 3 and fin material 3. The experiment was accelerated under continuous spraying conditions at 59 ° C. The through life of the heat exchanger material combination is shown in Table 4 below.
  • the corrosion resistance of the KR 10-1465389 tube, A1070, and A1100 which is lower than the conventional filler metal, and the conventional fin material, filler metal, and heat exchanger is less than 8 to 17 days. It was found to decrease.
  • A3003 and A3102 on the other hand, have a longer service life when constructed as a heat exchanger than through tubes themselves. This shows that the potential difference between the tube, fin, and filler metal has a great effect on the heat exchanger life.
  • the penetration life of the heat exchanger was measured by combining fin 3 and filler material 3 with the existing commercial tube material.
  • composition of the fin material and filler material developed in the present invention based on the pin 3 and filler material 3 was derived as follows.
  • the aluminum alloy fin material of the aluminum heat exchanger according to the embodiment of the present invention should be as follows.
  • the composition is composed of Si 0.3 to 1.0%, Fe 0.2% or less, Cu 0.05% or less, Mn 1.0 to 1.8%, Zn 1.3 to 2.5%, remaining Al and inevitable impurities.
  • Silicon (Si) is added for particle and solid solution strengthening. This is because the strengthening purpose is insufficient at less than 0.3% and the corrosion resistance is weakened when exceeding 1.0%. According to an embodiment of the invention it is preferred to add 0.3% to 1.0%, preferably 0.3% to 0.8%, more preferably 0.4% to 0.6%, most preferably about 0.5% by weight of Si.
  • Iron (Fe) is only dissolved in trace amounts in the alloy and is mostly precipitated as intermetallic compounds. Solid solution Fe improves the strength but greatly degrades the thermal conductivity and corrosion durability. It also interferes with the sacrificial anode role by increasing the natural corrosion potential of the fin material. Therefore, in the present invention, the iron concentration is limited to 0.2% or less.
  • Copper (Cu) improves high temperature strength and thermal conductivity, but significantly lowers corrosion durability and acts as a factor in particular causing grain boundary corrosion. It also increases the natural corrosion potential of the fin material along with iron, impeding the sacrificial anode role. Therefore, in the present invention, the concentration of copper is limited to 0.05% or less.
  • Manganese (Mn) is added for particle and solid solution strengthening. If it is less than 1.0%, the strength improvement is insufficient and if it exceeds 1.8%, the thermal conductivity and the extrudability are lowered. According to an embodiment of the invention, it is preferred to add 1.0 to 1.8%, preferably 1.2 to 1.6%, most preferably about 1.5% by weight of Mn.
  • Zinc (Zn) is added to serve as a sacrificial anode.
  • the addition of Zn lowers the spontaneous corrosion potential of the aluminum alloy fin material, thus acting as a sacrificial anode relative to the tube material, thus improving the tube's corrosion penetration life.
  • the sacrificial anode role is insufficient, and at over 2.5%, Zn independent phase is precipitated, making it difficult to increase corrosion resistance.
  • the remaining amount of aluminum uses an aluminum raw material having a purity of 99.8% or more as an ingot.
  • the aluminum alloy filler metal of the aluminum heat exchanger according to the embodiment of the present invention should be as follows.
  • the composition is composed of Si 7.0 to 9.0%, Fe 0.2% or less, Cu 0.05% or less, Zn 0.7 to 2.5%, the remaining amount of Al and inevitable impurities.
  • Silicon (Si) is added to reduce the melting point and to improve flowability. If it is less than 7.0%, the melting point is not low enough, and if it exceeds 9.0%, the spontaneous corrosion potential increases, thereby weakening the role of the sacrificial anode for the tube material. According to an embodiment of the invention it is preferred that 7.5% by weight of Si is added.
  • Fe Iron
  • Solid solution Fe improves the strength but greatly reduces the thermal conductivity and corrosion durability. It also interferes with the sacrificial anode role by increasing the natural corrosion potential of the fin material. Therefore, in the present invention, the iron concentration is limited to 0.2% or less.
  • Copper (Cu) improves high-temperature strength and thermal conductivity, but significantly lowers corrosion resistance and acts as a factor in particular causing grain boundary corrosion. It also increases the natural corrosion potential of the fin material along with iron, impeding the sacrificial anode role. Therefore, in the present invention, the concentration of copper is limited to 0.05% or less.
  • Zinc (Zn) is added to serve as a sacrificial anode.
  • the addition of Zn lowers the spontaneous corrosion potential of the aluminum alloy fin material, thus acting as a sacrificial anode relative to the tube material, thus improving the tube's corrosion penetration life.
  • the sacrificial anode role is insufficient, and in excess of 2.5%, Zn independent phase is precipitated, making it difficult to increase corrosion resistance.
  • 1.0% by weight of Zn is preferably added.
  • the remaining amount of aluminum uses an aluminum raw material having a purity of 99.8% or more as an ingot.
  • Figure 1 shows the appearance of the aluminum fin and filler metal in accordance with an embodiment of the present invention.
  • 100 represents a fin material
  • 101 represents a filler material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

본 발명은 열교환기용 알루미늄 핀재 및 용가재에 관한 것이고, 또한 이러한 핀재 및 용가재를 포함하는 알루미늄 열교환기에 관한 것이다. 본 발명은 본 연구 그룹의 등록특허 KR 10-1465389 호의 알루미늄 합금 튜브와 함께 사용하여 열교환기로써의 수명을 향상시킬 수 있는 최적의 방식 설계된 핀재 및 용가재에 관한 것이다. 구체적으로는 핀재와 용가재의 조성을 조정하여 알루미늄 튜브에 대한 희생양극의 역할을 할 수 있도록 최적화한 것이다.

Description

열교환기용 알루미늄 핀재와 용가재 및 이를 포함하는 알루미늄 열교환기
본 발명은 열교환기용 알루미늄 핀재 및 용가재에 관한 것이고, 또한 이러한 핀재 및 용가재를 포함하는 알루미늄 열교환기에 관한 것이다.
본 발명은 기존의 상용 튜브재 및 본 연구 그룹의 등록특허 KR 10-1465389 호의 알루미늄 합금 튜브와 함께 사용하여 열교환기로써의 수명을 향상시킬 수 있는 최적의 방식 설계된 핀재 및 용가재에 관한 것이다. 구체적으로는 핀재와 용가재의 조성을 조정하여 알루미늄 튜브에 대한 희생양극의 역할을 할 수 있도록 최적화한 것이다.
알루미늄 열교환기용 튜브 소재는 압출성과 기계적 강도, 열전도성, 가격 등의 조건을 만족시키기 위해 주로 1xxx계 및 3xxx계 알루미늄 합금을 사용한다. 한편 등록특허 KR 10-1465389의 알루미늄 합금 튜브는 압출속도 및 강도를 유지하면서 부식전파 형태 및 내식성을 개선시켜 기존 1xxx계 및 3xxx계 알루미늄 합금 튜브보다 부식내구성을 향상시킨 소재이다.
이러한 튜브재의 부식관통수명 향상효과를 극대화하기 위해서는 핀재와 조합하여 열교환기로 구성된 경우 튜브재가 핀재보다 부식전위가 높게 유지시켜야 한다. 만약 튜브재의 부식전위가 핀재보다 낮을 경우, 알루미늄 튜브는 핀재에 대한 희생양극 역할을 하게 되어 부식이 가속화되고 부식관통저항성이 현저히 감소하게 된다. 기존의 1xxx계 및 3xxx계 알루미늄 합금의 경우 Fe나 Cu 등을 과량 첨가하거나 표면에 4xxx계 알루미늄 합금 클래딩 및 브레이징 공정을 통해 튜브 표면에 Si 확산층 (Si diffusion layer)을 형성하여 핀재 대비 튜브의 전위를 높여왔다. 그러나 최근 연구들에 의하면 Fe나 Cu, Si 등 알루미늄보다 귀전위 (noble) 원소들은 알루미늄 튜브의 부식속도를 크게 증가시키며, 또한 튜브의 부식관통저항성을 감소시켜 알루미늄 열교환기의 부식수명을 감소시킨다. 따라서 튜브의 전위를 높이지 않으면서 알루미늄 열교환기의 부식수명을 향상시키기 위해서는 전위가 최적화된 핀재 및 용가재 기술의 개발이 필요하다.
본 연구그룹에서는 기존의 1XXX계 및 3XXX계 알루미늄 합금과 KR 10-1465389 알루미늄 합금 튜브의 부식내구성을 극대화시킬 수 있는 핀재 및 용가재를 개발하였고, 이러한 핀재 및 용가재를 본 특허를 통해 개시하고자 한다.
(1) 핀재 (fin material)
핀재는 알루미늄 열교환기에서 냉매 등이 지나가는 튜브재에 부착, 열교환면적을 넓혀서 열교환효율을 높이는 역할을 한다. 핀재는 주로 튜브재와 동일한 금속을 사용하며 용접(welding) 또는 브레이징(brazing)을 통해 튜브재와 접합을 한다. 알루미늄 열교환기에서는 주로 브레이징을 이용하며, 브레이징 시 핀재와 튜브재 사이에 용가재를 용융시켜 접합공정을 완료한다. 핀재는 수십 um 두께로 압연이 가능하여야 하며 충분한 물리적 강도를 가지고 있어야 한다. 특히 브레이징 후에 충분한 강도를 유지하는 것이 중요하다. 이러한 관점에서 기존의 핀재는 주로 Mn이 포함되어 있는 3XXX계를 사용하며 경우에 따라 높은 농도의 Cu 또는 Fe를 첨가하여 브레이징 후 2차상(secondary phase)를 형성시켜 기계적 강도를 유지하게 된다.
그러나 고농도(0.5 wt.% 이상)의 Fe 등은 알루미늄 핀재의 자연부식전위를 귀방향(noble)으로 증가시키며 부식속도를 크게 증가시키는 문제를 가지고 있다. 이런 핀재를 사용하는 경우, 열교환기가 부식환경에 노출되었을 때 빠른 속도로 핀이 부식되어 파손되거나 표면이 부식생성물인 알루미늄 산화물로 덮여 열전도율이 급감하여 열교환기로의 성능이 크게 저하된다. 또한 핀재의 자연부식전위가 튜브재보다 높을 경우 튜브재에 대한 음극으로 작동하여 튜브재를 희생양극으로 작동하게 한다. 튜브재가 희생양극으로 작동하게 되면 튜브재의 부식속도가 크게 증가하여 부식관통수명이 급감한다.
(2) 용가재 (filler metal, filler material)
용가재는 핀재과 튜브재를 접합시킬 뿐 아니라 튜브재와 매니폴드(manifold)를 접합시키는 역할을 한다. 용가재는 충분히 낮은 용융점과 높은 흐름성을 가지고 있어야 하며, 접합성이 유지되어야 한다. 현재 브레이징 공정은 튜브, 핀 소재(약 620)보다 용융점이 낮은 Al-Si계 합금(570~580)을 용가재로 사용한다. 브레이징은 현재 570~610℃ 온도구간에서 대기분위기 또는 불활성 기체 분위기에서 수행되며, 알루미늄 표면의 산화물 등을 제거하여 브레이징 성을 향상시키기 위해 플럭스(flux)를 사용한다.
한편 열교환기의 구조에서 볼 때, 용가재는 튜브재의 부식특성에 매우 큰 영향을 주는 요소이다. 용가재는 브레이징 공정 중 튜브재 내부로 확산되기도 하고 튜브재와 갈바닉 회로를 구성하여 전기화학적 반응에 영향을 준다. 이는 앞서 핀재에서 설명한 바와 같이 용가재의 자연부식전위가 튜브재보다 높을 경우 튜브재에 대한 음극으로 작동하여 튜브재의 부식속도를 크게 증가시킬 수 있다. 이때 용가재의 영향은 핀재보다 더욱 크다. 갈바닉 회로에서 발생하는 갈바닉부식의 전류의 크기, 즉 희생양극인 튜브재의 가속화된 부식속도는 부식환경 전해질의 저항과 전극 사이의 거리와 비례관계가 있다. 간단히 요약하면 튜브재로부터의 물리적 거리가 핀재에 비해 용가재가 더 가깝기 때문에 튜브재에 더 많은 영향을 끼치게 된다.
그러나 현재 이러한 용가재가 열교환기 전체 부식내구성에 미치는 영향은 간과되고 있으며 이를 다루는 연구 역시 매우 미진한 상황이다.
기존의 상용 제품을 분석 평가한 결과, 부식관통수명이 50일 수준인 튜브 샘플이 방식설계되지 않은 핀 및 용가재와 조합되어 열교환기로 제작된 경우 30일 수준의 부식관통수명을 나타내었다. 이러한 부식가속화는 환경요인에 따라 더욱 증가될 수 있다.
본 발명의 목적은 상용 알루미늄 튜브재 및 KR 10-1465389호의 알루미늄 합금 튜브와 조립될 경우 구성되는 알루미늄 열교환기의 부식내구성을 크게 상향시킬 수 있는 핀재와 용가재 및 이를 포함하는 부식내구성이 향상된 알루미늄 열교환기 개발에 있다.
본 발명의 일 실시예에 따른 알루미늄 합금 튜브의 부식 내구성을 향상시키는 알루미늄 합금 핀재는, 0.3 내지 1.0 중량% 의 실리콘(Si); 0.2 중량% 이하의 철(Fe); 0.05 중량% 이하의 구리(Cu); 1.0 내지 1.8 중량%의 망간(Mn); 1.3 내지 2.5 중량%의 아연(Zn); 및 잔부의 알루미늄(Al)과 필수불가결한 불순물을 포함한다.
상기 알루미늄 합금 튜브의 알루미늄 합금은 1XXX계 또는 3XXX계 알루미늄 합금일 수 있고, 상기 1XXX계 또는 3XXX계 알루미늄 합금은, A1070, A1100, A3003, A3102 중 어느 하나이다.
상기 알루미늄 합금 튜브의 알루미늄 합금은, 구리(Cu); 철(Fe); 지르코늄(Zr); 및 잔부 의 알루미늄(Al)과 필수불가결한 불순물을 포함하고, 지르코늄(Zr)의 함량은 0.05 내지 0.2 중량%로 제어되며, 구리(Cu)와 철(Fe)의 함량은 하기 수학식 (1) 및 (2)에 의해 정의된 PHI 값을 1.5로 이하로 제어하는 것을 특징으로 할 수 있다.
Figure PCTKR2017000362-appb-I000001
(1)
Figure PCTKR2017000362-appb-I000002
(2)
상기 Si는 0.5 중량%, 상기 Cu는 0.05 중량%, 상기 Fe는 0.2 중량%, 상기 Mn은 1.5 중량%, 상기 Zn은 2.0 중량%인 것이 바람직하다.
본 발명의 일 실시예에 따른 알루미늄 합금 튜브의 부식 내구성을 향상시키는 알루미늄 합금 용가재는, 7.0 내지 9.0 중량%의 실리콘(Si); 0.2 중량% 이하의 철(Fe); 0.05 중량% 이하의 구리(Cu); 0.7 내지 2.5 중량%의 아연(Zn); 및 잔부의 알루미늄(Al)과 필수불가결 한 불순물을 포함한다.
상기 알루미늄 합금 튜브의 알루미늄 합금은 1XXX계 또는 3XXX계 알루미늄 합금일 수 있고, 상기 1XXX계 또는 3XXX계 알루미늄 합금은, A1070, A1100, A3003, A3102 중 어느 하나인 것이 바람직하다.
상기 알루미늄 합금 튜브의 알루미늄 합금은, 구리(Cu); 철(Fe); 지르코늄(Zr); 및 잔부의 알루미늄(Al)과 필수불가결한 불순물을 포함하고, 지르코늄(Zr)의 함량은 0.05 내지 0.2 중량%으로 제어되며, 구리(Cu)와 철(Fe)의 함량은 하기 수학식 (1) 및 (2)에 의해 정의된 PHI 값을 1.5로 이하로 제어하는 것을 특징으로 한다.
Figure PCTKR2017000362-appb-I000003
(1)
Figure PCTKR2017000362-appb-I000004
(2)
상기 Si는 7.5 중량%, 상기 Cu는 0.05 중량%, 상기 Fe는 0.2 중량%, 상기 Zn은 1.0 중량%인 것이 바람직하다.
본 발명의 일 실시예에 따른 알루미늄 합금 열교환기는, 알루미늄 합금 튜브; 0.3 내지 1.0 중량% 의 실리콘(Si); 0.2 중량% 이하의 철(Fe); 0.05 중량% 이하의 구리(Cu); 1.0 내지 1.8 중량%의 망간(Mn); 1.3 내지 2.5 중량%의 아연(Zn); 및 잔부의 알루미늄(Al)과 필수불가결한 불순물을 포함하는, 알루미늄 합금 핀재; 및 7.0 내지 9.0 중량%의 실리콘(Si); 0.2 중량% 이하의 철(Fe); 0.05 중량% 이하의 구리(Cu); 0.7 내지 2.5 중량%의 아연(Zn); 및 잔부의 알루미늄(Al)과 필수불가결 한 불순물을 포함하는, 알루미늄 합금 용가재를 포함한다.
상기 알루미늄 합금 튜브의 알루미늄 합금은 1XXX계 또는 3XXX계 알루미늄 합금이 이용될 수 있고, 상기 1XXX계 또는 3XXX계 알루미늄 합금은, A1070, A1100, A3003, A3102 중 어느 하나인 것이 바람직하다.
상기 알루미늄 합금 튜브의 알루미늄 합금은, 구리(Cu); 철(Fe); 지르코늄(Zr); 및 잔부의 알루미늄(Al)과 필수불가결한 불순물을 포함하고, 지르코늄(Zr)의 함량은 0.05 내지 0.2 중량%으로 제어되며, 구리(Cu)와 철(Fe)의 함량은 하기 수학식 (1) 및 (2)에 의해 정의된 PHI 값을 1.5로 이하로 제어하는 것을 특징으로 한다.
Figure PCTKR2017000362-appb-I000005
(1)
Figure PCTKR2017000362-appb-I000006
(2)
상기 알루미늄 합금 핀재의 경우, 상기 Si는 0.5 중량%, 상기 Cu는 0.05 중량%, 상기 Fe는 0.2 중량%, 상기 Mn은 1.5 중량%, 상기 Zn은 2.0 중량%이고, 상기 알루미늄 합금 용가재의 경우, 상기 Si는 7.5 중량%, 상기 Cu는 0.05 중량%, 상기 Fe는 0.2 중량%, 상기 Zn은 1.0 중량%인 것이 바람직하다.
상기 알루미늄 합금 열교환기를 ASTM G 85 기준 누설 실험을 실시한 경우, 관통 수명이 48일 이상으로 증가된다.
SWAAT용액 및 상온 조건에서, 상기 알루미늄 합금 용가재는 상기 알루미늄 합금 튜브 대비 전위가 20 내지 50mV이며, 상기 알루미늄 합금 핀재는 상기 알루미늄 합금 용가재 대비 전위가 20 내지 50mV이다.
SWAAT 용액 및 상온 조건에서 기준 전극을 포화감홍전극(SCE)을 사용하여 48시간 이상 동안 전위 변화를 측정한 결과, 상기 알루미늄 합금 용가재의 부식 전위가 0.78 내지 0.83mV이다.
SWAAT 용액 및 상온 조건에서 기준 전극을 포화감홍전극(SCE)을 사용하여 48시간 이상 동안 전위 변화를 측정한 결과, 상기 알루미늄 합금 핀재의 부식 전위가 0.80 내지 0.85mV이다.
본 발명에 따르면, 상용 알루미늄 튜브 소재인 1XXX계 및 3XXX계 튜브와 함께 적용될 경우 기존 핀재 및 용가재를 적용한 알루미늄 열교환기 대비 부식수명이 증가하였다. 또한 KR 10-1465389호의 알루미늄 합금 튜브와 함께 적용될 경우에도 상용 알루미늄 열교환기 대비 수명이 크게 향상되었다. (A STM G85 기준, 누설발생 기존 40일 수준에서 80일 이상으로 증가)
도 1은 본 발명의 일 실시예 따른 알루미늄 핀재 및 용가재의 모습을 도시한다.
다양한 실시예들이 이제 도면을 참조하여 설명되며, 전체 도면에서 걸쳐 유사한 도면번호는 유사한 엘리먼트를 나타내기 위해서 사용된다. 설명을 위해 본 명세서에서, 다양한 설명들이 본 발명의 이해를 제공하기 위해서 제시된다. 그러나 이러한 실시예들은 이러한 특정 설명 없이도 실행될 수 있음이 명백하다. 다른 예들에서, 공지된 구조 및 장치들은 실시예들의 설명을 용이하게 하기 위해서 블록 다이아그램 형태로 제시된다.
본 발명은 상용 알루미늄 튜브재 및 KR 10-1465389호의 알루미늄 합금 튜브와 조립될 경우 구성되는 알루미늄 열교환기의 부식내구성을 크게 상향시킬 수 있는 핀재와 용가재 및 이를 포함하는 부식내구성이 향상된 알루미늄 열교환기를 제공한다.
본 발명에서 이용 가능한 상용 알루미늄 튜브 소재는 1XXX계 및 3XXX계를 포함한다. 특히, 상용 알루미늄 튜브재 A1070, A1100, A3003, A3102 소재가 이용되는 것이 바람직하다. 알루미늄 열교환기의 부식관통수명을 극대화시키기 위해서, 소재별 자연부식전위는 튜브재 > 용가재 > 핀재 순이어야 한다. 이럴 경우 용가재는 튜브재에 대한 희생양극역할을, 핀재는 용가재와 튜브재에 대한 희생양극역할을 함으로써 튜브소재의 부식속 도로 감소시킨다. 이러한 전위설계를 통해 알루미늄 열교환기의 부식관통수명을 향상시키는 것이 본 발명의 내용이다. 각각에 대한 구체적인 실험예는 이하의 실시예에서 추가적으로 설명하도록 하겠다.
한편, 위에서 설명한 상용 알루미늄 튜브재와 더불어 본 발명자의 기존 출원 내용인 KR 10-1465389호의 알루미늄 합금 튜브는, 구리(Cu); 철(Fe); 지르코늄(Zr); 및 잔 부의 알루미늄(Al)과 필수불가결한 불순물을 포함 하고, 지르코늄(Zr)의 함량 은 0.05 내지 0. 2 중량%으로 제어되며, 구리(Cu)와 철(Fe)의 함량은 하기 수학식 (1) 및 (2)에 의해 정의 된 PHI 값을 1.5로 이하로 제어 하는 것을 특징으로 한다.
Figure PCTKR2017000362-appb-I000007
(1)
Figure PCTKR2017000362-appb-I000008
(2)
이 경우 불순물로 실리콘(Si)을 추가 로 포함할 수 있고, 상기 실리콘(Si)의 함량은 상기 알루미늄 합금 조성물 전체 중량 대비 0.2 중량% 이하 로 제어되는 것이 바람직하다.
또한, 불순물로 마그네슘( Mg)을 추가로 포함할 수 있 고, 상기 마그네슘(Mg)의 함량은 상기 알루미늄 합금 조성물 전체 중량 대비 0 .05 중량% 이하로 제어되는 것이 바람직하다.
KR 10-1465389호의 알루미늄 합금 튜브는 입계부식으로 전파되는 알루미늄의 부식관통형태를 균일부식 형태로 변환시켜 튜브의 부식관통수명을 크게 향상시킨 소재 이다. 그러나 이를 알루미늄 열교환기용으로 조립할 경우 충분한 기대수명이 발현되지 못하는 문제가 발생하였다. 이는 튜브소재와 함께 용접되는 알루미늄 핀재 및 용가재에 의한 영향 때문이다. 알루미늄 튜브재와 핀재, 용가재는 요구되는 물성 등이 다르기 때문에 다른 조성의 알루미늄 합금을 사용한다. 이때 포함되는 합금조성에 따라 각 소재의 전기화학적 특성은 큰 차이를 가지게 된다. 알루미늄 열교환기의 부식관통수명을 극대화시키기 위해서, 소재별 자연부식전위는 튜브재 > 용가재 > 핀재 순이어야 한다. 이럴 경우 용가재는 튜브재에 대한 희생양극역할을, 핀재는 용가재와 튜브재에 대한 희생양극역할을 함으로써 튜브소재의 부식속 도로 감소시킨다. 이러한 전위설계를 통해 알루미늄 열교환기의 부식관통수명을 향상시키는 것이 본 발명의 목적이다.
상기 원리를 적용시키기 위해서는 각 소재에 요구되는 물성과 동시에 전기화학적 요구조건을 만족시킬 수 있는 합금을 설계하고 조합하여야 한다. 본 발명에서는 핀 및 용가재 소재에서 Cu와 Fe, Zn 등 을 제어하여 자연부식전위 및 부식속도를 조절하고, 기존의 상용 알루미늄 합금 튜브(1XXX계, 3XXX계) 및 KR 10-1465389호의 알루미늄 합금 튜브와 핀, 용가재의 조합에 따라 조립된 열교환기의 부식관통수명을 측정하여 최적 합금소재 및 열교환기 방식설계방법을 개발하였다.
본 발명에서는 핀재 및 용가재의 조성에 따른 합금을 제조한 후 전기화학적 특성을 측정하였다. 부식전위 측정방법은 SWAAT(salt water acetic-acid test)용액, 상온 조건에서 기준전극을 포화감홍전극(sa turated calomel electrode, SCE)을 사용하여 48시간 이상동안 전위변화를 측정하였다. 또한 48시간 침지 후 전위 안정화 후 동전위 분극시험을 통해 각 소재별 전기화학적 분극특성을 분석하였다. 전기화학적 분석 결과, SWAAT의 상온 환경을 기준으로 용가재는 튜브재보다 전위가 - 20 ~ -50 mV 가 되어야 하며, 핀재는 용가재 대비 - 20 ~ - 50 mV가 되는 것이 바람직하다. 전위 차이가 - 20 mV보다 작을 경우 희생양극효과가 충분하게 나타나지 않으며, 전위 차이가 - 50 mV 보다 클 경우 희생양극으로 작동하는 소재의 부식이 너무 빨라 열교환기 구성요소로서 수명이 급감하게 된다. 따라서 소재 간의 적절한 전위 차이를 발생시키는 것이 본 기술의 핵심이다. 상기 전기화학적 결과를 바탕으로 기존 소재구성 대비 개발 소재구성을 적용한 알루미늄 열교환기의 ASTM G85 기준 누설실험을 실시하여 관통수명을 측정하였다.
1. 시편의 제조 및 전기화학적 특성과 물성 평가
제조한 각 샘플을 SWAAT(salt water acetic-acid test)용액, 상온 조건에서 기준전극을 포화감홍전극(saturated calomel electrode, SCE)을 사용하여 48시간 이상동안 전위변화를 측정하였다. 또한 용가재의 경우 브레이징성과 밀접한 관계가 있는 용융점을 Differential scanning calorimetry (DSC) 분석을 통해 측정하였다.
(1) 튜브재
등록특허 KR 10-1465389호에 기재된 알루미늄 합금 조성에 따라 주조하여 빌렛을 제조하였으며, 또한 상용 알루미늄 튜브재 A1070, A1100, A3003, A3102 소재를 구입하여 시편으로 사용하였다. 본 실험에서 사용된 시편의 조성은 다음 과 같다.
이하에서 설명되는 실험예에서 이용된 알루미늄 합금의 조성과 측정된 부식전위는 아래 표 1과 같다. (단위: 중량 %, 본 명세서에서 나타나는 수치는 특별한 언급이 없으면 중량%를 의미한다)
Si Cu Fe Mn Zr Al 부식전위(mV vs. SCE)
KR 10-1465389 0.15 0.001 0.2 - 0.15 Rem. - 0.760
A1070 0.25 0.01 0.15 - - Rem. - 0.799
A1100 0.45 0.05 0.51 - - Rem. - 0.771
A3003 0.08 0.158 0.42 1.02 - Rem. - 0.708
A3102 0.08 0.10 0.46 0.21 - Rem. - 0.715
(2) 용가재
상기 표 1을 근거로 볼 때, 최적 용가재의 부식전위는 튜브에 따라 다르지만, 일반적으로 - 0.78 ~ - 0.83 mV 수준이 되는 것이 적합하다는 것을 알 수 있다. 용가재는 아래의 표 2의 조성을 따라 주조하여 시편을 제조한 후 부식전위와 용융점을 측정하였다. 주 변수는 Si 농도, Cu 농도, Fe 농도와 Zn 농도이다.
Si Cu Fe Zn Al 부식전위(mV vs. SCE) 용융점
종래 용가재 7.5 0.2 0.5 0 Rem. - 0.735 577
용가재1 7.5 0.05 0.5 0 Rem. - 0.738 578
용가재2 7.5 0.05 0.2 0 Rem. - 0.740 577
용가재3 7.5 0.05 0.2 1.0 Rem. - 0.795 579
용가재4 7.5 0.05 0.2 0.5 Rem. - 0.747 577
용가재5 7.0 0.05 0.5 1.0 Rem. - 0.799 589
용가재6 9.0 0.05 0.2 1.0 Rem. - 0.788 569
용가재7 10.0 0.05 0.2 1.0 Rem. - 0.732 562
용가재8 7.5 0.2 0.5 1.0 Rem. - 0.714 578
용가재9 7.5 0.2 0.2 1.0 Rem. - 0.734 579
용가재10 7.5 0.05 0.2 1.5 Rem. - 0.819 581
용가재11 7.5 0.05 0.2 2.5 Rem. - 0.830 585
용가재12 7.5 0.05 0.2 3.0 Rem. - 0.850 612
상기 결과로 볼 때, Si 함량이 증가함에 따라 용가재의 용융점은 감소하나 부식전위가 증가하게 된다. 용융점과 부식전위를 고려할 때, 최적 Si 함량은 7.0 ~ 9.0 wt.%로 판단된다. Cu의 함량은 가능한 낮추는 것이 바람직하며, 0.05 wt.% 이하가 바람직하다. Fe 역시 가능한 낮추는 것이 바람직하며, 최소 0.2 wt.% 이하를 유지해야 한다. Zn은 소재의 전위를 낮추는 주요 원소로써 함량비가 낮으면 희생양극효과가 불충분하고, 함량비가 너무 높으면 자체 수명이 감소하고 용융점이 증가하게 된다. 따라서 0.7 ~ 2.5 wt.% 수준이 바람직하다.
(3) 핀 재
상기 표 2을 근거로 용가재 기준 최적 핀재의 부식전위는 - 0.80 ~ - 0.85 mV 수준이 되는 것이 적합하다. 핀재는 아래의 표 3의 조성을 따라 주조하여 시편을 제조한 후 부식전위를 측정하였다. 주 변수는 Cu 농도와 Fe 농도, Zn 농도이다.
Si Cu Fe Mn Zn Al 부식전위(mV vs. SCE)
종래 핀재 0.5 0.2 0.3 1.5 1.0 Rem. - 0.754
핀재1 0.5 0.05 0.3 1.5 1.0 Rem. - 0.769
핀재2 0.5 0.05 0.2 1.5 1.5 Rem. - 0.817
핀재3 0.5 0.05 0.2 1.5 2.0 Rem. - 0.852
핀재4 0.5 0.05 0.2 1.0 1.5 Rem. - 0.815
핀재5 0.5 0.05 0.2 2.0 1.5 Rem. - 0.820
핀재6 0.3 0.05 0.2 1.5 1.5 Rem. - 0.818
핀재7 1.0 0.05 0.2 1.5 1.5 Rem. - 0.807
핀재8 1.2 0.05 0.2 1.5 1.5 Rem. - 0.794
핀재9 0.5 0.05 0.3 1.5 1.5 Rem. - 0.799
핀재10 0.5 0.2 0.2 1.5 1.5 Rem. - 0.789
핀재11 0.5 0.05 0.2 1.5 0.5 Rem. - 0.740
핀재11 0.5 0.05 0.2 1.5 1.3 Rem. - 0.801
핀재12 0.5 0.05 0.2 1.5 2.5 Rem. - 0.870
상기 결과로 볼 때, Si 함량이 증가함에 따라 부식전위가 증가하게 되므로 Si을 낮은 농도로 제어하는 것이 유리하지만, 핀재의 강도 측면에서 필요한 원소이므로 0.3 ~ 1.0 wt.% 수준을 포함하는 것이 바람직하다. Cu의 함량은 가능한 낮추는 것이 바람직하며, 0.05 wt.% 이하가 바람직하다. Fe 역시 가능한 낮추는 것이 바람직하며, 최소 0.2 wt.% 이하를 유지해야 한다. Mn은 핀재의 기계적 강도를 증가시키는 주된 원소이지만, 전위에 미치는 영향은 크지 않다. 이는 Al-Mn 석출상의 전위가 모재의 전위와 비슷하기 때문이다. 그러나 과량의 Mn의 소재의 가공성 및 열전도성을 악화시키므로 1.0 ~ 1.8 wt.%를 포함하는 것이 바람직하다. Zn은 소재의 전위를 낮추는 주요 원소로써 함량비가 낮으면 희생양극효과가 불충분하고, 함량비가 너무 높으면 자체 수명이 감소하고 가공성이 저하된다. 따라서 1.3 ~ 2.5 wt.% 수준이 바람직하다.
2. 알루미늄 열교환기 수명평가
상기 전기화학적 결과를 바탕으로 기존 소재구성 대비 개발 소재구성을 적용한 알루미늄 열교환기의 ASTM G 85 기준 누설실험을 실시하여 관통수명을 측정하였다. 이때 열교환기로 구성되지 않은 튜브재의 관통수명을 측정하고 핀재 및 용가재에 따른 열교환기의 관통수명과 비교하여 핀재 및 용가재의 효과를 평가하였다. 조합에 사용된 개발 용가재 및 핀재는 용가재 3과 핀재 3으로 하였다. 실험은 59℃ 온도에서 연속분무조건에서 가속화하였다. 이때의 열교환기 소재 조합에 따른 관통수명은 아래의 표 4와 같다.
튜브 튜브수명(일) 핀(V vs. SCE) 용가재(V vs. SCE) 열교환기수명(일) 수명변화
1 KR 10-1465389(- 0.760 V) 40~45 종래 핀재(-0.754 V) 종래 용가재(-0.735 V) 25~28 -15~17일
2 A1070(- 0.815 V) 20~23 12~14 -8~9일
3 A1100(- 0.771 V) 24~27 15~17 -9~10일
4 A3003(- 0.708 V) 25~27 42~55 +27~38일
5 A3102(- 0.715 V) 24~25 40~50 +20~28일
상기 결과를 통해 기존 용가재보다 부식전위가 낮은 KR 10-1465389 튜브와 A1070, A1100의 경우 종래 핀재 및 용가재와 열교환기를 구성하였을 때의 부식관통수명이 튜브상태일 경우보다 적게는 8일에서 많게는 17일 감소하는 것을 알 수 있었다. 반면 A3003과 A3102는 튜브 자체의 관통수명보다 열교환기로 구성되었을 때의 수명이 증가하였다. 이를 통해 튜브와 핀, 용가재의 전위차가 열교환기 수명에 미치는 영향이 크다는 것을 알 수 있다.
튜브 핀(V vs. SCE) 용가재(V vs. SCE) 관통수명 (일)
1 KR 10-1465389개발튜브재 종래 핀재 종래 용가재 25~28
2 용가재 1 25~27
3 용가재 2 24~28
4 용가재 3 35~37
5 핀 1 종래 용가재 25~27
6 용가재 1 26~29
7 용가재 2 26~30
8 용가재 3 35~38
9 핀 2 종래 용가재 31~34
10 용가재 1 32~34
11 용가재 2 32~33
12 용가재 3 82~87
13 핀 3 종래 용가재 34~35
14 용가재 1 34~36
15 용가재 2 34~35
16 용가재 3 84~88
17 A3003 종래 핀재 종래 용가재 42~55
18 A3102 종래 핀재 종래 용가재 40~50
상기 결과를 통해 KR 10-1465389호의 알루미늄 합금 튜브와 핀 3과 용가재 3을 조합하였을 때 가장 높은 부식관통수명을 나타내었다. 이는 상용튜브소재인 A3102 및 A3003보다 높은 수준이었다.
다음으로 핀 3과 용가재 3을 기존 상용튜브소재와 조합하여 열교환기의 관통수명을 측정하였다.
튜브 핀(V vs. SCE) 용가재(V vs. SCE) 관통수명 (일)
1 KR 10-1465389 종래 핀재 종래 용가재 25~28
2 핀 3 용가재 3 84~88
3 A1070 종래 핀재 종래 용가재 12~14
4 핀 3 용가재 3 45~50
5 A1100 종래 핀재 종래 용가재 15~17
6 핀 3 용가재 3 48~53
7 A3003 종래 핀재 종래 용가재 42~55
8 핀 3 용가재 3 60~65
9 A3102 종래 핀재 종래 용가재 40~50
10 핀 3 용가재 3 62~68
핀 3과 용가재 3와 조합할 경우 기존 상용튜브소재 열교환기의 관통수명이 증가하는 것을 확인하였다. 즉 본 개발 핀재와 용가재는 상용재에 적용할 경우에도 우수한 성능이 나타난다.
따라서 핀 3과 용가재 3을 기준으로 하여 본 발명에서 개발한 핀재 및 용가재의 조성을 아래와 같이 도출하였다.
3. 본 발 명의 핀재 조성
본 발명의 실시예에 따른 알루미늄 열교환기의 알루미늄 합금 핀재는 다음과 같아야 한다.
먼저, 조성은 중량으로 Si 0.3 내지 1.0%, Fe 0.2% 이하, Cu 0.05% 이하, Mn 1.0 내지 1.8%, Zn 1.3 내지 2.5%, 잔량의 Al과 불가피한 불순물로 이루어져있다.
규소 (Si)는 입자 및 고용체 강화를 위해 첨가한다. 0.3% 미만에서는 강화 목적이 불충분하고 1.0%를 초과할 경우 내식성이 약화되기 때문이다. 본 발명의 실시예에 의하면 0.3% 내지 1.0%, 바람직하게는 0.3% 내지 0.8%, 더욱 바람직하게는, 0.4% 내지 0.6%, 가장 바람직하게는 약 0.5 중량%의 Si이 첨가되는 것이 바람직하다.
철 (Fe)는 합 금 중에 미량만 고용되고 대부분 금속간 화합물로 석출된다. 고용된 Fe는 강도를 향상시키지만 열전도성과 부식내구성을 크게 저하시킨다. 또한 핀재의 자연부식전위를 증가시켜 희생양극역할을 방해한다. 따라서 본 발명에서는 철의 농도를 0.2% 이하로 한정한다.
구리 (Cu)는 고온 강도, 열 전도성을 향상시키지만 부식 내구성을 크게 저하시키며 특히 입계부식을 유발하는 인자로 작동한다. 또한 철과 함께 핀재의 자연부식전위 를 증가시켜 희생양극역할을 방해한다. 따라서 본 발명에서는 구리의 농도를 0.05% 이하로 한정한다.
망간 (Mn)은 입자 및 고용체 강화를 위해 첨가한다. 1.0% 미만에서는 강도향상이 부족하고 1.8%를 초과할 경우 열전도성과 압출성을 저하시킨다. 본 발명의 실시예에 의하면, 1.0 내지 1.8%, 바람직하게는 1.2 내지 1.6%, 가장 바람직하게는 약 1.5 중량%의 Mn이 첨가되는 것이 바람직하다.
아연 (Zn)은 희생양극 역할을 위해 첨가한다. Zn의 첨가는 알루미늄 합금 핀재의 자연부식전위를 낮춰 튜브 재 대비 희생양극역할을 함으로 튜브의 부식관통수명을 향상시킨다. 1.3% 미만에서는 희생양극역할이 불충분 하고, 2.5% 초과에서는 Zn 독립상이 석출되어 내식성 작용의 증가가 어렵다. 본 발명의 실시예에 의하면, 1.3 내지 2.5%, 바람직하게는 1.7 내지 2.3%, 가장 바람직하게는 약 2.0 중량%의 Zn이 첨가되는 것이 바람직하다.
상기 잔량의 알루미늄은 주괴로서 순도 99.8% 이상의 알루미늄 원재료를 이용한다.
4. 본 발명의 용가재 조성
본 발명의 실시예에 따른 알루미늄 열교환기의 알루미늄 합금 용가재는 다음과 같아야 한다.
먼저, 조성은 중량으로 Si 7.0 내지 9.0%, Fe 0.2% 이하, Cu 0.05% 이하, Zn 0.7 내지 2.5%, 잔량의 Al과 불가피한 불순물 로 이루어져있다.
규소 (Si)는 용융점 감소 및 흐름성 향상을 위해 첨가한다. 7.0% 미만에서는 용융점이 충분히 낮지 않으며, 9.0%를 초과할 경우 자연부식전위가 증가하여 튜브재에 대한 희생양극의 역할이 약화되 기 때문이다. 본 발명의 실시예에 의하면 7.5 중량%의 Si이 첨가되는 것이 바람직하다.
철 (Fe)는 합금 중에 미량만 고용되고 대부분 금속간 화합물로 석출된다. 고용된 Fe는 강도를 향상시키지만 열전도성과 부식 내구성을 크게 저하시킨다. 또한 핀재의 자연부식전위를 증가시켜 희생양극역할을 방해한다. 따라서 본 발명 에서는 철의 농도를 0.2% 이하로 한정한다.
구리 (Cu)는 고온 강도, 열 전도성을 향상시키지만 부식내구 성을 크게 저하시키며 특히 입계부식을 유발하는 인자로 작동한다. 또한 철과 함께 핀재의 자연부식전위를 증가시켜 희생양극역할을 방해한다. 따라서 본 발명에서는 구리의 농도를 0.05% 이하로 한정한다.
아연 (Zn)은 희생양극 역할을 위해 첨가한다. Zn의 첨가는 알루미늄 합금 핀재의 자연부식전위를 낮춰 튜브재 대 비 희생양극역할을 함으로 튜브의 부식관통수명을 향상시킨다. 0.7% 미만에서는 희생양극역할이 불충분하고 , 2.5% 초과에서는 Zn 독립상이 석출되어 내식성 작용의 증가가 어렵다. 본 발명의 실시예에 의하면 1.0 중 량%의 Zn이 첨가되는 것이 바람직하다.
상기 잔량의 알루미늄은 주괴로서 순도 99. 8% 이상의 알루미늄 원재료를 이용한다.
도 1은 본 발명의 일 실시예 따른 알루미늄 핀재 및 용가재의 모습을 도시한다. 도 1에서 100은 핀재를 나타내고, 101은 용가재를 나타낸다.
제시된 실시예들에 대한 설명은 임의의 본 발명의 기술 분야에서 통상의 지식을 가진 자가 본 발명을 이용하거나 또는 실시할 수 있도록 제공된다. 이러한 실시예들에 대한 다양한 변형들은 본 발명의 기술 분야에서 통상의 지식을 가진 자에게 명백할 것이며, 여기에 정의된 일반적인 원리들은 본 발명의 범위를 벗어남이 없이 다른 실시예들에 적용될 수 있다. 그리하여, 본 발명은 여기에 제시된 실시예들로 한정되는 것이 아니라, 여기에 제시된 원리들 및 신규한 특징들과 일관되는 최광의의 범위에서 해석되어야 할 것이다.

Claims (19)

  1. 0.3 내지 1.0 중량% 의 실리콘(Si);
    0.2 중량% 이하의 철(Fe);
    0.05 중량% 이하의 구리(Cu);
    1.0 내지 1.8 중량%의 망간(Mn);
    1.3 내지 2.5 중량%의 아연(Zn); 및
    잔부의 알루미늄(Al)과 필수불가결한 불순물을 포함하는,
    알루미늄 합금 튜브의 부식 내구성을 향상시키는 알루미늄 합금 핀재.
  2. 제 1 항에 있어서,
    상기 알루미늄 합금 튜브의 알루미늄 합금은 1XXX계 또는 3XXX계 알루미늄 합금인,
    알루미늄 합금 튜브의 부식 내구성을 향상시키는 알루미늄 합금 핀재.
  3. 제 2 항에 있어서,
    상기 1XXX계 또는 3XXX계 알루미늄 합금은, A1070, A1100, A3003, A3102 중 어느 하나인,
    알루미늄 합금 튜브의 부식 내구성을 향상시키는 알루미늄 합금 핀재.
  4. 제 1 항에 있어서,
    상기 알루미늄 합금 튜브의 알루미늄 합금은,
    구리(Cu);
    철(Fe);
    지르코늄(Zr); 및
    잔부 의 알루미늄(Al)과 필수불가결한 불순물을 포함하고,
    지르코늄(Zr)의 함량은 0.05 내지 0.2 중량%로 제어되며,
    구리(Cu)와 철(Fe)의 함량은 하기 수학식 (1) 및 (2)에 의해 정의된 PHI 값을 1.5로 이하로 제어하는 것을 특징으로 하는,
    Figure PCTKR2017000362-appb-I000009
    (1)
    Figure PCTKR2017000362-appb-I000010
    (2)
    알루미늄 합금 튜브의 부식 내구성을 향상시키는 알루미늄 합금 핀재.
  5. 제 1 항에 있어서,
    상기 Si는 0.5 중량%, 상기 Cu는 0.05 중량%, 상기 Fe는 0.2 중량%, 상기 Mn은 1.5 중량%, 상기 Zn은 2.0 중량%인,
    알루미늄 합금 튜브의 부식 내구성을 향상시키는 알루미늄 합금 핀재.
  6. 7.0 내지 9.0 중량%의 실리콘(Si);
    0.2 중량% 이하의 철(Fe);
    0.05 중량% 이하의 구리(Cu);
    0.7 내지 2.5 중량%의 아연(Zn); 및
    잔부의 알루미늄(Al)과 필수불가결 한 불순물을 포함하는,
    알루미늄 합금 튜브의 부식 내구성을 향상시키는 알루미늄 합금 용가재.
  7. 제 6 항에 있어서,
    상기 알루미늄 합금 튜브의 알루미늄 합금은 1XXX계 또는 3XXX계 알루미늄 합금인,
    알루미늄 합금 튜브의 부식 내구성을 향상시키는 알루미늄 합금 용가재.
  8. 제 7 항에 있어서,
    상기 1XXX계 또는 3XXX계 알루미늄 합금은, A1070, A1100, A3003, A3102 중 어느 하나인,
    알루미늄 합금 튜브의 부식 내구성을 향상시키는 알루미늄 합금 용가재.
  9. 제 6 항에 있어서,
    상기 알루미늄 합금 튜브의 알루미늄 합금은,
    구리(Cu);
    철(Fe);
    지르코늄(Zr); 및
    잔부의 알루미늄(Al)과 필수불가결한 불순물을 포함하고,
    지르코늄(Zr)의 함량은 0.05 내지 0.2 중량%으로 제어되며,
    구리(Cu)와 철(Fe)의 함량은 하기 수학식 (1) 및 (2)에 의해 정의된 PHI 값을 1.5로 이하로 제어하는 것을 특징으로 하는,
    Figure PCTKR2017000362-appb-I000011
    (1)
    Figure PCTKR2017000362-appb-I000012
    (2)
    알루미늄 합금 튜브의 부식 내구성을 향상시키는 알루미늄 합금 용가재.
  10. 제 6 항에 있어서,
    상기 Si는 7.5 중량%, 상기 Cu는 0.05 중량%, 상기 Fe는 0.2 중량%, 상기 Zn은 1.0 중량%인,
    알루미늄 합금 튜브의 부식 내구성을 향상시키는 알루미늄 합금 용가재.
  11. 알루미늄 합금 튜브;
    0.3 내지 1.0 중량% 의 실리콘(Si); 0.2 중량% 이하의 철(Fe); 0.05 중량% 이하의 구리(Cu); 1.0 내지 1.8 중량%의 망간(Mn); 1.3 내지 2.5 중량%의 아연(Zn); 및 잔부의 알루미늄(Al)과 필수불가결한 불순물을 포함하는, 알루미늄 합금 핀재; 및
    7.0 내지 9.0 중량%의 실리콘(Si); 0.2 중량% 이하의 철(Fe); 0.05 중량% 이하의 구리(Cu); 0.7 내지 2.5 중량%의 아연(Zn); 및 잔부의 알루미늄(Al)과 필수불가결 한 불순물을 포함하는, 알루미늄 합금 용가재를 포함하는,
    알루미늄 합금 열교환기.
  12. 제 11 항에 있어서,
    상기 알루미늄 합금 튜브의 알루미늄 합금은 1XXX계 또는 3XXX계 알루미늄 합금인,
    알루미늄 합금 열교환기.
  13. 제 12 항에 있어서,
    상기 1XXX계 또는 3XXX계 알루미늄 합금은, A1070, A1100, A3003, A3102 중 어느 하나인,
    알루미늄 합금 열교환기.
  14. 제 11 항에 있어서,
    상기 알루미늄 합금 튜브의 알루미늄 합금은,
    구리(Cu);
    철(Fe);
    지르코늄(Zr); 및
    잔부의 알루미늄(Al)과 필수불가결한 불순물을 포함하고,
    지르코늄(Zr)의 함량은 0.05 내지 0.2 중량%으로 제어되며,
    구리(Cu)와 철(Fe)의 함량은 하기 수학식 (1) 및 (2)에 의해 정의된 PHI 값을 1.5로 이하로 제어하는 것을 특징으로 하는,
    Figure PCTKR2017000362-appb-I000013
    (1)
    Figure PCTKR2017000362-appb-I000014
    (2)
    알루미늄 합금 열교환기.
  15. 제 11 항에 있어서,
    상기 알루미늄 합금 핀재의 경우, 상기 Si는 0.5 중량%, 상기 Cu는 0.05 중량%, 상기 Fe는 0.2 중량%, 상기 Mn은 1.5 중량%, 상기 Zn은 2.0 중량%이고,
    상기 알루미늄 합금 용가재의 경우, 상기 Si는 7.5 중량%, 상기 Cu는 0.05 중량%, 상기 Fe는 0.2 중량%, 상기 Zn은 1.0 중량%인,
    알루미늄 합금 열교환기.
  16. 제 15 항에 있어서,
    상기 알루미늄 합금 열교환기를 ASTM G 85 기준 누설 실험을 실시한 경우, 관통 수명이 48일 이상으로 증가되는,
    알루미늄 합금 열교환기.
  17. 제 11 항에 있어서,
    SWAAT용액 및 상온 조건에서, 상기 알루미늄 합금 용가재는 상기 알루미늄 합금 튜브 대비 전위가 20 내지 50mV이며, 상기 알루미늄 합금 핀재는 상기 알루미늄 합금 용가재 대비 전위가 20 내지 50mV인,
    알루미늄 합금 열교환기.
  18. 제 11 항에 있어서,
    SWAAT 용액 및 상온 조건에서 기준 전극을 포화감홍전극(SCE)을 사용하여 48시간 이상 동안 전위 변화를 측정한 결과, 상기 알루미늄 합금 용가재의 부식 전위가 0.78 내지 0.83mV인,
    알루미늄 합금 열교환기.
  19. 제 11 항에 있어서,
    SWAAT 용액 및 상온 조건에서 기준 전극을 포화감홍전극(SCE)을 사용하여 48시간 이상 동안 전위 변화를 측정한 결과, 상기 알루미늄 합금 핀재의 부식 전위가 0.80 내지 0.85mV인,
    알루미늄 합금 열교환기.
PCT/KR2017/000362 2016-01-11 2017-01-11 열교환기용 알루미늄 핀재와 용가재 및 이를 포함하는 알루미늄 열교환기 WO2017122999A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0002994 2016-01-11
KR20160002994 2016-01-11
KR1020160167691A KR20170083956A (ko) 2016-01-11 2016-12-09 열교환기용 알루미늄 핀재와 용가재 및 이를 포함하는 알루미늄 열교환기
KR10-2016-0167691 2016-12-09

Publications (1)

Publication Number Publication Date
WO2017122999A1 true WO2017122999A1 (ko) 2017-07-20

Family

ID=59311907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000362 WO2017122999A1 (ko) 2016-01-11 2017-01-11 열교환기용 알루미늄 핀재와 용가재 및 이를 포함하는 알루미늄 열교환기

Country Status (1)

Country Link
WO (1) WO2017122999A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050050678A (ko) * 2002-10-30 2005-05-31 쇼와 덴코 가부시키가이샤 열교환기, 열교환기용 튜브 부재, 열교환기용 핀 부재 및열교환기 제조 공정
KR20070061410A (ko) * 2005-12-08 2007-06-13 후루카와 스카이 가부시키가이샤 알루미늄합금 브레이징 시트
JP2012040611A (ja) * 2010-07-20 2012-03-01 Furukawa-Sky Aluminum Corp アルミニウム合金材を用い、耐食性に優れた構造体とその接合方法
KR101465389B1 (ko) * 2013-09-27 2014-11-25 성균관대학교산학협력단 알루미늄 합금 조성물, 이를 포함하는 관통저항성이 향상된 알루미늄 압출 튜브와 핀 재 및 이로 구성된 열교환기
KR20150093665A (ko) * 2012-10-26 2015-08-18 가부시키가이샤 유에이씨제이 핀용 알루미늄 합금제 브레이징 시트, 열교환기 및 열교환기의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050050678A (ko) * 2002-10-30 2005-05-31 쇼와 덴코 가부시키가이샤 열교환기, 열교환기용 튜브 부재, 열교환기용 핀 부재 및열교환기 제조 공정
KR20070061410A (ko) * 2005-12-08 2007-06-13 후루카와 스카이 가부시키가이샤 알루미늄합금 브레이징 시트
JP2012040611A (ja) * 2010-07-20 2012-03-01 Furukawa-Sky Aluminum Corp アルミニウム合金材を用い、耐食性に優れた構造体とその接合方法
KR20150093665A (ko) * 2012-10-26 2015-08-18 가부시키가이샤 유에이씨제이 핀용 알루미늄 합금제 브레이징 시트, 열교환기 및 열교환기의 제조 방법
KR101465389B1 (ko) * 2013-09-27 2014-11-25 성균관대학교산학협력단 알루미늄 합금 조성물, 이를 포함하는 관통저항성이 향상된 알루미늄 압출 튜브와 핀 재 및 이로 구성된 열교환기

Similar Documents

Publication Publication Date Title
CN109652685B (zh) 一种高导热高耐蚀铸造铝合金及其制备方法
KR20040045477A (ko) 핀 스톡 재료 제조용 알루미늄합금
CN109055837B (zh) 一种含Sc和Er的7XXX可焊耐蚀铝合金及其制备方法
JP2021521339A (ja) 多層ブレージングシート
JP2014177694A (ja) 強酸環境下での耐食性に優れるアルミニウム合金製熱交換器
CN114959375B (zh) 面源黑体及其制备方法和装置
WO2018216832A1 (ko) 합금 조성과 합금 전위의 조절을 이용한 고내식 열교환기 시스템
JPH1180871A (ja) 耐食性に優れた熱交換器用アルミニウム合金クラッド材
JP5192718B2 (ja) 強度、犠牲陽極効果、および耐食性に優れるフィン材および熱交換器
WO2017122999A1 (ko) 열교환기용 알루미늄 핀재와 용가재 및 이를 포함하는 알루미늄 열교환기
CN115014117A (zh) 一种高耐腐蚀性集流管料及其制备方法和应用
WO2015046940A1 (ko) 알루미늄 합금 조성물, 이를 포함하는 부식내구성이 향상된 알루미늄 압출 튜브와 핀 재 및 이로 구성된 열교환기
US4788037A (en) High strength, corrosion-resistant aluminum alloys for brazing
US6251240B1 (en) Mg-Ca sacrificial anode
US4908184A (en) High strength, corrosion-resistant aluminum alloys for brazing
US11685973B2 (en) Corrosion resistant high strength brazing sheet
JPH06182581A (ja) 熱交換器ろう付用アルミニウム合金ろう材および熱交換器用アルミニウム合金ブレージングシート
JP3601197B2 (ja) 長期にわたって優れた耐食性および接合強度を維持することができるろう付け構造
JP2014178101A (ja) 強酸環境下での耐食性に優れるアルミニウム合金製熱交換器
KR102144203B1 (ko) Hvac&r 시스템들에 사용을 위한 고 강도 및 내부식성 합금
WO2021125625A1 (ko) 내부식성이 우수한 용융 합금도금 강재 및 그 제조방법
JP2013204076A (ja) エアコン熱交換器用フィン材およびエアコン熱交換器
JPH01102297A (ja) ろう付け性と耐食性にすぐれた熱交換器用Al合金複合フィン材
KR20170083956A (ko) 열교환기용 알루미늄 핀재와 용가재 및 이를 포함하는 알루미늄 열교환기
WO2022131673A1 (ko) 도금밀착성 및 용접성이 우수한 고강도 용융아연도금강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738628

Country of ref document: EP

Kind code of ref document: A1