WO2015046478A1 - 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品 - Google Patents
耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品 Download PDFInfo
- Publication number
- WO2015046478A1 WO2015046478A1 PCT/JP2014/075753 JP2014075753W WO2015046478A1 WO 2015046478 A1 WO2015046478 A1 WO 2015046478A1 JP 2014075753 W JP2014075753 W JP 2014075753W WO 2015046478 A1 WO2015046478 A1 WO 2015046478A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silane
- heat
- mass
- parts
- resistant
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/203—Solid polymers with solid and/or liquid additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/22—Compounding polymers with additives, e.g. colouring using masterbatch techniques
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/22—Compounding polymers with additives, e.g. colouring using masterbatch techniques
- C08J3/226—Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
- C08J3/243—Two or more independent types of crosslinking for one or more polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/14—Peroxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/16—Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
- H01B3/441—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/16—Ethene-propene or ethene-propene-diene copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2325/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
- C08J2325/02—Homopolymers or copolymers of hydrocarbons
- C08J2325/04—Homopolymers or copolymers of styrene
- C08J2325/06—Polystyrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/04—Homopolymers or copolymers of ethene
- C08J2423/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2217—Oxides; Hydroxides of metals of magnesium
- C08K2003/2224—Magnesium hydroxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2227—Oxides; Hydroxides of metals of aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
- C08K2003/265—Calcium, strontium or barium carbonate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
- C08L2203/202—Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
Definitions
- the present invention relates to a heat-resistant silane cross-linked resin molded article and a production method thereof, a heat-resistant silane cross-linkable resin composition and a production method thereof, a silane master batch, and a heat-resistant product using the heat-resistant silane cross-linked resin molded article.
- the present invention relates to a silane master batch, a heat-resistant silane cross-linkable resin composition and a method for producing the same, and a heat-resistant product using the heat-resistant silane cross-linked resin molded body as an electric wire insulator or sheath.
- Insulated wires, cables, cords and optical fiber cores, and optical fiber cords used for electrical and electronic equipment internal and external wiring are flame retardant, heat resistant, and mechanical properties (eg tensile properties, wear resistance) Various characteristics are required.
- a resin composition containing a large amount of a metal hydrate such as magnesium hydroxide or aluminum hydroxide is used.
- wiring materials used in electric / electronic devices may be heated to 80 to 105 ° C. or even 125 ° C. when used for a long time, and heat resistance against this may be required.
- a method of crosslinking the coating material by an electron beam crosslinking method or a chemical crosslinking method is employed.
- an electron beam cross-linking method in which an electron beam is irradiated to form a bridge (also called cross-linking);
- a chemical crosslinking method in which a peroxide or the like is decomposed to cause a crosslinking reaction, and a silane crosslinking method are known.
- the silane cross-linking method in particular does not require special equipment and can be used in a wide range of fields.
- the silane crosslinking method is a method in which a hydrolyzable silane coupling agent having an unsaturated group is grafted to a polymer in the presence of an organic peroxide to obtain a silane graft polymer, and then the silane grafting in the presence of a silanol condensation catalyst.
- This is a method for obtaining a crosslinked molded article by bringing a polymer into contact with moisture.
- a method for producing a halogen-free heat-resistant silane crosslinked resin includes, for example, a silane master batch obtained by grafting a hydrolyzable silane coupling agent having an unsaturated group to a polyolefin resin, a polyolefin resin, and an inorganic filler.
- the proportion of the inorganic filler is limited as described above. Therefore, it has been difficult to achieve high flame resistance and high heat resistance.
- a hydrolyzable silane coupling agent having an unsaturated group is added to the heat-resistant masterbatch obtained by melting and mixing a polyolefin resin and an inorganic filler.
- a method of adding an organic peroxide and causing a graft reaction with a single screw extruder is conceivable.
- appearance defects may occur in the molded product obtained due to variation in reaction.
- the compounding quantity of the inorganic filler of a masterbatch must be increased very much, and an extrusion load may become remarkably large. As a result, it becomes very difficult to manufacture the molded body. As a result, it has been difficult to obtain a desired material or molded body.
- the manufacturing process is two steps, which is also difficult in terms of manufacturing cost.
- Patent Document 1 an inorganic filler, a silane coupling agent, an organic peroxide, and a cross-linking catalyst that are surface-treated with a silane coupling agent on a resin component obtained by mixing a polyolefin resin and a maleic anhydride resin in a kneader.
- a method of forming with a single screw extruder after sufficiently melt-kneading has been proposed.
- Patent Documents 2 to 4 disclose a vinyl aromatic thermoplastic elastomer composition having a block copolymer or the like as a base resin and a non-aromatic rubber softener added as a softener.
- a method of partial crosslinking using an organic peroxide through a filler has been proposed.
- Patent Document 5 an organic peroxide, a silane coupling agent, and a metal hydrate are collectively melt-kneaded with a base material, further melt-molded with a silanol condensation catalyst, and then crosslinked in the presence of water.
- a method for easily obtaining a cable having heat resistance has been proposed.
- the resin partially cross-links during melt-kneading with a Banbury mixer or kneader, resulting in poor appearance of the resulting molded body (forming a number of protrusions protruding on the surface). ) May occur. Furthermore, most of the silane coupling agent other than the silane coupling agent that is treating the surface of the inorganic filler may be volatilized or condensed. For this reason, desired heat resistance cannot be obtained, and condensation between silane coupling agents may cause deterioration of the appearance of the electric wire.
- the molded body melts at a high temperature, and for example, the insulating material sometimes melts during soldering of the electric wire. Further, the molded body may be deformed or foamed during secondary processing. Furthermore, when heated to about 200 ° C. for a short time, the appearance may be significantly deteriorated or deformed.
- Patent Document 5 has a problem that, when a silane cross-linkable flame retardant polyolefin obtained by batch melting and kneading is extruded together with a silanol condensation catalyst, the appearance deteriorates due to rough appearance or irregularities (also referred to as appearance irregularities). was there.
- the present invention solves the problems of conventional silane crosslinking methods, has a high heat resistance and an excellent appearance, and more preferably has a heat resistance silane crosslinked resin molded article having excellent mechanical properties and flame retardancy, and It is an object to provide a manufacturing method thereof. Moreover, this invention makes it a subject to provide the silane masterbatch which can form this heat resistant silane crosslinked resin molded object, a heat resistant silane crosslinked resin composition, and its manufacturing method. Furthermore, this invention makes it a subject to provide the heat resistant product using the heat resistant silane crosslinked resin molded object obtained with the manufacturing method of the heat resistant silane crosslinked resin molded object.
- a method for producing a heat-resistant silane cross-linked resin molded product having The inorganic filler contains a metal hydrate and a metal carbonate
- the step (a) includes the following step (1) and step (3) and a part of the polyolefin resin is melt-mixed in the following step (1), the following step (1), step (2) and Having step (3), Step (1): All or part of the polyolefin resin, the organic peroxide, the inorganic filler, and the silane coupling agent are melt-mixed at a temperature equal to or higher than the decomposition temperature of the organic peroxide, and a silane master batch is obtained.
- Step (2) A step of melt-mixing the remainder of the polyolefin resin and the silanol condensation catalyst to prepare a catalyst master batch
- Step (3) The silane master batch and the silanol condensation catalyst or the catalyst master A method for producing a heat-resistant silane-crosslinked resin molded article, which comprises mixing batches.
- ⁇ 2> The heat-resistant silane crosslinked resin molded article according to ⁇ 1>, wherein the inorganic filler contains the metal carbonate in a mass ratio of 5 to 1000 parts by mass with respect to 100 parts by mass of the metal hydrate. Manufacturing method.
- the inorganic filler contains the metal hydrate in a mass ratio of 40 to 150 parts by mass with respect to 100 parts by mass of the polyolefin resin, and the metal carbonate is added to 100 parts by mass of the metal hydrate.
- ⁇ 4> The method for producing a heat-resistant silane-crosslinked resin molded article according to any one of ⁇ 1> to ⁇ 3>, wherein the metal hydrate is at least one of magnesium hydroxide and aluminum hydroxide.
- ⁇ 5> The method for producing a heat-resistant silane-crosslinked resin molded article according to any one of ⁇ 1> to ⁇ 4>, wherein the metal carbonate is calcium carbonate.
- ⁇ 6> The content of the silane coupling agent according to any one of ⁇ 1> to ⁇ 5>, wherein the amount of the silane coupling agent is more than 4 parts by mass and 15.0 parts by mass or less with respect to 100 parts by mass of the polyolefin resin.
- ⁇ 7> The method for producing a heat-resistant silane-crosslinked resin molded article according to any one of ⁇ 1> to ⁇ 6>, wherein the silanol condensation catalyst is not substantially mixed in the step (1).
- a method for producing a heat-resistant silane crosslinkable resin composition comprising the step (a) of obtaining a mixture by mixing comprising:
- the inorganic filler contains a metal hydrate and a metal carbonate
- the step (a) includes the following step (1) and step (3) and a part of the polyolefin resin is melt-mixed in the following step (1), the following step (1), step (2) and Having step (3), Step (1): All or part of the polyolefin resin, the organic peroxide, the inorganic filler, and the silane coupling agent are melt-mixed at a temperature equal to or higher than the decomposition temperature of the organic peroxide, and a silane master batch is obtained.
- Step (2) A step of melt-mixing the remainder of the polyolefin resin and the silanol condensation catalyst to prepare a catalyst master batch
- Step (3) The silane master batch and the silanol condensation catalyst or the catalyst master A method for producing a heat-resistant silane crosslinkable resin composition, comprising mixing batches.
- a silane masterbatch used for the production of a heat-resistant silane crosslinkable resin composition obtained by mixing, A silane master batch obtained by melt-mixing all or part of the polyolefin resin, the organic peroxide, the inorganic filler, and the silane coupling agent at a temperature equal to or higher than the decomposition temperature of the organic peroxide.
- the “polyolefin resin” is a resin for forming a heat-resistant silane cross-linked resin molded product or a heat-resistant silane cross-linkable resin composition.
- “part of the polyolefin resin” is a resin used in the step (1) among the polyolefin resins, and a part of the polyolefin resin itself (having the same composition as the polyolefin resin) constitutes the polyolefin resin.
- a part of the resin component, a part of the resin component constituting the polyolefin resin for example, the total amount of the specific resin component among the plurality of resin components).
- the remainder of the polyolefin resin is the remaining polyolefin resin excluding a part of the polyolefin resin used in the step (1), specifically, the remainder of the polyolefin resin itself (the same as the polyolefin resin).
- the remainder of the resin component constituting the polyolefin resin and the remaining resin component constituting the polyolefin resin are integers expressed using “to” as a lower limit value and an upper limit value.
- the problems of conventional silane crosslinking methods can be solved, and a heat-resistant silane-crosslinked resin molded article having high heat resistance and excellent appearance can be produced. More preferably, a heat-resistant silane cross-linked resin molded article having excellent mechanical properties and flame retardancy can be produced.
- the inorganic filler and the silane coupling agent are mixed before and / or during kneading with the polyolefin resin. Thereby, volatilization of the silane coupling agent at the time of kneading
- the present invention it is possible to produce a silane masterbatch and a heat-resistant silane crosslinkable resin composition that can form a heat-resistant silane cross-linked resin molded article having excellent appearance and flame retardancy. Further, according to the present invention, a heat-resistant product using the heat-resistant silane cross-linked resin molded product can be provided.
- Each of the “method for producing a heat-resistant silane cross-linked resin molded product” of the present invention and the “method for producing a heat-resistant silane cross-linked resin composition” of the present invention includes at least the steps (1) and (3) below. Step (a) is performed. Accordingly, the “method for producing a heat-resistant silane cross-linked resin molded product” of the present invention and the “method for producing a heat-resistant silane cross-linkable resin composition” of the present invention (in the explanation of the common parts of both, The manufacturing method of the present invention is sometimes described below.
- Step (1) Step of preparing a silane master batch by melting and mixing all or part of the polyolefin resin, organic peroxide, inorganic filler, and silane coupling agent at a temperature equal to or higher than the decomposition temperature of the organic peroxide.
- Step (3) The step of mixing the silane masterbatch and the silanol condensation catalyst or catalyst masterbatch Means to obtain a homogeneous mixture.
- the polyolefin resin is not particularly limited as long as it is a resin made of a polymer obtained by polymerizing or copolymerizing a compound having an ethylenically unsaturated bond, and conventionally used in a heat-resistant resin composition. A well-known thing can be used.
- polymers such as polyethylene, polypropylene, ethylene- ⁇ -olefin copolymers, block copolymers of polypropylene and ethylene- ⁇ -olefin resins, polyolefin copolymers having acid copolymerization components or acid ester copolymerization components And rubbers or elastomers of these polymers, such as styrene elastomers and ethylene rubbers.
- polyethylene, polypropylene, and ethylene- ⁇ -olefin co-polymers are highly receptive to various inorganic fillers such as metal hydrates and can maintain mechanical strength even when a large amount of inorganic fillers are blended.
- Each resin such as a polymer, a polyolefin copolymer having an acid copolymerization component or an acid ester copolymerization component, a styrene elastomer, ethylene rubber, or the like is preferable.
- These polyolefin resins may be used individually by 1 type, or may use 2 or more types together. When two or more kinds of polyolefin resins are used in combination, any combination may be used. For example, a combination of a polyethylene resin and one or both of ethylene rubber and styrene elastomer is preferable.
- Polyethylene is not particularly limited as long as it is a polymer containing an ethylene component as a constituent component.
- Polyethylene is a homopolymer consisting only of ethylene, a copolymer of ethylene and 5 mol% or less ⁇ -olefin (excluding propylene), and 1 mol% or less having only ethylene, carbon, oxygen and hydrogen atoms in the functional group.
- copolymers with non-olefins for example, JIS K 6748.
- known ones conventionally used as a copolymerization component of polyethylene can be used without particular limitation.
- polyethylene examples include high density polyethylene (HDPE), low density polyethylene (LDPE), ultra high molecular weight polyethylene (UHMW-PE), linear low density polyethylene (LLDPE), and very low density polyethylene (VLDPE). Is mentioned. Of these, linear low density polyethylene and low density polyethylene are preferable. Polyethylene may be used individually by 1 type, and may use 2 or more types together.
- HDPE high density polyethylene
- LDPE low density polyethylene
- UHMW-PE ultra high molecular weight polyethylene
- LLDPE linear low density polyethylene
- VLDPE very low density polyethylene
- Polyethylene may be used individually by 1 type, and may use 2 or more types together.
- Polypropylene is not particularly limited as long as it is a polymer containing propylene as a constituent component.
- Polypropylene includes propylene homopolymers, ethylene-propylene copolymers such as random polypropylene, and block polypropylene as copolymers.
- random polypropylene refers to a copolymer of propylene and ethylene having an ethylene component content of 1 to 5 mass%.
- Block polypropylene is a composition containing a homopolypropylene and an ethylene-propylene copolymer, having an ethylene component content of about 5 to 15% by mass, and an ethylene component and a propylene component existing as independent components. Say what you do. Polypropylene may be used alone or in combination of two or more.
- the ethylene- ⁇ -olefin copolymer is preferably a copolymer of ethylene and an ⁇ -olefin having 3 to 12 carbon atoms (excluding those contained in polyethylene and polypropylene).
- Specific examples of the ⁇ -olefin component in the ethylene- ⁇ -olefin copolymer include propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene and the like. These components are mentioned.
- the ethylene- ⁇ -olefin copolymer is preferably a copolymer of ethylene and an ⁇ -olefin having 3 to 12 carbon atoms (excluding those contained in polyethylene and polypropylene).
- ethylene-propylene copolymers excluding those contained in polypropylene
- ethylene-butylene copolymers ethylene- ⁇ -olefin copolymers synthesized in the presence of a single site catalyst. It is done.
- One ethylene- ⁇ -olefin copolymer may be used alone, or two or more ethylene- ⁇ -olefin copolymers may be used in combination.
- Examples of the acid copolymerization component or acid ester copolymerization component in the polyolefin copolymer having an acid copolymerization component or an acid ester copolymerization component include carboxylic acid compounds such as (meth) acrylic acid, and vinyl acetate and (meth) acrylic.
- Examples include acid ester compounds such as acid alkyls.
- the alkyl group of the alkyl (meth) acrylate preferably has 1 to 12 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, and a hexyl group.
- polyolefin copolymer having an acid copolymerization component or an acid ester copolymerization component examples include, for example, ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, And ethylene- (meth) acrylic acid alkyl copolymers.
- ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, and ethylene-butyl acrylate copolymer are preferable.
- acceptability and heat resistance of inorganic fillers are preferred.
- an ethylene-vinyl acetate copolymer and an ethylene-ethyl acrylate copolymer are preferable.
- the polyolefin copolymer having an acid copolymerization component or an acid ester copolymerization component is used singly or in combination of two or more.
- Styrenic elastomers are those composed of a polymer having an aromatic vinyl compound as a constituent component in the molecule. Accordingly, in the present invention, if the polymer contains an ethylene constituent component in the molecule but an aromatic vinyl compound constituent component, it is classified as a styrene elastomer. Examples of such styrenic elastomers include those composed of block copolymers and random copolymers of conjugated diene compounds and aromatic vinyl compounds, or hydrogenated products thereof.
- Examples of the constituent component of the aromatic vinyl compound in the polymer include styrene, p- (tert-butyl) styrene, ⁇ -methylstyrene, p-methylstyrene, divinylbenzene, 1,1-diphenylstyrene, N, N—
- Examples of the constituents include diethyl-p-aminoethylstyrene and vinyltoluene. Among these, a styrene component is mentioned.
- the constituent components of this aromatic vinyl compound are used singly or in combination of two or more.
- constituent components of the conjugated diene compound include constituent components such as butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, and the like. Among these, a butadiene constituent component is preferable.
- the structural component of a conjugated diene compound is used individually by 1 type, or 2 or more types are used together.
- a styrene-based elastomer an elastomer containing an aromatic vinyl compound other than styrene, which does not contain a styrene component, may be used by a similar production method.
- styrene elastomer examples include styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-isoprene-styrene block copolymer (SIS), hydrogenated SBS, styrene-ethylene-ethylene-propylene-styrene block. Copolymer (SEEPS), styrene-ethylene-propylene-styrene block copolymer (SEPS), hydrogenated SIS, hydrogenated styrene / butadiene rubber (HSBR), hydrogenated acrylonitrile / butadiene rubber (HNBR), etc. Can be mentioned.
- SEEPS styrene-ethylene-butylene-styrene block copolymer
- SIS styrene-isoprene-styrene block copolymer
- SEPS styrene-ethylene-ethylene-propylene-styren
- styrene-based elastomer it is preferable to use SEPS, SEEPS, SEBS having a styrene constituent content of 10 to 40% alone or in combination of two or more thereof.
- SEPS SEPS
- SEEPS SEEPS
- SEBS SEBS having a styrene constituent content of 10 to 40% alone or in combination of two or more thereof.
- commercially available products can be used. For example, Septon 4077, Septon 4055, Septon 8105 (all trade names, manufactured by Kuraray Co., Ltd.), Dynalon 1320P, Dynalon 4600P, 6200P, 8601P, 9901P (all trade names) Can be used.
- the ethylene rubber is not particularly limited as long as it is a rubber (including an elastomer) made of a copolymer obtained by copolymerizing a compound having an ethylenically unsaturated bond, and a known rubber can be used.
- the ethylene rubber is preferably a rubber made of a copolymer of ethylene and an ⁇ -olefin, or a terpolymer of ethylene, an ⁇ -olefin and a diene.
- the diene constituent of the terpolymer may be a conjugated diene constituent or a non-conjugated diene constituent, and a non-conjugated diene constituent is preferred.
- the terpolymers include terpolymers of ethylene, ⁇ -olefin, and conjugated diene, and terpolymers of ethylene, ⁇ -olefin, and non-conjugated diene.
- Preferred are copolymers of ⁇ -olefins and terpolymers of ethylene, ⁇ -olefins and non-conjugated dienes.
- ⁇ -olefin component are preferably each ⁇ -olefin component having 3 to 12 carbon atoms, and specific examples include those listed for the ethylene- ⁇ -olefin copolymer.
- conjugated diene constituent component include those exemplified for the styrene-based elastomer, and butadiene and the like are preferable.
- non-conjugated diene constituent component include, for example, dicyclopentadiene (DCPD), ethylidene norbornene (ENB), 1,4-hexadiene, and ethylidene norbornene is preferable.
- Examples of the rubber made of a copolymer of ethylene and ⁇ -olefin include ethylene-propylene rubber, ethylene-butene rubber, and ethylene-octene rubber.
- Examples of the rubber composed of a terpolymer of ethylene, ⁇ -olefin and diene include ethylene-propylene-diene rubber and ethylene-butene-diene rubber.
- ethylene-propylene rubber, ethylene-butene rubber, ethylene-propylene-diene rubber and ethylene-butene-diene rubber are preferable, and ethylene-propylene rubber and ethylene-propylene-diene rubber are more preferable.
- the content of ethylene constituents is preferably 45 to 70% by mass, more preferably 50 to 68% by mass.
- the method for measuring the amount of ethylene is a value measured in accordance with the method described in ASTM D3900.
- the polyolefin resin may contain various oils used as a plasticizer or a softener as desired.
- oils include oils as plasticizers used in polyolefin resins or mineral oil softeners for rubber.
- the mineral oil softener is a mixed oil including three oils: an oil composed of a hydrocarbon having an aromatic ring, an oil composed of a hydrocarbon having a naphthene ring, and an oil composed of a hydrocarbon having a paraffin chain.
- the oil composed of hydrocarbons having an aromatic ring is an aromatic organic having 30% or more of the total number of carbon atoms constituting the aromatic ring, naphthene ring and paraffin chain.
- Oil (aroma oil) Oils composed of hydrocarbons having a naphthene ring and oils composed of hydrocarbons having paraffin chains (also referred to as non-aromatic organic oils) have less than 30% of the total number of carbon atoms constituting the aromatic ring. These are naphthenic oil and paraffin oil.
- the number of carbon atoms constituting the naphthene ring is 30 to 40% of the total number of carbons
- the number of carbon atoms constituting the paraffin chain is 50% of the total number of carbons.
- the paraffin oil refers to an oil in which the number of carbon atoms constituting the paraffin chain is 50% or more with respect to the total number of carbons.
- liquid or low molecular weight synthetic softeners paraffin oil, and naphthenic oil are preferably used, and paraffin oil is particularly preferably used.
- paraffin oil examples include Diana Process Oil PW90 and PW380 (both are trade names, manufactured by Idemitsu Kosan Co., Ltd.), Cosmo Neutral 500 (Cosmo Oil Co., Ltd.), and the like.
- the content of the oil is 80% by mass or less with respect to the total mass of the polymer and the oil contained in the polyolefin resin in terms of heat resistance performance, crosslinking performance, and strength. Preferably, 55 mass% or less is more preferable, and 40 mass% or less is further more preferable.
- the oil content is at least 0% by mass, but is not limited thereto.
- the polyolefin resin is preferably 20% by mass or more, more preferably 45% by mass or more, and further preferably 60% by mass or more with respect to the total mass.
- the content rate of polyolefin resin is 100 mass% at maximum, it is not limited to this. When the content is the above, it is possible to produce a silane-crosslinked resin molded article having an excellent appearance while greatly suppressing the occurrence of bumps.
- Organic peroxide functions to generate radicals by at least thermal decomposition and cause a grafting reaction of the silane coupling agent to the polyolefin resin as a catalyst.
- the silane coupling agent contains an ethylenically unsaturated group, it acts to cause a grafting reaction by a radical reaction between the ethylenically unsaturated group and the polyolefin resin (including a hydrogen radical abstraction reaction from the polyolefin resin).
- the organic peroxide used in the present invention is not particularly limited as long as it generates radicals.
- R 1 —OO—R 2 , R 1 —OO—C ( ⁇ O) R 3 , R 4 C ( ⁇ O) —OO (C ⁇ O) R 5 is preferably used. It is done.
- R 1 , R 2 , R 3 , R 4 and R 5 each independently represents an alkyl group, an aryl group, or an acyl group.
- R 1 , R 2 , R 3 , R 4 and R 5 are all alkyl groups, or any one is an alkyl group and the rest is an acyl group.
- organic peroxides examples include dicumyl peroxide (DCP), di-tert-butyl peroxide, 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane, , 5-dimethyl-2,5-di (tert-butylperoxy) hexyne-3, 1,3-bis (tert-butylperoxyisopropyl) benzene, 1,1-bis (tert-butylperoxy) -3, 3,5-trimethylcyclohexane, n-butyl-4,4-bis (tert-butylperoxy) valerate, benzoyl peroxide, p-chlorobenzoyl peroxide, 2,4-dichlorobenzoyl peroxide, tert-butylperoxy Benzoate, tert-butyl peroxyisopropyl carbonate, dia Chill peroxide, lauroyl peroxide, may be mentioned
- DCP dicumyl peroxide
- 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane 2,5-in terms of odor, colorability, and scorch stability.
- Dimethyl-2,5-di- (tert-butylperoxy) hexyne-3 is preferred.
- the decomposition temperature of the organic peroxide is preferably from 80 to 195 ° C., particularly preferably from 125 to 180 ° C.
- the decomposition temperature of an organic peroxide means a temperature at which a decomposition reaction occurs in two or more compounds at a certain temperature or temperature range when an organic peroxide having a single composition is heated. means. Specifically, it refers to the temperature at which heat absorption or heat generation starts when heated from room temperature in a nitrogen gas atmosphere at a rate of temperature increase of 5 ° C./min by thermal analysis such as DSC method.
- the inorganic filler includes a metal hydrate and a metal carbonate.
- the metal hydrate is not particularly limited as long as it has a site capable of forming a hydrogen bond or the like with a reactive site such as a silanol group of the silane coupling agent on the surface or a site capable of chemical bonding by a covalent bond. it can.
- the sites that can be chemically bonded to the reaction site of the silane coupling agent include OH groups (hydroxy groups, water molecules containing water or water of crystal water, OH groups such as carboxy groups), amino groups, SH groups, and the like. Can be mentioned.
- metal hydrates include, for example, hydroxyl groups such as aluminum hydroxide, magnesium hydroxide, hydrated aluminum silicate, hydrated magnesium silicate, basic magnesium carbonate, aluminum orthosilicate, hydrotalcite, or crystal water.
- a metal hydrate having an OH group is preferable, and aluminum hydroxide and magnesium hydroxide are more preferable.
- a metal hydrate may be used individually by 1 type and may use 2 or more types together.
- the metal carbonate can be used without particular limitation as long as it is a metal carbonate, and preferred examples include those in which physical adsorption preferentially takes place over the silane coupling agent and the above-described chemical bond.
- the metal carbonate include alkali metal carbonates and alkaline earth metal carbonates, and alkaline earth metal carbonates are preferred.
- the alkaline earth metal carbonate include magnesium carbonate and calcium carbonate, and calcium carbonate is preferred.
- a metal carbonate may be used individually by 1 type, and may use 2 or more types together.
- the average particle diameter of the inorganic filler is preferably 0.2 to 10 ⁇ m, more preferably 0.3 to 8 ⁇ m, further preferably 0.4 to 5 ⁇ m, and particularly preferably 0.4 to 3 ⁇ m. If the average particle size of the inorganic filler is too small, the inorganic filler causes secondary aggregation during mixing with the silane coupling agent, and the appearance of the molded body may be deteriorated or blistered. On the other hand, if it is too large, the appearance may deteriorate, the retention effect of the silane coupling agent may decrease, and a problem may occur in crosslinking.
- the average particle size is determined by an optical particle size measuring device such as a laser diffraction / scattering type particle size distribution measuring device after being dispersed with alcohol or water.
- Both the metal hydrate and the metal carbonate can be used by previously mixing with a silane coupling agent described later.
- the method of mixing these inorganic fillers with the silane coupling agent is not particularly limited, but in the inorganic filler that is not treated or previously surface-treated with stearic acid, oleic acid, phosphoric acid ester, or a part of the silane coupling agent.
- There are a method of adding and mixing a silane coupling agent without heating or heating a method of adding a silane coupling agent in a state where an inorganic filler is dispersed in a solvent such as water, and the like will be described in detail later.
- the method of adding and mixing a silane coupling agent in an inorganic filler without heating or heating is preferable.
- a surface-treated inorganic filler surface-treated with a silane coupling agent or the like can be used as the silane coupling agent surface-treated metal hydrate.
- the silane coupling agent surface-treated metal hydrate Kisuma 5L, Kisuma 5P (both trade names, magnesium hydroxide, manufactured by Kyowa Chemical Co., Ltd.), aluminum hydroxide and the like can be mentioned.
- the surface treatment amount of the inorganic filler with the silane coupling agent is not particularly limited, but is, for example, 2% by mass or less.
- the silane coupling agent used in the present invention is not limited as long as it has a group capable of grafting to a polyolefin resin in the presence of a radical and a group capable of chemically bonding to a metal hydrate of an inorganic filler.
- a hydrolyzable silane coupling agent having a group containing a hydrolyzable group is preferred. More preferably, the silane coupling agent has an amino group, a glycidyl group or an ethylenically unsaturated group-containing group and a hydrolyzable group-containing group at the terminal, and more preferably ethylene at the terminal.
- silane coupling agent having a group containing a polymerizable unsaturated group and a group containing a hydrolyzable group.
- the group containing an ethylenically unsaturated group is not particularly limited, and examples thereof include a vinyl group, an allyl group, a (meth) acryloyloxy group, a (meth) acryloyloxyalkylene group, and a p-styryl group.
- silane coupling agent for example, a compound represented by the following general formula (1) can be used.
- R a11 is a group containing an ethylenically unsaturated group
- R b11 is an aliphatic hydrocarbon group, a hydrogen atom, or Y 13 .
- Y 11 , Y 12 and Y 13 are hydrolyzable organic groups. Y 11 , Y 12 and Y 13 may be the same as or different from each other.
- R a11 of the silane coupling agent represented by the general formula (1) is preferably a group containing an ethylenically unsaturated group, and the group containing an ethylenically unsaturated group is as described above, preferably vinyl. It is a group.
- R b11 is an aliphatic hydrocarbon group, a hydrogen atom, or Y 13 described later, and the aliphatic hydrocarbon group is a monovalent aliphatic hydrocarbon group having 1 to 8 carbon atoms excluding the aliphatic unsaturated hydrocarbon group. Is mentioned. R b11 is preferably Y 13 described later.
- Y 11 , Y 12 and Y 13 are hydrolyzable organic groups such as an alkoxy group having 1 to 6 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, and an acyloxy group having 1 to 4 carbon atoms. And an alkoxy group is preferred.
- Specific examples of the hydrolyzable organic group include methoxy, ethoxy, butoxy, acyloxy and the like. Among these, methoxy or ethoxy is more preferable, and methoxy is particularly preferable from the viewpoint of the reactivity of the silane coupling agent.
- the silane coupling agent is preferably a silane coupling agent having a high hydrolysis rate, more preferably a silane coupling agent in which R b11 is Y 13 and Y 11 , Y 12 and Y 13 are the same. . More preferred is a hydrolysable silane coupling agent in which at least one of Y 11 , Y 12 and Y 13 is a methoxy group, and particularly preferred is a hydrolyzable silane coupling agent in which all are methoxy groups.
- silane coupling agent having a vinyl group, (meth) acryloyloxy group or (meth) acryloyloxyalkylene group at the terminal include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltributoxysilane, and vinyldimethoxy.
- Organosilanes such as ethoxysilane, vinyldimethoxybutoxysilane, vinyldiethoxybutoxysilane, allyltrimethoxysilane, allyltriethoxysilane, vinyltriacetoxysilane, methacryloxypropyltrimethoxysilane, methacryloxypropyltriethoxysilane, methacryloxypropyl Examples include methyldimethoxysilane. These silane coupling agents may be used alone or in combination of two or more.
- a silane coupling agent having a vinyl group and an alkoxy group at the terminal is more preferable, and vinyltrimethoxysilane and vinyltriethoxysilane are particularly preferable.
- Those having a glycidyl group at the terminal are 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and the like.
- the silane coupling agent may be used as it is or diluted with a solvent or the like.
- the silanol condensation catalyst has a function of subjecting a silane coupling agent grafted to a polyolefin resin to a condensation reaction in the presence of moisture. Based on the action of this silanol condensation catalyst, polyolefin resins are cross-linked through a silane coupling agent. As a result, a heat-resistant silane cross-linked resin molded article having excellent heat resistance is obtained.
- silanol condensation catalyst used in the present invention an organic tin compound, a metal soap, a platinum compound, or the like is used.
- Common silanol condensation catalysts include, for example, dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, zinc stearate, lead stearate, barium stearate, calcium stearate, sodium stearate, Lead naphthenate, lead sulfate, zinc sulfate, organic platinum compounds and the like are used.
- organic tin compounds such as dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin dioctiate, and dibutyltin diacetate are particularly preferable.
- the silanol condensation catalyst used in the present invention is mixed with the resin as desired.
- a resin also referred to as carrier resin
- a part of the polyolefin resin may be a part of the resin component constituting the polyolefin resin or a part of the resin component constituting the polyolefin resin, but a part of the resin component constituting the polyolefin resin is preferable.
- the resin component in this case a resin containing ethylene as a constituent component is more preferable, and polyethylene is particularly preferable because it has a good affinity with a silanol condensation catalyst and is excellent in heat resistance.
- the heat-resistant silane cross-linked resin molded body and the heat-resistant silane cross-linkable resin composition include various commonly used additives in electric wires, electric cables, electric cords, sheets, foams, tubes, and pipes. You may mix
- additives include crosslinking aids, antioxidants, lubricants, metal deactivators, fillers, and other resins. These additives, particularly antioxidants and metal deactivators, may be mixed in any component, but are preferably added to the carrier resin. It is preferable that the crosslinking aid is not substantially contained. In particular, it is preferable that the crosslinking aid is not substantially mixed in the step (a) for preparing the silane master batch.
- crosslinking aid When the crosslinking aid is not substantially mixed, crosslinking between polyolefin resins hardly occurs during kneading, and the appearance and heat resistance of the heat-resistant silane crosslinked resin molded article are excellent.
- being substantially not contained or not mixed means that a crosslinking aid is not actively added or mixed, and does not exclude inclusion or mixing unavoidably.
- a crosslinking aid refers to a compound that forms a partially crosslinked structure with a polyolefin resin in the presence of an organic peroxide.
- a methacrylate compound such as polypropylene glycol diacrylate and trimethylolpropane triacrylate, triallyl cyanurate, etc.
- polyfunctional compounds such as allyl compounds, maleimide compounds, and divinyl compounds.
- Antioxidants such as 4,4′-dioctyldiphenylamine, N, N′-diphenyl-p-phenylenediamine, 2,2,4-trimethyl-1,2-dihydroquinoline polymer, etc. Agents, pentaerythrityl-tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate), octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate Phenol antioxidants such as 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, bis (2-methyl-4- (3 -N-alkylthiopropionyloxy) -5-tert-butylphenyl) sulfide, 2-mercaptoben ⁇ imidazole and Zinc salt thereof, pentaerythritol -
- lubricant examples include hydrocarbons, siloxanes, fatty acids, fatty acid amides, esters, alcohols, metal soaps, and the like. These lubricants should be added to the carrier resin.
- Metal deactivators include N, N′-bis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl) hydrazine, 3- (N-salicyloyl) amino-1,2,4. -Triazole, 2,2'-oxamidobis- (ethyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate) and the like.
- filler including a flame retardant (auxiliary) agent
- examples of the filler include fillers other than the various fillers described above.
- the organic peroxide is 0.01 to 0.6 parts by weight
- the inorganic filler is 10 to 400 parts by weight
- the silane coupling agent is 1 to 15 with respect to 100 parts by weight of the polyolefin resin.
- 0.0 parts by mass and a silanol condensation catalyst are melt mixed to prepare a mixture. Thereby, a silane masterbatch is prepared.
- the mixing amount of the organic peroxide is 0.01 to 0.6 parts by mass, preferably 0.1 to 0.5 parts by mass with respect to 100 parts by mass of the polyolefin resin. If the mixing amount of the organic peroxide is too small, the crosslinking reaction does not proceed at the time of crosslinking, and the silane coupling agents are condensed with each other, so that sufficient heat resistance, mechanical strength, and reinforcing properties may not be obtained. is there. On the other hand, if the amount is too large, most of the polyolefin resin may be directly cross-linked by a side reaction, and there is a risk that it will be fuzzy. That is, by setting the mixing amount of the organic peroxide within this range, polymerization can be performed within an appropriate range, and a composition excellent in extrudability can be obtained without generating gel-like irregularities. .
- the inorganic filler contains the metal hydrate and the metal carbonate as described above, and the mixed amount (total) of the inorganic filler is 10 to 400 parts by mass with respect to 100 parts by mass of the polyolefin resin. 280 parts by mass is preferred. If the amount of the inorganic filler mixed is too small, the graft reaction of the silane coupling agent becomes non-uniform, and the desired heat resistance cannot be obtained, or the appearance may deteriorate due to the non-uniform reaction. On the other hand, if the amount is too large, the load during molding or kneading becomes very large, which may make secondary molding difficult.
- the mixed amount of the metal hydrate in the inorganic filler is not limited as long as the content of the inorganic filler described above is satisfied, but is preferably 5 to 300 parts by weight, and preferably 23 to 180 parts by weight with respect to 100 parts by weight of the polyolefin resin. Is more preferable, and 40 to 150 parts by mass is even more preferable.
- the mixing amount of the metal hydrate is within the above range, high flame retardancy and excellent mechanical strength can be obtained.
- the amount of the metal carbonate mixed in the inorganic filler is not limited as long as it satisfies the content of the inorganic filler described above, but is preferably 5 to 150 parts by mass, and 7 to 120 parts by mass with respect to 100 parts by mass of the polyolefin resin. More preferred is 10 to 100 parts by mass.
- the mixing amount of the metal carbonate is within the above range, the appearance and heat resistance are excellent, and the mechanical properties can be maintained.
- the metal carbonate is preferably 5 to 1000 parts by mass, more preferably 7 to 200 parts by mass, and still more preferably 10 to 100 parts by mass with respect to 100 parts by mass of the metal hydrate.
- the mass ratio of the mixed amount of the metal carbonate and the mixed amount of the metal hydrate is within the above range, higher heat resistance can be obtained.
- the mixing amount of the metal hydrate is 40 to 150 parts by mass with respect to 100 parts by mass of the polyolefin resin, and the mixing amount of the metal carbonate is 10 with respect to 100 parts by mass of the mixing amount of the metal hydrate.
- excellent flame retardancy can be obtained when the content is ⁇ 100 parts by mass.
- the mixing amount of the silane coupling agent is 1 to 15.0 parts by mass with respect to 100 parts by mass of the polyolefin resin, preferably more than 4 parts by mass and 15.0 parts by mass or less, more preferably 6 to 15 parts by mass. 0.0 part by mass. If the amount of the silane coupling agent is too small, the crosslinking reaction does not proceed sufficiently, and the excellent flame resistance may not be exhibited. On the other hand, if the amount is too large, the silane coupling agent cannot be completely adsorbed on the surface of the inorganic filler, and the silane coupling agent volatilizes during kneading, which is not economical. Moreover, the silane coupling agent which does not adsorb
- the amount of the silane coupling agent mixed exceeds 4.0 parts by mass and is 15.0 parts by mass or less, the appearance is excellent.
- the reaction due to the decomposition of the organic peroxide when the silane coupling agent is silane-grafted onto the polyolefin resin has a high reaction rate, the graft reaction between the silane coupling agent and the polyolefin resin, The condensation reaction between the ring agents becomes dominant. Therefore, the cross-linking reaction between the polyolefin resins that causes rough appearance and rough appearance hardly occurs.
- the cross-linking reaction between polyolefin resins can be effectively suppressed depending on the amount of the silane coupling agent mixed.
- molding becomes favorable.
- the said defect by the crosslinking reaction of polyolefin resin decreases, even if it restarts after stopping an extruder, it becomes difficult to generate
- the crosslinking reaction of polyolefin resin can be suppressed and the silane crosslinked resin molding with a favorable external appearance can be manufactured.
- step (a) many silane coupling agents are immobilized by binding or adsorption to an inorganic filler. Therefore, the condensation reaction between the silane coupling agents bonded or adsorbed to the inorganic filler hardly occurs. In addition, it does not bind or adsorb to the inorganic filler, hardly causes the condensation reaction between the free silane coupling agents, and suppresses the formation of gel-like spots due to the condensation reaction between the free silane coupling agents. be able to.
- both the crosslinking reaction between the polyolefin resins and the condensation reaction between the silane coupling agents can be suppressed, and the silane crosslinked resin molded article having a clean appearance. It is thought that can be manufactured.
- the step (a) includes, for the polyolefin resin, “a total amount of the polyolefin resin, that is, a mode in which 100 parts by mass is blended” and “a mode in which a part of the polyolefin resin is blended”. . Therefore, in the production method of the present invention, it is sufficient that 100 parts by mass of the polyolefin resin is contained in the mixture obtained in the step (a), and the polyolefin resin may be mixed in the step (1) to be described later. Well, a part of it is mixed in the step (1), and the remainder is mixed as a carrier resin in the step (2) described later, that is, the polyolefin resin is mixed in both the steps (1) and (2). Good.
- the mixing amount of 100 parts by mass of the polyolefin resin in the step (a) is the total amount of the polyolefin resin mixed in the step (1) and the step (2). is there.
- the polyolefin resin is preferably mixed in the step (1) in an amount of 80 to 99 parts by mass, more preferably 94 to 98 parts by mass. Preferably 1 to 20 parts by mass, more preferably 2 to 6 parts by mass are mixed.
- This step (a) comprises at least step (1) and step (3), and has at least steps (1) to (3) in a specific case.
- each component can be uniformly melted and mixed, and the desired effect can be obtained.
- step (1) a polyolefin resin, an organic peroxide, an inorganic filler, and a silane coupling agent are charged into a mixer, and melt kneaded while heating to a temperature equal to or higher than the decomposition temperature of the organic peroxide. Prepare the batch.
- the kneading temperature for melting and mixing the above-described components is not less than the decomposition temperature of the organic peroxide, preferably the decomposition temperature of the organic peroxide + (25 to 110) ° C.
- This decomposition temperature is preferably set after the polyolefin resin is melted.
- kneading conditions such as kneading time can be set as appropriate.
- a kneading method any method usually used for rubber, plastic, etc. can be used satisfactorily, and the kneading apparatus is appropriately selected according to, for example, the amount of inorganic filler mixed.
- a single-screw extruder, a twin-screw extruder, a roll, a Banbury mixer, or various kneaders are used, and a closed mixer such as a Banbury mixer or various kneaders is used to disperse the polyolefin resin and stabilize the crosslinking reaction. In terms of surface.
- such an inorganic filler when such an inorganic filler is mixed in an amount exceeding 100 parts by mass with respect to 100 parts by mass of the polyolefin resin, it is preferably kneaded with a continuous kneader, a pressure kneader, or a Banbury mixer.
- “melting and mixing all or part of the polyolefin resin, organic peroxide, inorganic filler and silane coupling agent” does not specify the order of mixing at the time of melting and mixing. It means that they may be mixed in order. That is, the mixing order in the step (a) is not particularly limited. Further, the mixing method of the polyolefin resin is not particularly limited. For example, a polyolefin resin mixed and prepared in advance may be used, and each component, for example, a resin component and an oil component may be used separately. In the step (1), for example, a polyolefin resin, an organic peroxide, an inorganic filler, and a silane coupling agent can be melt-mixed at a time.
- the silane coupling agent is not introduced into the silane master batch alone, but is introduced by premixing with an inorganic filler.
- the silane coupling agent it becomes difficult for the silane coupling agent to volatilize during kneading, and it is possible to prevent the silane coupling agent not adsorbed on the inorganic filler from condensing and making melt kneading difficult.
- a desired shape can also be obtained at the time of extrusion molding.
- a mixer type kneader such as a Banbury mixer or a kneader is used, and the organic peroxide, the inorganic filler, and the silane coupling agent are mixed or dispersed at a temperature lower than the decomposition temperature of the organic peroxide.
- a method of melt-mixing the mixture and the polyolefin resin after the mixing is performed. If it does in this way, the excessive crosslinking reaction of polyolefin resin can be prevented, and an external appearance is excellent.
- the inorganic filler, the silane coupling agent and the organic peroxide are mixed at a temperature lower than the decomposition temperature of the organic peroxide, preferably at room temperature (25 ° C.).
- the method for mixing the inorganic filler, the silane coupling agent, and the organic peroxide is not particularly limited, and the organic peroxide may be mixed with the inorganic filler or the like, or the inorganic filler and the silane coupling agent may be mixed. They may be mixed in any of the mixing stages. Examples of the mixing method of the inorganic filler, the silane coupling agent, and the organic peroxide include mixing methods such as wet processing and dry processing.
- a wet process in which the silane coupling agent is added in a state where the inorganic filler is dispersed in a solvent such as alcohol or water, and a dry process in which both are added by heating or non-heating. Treatment and both.
- dry processing is preferred in which a silane coupling agent is added to an inorganic filler, preferably a dried inorganic filler, with heating or non-heating and mixed.
- the silane coupling agent tends to be strongly chemically bonded to the inorganic filler, so that the subsequent silanol condensation reaction may be difficult to proceed.
- dry mixing since the bond between the inorganic filler and the silane coupling agent is relatively weak, the silanol condensation reaction easily proceeds efficiently.
- the silane coupling agent added to the inorganic filler exists so as to surround the surface of the inorganic filler, and part or all of the silane coupling agent is adsorbed by the inorganic filler or chemically bonded to the surface of the inorganic filler.
- the volatilization of the silane coupling agent during kneading with a subsequent kneader or Banbury mixer is greatly reduced, and the unsaturated group of the silane coupling agent is reduced by the organic peroxide. It is thought that it crosslinks with polyolefin resin.
- the silane coupling agent undergoes a condensation reaction with a silanol condensation catalyst during molding.
- the organic peroxide may be mixed with the silane coupling agent and then dispersed in the inorganic filler, or separately from the silane coupling agent and dispersed separately in the inorganic filler.
- the organic peroxide and the silane coupling agent should be mixed substantially together.
- only the silane coupling agent may be mixed with the inorganic filler, and then the organic peroxide may be added. That is, in the step (1), an inorganic filler previously mixed with a silane coupling agent can be used.
- a method of adding the organic peroxide it may be dispersed in other components or may be added alone.
- a mixture of an inorganic filler, a silane coupling agent and an organic peroxide, and a polyolefin resin are then melt-kneaded while heating to a temperature higher than the decomposition temperature of the organic peroxide to obtain a silane master batch.
- step (1) no silanol condensation catalyst is used. That is, in the step (1), the above-described components are kneaded without substantially mixing the silanol condensation catalyst. Thereby, the silane coupling agent is easy to melt and mix without condensing, and a desired shape can be obtained during extrusion molding.
- substantially not mixed does not exclude the unavoidably existing silanol condensation catalyst, and is present to such an extent that the above-mentioned problem due to silanol condensation of the silane coupling agent does not occur. Means good.
- the silanol condensation catalyst may be present as long as it is 0.01 part by mass or less with respect to 100 parts by mass of the polyolefin resin.
- a process (1) is performed and a silane masterbatch is prepared.
- the silane master batch (also referred to as silane MB) prepared in the step (1) is preferably used for the production of the mixture (heat-resistant silane crosslinkable resin composition) prepared in the step (a), as will be described later. It is used together with a silanol condensation catalyst or a catalyst master batch described later.
- This silane MB is a mixture prepared by melt-mixing the above components in step (1).
- the silane masterbatch prepared in the step (1) contains a reaction mixture of an organic peroxide decomposition product, a polyolefin resin, an inorganic filler and a silane coupling agent, and can be molded by the step (b) described later.
- the silane coupling agent contains two types of silane crosslinkable resins (silane graft polymer) grafted onto the polyolefin resin.
- the step (1) when part of the polyolefin resin is melt-mixed in the step (1), the remaining part of the polyolefin resin and the silanol condensation catalyst are melt-mixed to prepare a catalyst master batch ( 2) is performed. Therefore, when all the polyolefin resin is melt-mixed in the step (1), the step (2) may not be performed, and other resins described later may be used.
- the mixing ratio of the polyolefin resin and the silanol condensation catalyst in the step (2) is set so as to satisfy the mixing ratio with the polyolefin resin of the silane master batch in the step (3) described later.
- the polyolefin resin is mixed with a silanol condensation catalyst as a carrier resin, and the remainder of the polyolefin resin mixed in the step (1) is used.
- Mixing of the polyolefin resin and the silanol condensation catalyst is appropriately determined according to the melting temperature of the polyolefin resin.
- the kneading temperature can be 80 to 250 ° C., more preferably 100 to 240 ° C. Kneading conditions such as kneading time can be set as appropriate.
- the kneading method can be performed by the same method as the above kneading method.
- the silanol condensation catalyst may be mixed with another carrier resin instead of or in addition to the remainder of the polyolefin resin. That is, in the step (2), the remainder of the polyolefin resin when a part of the polyolefin resin is melt-mixed in the step (1), or a resin other than the polyolefin resin used in the step (1), and the silanol condensation catalyst.
- a catalyst master batch may be prepared by melt mixing.
- Other carrier resins are not particularly limited, and various resins can be used.
- the carrier resin is another resin, the silane crosslinking can be accelerated quickly in the step (b), and the other resin is used with respect to 100 parts by mass of the polyolefin resin in terms of being less prone to formation of molding during molding.
- the blending amount is preferably 1 to 60 parts by mass, more preferably 2 to 50 parts by mass, and further preferably 2 to 40 parts by mass.
- a filler may or may not be added to this carrier resin.
- the amount of the filler at that time is not particularly limited, but is preferably 350 parts by mass or less with respect to 100 parts by mass of the carrier resin. This is because if the amount of filler is too large, the silanol condensation catalyst is difficult to disperse and crosslinking is difficult to proceed. On the other hand, if the carrier resin is too much, the degree of cross-linking of the molded article is lowered, and there is a possibility that proper heat resistance cannot be obtained.
- the catalyst masterbatch thus prepared is a mixture of a silanol condensation catalyst and a carrier resin, and optionally added filler.
- the prepared catalyst masterbatch (also referred to as catalyst MB) is used for the production of the heat-resistant silane crosslinkable resin composition prepared in step (a) together with silane MB.
- the silane master batch and the silanol condensation catalyst or the catalyst master batch prepared in step (2) are mixed to perform step (3) of obtaining a mixture.
- the mixing method may be any mixing method as long as a uniform mixture can be obtained as described above.
- pellets such as dry blends may be mixed and introduced into a molding machine at room temperature or high temperature, or may be mixed and melted and mixed, pelletized again, and then introduced into the molding machine.
- the silane master batch and the silanol condensation catalyst are not maintained at a high temperature for a long time in a mixed state.
- the obtained mixture it is set as the mixture with which the moldability in the shaping
- the compounding amount of the silanol condensation catalyst is preferably 0.0001 to 0.5 parts by mass, more preferably 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the polyolefin resin.
- the mixing amount of the silanol condensation catalyst is within the above range, the crosslinking reaction due to the condensation reaction of the silane coupling agent is likely to proceed almost uniformly, and the heat resistance, appearance and physical properties of the heat-resistant silane crosslinked resin molded article are excellent, and production Also improves.
- step (b) the mixing conditions of the silane masterbatch and the silanol condensation catalyst or catalyst masterbatch are appropriately selected. That is, when the silanol condensation catalyst is mixed alone with the silane master batch, the mixing condition is set to an appropriate melt mixing condition depending on the polyolefin resin.
- melt mixing is preferable in terms of dispersion of the silanol condensation catalyst, which is basically the same as the melt mixing in step (1).
- resin components such as elastomers whose melting points cannot be measured by DSC or the like, but they are kneaded at a temperature at which at least one of the resin components and the organic peroxide is melted.
- the melting temperature is appropriately selected according to the melting temperature of the carrier resin, and is preferably 80 to 250 ° C., more preferably 100 to 240 ° C., for example. Kneading conditions such as kneading time can be set as appropriate.
- This step (3) may be a step in which a silane master batch and a silanol condensation catalyst (C) are mixed to obtain a mixture, and a catalyst master batch and a silane master batch containing the silanol condensation catalyst (C) and a carrier resin. It is preferable that the step is a melt-mixing step.
- a silane crosslinkable resin composition is produced. Therefore, the heat-resistant silane crosslinkable resin composition of the present invention is a composition obtained by carrying out the step (a), and is considered to be a mixture of a silane masterbatch and a silanol condensation catalyst or a catalyst masterbatch.
- the components are basically the same as the silane masterbatch and silanol condensation catalyst or catalyst masterbatch.
- the silane MB and the silanol condensation catalyst or catalyst master batch are used as a batch set for producing a heat-resistant silane crosslinkable resin composition.
- the manufacturing method of the heat-resistant silane crosslinked resin molding of this invention performs a process (b) and a process (c). That is, in the method for producing a heat-resistant silane cross-linked resin molded product of the present invention, the step (b) of obtaining the molded product by molding the obtained mixture, that is, the heat-resistant silane cross-linkable resin composition of the present invention is performed.
- This process (b) should just be able to shape
- a process (b) can be implemented simultaneously or continuously with the process (3) of a process (a).
- a series of processes in which a silane masterbatch and a silanol condensation catalyst or a catalyst masterbatch are melt-kneaded in a coating apparatus and then coated on, for example, an extruded electric wire or fiber and formed into a desired shape can be employed.
- the heat-resistant silane crosslinkable resin composition of the present invention is molded, and the molded body of the heat-resistant silane crosslinkable resin composition obtained in the steps (a) and (b) is an uncrosslinked body. Therefore, the heat-resistant silane crosslinked resin molded product of the present invention is a molded product that is crosslinked or finally crosslinked by performing the following step (c) after the step (a) and the step (b).
- a step of bringing the molded product (uncrosslinked product) obtained in the step (b) into contact with water is performed.
- the hydrolyzable group of the silane coupling agent is hydrolyzed into silanol, and the silanol condensation catalyst present in the resin condenses the hydroxyl groups of the silanol to cause a crosslinking reaction, resulting in a heat-resistant molded article.
- the process itself of this process (c) can be performed by a normal method.
- Condensation between silane coupling agents proceeds just by storing at room temperature. Therefore, in the step (c), it is not necessary to positively contact the molded body (uncrosslinked body) with water. It can also be contacted with moisture to further accelerate the crosslinking.
- a method of positively contacting water such as immersion in warm water, charging into a wet heat tank, exposure to high-temperature steam, and the like. In this case, pressure may be applied to allow moisture to penetrate inside.
- the method for producing a heat-resistant silane crosslinked resin molded product of the present invention is carried out, and a heat-resistant silane crosslinked resin molded product is produced from the heat-resistant silane crosslinked resin composition of the present invention. Therefore, the heat-resistant silane cross-linked resin molded product of the present invention is a molded product obtained by carrying out the steps (a) to (c). And this molded object contains the resin component formed by bridge
- reaction mechanism in the production method of the present invention is not yet clear, but are considered as follows. That is, when a polyolefin resin is heated and kneaded at a temperature equal to or higher than the decomposition temperature of the organic peroxide together with an inorganic filler and a silane coupling agent in the presence of the organic peroxide component, the organic peroxide is decomposed to generate radicals. On the other hand, grafting occurs with a silane coupling agent. In addition, the heating at this time also causes a chemical bond formation reaction due to a covalent bond between a silane coupling agent and an inorganic filler, particularly a group such as a hydroxyl group on the surface of the metal hydrate.
- the final cross-linking reaction may be performed in step (c).
- a specific amount of the silane coupling agent is blended with the polyolefin resin as described above, the inorganic filler is not impaired without impairing the extrusion processability during molding. Can be blended in a large amount, and both heat resistance and mechanical properties can be obtained while ensuring excellent flame retardancy.
- the mechanism of action of the above process of the present invention is not yet clear, but is estimated as follows. That is, by using an inorganic filler and a silane coupling agent before and / or during kneading with a polyolefin resin, the silane coupling agent is bonded to the inorganic filler with an alkoxy group and is present at the other end. It binds to an uncrosslinked portion of the polyolefin resin with an ethylenically unsaturated group such as a group, or is physically and chemically adsorbed and held in the hole or surface of the inorganic filler without being bonded to the inorganic filler. When an organic peroxide is added and kneaded in this state, the silane coupling agent is hardly volatilized, and the reactive site of the silane coupling agent reacts with the polyolefin resin to cause a graft reaction.
- the interaction between the inorganic filler and the silane coupling agent is not clear, if the inorganic filler contains a metal hydrate and a metal carbonate, the silane coupling agent is a metal hydrate.
- the silane coupling agent is a metal hydrate.
- those that physically adsorb and those that adsorb relatively strongly due to the formation of chemical bonds such as hydrogen bonds other than physical adsorption are mixed.
- physical adsorption having a relatively weak adsorption force preferentially occurs rather than relatively strong chemical adsorption by formation of a chemical bond.
- silane coupling agent hydrolyzes in contact with a water
- the silane coupling agent that is physically adsorbed on the inorganic filler (whether the metal hydrate is a metal carbonate or not) is detached from the surface of the inorganic filler, and the silane coupling agent.
- the ethylenically unsaturated group or the like which is a crosslinking group, reacts with the resin radicals generated by the extraction of hydrogen radicals by radicals generated by the decomposition of the organic peroxide of the polyolefin resin, thereby causing a graft reaction. That is, a silane crosslinkable resin is formed by graft reaction of the silane coupling agent released from the inorganic filler onto the polyolefin resin.
- the silane coupling agent in the graft portion thus produced is then mixed with a silanol condensation catalyst and brought into contact with moisture to cause a crosslinking reaction by a condensation reaction.
- the heat resistance of the heat-resistant silane cross-linked resin molded product obtained by this cross-linking reaction becomes very high, and it becomes possible to obtain a heat-resistant silane cross-linked resin molded product that does not melt even at high temperatures.
- the silane coupling agent bonded to the inorganic filler with a weak bond contributes to an improvement in the degree of crosslinking, that is, an improvement in heat resistance.
- a silane coupling agent chemically adsorbed with an inorganic filler retains the bond with the inorganic filler and is crosslinked.
- the ethylenically unsaturated group which is a group, undergoes a graft reaction with the cross-linked site of the polyolefin resin.
- a plurality of silane coupling agents are bonded to the surface of one inorganic filler particle through a strong bond, a plurality of polyolefin resins are bonded through the inorganic filler particle. By these reactions or bonds, the crosslinked network via the inorganic filler is expanded.
- a silane crosslinkable resin formed by graft reaction of the silane coupling agent bonded to the inorganic filler onto the polyolefin resin is formed.
- the silane coupling agent chemically adsorbed with the inorganic filler is less likely to cause a condensation reaction in the presence of water by the silanol condensation catalyst, and the bond with the inorganic filler is maintained.
- a bond between the polyolefin resin and the inorganic filler occurs, and the polyolefin resin crosslinks via the inorganic filler.
- the adhesion between the polyolefin resin and the inorganic filler is strengthened, and a molded article having good mechanical strength and wear resistance and hardly scratching is obtained.
- the cross-linking reaction by condensation using a silanol condensation catalyst in the presence of water in the step (c) is performed after forming the formed body.
- the workability in the process up to the formation of the molded body is excellent, and higher heat resistance than before can be obtained.
- a plurality of silane coupling agents can be bonded to the surface of one inorganic filler particle, and high mechanical strength can be obtained.
- the silane coupling agent bonded with a strong bond to the inorganic filler contributes to high mechanical properties, and in some cases, wear resistance, scratch resistance, and the like. Moreover, it is thought that the silane coupling agent couple
- the silane coupling agent that is strongly bonded between the inorganic filler and the polyolefin resin is often changed to cross-linking between the polyolefin resins to deteriorate the heat resistance.
- This phenomenon is conspicuous in metal hydrates that easily form a covalent bond with a silane coupling agent, and it is considered that by adding a certain amount of metal carbonate, this phenomenon is alleviated and provides excellent heat resistance.
- process (a), especially process (1) when mixing 4.0 mass parts and 15.0 mass parts or less silane coupling agent with an inorganic filler, as above-mentioned, process (a), especially process (1). It is possible to effectively suppress the cross-linking reaction between polyolefin resins during melt kneading. Further, the silane coupling agent is bonded to the inorganic filler, and is not easily volatilized during melt kneading in the step (a), particularly the step (1), and the reaction between the free silane coupling agents is also effective. Can be suppressed.
- the manufacturing method of the present invention is used to manufacture components (including semi-finished products, parts, and members) that require heat resistance or flame retardancy, products that require strength, component parts of products such as rubber materials, or members thereof. Can be applied.
- heat-resistant products or flame-retardant products include electric wires such as heat-resistant flame-retardant insulated wires, heat-resistant and flame-retardant cable coating materials, rubber substitute wires and cable materials, other heat-resistant and flame-resistant electric wire components, and flame-resistant and heat-resistant sheets. And flame retardant heat resistant film.
- the manufacturing method of the present invention is particularly suitably applied to the manufacture of the insulators and sheaths of electric wires and optical cables among the components of the above-described products, and can be formed as a covering thereof. Insulators, sheaths, and the like can be formed by coating them in such a shape while melt-kneading them in an extrusion coating apparatus.
- a general-purpose extrusion coating apparatus is used without using a special machine such as an electron beam cross-linking machine, which is a high heat resistant high temperature non-melting cross-linked composition to which a large amount of inorganic filler is added.
- any conductor such as an annealed copper single wire or stranded wire can be used as the conductor.
- the conductor may be tin-plated or an enamel-covered insulating layer.
- the thickness of the insulating layer (the coating layer made of the heat resistant resin composition of the present invention) formed around the conductor is not particularly limited, but is usually about 0.15 to 5 mm.
- EPT3045 trade name, manufactured by Mitsui Chemicals, ethylene-propylene-diene rubber, diene content 4.7 mass%, ethylene content 56 mass%)
- Magnesium hydroxide 1 “Kisuma 5” (trade name, manufactured by Kyowa Chemical Co., Ltd., surface untreated magnesium hydroxide)
- Magnesium hydroxide 2 “Kisuma 5L” (trade name, manufactured by Kyowa Chemical Co., Ltd., silane coupling agent pretreated magnesium hydroxide, treatment amount 1 mass%)
- Magnesium hydroxide 3 “Kisuma 5A” (trade name, manufactured by Kyowa Chemical Co., Ltd., fatty acid pretreated magnesium hydroxide, treatment amount 3 mass%)
- Aluminum hydroxide “Hijilite 42M” (trade name, manufactured by Showa Denko KK, surface untreated aluminum hydroxide)
- Calcium carbonate 1 “Softon 1200” (trade name, manufactured by Shiraishi Calcium Co., Ltd., surface untreated calcium carbonate)
- Calcium carbonate 2 “Softon 2200” (trade name, manufactured by Shiraishi Calcium Co., Ltd., surface untreated calcium carbonate)
- Example 1 to 16 and Comparative Examples 1 to 5 In Examples 1 to 16 and Comparative Examples 1 to 4, some resin components constituting the polyolefin resin were used as the carrier resin for the catalyst masterbatch. Specifically, the polyolefin resin (R B) which is one of the resin component constituting the LLDPE (UE320) using the total amount (5 weight parts). First, an organic peroxide, an inorganic filler, a silane coupling agent, and an antioxidant are introduced into a 10 L Henschel mixer manufactured by Toyo Seiki at a mass ratio shown in Tables 1 and 2 at room temperature (25 ° C.) for 1 hour. Mixing gave a powder mixture.
- the obtained silane MB contains at least two silane crosslinkable resins obtained by graft reaction of a silane coupling agent to a polyolefin resin.
- the carrier resin “UE320” and the silanol condensation catalyst are separately melt-mixed by a Banbury mixer at a mass ratio shown in Tables 1 and 2 at 180 to 190 ° C., and discharged at a material discharge temperature of 180 to 190 ° C.
- a catalyst master batch was obtained (step (2)).
- This catalyst masterbatch is a mixture of a carrier resin and a silanol condensation catalyst.
- the silane MB and the catalyst MB are mixed at a mass ratio shown in Tables 1 and 2, that is, at a ratio of 95 parts by mass of the polyolefin resin of the silane MB and 5 parts by mass of the carrier resin of the catalyst MB. It melt-mixed at 0 degreeC (process (3)).
- This heat-resistant silane crosslinkable resin composition is a mixture of silane MB and catalyst MB, and contains at least two types of silane crosslinkable resins described above.
- the obtained electric wire was left in an atmosphere of 80 ° C. and 95% humidity for 24 hours to polycondensate silanol (step (c)).
- covered with the heat resistant silane crosslinked resin molding was manufactured.
- this heat-resistant silane cross-linked resin molded product is converted into the above-mentioned silane cross-linked resin in which the silane coupling agent of the silane cross-linkable resin is converted to silanol and the hydroxyl groups of silanol are cross-linked by a condensation reaction.
- the screw temperature was 190 ° C. and the head temperature was 200 ° C., and the outside of the 1 / 0.8 TA conductor was coated with a thickness of 1 mm to obtain an electric wire (uncrosslinked) having an outer diameter of 2.8 mm.
- This electric wire (uncrosslinked) was irradiated with an electron beam of 10 Mrad to produce an electric wire.
- Silane MB and catalyst MB were prepared in the same manner as in Example 2 above using the components shown in Table 3 in the mass ratio (parts by mass) shown in the same table (step (1) and step (2)). Subsequently, the obtained silane MB and catalyst MB were put into a closed ribbon blender, and dry blended at room temperature (25 ° C.) for 5 minutes to obtain a dry blend. At this time, the mixing ratio of the silane MB and the catalyst MB was set to a mass ratio (see Table 3) in which the polyolefin resin of the silane MB was 95 parts by mass and the carrier resin of the catalyst MB was 5 parts by mass.
- the outside of the conductor was coated with a thickness of 1 mm to obtain an electric wire (uncrosslinked) having an outer diameter of 2.8 mm (step (3) and step (b)).
- the obtained electric wire (uncrosslinked) was left in an atmosphere of a temperature of 80 ° C. and a humidity of 95% for 24 hours (step (c)).
- cover consisting of a heat resistant silane crosslinked resin molding was manufactured.
- Example 18 Each component shown in Table 3 was used at a mass ratio (parts by mass) shown in the same table, and in the same manner as in Example 2, the conductor was coated with the heat-resistant silane crosslinkable resin composition (outer diameter 2. 8 mm, uncrosslinked) was obtained (step (a) and step (b)). The obtained electric wire was left in an atmosphere at a temperature of 23 ° C. and a humidity of 50% for 72 hours (step (c)). Thus, the electric wire which has the coating
- Silane MB was prepared in the same manner as in Example 2 above using the components shown in Table 3 in the mass ratio (parts by mass) shown in the same table (step (1)).
- carrier resin “UE320” and a silanol condensation catalyst were melt-mixed with a twin screw extruder at a mass ratio shown in Table 3 to obtain catalyst MB (step (2)).
- the screw diameter of the twin screw extruder was set to 35 mm, and the cylinder temperature was set to 180 to 190 ° C.
- the obtained catalyst MB is a mixture of a carrier resin and a silanol condensation catalyst.
- the obtained silane MB and catalyst MB were melt-mixed at 180 ° C. by a Banbury mixer (step (3)).
- the mixing ratio of silane MB and catalyst MB was such that the polyolefin resin of silane MB was 95 parts by mass and the carrier resin of catalyst MB was 5 parts by mass (see Table 3).
- a heat-resistant silane crosslinkable resin composition was prepared.
- This heat-resistant silane crosslinkable resin composition is a mixture of silane MB and catalyst MB, and contains at least two types of silane crosslinkable resins described above.
- An electric wire (uncrosslinked) having an outer diameter of 2.8 mm was obtained by coating with 1 mm (step (b)).
- the obtained electric wire (uncrosslinked) was left in a state of being immersed in warm water at a temperature of 50 ° C. for 10 hours (step (c)).
- cover consisting of a heat resistant silane crosslinked resin molding was manufactured.
- the manufactured wires were evaluated as follows, and the results are shown in Tables 1 to 3.
- a tensile test was conducted as a mechanical property of the electric wire. This tensile test was performed according to JIS C 3005. Using the electric wire tubular piece from which the conductor was extracted from the electric wire, the tensile strength (MPa) and the tensile elongation (%) were measured at a gap of 25 mm and a tensile speed of 200 mm / min. The tensile strength is evaluated as “A” when the tensile strength is 10 MPa or more, “B” when it is 6.5 MPa or more and less than 10 MPa, “C” if it is less than 6.5 MPa, and “A” and “B”.
- the tensile elongation is evaluated as “A” when the tensile elongation is 200% or more, “B” when it is 125% or more and less than 200%, and “C” if it is less than 125%. "And” B "are acceptable levels
- Heat resistance test 1 The heat resistance test 1 was performed according to the “heat deformation test” defined in JIS C 3005. The load was 5N and the heating temperature was 160 ° C. In the evaluation, “A” (acceptable level) when the deformation rate was 40% or less, and “B” when the deformation rate was greater than 40%.
- the heat resistance test 2 was performed in accordance with the “heating test” defined in JIS C 3005.
- the heating temperature was 160 ° C. and the heating time was 96 hours.
- the evaluation is “A” when the residual rate of tensile strength and the residual rate of tensile elongation are both 90% or more, “B” when these residual rates are both less than 90% and 80% or more.
- the rate of less than 80% is “C”, and “A” and “B” are acceptable levels.
- the heat resistance test 3 was performed in accordance with the “heating test” defined in JIS C 3005.
- the heating temperature was 200 ° C. and the heating time was 2 hours.
- the evaluation is “A” when the residual rate of tensile strength and the residual rate of tensile elongation are both 80% or more, and “B” when those residual rates are both less than 80% and 60% or more.
- the rate of less than 60% is “C”, and “A” and “B” are acceptable levels.
- ⁇ Flame retardance test> The flame retardancy test was performed according to the “gradient flame retardancy test” defined in JIS C 3005. The inclination angle was 60 ° and the combustion time was 30 seconds. In the evaluation, “A” indicates that the flame self-extinguished within 60 seconds, “B” indicates that the flame self-extinguishes for 60 seconds or more, and “C” indicates that the flame does not self-extinguish. This test is shown for reference.
- Extrusion appearance characteristics of electric wire were evaluated by observing the extrusion appearance when manufacturing the electric wires. Specifically, when the screw diameter was extruded with an extruder of 25 mm at a wire speed of 10 m / min, “A” indicates that the appearance of the electric wire was good, “B” indicates that the appearance was slightly poor, and the appearance was remarkably The bad one is “C”, and “A” and “B” are acceptable levels as products.
- Examples 1 to 19 all passed the heat resistance tests 1 to 3, particularly the heat resistance test 3, and also passed the extrusion appearance characteristics.
- An electric wire having high heat resistance equivalent to or higher than that of an electric wire by electron beam cross-linking or chemical cross-linking method and an excellent appearance could be produced.
- Examples 1 to 19 all had excellent mechanical properties and flame retardancy.
- Comparative Examples 1 and 2 using only metal hydrate as the inorganic filler passed the heat resistance tests 1 and 2, but the more severe heat resistance test 3 failed.
- Comparative Example 3 where the amount of organic peroxide used was small and Comparative Example 5 where no silanol condensation catalyst was used all of the heat resistance tests 1 to 3 failed and the heat resistance was poor.
- the comparative example 4 with much usage-amount of an organic peroxide was inferior in the external appearance.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Insulated Conductors (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Inorganic Insulating Materials (AREA)
- Organic Insulating Materials (AREA)
- Processes Specially Adapted For Manufacturing Cables (AREA)
Abstract
Description
より詳細には、高い耐熱性及び優れた外観を有し、さらに好ましくは、優れた機械特性及び難燃性をも具備した耐熱性シラン架橋樹脂成形体及びその製造方法、この耐熱性シラン架橋樹脂成形体を形成可能な、シランマスターバッチ、耐熱性シラン架橋性樹脂組成物及びその製造方法、並びに、耐熱性シラン架橋樹脂成形体を電線の絶縁体やシース等として用いた耐熱性製品に関する。
これらの配線材に使用される材料としては、水酸化マグネシウム、水酸化アルミニウム等の金属水和物を多量に配合した樹脂組成物が用いられる。
これらの架橋法の中でも特にシラン架橋法は特殊な設備を要しないことが多いため、幅広い分野で使用することができる。
具体的には、ハロゲンフリーの耐熱性シラン架橋樹脂の製造方法は、例えば、ポリオレフィン樹脂に不飽和基を有する加水分解性シランカップリング剤をグラフトさせたシランマスターバッチと、ポリオレフィン樹脂及び無機フィラーを混練して得られる耐熱性マスターバッチと、シラノール縮合触媒を含有した触媒マスターバッチとを溶融混合させる方法がある。しかし、この方法では、ポリオレフィン樹脂100質量部に対して無機フィラーが100質量部を超える場合、シランマスターバッチと耐熱性マスターバッチとを乾式混合した後に単軸押出機や二軸押出機内にて均一に溶融混練することが困難になる。そのため、外観が悪くなり、物性が大幅に低下するという問題が生じる。また、押出負荷を高くできないという問題が生じる。
したがって、シランマスターバッチと耐熱性マスターバッチとを乾式混合した後に均一に溶融混練するには、上述のように無機フィラーの割合が制限されてしまう。そのため、高難燃化・高耐熱化することが困難であった。
一方、ニーダーやバンバリーミキサーでシラングラフトを行う場合には、不飽和基を有する加水分解性シランカップリング剤は一般に揮発性が高く、グラフト反応する前に揮発してしまうという問題がある。そのため所望のシラン架橋マスターバッチを調製することが非常に困難であった。
しかし、この方法では反応のばらつきによって得られる成形体に外観不良が生じることがある。また、マスターバッチの無機フィラーの配合量を非常に多くしなければならず押出負荷が著しく大きくなることがある。これらにより、成形体の製造が非常に難しくなる。その結果、所望の材料や成形体を得ることが困難であった。また、製造工程が2工程となり、製造コスト面でもこれが難点となっている。
また、特許文献2~4にはブロック共重合体等をベース樹脂とし、軟化剤として非芳香族系ゴム用軟化剤を加えたビニル芳香族系熱可塑性エラストマー組成物を、シラン表面処理された無機フィラーを介して有機過酸化物を用いて部分架橋する方法が提案されている。
さらに、特許文献5には、ベース材料に対し、有機過酸化物とシランカップリング剤と金属水和物とを一括溶融混練し、さらにシラノール縮合触媒と共に溶融成形し、その後水存在下で架橋することにより、簡易に耐熱性を有するケーブルを得る方法が提案されている。
また、特許文献2~4に記載された方法であっても、まだ、樹脂が十分な網状構造になっていないため、高温で樹脂と無機フィラーの結合が切れる。したがって、成形体が高温下では溶融し、例えば電線をハンダ加工中に絶縁材が熔けてしまうことがあった。また成形体を2次加工する際に変形したり、発泡を生じたりすることがあった。さらに、200℃程度に短時間加熱されると、外観が著しく劣化したり、変形したりすることがあった。
また、本発明は、この耐熱性シラン架橋樹脂成形体を形成可能な、シランマスターバッチ、耐熱性シラン架橋性樹脂組成物及びその製造方法を提供することを課題とする。
さらに、本発明は、耐熱性シラン架橋樹脂成形体の製造方法で得られた耐熱性シラン架橋樹脂成形体を用いた耐熱性製品を提供することを課題とする。
<1>ポリオレフィン樹脂100質量部に対し、有機過酸化物0.01~0.6質量部、無機フィラー10~400質量部、シランカップリング剤1~15.0質量部及びシラノール縮合触媒を溶融混合して混合物を得る工程(a)、前記混合物を成形して成形体を得る工程(b)、並びに、前記成形体を水と接触させて耐熱性シラン架橋樹脂成形体を得る工程(c)を有する耐熱性シラン架橋樹脂成形体の製造方法であって、
前記無機フィラーが、金属水和物及び金属炭酸塩を含有し、
前記工程(a)が、下記工程(1)及び工程(3)を有し、下記工程(1)でポリオレフィン樹脂の一部を溶融混合する場合には下記工程(1)、工程(2)及び工程(3)を有する、
工程(1):前記ポリオレフィン樹脂の全部又は一部、前記有機過酸化物、前記無機フィラー及び前記シランカップリング剤を前記有機過酸化物の分解温度以上の温度において溶融混合して、シランマスターバッチを調製する工程
工程(2):前記ポリオレフィン樹脂の残部及び前記シラノール縮合触媒を溶融混合して、触媒マスターバッチを調製する工程
工程(3):前記シランマスターバッチ及び前記シラノール縮合触媒又は前記触媒マスターバッチを混合する工程
ことを特徴とする耐熱性シラン架橋樹脂成形体の製造方法。
<2>前記無機フィラーが、前記金属炭酸塩を前記金属水和物100質量部に対して5~1000質量部の質量割合で含有している<1>に記載の耐熱性シラン架橋樹脂成形体の製造方法。
<3>前記無機フィラーが、前記金属水和物をポリオレフィン樹脂100質量部に対して40~150質量部の質量割合で含有し、かつ、前記金属炭酸塩を前記金属水和物100質量部に対して10~100質量部の質量割合で含有している<1>又は<2>に記載の耐熱性シラン架橋樹脂成形体の製造方法。
<4>前記金属水和物が、水酸化マグネシウム及び水酸化アルミニウムの少なくとも一種である<1>~<3>のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。
<5>前記金属炭酸塩が、炭酸カルシウムである<1>~<4>のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。
<6>前記シランカップリング剤の配合量が、前記ポリオレフィン樹脂100質量部に対し、4質量部を越え15.0質量部以下である<1>~<5>のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。
<7>前記工程(1)において、シラノール縮合触媒を実質的に混合しない<1>~<6>のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。
<8>ポリオレフィン樹脂100質量部に対し、有機過酸化物0.01~0.6質量部、無機フィラー10~400質量部、シランカップリング剤1~15.0質量部及びシラノール縮合触媒を溶融混合して混合物を得る工程(a)を有する耐熱性シラン架橋性樹脂組成物の製造方法であって、
前記無機フィラーが、金属水和物及び金属炭酸塩を含有し、
前記工程(a)が、下記工程(1)及び工程(3)を有し、下記工程(1)でポリオレフィン樹脂の一部を溶融混合する場合には下記工程(1)、工程(2)及び工程(3)を有する、
工程(1):前記ポリオレフィン樹脂の全部又は一部、前記有機過酸化物、前記無機フィラー及び前記シランカップリング剤を前記有機過酸化物の分解温度以上の温度において溶融混合して、シランマスターバッチを調製する工程
工程(2):前記ポリオレフィン樹脂の残部及び前記シラノール縮合触媒を溶融混合して、触媒マスターバッチを調製する工程
工程(3):前記シランマスターバッチ及び前記シラノール縮合触媒又は前記触媒マスターバッチを混合する工程
ことを特徴とする耐熱性シラン架橋性樹脂組成物の製造方法。
<10><1>~<7>のいずれか1項に記載の製造方法により製造されてなる耐熱性シラン架橋樹脂成形体。
<11><10>に記載の耐熱性シラン架橋樹脂成形体を含む耐熱性製品。
<12>前記耐熱性シラン架橋樹脂成形体が、電線又は光ファイバケーブルの被覆として設けられている<11>に記載の耐熱性製品。
<13>ポリオレフィン樹脂100質量部に対し、有機過酸化物0.01~0.6質量部、無機フィラー10~400質量部、シランカップリング剤1~15.0質量部及びシラノール縮合触媒を溶融混合してなる耐熱性シラン架橋性樹脂組成物の製造に用いられるシランマスターバッチであって、
前記ポリオレフィン樹脂の全部又は一部、前記有機過酸化物、前記無機フィラー及び前記シランカップリング剤を前記有機過酸化物の分解温度以上の温度において溶融混合してなるシランマスターバッチ。
本発明において、「ポリオレフィン樹脂の一部」とは、ポリオレフィン樹脂のうち工程(1)で使用する樹脂であって、ポリオレフィン樹脂そのものの一部(ポリオレフィン樹脂と同一組成を有する)、ポリオレフィン樹脂を構成する樹脂成分の一部、ポリオレフィン樹脂を構成する一部の樹脂成分(例えば、複数の樹脂成分のうちの特定の樹脂成分全量)をいう。
また、「ポリオレフィン樹脂の残部」とは、ポリオレフィン樹脂のうち工程(1)で使用する一部を除いた残りのポリオレフィン樹脂であって、具体的には、ポリオレフィン樹脂そのものの残部(ポリオレフィン樹脂と同一組成を有する)、ポリオレフィン樹脂を構成する樹脂成分の残部、ポリオレフィン樹脂を構成する残りの樹脂成分をいう。
本明細書において「~」を用いて表される数値範囲は、「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。
また、本発明によれば、ポリオレフィン樹脂との混練り前及び/又は混練り時に、無機フィラー及びシランカップリング剤を混合する。これにより、混練り時のシランカップリング剤の揮発を抑えることができ、耐熱性シラン架橋樹脂成形体を効率的に製造できる。
さらに、無機フィラーを大量に加えた高耐熱性のシラン架橋樹脂成形体を電子線架橋機等の特殊な機械を使用することなく製造することができる。
また、本発明により、耐熱性シラン架橋樹脂成形体を用いた耐熱性製品を提供できる。
したがって、本発明の「耐熱性シラン架橋樹脂成形体の製造方法」及び本発明の「耐熱性シラン架橋性樹脂組成物の製造方法」(両者の共通部分の説明においては、これらを併せて、本発明の製造方法ということがある。)を、併せて、以下に説明する。
工程(b):混合物を成形して成形体を得る工程
工程(c):成形体を水と接触させて耐熱性シラン架橋樹脂成形体を得る工程
工程(1):ポリオレフィン樹脂の全部又は一部、有機過酸化物、無機フィラー及びシランカップリング剤を有機過酸化物の分解温度以上の温度において溶融混合して、シランマスターバッチを調製する工程
工程(2):ポリオレフィン樹脂の残部及びシラノール縮合触媒を溶融混合して、触媒マスターバッチを調製する工程
工程(3):シランマスターバッチ及びシラノール縮合触媒又は触媒マスターバッチを混合する工程
ここで、混合するとは、均一な混合物を得ることをいう。
<ポリオレフィン樹脂>
ポリオレフィン樹脂は、エチレン性不飽和結合を有する化合物を重合又は共重合して得られる重合体からなる樹脂であれば、特に限定されるものではなく、従来、耐熱性樹脂組成物に使用されている公知のものを使用することができる。
例えば、ポリエチレン、ポリプロピレン、エチレン-α-オレフィン共重合体、ポリプロピレンとエチレン-α-オレフィン樹脂とのブロック共重合体、酸共重合成分又は酸エステル共重合成分を有するポリオレフィン共重合体等の重合体からなる樹脂、これら重合体のゴム又はエラストマー、例えば、スチレン系エラストマー、エチレンゴム等が挙げられる。
これらの中でも、金属水和物等をはじめとする各種無機フィラーに対する受容性が高く、無機フィラーを多量に配合しても機械的強度を維持できる点から、ポリエチレン、ポリプロピレン、エチレン-α-オレフィン共重合体、酸共重合成分又は酸エステル共重合成分を有するポリオレフィン共重合体等の各樹脂、スチレン系エラストマー、エチレンゴム等が好適である。
これらのポリオレフィン樹脂は、1種を単独で用いても2種以上を併用してもよい。ポリオレフィン樹脂を2種以上併用する場合には、どのような組み合わせでもよく、例えば、ポリエチレンの樹脂と、エチレンゴム及びスチレン系エラストマーのいずれか一方又は両方の樹脂との組み合わせが好適に挙げられる。
本発明において用い得るポリエチレンとしては、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、超高分子量ポリエチレン(UHMW-PE)、直鎖型低密度ポリエチレン(LLDPE)、超低密度ポリエチレン(VLDPE)が挙げられる。なかでも、直鎖型低密度ポリエチレン、低密度ポリエチレンが好ましい。ポリエチレンは1種単独で使用してもよく、また2種以上を併用してもよい。
ここで、「ランダムポリプロピレン」は、プロピレンとエチレンとの共重合体であって、エチレン成分含有量が1~5質量%のものをいう。また、「ブロックポリプロピレン」は、ホモポリプロピレンとエチレン-プロピレン共重合体とを含む組成物であって、エチレン成分含有量が5~15質量%程度で、エチレン成分とプロピレン成分が独立した成分として存在するものをいう。
ポリプロピレンは、1種を単独で用いても2種以上を併用してもよい。
エチレン-α-オレフィン共重合体におけるα-オレフィン構成成分の具体例としては、プロピレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン等の各構成成分が挙げられる。エチレン-α-オレフィン共重合体は、好ましくはエチレンと炭素数3~12のα-オレフィンとの共重合体(ポリエチレン及びポリプロピレンに含まれるものを除く。)である。具体的には、エチレン-プロピレン共重合体(ポリプロピレンに含まれるものを除く。)、エチレン-ブチレン共重合体、及びシングルサイト触媒存在下に合成されたエチレン-α-オレフィン共重合体等が挙げられる。エチレン-α-オレフィン共重合体は1種単独で使用してもよく、また2種以上を併用してもよい。
酸共重合成分又は酸エステル共重合成分を有するポリオレフィン共重合体は1種単独で使用され、又は2種以上が併用される。
このようなスチレン系エラストマーとしては、共役ジエン化合物と芳香族ビニル化合物とのブロック共重合体及びランダム共重合体、又は、それらの水素添加物等からなるものが挙げられる。重合体における芳香族ビニル化合物の構成成分としては、例えば、スチレン、p-(tert-ブチル)スチレン、α-メチルスチレン、p-メチルスチレン、ジビニルベンゼン、1,1-ジフェニルスチレン、N,N-ジエチル-p-アミノエチルスチレン、ビニルトルエン等の各構成成分が挙げられる。これらの中でも、スチレン構成成分が挙げられる。この芳香族ビニル化合物の構成成分は、1種単独で使用され、又は2種以上が併用される。共役ジエン化合物の構成成分としては、例えば、ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン等の各構成成分が挙げられる。これらの中でも、ブタジエン構成成分が好ましい。共役ジエン化合物の構成成分は、1種単独で使用され、又は2種以上が併用される。また、スチレン系エラストマーとして、同様な製法で、スチレン成分が含有されてなく、スチレン以外の芳香族ビニル化合物を含有するエラストマーを使用してもよい。
スチレン系エラストマーとしては、スチレン構成成分の含有率が10~40%であるSEPS、SEEPS、SEBSを単独で、あるいはこれらの2種以上を組み合わせて使用することが好ましい。
スチレン系エラストマーは、市販品を用いることができ、例えば、セプトン4077、セプトン4055、セプトン8105(いずれも商品名、クラレ社製)、ダイナロン1320P、ダイナロン4600P、6200P、8601P、9901P(いずれも商品名、JSR社製)等を用いることができる。
エチレンとα-オレフィンとの共重合体からなるゴムとしては、例えば、エチレン-プロピレンゴム、エチレン-ブテンゴム、エチレン-オクテンゴム等が挙げられる。エチレンとα-オレフィンとジエンとの三元共重合体からなるゴムとしては、エチレン-プロピレン-ジエンゴム、エチレン-ブテン-ジエンゴム等が挙げられる。
なかでも、エチレン-プロピレンゴム、エチレン-ブテンゴム、エチレン-プロピレン-ジエンゴム及びエチレン-ブテン-ジエンゴムが好ましく、エチレン-プロピレンゴム及びエチレン-プロピレン-ジエンゴムがより好ましい。
鉱物油軟化剤は、芳香族環を有する炭化水素からなるオイル、ナフテン環を有する炭化水素からなるオイル及びパラフィン鎖を有する炭化水素からなるオイルの三者を含む混合油である。芳香族環を有する炭化水素からなるオイルとは、芳香族環を構成する炭素原子数が、芳香族環、ナフテン環及びパラフィン鎖を構成する全炭素数に対して30%以上である芳香族有機油(アロマオイル)をいう。ナフテン環を有する炭化水素からなるオイル及びパラフィン鎖を有する炭化水素からなるオイル(非芳香族有機油ともいう)は、芳香族環を構成する炭素原子数が上記全炭素数に対して30%未満である、ナフテンオイル及びパラフィンオイルをいう。このナフテンオイルは、具体的には、ナフテン環を構成する炭素原子数が上記全炭素数に対して30~40%であり、パラフィン鎖を構成する炭素原子数が上記全炭素数に対して50%未満であるオイルをいい、パラフィンオイルは、パラフィン鎖を構成する炭素原子数が上記全炭素数に対して50%以上であるオイルをいう。
有機過酸化物は、少なくとも熱分解によりラジカルを発生して、触媒としてシランカップリング剤のポリオレフィン樹脂へのグラフト化反応を生起させる働きをする。特にシランカップリング剤がエチレン性不飽和基を含む場合、エチレン性不飽和基とポリオレフィン樹脂とのラジカル反応(ポリオレフィン樹脂からの水素ラジカルの引き抜き反応を含む)によるグラフト化反応を生起させる働きをする。
本発明に用いられる有機過酸化物は、ラジカルを発生させるものであれば、特に制限はない。例えば、一般式:R1-OO-R2、R1-OO-C(=O)R3、R4C(=O)-OO(C=O)R5で表される化合物が好ましく用いられる。ここで、R1、R2、R3、R4及びR5は各々独立にアルキル基、アリール基、アシル基を表す。このうち、本発明においては、R1、R2、R3、R4及びR5がいずれもアルキル基であるか、いずれかがアルキル基で残りがアシル基であるものが好ましい。
本発明において、有機過酸化物の分解温度とは、単一組成の有機過酸化物を加熱したとき、ある一定の温度又は温度域でそれ自身が2種類以上の化合物に分解反応を起こす温度を意味する。具体的には、DSC法等の熱分析により、窒素ガス雰囲気下で5℃/分の昇温速度で、室温から加熱したとき、吸熱又は発熱を開始する温度をいう。
本発明において、無機フィラーは、金属水和物及び金属炭酸塩を含む。
金属水和物は、その表面に、シランカップリング剤のシラノール基等の反応部位と水素結合等が形成できる部位もしくは共有結合による化学結合しうる部位を有するものであれば特に制限なく用いることができる。金属水和物における、シランカップリング剤の反応部位と化学結合しうる部位としては、OH基(水酸基、含水もしくは結晶水の水分子、カルボキシ基等のOH基)、アミノ基、SH基等が挙げられる。
このような金属水和物としては、例えば、水酸化アルミニウム、水酸化マグネシウム、水和ケイ酸アルミニウム、水和ケイ酸マグネシウム、塩基性炭酸マグネシウム、オルトケイ酸アルミニウム、ハイドロタルサイト等の水酸基あるいは結晶水を有する化合物が挙げられ、この中でも、OH基を有する金属水和物が好ましく、水酸化アルミニウム、水酸化マグネシウムがより好ましい。金属水和物は、1種類を単独で使用してもよいし、2種類以上を併用してもよい。
本発明に用いられるシランカップリング剤は、ラジカルの存在下でポリオレフィン樹脂にグラフト反応しうる基と、無機フィラーの金属水和物と化学結合しうる基とを有するものであればよく、末端に加水分解性基を含有する基を有する加水分解性シランカップリング剤が好ましい。シランカップリング剤は、末端に、アミノ基、グリシジル基又はエチレン性不飽和基を含有する基と加水分解性基を含有する基とを有しているものがより好ましく、さらに好ましくは末端にエチレン性不飽和基を含有する基と加水分解性基を含有する基とを有しているシランカップリング剤である。エチレン性不飽和基を含有する基としては、特に限定されないが、例えば、ビニル基、アリル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルオキシアルキレン基、p-スチリル基等が挙げられる。またこれらのシランカップリング剤とその他の末端基を有するシランカップリング剤を併用しても良い。
末端にグリシジル基を有するものは、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。
シラノール縮合触媒は、ポリオレフィン樹脂にグラフト化されたシランカップリング剤を水分の存在下で縮合反応させる働きがある。このシラノール縮合触媒の働きに基づき、シランカップリング剤を介して、ポリオレフィン樹脂同士が架橋される。その結果、耐熱性が優れた耐熱性シラン架橋樹脂成形体が得られる。
本発明に用いられるシラノール縮合触媒は、所望により樹脂に混合される。このような樹脂(キャリア樹脂ともいう)としては、特に限定されないが、ポリオレフィン樹脂の一部を用いることができる。ポリオレフィン樹脂の一部は、ポリオレフィン樹脂を構成する一部の樹脂成分でもよく、ポリオレフィン樹脂を構成する樹脂成分の一部でもよいが、ポリオレフィン樹脂を構成する一部の樹脂成分が好ましい。この場合の樹脂成分としては、シラノール縮合触媒と親和性がよく耐熱性にも優れる点で、エチレンを構成成分として含む樹脂がより好ましく、ポリエチレンが特に好ましい。
耐熱性シラン架橋樹脂成形体及び耐熱性シラン架橋性樹脂組成物には、電線、電気ケーブル、電気コード、シート、発泡体、チューブ、パイプにおいて、一般的に使用されている各種の添加剤が本発明の目的を損なわない範囲で適宜配合されていてもよい。このような添加剤として、例えば、架橋助剤、酸化防止剤、滑剤、金属不活性剤、充填剤、他の樹脂等が挙げられる。
これらの添加剤、特に酸化防止剤や金属不活性剤は、いずれの成分に混合されてもよいが、キャリア樹脂に加えた方がよい。架橋助剤は実質的に含有していないことが好ましい。特に架橋助剤はシランマスターバッチを調製する工程(a)において実質的に混合されないのが好ましい。架橋助剤が実質的に混合されないと、混練り中にポリオレフィン樹脂同士の架橋が生じにくく、耐熱性シラン架橋樹脂成形体の外観及び耐熱性が優れる。ここで、実質的に含有しない又は混合されないとは、架橋助剤を積極的に添加又は混合しないことを意味し、不可避的に含有又は混合されることを除外するものではない。
本発明の製造方法において、工程(a)は、ポリオレフィン樹脂100質量部に対し、有機過酸化物0.01~0.6質量部、無機フィラー10~400質量部、シランカップリング剤1~15.0質量部及びシラノール縮合触媒を溶融混合して、混合物を調製する。これにより、シランマスターバッチが調製される。
特に、金属水和物の混合量がポリオレフィン樹脂100質量部に対して40~150質量部であって、しかも、金属炭酸塩の混合量が金属水和物の混合量100質量部に対して10~100質量部であると、さらに高い耐熱性に加えて優れた難燃性も得られる。
シランカップリング剤の混合量が少なすぎると、架橋反応が十分に進行せず、優れた耐燃性を発揮しないことがある。一方、多すぎると、それ以上の無機フィラー表面にシランカップリング剤が吸着しきれず、シランカップリング剤が混練中に揮発してしまい、経済的でない。また、吸着しないシランカップリング剤が縮合してしまい、成形体にブツや焼けが生じ外観が悪化するおそれがある。
すなわち、工程(a)において、シランカップリング剤がポリオレフィン樹脂にシラングラフトする際の有機過酸化物分解による反応は、反応速度が速い、シランカップリング剤とポリオレフィン樹脂とのグラフト反応や、シランカップリング剤同士の縮合反応が支配的になる。したがって、外観荒れや外観ブツの原因となるポリオレフィン樹脂同士の架橋反応は非常に起こりにくくなる。このように、ポリオレフィン樹脂同士の架橋反応がシランカップリング剤の混合量に応じて効果的に抑えられる。これにより、成形時の外観は良好になる。また、ポリオレフィン樹脂同士の架橋反応による上記欠陥が少なくなるため、押出機を停止後再開しても外観不良が発生しにくくなる。このように、ポリオレフィン樹脂同士の架橋反応を抑えて、外観の良好なシラン架橋樹脂成形体を製造することができる。
このように、特定量のシランカップリング剤を用いることにより、ポリオレフィン樹脂同士の架橋反応、及び、シランカップリング剤同士の縮合反応のいずれをも抑えることができ、外観のきれいなシラン架橋樹脂成形体を製造することができると、考えられる。
ポリオレフィン樹脂の一部を工程(2)で配合する場合には、工程(a)におけるポリオレフィン樹脂の混合量100質量部は工程(1)及び工程(2)で混合されるポリオレフィン樹脂の合計量である。
ここで、工程(2)でポリオレフィン樹脂が配合される場合、ポリオレフィン樹脂は、工程(1)において好ましくは80~99質量部、より好ましくは94~98質量部が混合され、工程(2)において好ましくは1~20質量部、より好ましくは2~6質量部が混合される。
工程(1):ポリオレフィン樹脂の全部又は一部、有機過酸化物、無機フィラー及びシランカップリング剤を有機過酸化物の分解温度以上の温度において溶融混合して、シランマスターバッチを調製する工程
工程(2):ポリオレフィン樹脂の残部及びシラノール縮合触媒を溶融混合して、触媒マスターバッチを調製する工程
工程(3):シランマスターバッチ及びシラノール縮合触媒又は触媒マスターバッチを混合する工程
また、通常、このような無機フィラーがポリオレフィン樹脂100質量部に対して100質量部を超えて混合される場合、連続混練機、加圧式ニーダー、バンバリーミキサーで混練りするのがよい。
また、ポリオレフィン樹脂の混合方法も特に限定されない。例えば、予め混合調製されたポリオレフィン樹脂を用いてもよく、各成分、例えば樹脂成分及びオイル成分それぞれを別々に用いてもよい。
工程(1)において、例えば、ポリオレフィン樹脂、有機過酸化物、無機フィラー及びシランカップリング剤を一度に溶融混合することができる。
好ましくは、シランカップリング剤は、シランマスターバッチに単独で導入されず、無機フィラーと前混合等して導入される。これにより、シランカップリング剤が混練中に揮発しにくくなり、無機フィラーに吸着しないシランカップリング剤が縮合して溶融混練が困難になることも防止できる。また、押出成形の際に所望の形状を得ることもできる。
このような混合方法として、好ましくは、バンバリーミキサーやニーダー等のミキサー型混練機を用い、有機過酸化物の分解温度未満の温度で有機過酸化物と無機フィラーとシランカップリング剤を混合又は分散させた後に、この混合物とポリオレフィン樹脂とを溶融混合させる方法が挙げられる。このようにすると、ポリオレフィン樹脂同士の過剰な架橋反応を防止することができ、外観が優れる。
上述の湿式混合では、シランカップリング剤が無機フィラーと強く化学結合しやすくなるため、その後のシラノール縮合反応が進みにくくなることがある。一方、乾式混合は、無機フィラーとシランカップリング剤の結合が比較的弱いため、効率的にシラノール縮合反応が進みやすくなる。
本発明において、生産条件によっては、シランカップリング剤のみを無機フィラーに混合し、次いで有機過酸化物を加えてもよい。すなわち、工程(1)において、無機フィラーはシランカップリング剤と予め混合したものを用いることができる。有機過酸化物を加える方法としては、他の成分に分散させたものでもよいし、単体で加えてもよい。
工程(1)で調製されるシランマスターバッチ(シランMBともいう)は、後述するように、工程(a)で調製される混合物(耐熱性シラン架橋性樹脂組成物)の製造に、好ましくは、シラノール縮合触媒又は後述する触媒マスターバッチとともに、用いられる。このシランMBは、工程(1)により上記成分を溶融混合して調製される混合物である。
ポリオレフィン樹脂とシラノール縮合触媒との混合は、ポリオレフィン樹脂の溶融温度に応じて適宜に決定される。例えば、混練温度は、80~250℃、より好ましくは100~240℃で行うことができる。混練時間等の混練条件は適宜設定することができる。混練方法は上記混練方法と同様の方法で行うことができる。
キャリア樹脂が他の樹脂である場合は、工程(b)においてシラン架橋を早く促進させることができるうえ、成形中にブツが生じにくい点で、ポリオレフィン樹脂100質量部に対して、他の樹脂の配合量は、好ましくは1~60質量部、より好ましくは2~50質量部、さらに好ましくは2~40質量部である。
この調製される触媒マスターバッチ(触媒MBともいう)は、シランMBとともに、工程(a)で調製される耐熱性シラン架橋性樹脂組成物の製造に用いられる。
混合方法は、上述のように均一な混合物を得ることができれば、どのような混合方法でもよい。例えば、ドライブレンド等のペレット同士を常温又は高温で混ぜ合わせて成形機に導入してもよいし、混ぜ合わせた後に溶融混合し、再度ペレット化をして成形機に導入してもよい。
いずれの混合においても、シラノール縮合反応を避けるため、シランマスターバッチとシラノール縮合触媒が混合された状態で高温状態に長時間保持されないことが好ましい。得られる混合物について、少なくとも工程(b)での成形における成形性が保持された混合物とする。
上記のように、シランMBと、シラノール縮合触媒又は触媒マスターバッチとは、耐熱性シラン架橋性樹脂組成物の製造用バッチセットとして、用いられる。
工程(b)は、シランカップリング剤の混合量が4質量部を超えている場合には、成形体の優れた外観を低下させることなく、押出機の掃除、段替え、偏心調整及び製造中段等の事由によって一旦停止させた後に再開することもできる。
また、工程(b)は、工程(a)の工程(3)と同時に又は連続して実施することができる。例えば、シランマスターバッチとシラノール縮合触媒又は触媒マスターバッチとを被覆装置内で溶融混練し、次いで例えば押出し電線やファイバに被覆して所望の形状に成形する一連の工程を採用できる。
このようにして、本発明の耐熱性シラン架橋性樹脂組成物が成形され、工程(a)及び工程(b)で得られる耐熱性シラン架橋性樹脂組成物の成形体は未架橋体である。したがって、この発明の耐熱性シラン架橋樹脂成形体は、工程(a)及び工程(b)の後に、下記工程(c)を実施することによって架橋もしくは最終架橋された成形体とするものである。
本発明では、工程(c)で、最終的な架橋反応を行うこともあり、ポリオレフィン樹脂にシランカップリング剤を上述のように特定量配合すると、成形時の押し出し加工性を損なうことなく無機フィラーを多量に配合することが可能になり、優れた難燃性を確保しながらも耐熱性及び機械特性等を併せ持つことができる。
無機フィラーと化学的吸着しているシランカップリング剤は、このシラノール縮合触媒による水存在下での縮合反応が生じ生じにくく、無機フィラーとの結合が保持される。このように、ポリオレフィン樹脂と無機フィラーの結合が生じ、無機フィラーを介したポリオレフィン樹脂の架橋が生じる。これによりポリオレフィン樹脂等と無機フィラーの密着性が強固になり、機械強度及び耐摩耗性が良好で、傷つきにくい成形体が得られる。
ここで、一旦停止後、再開するとは、ポリオレフィン樹脂の組成、加工条件等に左右され一義的に述べることはできないが、例えば間隔で5分間まで、好ましくは10分間まで、さらに好ましくは15分間まで停止できることをいう。このときの温度は、樹脂成分が軟化又は溶融する温度であれば特に限定されず、例えば200℃である。
絶縁体、シース等は、それらの形状に、押出し被覆装置内で溶融混練しながら被覆する等により成形することができる。このような絶縁体、シース等の成形品は、無機フィラーを大量に加えた高耐熱性の高温溶融しない架橋組成物を電子線架橋機等の特殊な機械を使用することなく汎用の押出被覆装置を用いて、導体の周囲に、又は抗張力繊維を縦添えもしくは撚り合わせた導体の周囲に押出被覆することにより、成形することができる。例えば、導体としては軟銅の単線又は撚線等の任意のものを用いることができる。また、導体としては裸線の他に、錫メッキしたものやエナメル被覆絶縁層を有するものを用いてもよい。導体の周りに形成される絶縁層(本発明の耐熱性樹脂組成物からなる被覆層)の肉厚は特に限定しないが通常0.15~5mm程度である。
<ポリオレフィン樹脂>
樹脂A:「UE320」(日本ポリエチレン社製、ノバテックPE(商品名)、直鎖低密度ポリエチレン(LLDPE)、密度0.92g/cm3)
樹脂B:「エボリューSP0540」(商品名、プライムポリマー社製、直鎖状メタロセンポリエチレン(LLDPE)、密度0.90g/cm3)
樹脂C:「エンゲージ7256」(商品名、ダウ・ケミカル社製、直鎖状低密度ポリエチレン(LLDPE)、密度0.885g/cm3)
樹脂D:「EV170」(商品名、三井・デュポンケミカル社製、エチレン・酢酸ビニル共重合樹脂(EVA)、VA含有量33質量%、密度0.96g/cm3)
樹脂E:「NUC6510」(商品名、日本ユニカー社製、エチレンエチルアクリレート樹脂、EA含有量23質量%、密度0.93g/cm3)
「セプトン4077」(商品名、クラレ社製、SEPS、スチレン含有量30質量%)
<エチレンゴム>
エチレンゴムA:「EPT3045」(商品名、三井化学社製、エチレン-プロピレン-ジエンゴム、ジエン含有量4.7質量%、エチレン含有量56質量%)
<非芳香族有機油>
「コスモニュートラル500」(商品名、コスモ石油ルブリカンツ社製、パラフィンオイル)
水酸化マグネシウム1:「キスマ5」(商品名、協和化学社製、表面未処理水酸化マグネシウム)
水酸化マグネシウム2:「キスマ5L」(商品名、協和化学社製、シランカップリング剤前処理水酸化マグネシウム、処理量1質量%)
水酸化マグネシウム3:「キスマ5A」(商品名、協和化学社製、脂肪酸前処理水酸化マグネシウム、処理量3質量%)
水酸化アルミニウム:「ハイジライト42M」(商品名、昭和電工社製、表面未処理水酸化アルミニウム)
炭酸カルシウム1:「ソフトン1200」(商品名、白石カルシウム社製、表面未処理炭酸カルシウム)
炭酸カルシウム2:「ソフトン2200」(商品名、白石カルシウム社製、表面未処理炭酸カルシウム)
「Perkadox BC-FF」(商品名、化薬アクゾ社のジクミルパーオキサイド(DCP)、分解温度149℃)
<シランカップリング剤>
「KBM-1003」(商品名、信越化学工業社製、ビニルトリメトキシシラン)
<シラノール縮合触媒>
「アデカスタブOT-1」(商品名、ADEKA社製、ジオクチルスズジラウリレート)
<酸化防止剤>
「イルガノックス1010」(商品名、BASF社製、ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート])
<キャリア樹脂>
上述の「UE320」(商品名)
<電子線架橋助剤>
「オグモントT-200」(商品名、新中村化学社製、トリメチロールプロパントリメタクリレート)
実施例1~16及び比較例1~4においては、ポリオレフィン樹脂を構成する一部の樹脂成分を触媒マスターバッチのキャリア樹脂として用いた。具体的には、ポリオレフィン樹脂(RB)を構成する樹脂成分の1つであるLLDPE(UE320)全量(5質量部)を用いた。
まず、有機過酸化物、無機フィラー、シランカップリング剤及び酸化防止剤を、表1及び表2に示す質量比で、東洋精機製10Lヘンシェルミキサーに投入して、室温(25℃)で1時間混合して、粉体混合物を得た。
次に、このようにして得られた粉体混合物と、表1及び表2に示すポリオレフィン樹脂等とを、表1及び表2に示す質量比で、日本ロール製2Lバンバリーミキサー内に投入し、有機過酸化物の分解温度以上の温度、具体的には180℃~190℃において回転数35rpmで10分混練り後、材料排出温度180℃~190℃で排出し、シランマスターバッチを得た(工程(1))。得られたシランMBは、ポリオレフィン樹脂にシランカップリング剤がグラフト反応した少なくとも2種のシラン架橋性樹脂を含有している。
次いで、シランMBと触媒MBを、表1及び表2に示す質量比、すなわち、シランMBのポリオレフィン樹脂が95質量部で、触媒MBのキャリア樹脂が5質量部となる割合で、バンバリーミキサーによって180℃で溶融混合した(工程(3))。
このようにして工程(a)を行い、耐熱性シラン架橋性樹脂組成物を調製した。この耐熱性シラン架橋性樹脂組成物は、シランMBと触媒MBとの混合物であって、上述の少なくとも2種のシラン架橋性樹脂を含有している。
このようにして、耐熱性シラン架橋樹脂成形体で被覆した電線を製造した。
この耐熱性シラン架橋樹脂成形体は、上述のように、シラン架橋性樹脂のシランカップリング剤がシラノール化し、シラノールの水酸基同士が縮合反応によって架橋した上述のシラン架橋樹脂に変換されている。
参考例1は、表1に示す質量比で、各成分をバンバリーミキサーにて180~190℃で溶融混合して樹脂組成物を調製し、次いで、L/D=24の40mm押出機(圧縮部スクリュー温度190℃、ヘッド温度200℃)に導入し、1/0.8TA導体の外側に肉厚1mmで被覆して、外径2.8mmの電線(未架橋)を得た。この電線(未架橋)に10Mradの電子線を照射して電子線照射を行い、電線を製造した。
表3に示す各成分を同表に示す質量比(質量部)で用い、上記実施例2と同様にして、シランMB及び触媒MBをそれぞれ調製した(工程(1)及び工程(2))。
次いで、得られたシランMB及び触媒MBを密閉型のリボンブレンダーに投入して、室温(25℃)で5分ドライドブレンドしてドライドブレンド物を得た。このとき、シランMBと触媒MBとの混合比は、シランMBのポリオレフィン樹脂が95質量部で、触媒MBのキャリア樹脂が5質量部となる質量比(表3参照)とした。次いで、このドライドブレンド物を、L/D=24の40mm押出機(圧縮部スクリュー温度190℃、ヘッド温度200℃)に投入し、押出機スクリュー内にて溶融混合を行いながら1/0.8TA導体の外側に肉厚1mmで被覆し、外径2.8mmの電線(未架橋)を得た(工程(3)及び工程(b))。
得られた電線(未架橋)を温度80℃、湿度95%の雰囲気に24時間放置した(工程(c))。
このようにして、耐熱性シラン架橋樹脂成形体からなる被覆を有する電線を製造した。
表3に示す各成分を同表に示す質量比(質量部)で用い、上記実施例2と同様にして、導体の外周を耐熱性シラン架橋性樹脂組成物で被覆した電線(外径2.8mm、未架橋)を得た(工程(a)及び工程(b))。
得られた電線を温度23℃、湿度50%の雰囲気に72時間放置した(工程(c))。
このようにして、耐熱性シラン架橋樹脂成形体からなる被覆を有する電線を製造した。
表3に記載に示す各成分を同表に示す質量比(質量部)で用い、上記実施例2と同様にして、シランMBを調製した(工程(1))。
一方、キャリア樹脂「UE320」とシラノール縮合触媒を、表3に示す質量比で、2軸押出機にて溶融混合し、触媒MBを得た(工程(2))。2軸押出機のスクリュー径は35mm、シリンダー温度を180~190℃に設定した。得られた触媒MBは、キャリア樹脂及びシラノール縮合触媒の混合物である。
次いで、得られたシランMB及び触媒MBをバンバリーミキサーによって180℃で溶融混合した(工程(3))。シランMBと触媒MBとの混合比は、シランMBのポリオレフィン樹脂が95質量部で、触媒MBのキャリア樹脂が5質量部となる質量比(表3参照)とした。このようにして、耐熱性シラン架橋性樹脂組成物を調製した。この耐熱性シラン架橋性樹脂組成物は、シランMBと触媒MBとの混合物であって、上述の少なくとも2種のシラン架橋性樹脂を含有している。
次いで、この耐熱性シラン架橋性樹脂組成物を、L/D=24の40mm押出機(圧縮部スクリュー温度190℃、ヘッド温度200℃)に導入し、1/0.8TA導体の外側に肉厚1mmで被覆し、外径2.8mmの電線(未架橋)を得た(工程(b))。
得られた電線(未架橋)を温度50℃の温水に10時間浸漬した状態に放置した(工程(c))。
このようにして、耐熱性シラン架橋樹脂成形体からなる被覆を有する電線を製造した。
電線の機械特性として引張試験を行った。
この引張試験は、JIS C 3005に準じて行った。電線から導体を抜き取った電線管状片を用いて、標線間25mm、引張速度200mm/分で行い、引張強度(MPa)及び引張伸び(%)を測定した。
引張強度の評価は、引張強度が10MPa以上のものを「A」、6.5MPa以上10MPa未満のものを「B」、6.5MPa未満のものを「C」とし、「A」及び「B」が合格レベルである
引張伸びの評価は、引張伸びが200%以上のものを「A」、125%以上200%未満のものを「B」、125%未満のものを「C」とし、「A」及び「B」が合格レベルである
耐熱性試験1としてJIS C 3005に規定の「加熱変形試験」に準じて行った。
荷重は5N、加熱温度は160℃とした。
評価は、変形率が40%以下のものを「A」(合格レベル)、40%より大きいものを「B」とした。
耐熱性試験2としてJIS C 3005に規定の「加熱試験」に準じて行った。
加熱温度は160℃、加熱時間は96時間とした。
評価は、引張強度の残率及び引張伸びの残率がいずれも90%以上のものを「A」、これらの残率がいずれも90%未満80%以上のものを「B」、一方の残率が80%未満のものを「C」とし、「A」及び「B」が合格レベルである。
耐熱性試験3としてJIS C 3005に規定の「加熱試験」に準じて行った。
加熱温度は200℃、加熱時間は2時間とした。
評価は、引張強度の残率及び引張伸びの残率がいずれも80%以上のものを「A」、これらの残率がいずれも80%未満60%以上のものを「B」、一方の残率が60%未満のものを「C」とし、「A」及び「B」が合格レベルである。
難燃性試験としてJIS C 3005に規定の「傾斜難燃試験」に準じて行った。
傾斜角は60°、燃焼時間は30秒とした。
評価は、60秒以内に炎が自消したものを「A」、60秒以上燃焼したが、炎が自消したものを「B」、炎が自消しなかったものを「C」とした。本試験は参考までに示した。
電線の押出外観特性は、電線を製造する際に押出外観を観察することで評価した。具体的には、スクリュー径25mmの押出機にて線速10m/分で押し出した際に電線の外観が良好だったものを「A」、外観がやや悪かったものを「B」、外観が著しく悪かったものを「C」とし、「A」及び「B」が製品として合格レベルである。
また、有機過酸化物の使用量が少ない比較例3及びシラノール縮合触媒を使用していない比較例5はいずれも耐熱性試験1~3のすべてが不合格で耐熱性に劣った。また有機過酸化物の使用量が多い比較例4は外観に劣った。
Claims (13)
- ポリオレフィン樹脂100質量部に対し、有機過酸化物0.01~0.6質量部、無機フィラー10~400質量部、シランカップリング剤1~15.0質量部及びシラノール縮合触媒を溶融混合して混合物を得る工程(a)、前記混合物を成形して成形体を得る工程(b)、並びに、前記成形体を水と接触させて耐熱性シラン架橋樹脂成形体を得る工程(c)を有する耐熱性シラン架橋樹脂成形体の製造方法であって、
前記無機フィラーが、金属水和物及び金属炭酸塩を含有し、
前記工程(a)が、下記工程(1)及び工程(3)を有し、下記工程(1)でポリオレフィン樹脂の一部を溶融混合する場合には下記工程(1)、工程(2)及び工程(3)を有する、
工程(1):前記ポリオレフィン樹脂の全部又は一部、前記有機過酸化物、前記無機フィラー及び前記シランカップリング剤を前記有機過酸化物の分解温度以上の温度において溶融混合して、シランマスターバッチを調製する工程
工程(2):前記ポリオレフィン樹脂の残部及び前記シラノール縮合触媒を溶融混合して、触媒マスターバッチを調製する工程
工程(3):前記シランマスターバッチ及び前記シラノール縮合触媒又は前記触媒マスターバッチを混合する工程
ことを特徴とする耐熱性シラン架橋樹脂成形体の製造方法。 - 前記無機フィラーが、前記金属炭酸塩を前記金属水和物100質量部に対して5~1000質量部の質量割合で含有している請求項1に記載の耐熱性シラン架橋樹脂成形体の製造方法。
- 前記無機フィラーが、前記金属水和物をポリオレフィン樹脂100質量部に対して40~150質量部の質量割合で含有し、かつ、前記金属炭酸塩を前記金属水和物100質量部に対して10~100質量部の質量割合で含有している請求項1又は2に記載の耐熱性シラン架橋樹脂成形体の製造方法。
- 前記金属水和物が、水酸化マグネシウム及び水酸化アルミニウムの少なくとも一種である請求項1~3のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。
- 前記金属炭酸塩が、炭酸カルシウムである請求項1~4のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。
- 前記シランカップリング剤の配合量が、前記ポリオレフィン樹脂100質量部に対し、4質量部を越え15.0質量部以下である請求項1~5のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。
- 前記工程(1)において、シラノール縮合触媒を実質的に混合しない請求項1~6のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。
- ポリオレフィン樹脂100質量部に対し、有機過酸化物0.01~0.6質量部、無機フィラー10~400質量部、シランカップリング剤1~15.0質量部及びシラノール縮合触媒を溶融混合して混合物を得る工程(a)を有する耐熱性シラン架橋性樹脂組成物の製造方法であって、
前記無機フィラーが、金属水和物及び金属炭酸塩を含有し、
前記工程(a)が、下記工程(1)及び工程(3)を有し、下記工程(1)でポリオレフィン樹脂の一部を溶融混合する場合には下記工程(1)、工程(2)及び工程(3)を有する、
工程(1):前記ポリオレフィン樹脂の全部又は一部、前記有機過酸化物、前記無機フィラー及び前記シランカップリング剤を前記有機過酸化物の分解温度以上の温度において溶融混合して、シランマスターバッチを調製する工程
工程(2):前記ポリオレフィン樹脂の残部及び前記シラノール縮合触媒を溶融混合して、触媒マスターバッチを調製する工程
工程(3):前記シランマスターバッチ及び前記シラノール縮合触媒又は前記触媒マスターバッチを混合する工程
ことを特徴とする耐熱性シラン架橋性樹脂組成物の製造方法。 - 請求項8に記載の製造方法により製造されてなる耐熱性シラン架橋性樹脂組成物。
- 請求項1~7のいずれか1項に記載の製造方法により製造されてなる耐熱性シラン架橋樹脂成形体。
- 請求項10に記載の耐熱性シラン架橋樹脂成形体を含む耐熱性製品。
- 前記耐熱性シラン架橋樹脂成形体が、電線又は光ファイバケーブルの被覆として設けられている請求項11に記載の耐熱性製品。
- ポリオレフィン樹脂100質量部に対し、有機過酸化物0.01~0.6質量部、無機フィラー10~400質量部、シランカップリング剤1~15.0質量部及びシラノール縮合触媒を溶融混合してなる耐熱性シラン架橋性樹脂組成物の製造に用いられるシランマスターバッチであって、
前記ポリオレフィン樹脂の全部又は一部、前記有機過酸化物、前記無機フィラー及び前記シランカップリング剤を前記有機過酸化物の分解温度以上の温度において溶融混合してなるシランマスターバッチ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015539405A JP6452611B2 (ja) | 2013-09-27 | 2014-09-26 | 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品 |
EP14847485.1A EP3050921B1 (en) | 2013-09-27 | 2014-09-26 | Heat-resistant silane cross-linked resin molded body and production method for same, heat-resistant silane cross-linking resin composition and production method for same, silane masterbatch, and heat-resistant product employing heat-resistant silane cross-linked resin molded body |
CN201480053193.5A CN105579519B (zh) | 2013-09-27 | 2014-09-26 | 耐热性硅烷交联树脂成型体及其制造方法、耐热性硅烷交联性树脂组合物及其制造方法、硅烷母料、以及使用了耐热性硅烷交联树脂成型体的耐热性制品 |
US15/080,864 US10083776B2 (en) | 2013-09-27 | 2016-03-25 | Heat-resistant silane crosslinked resin molded body and method of producing the same, heat-resistant silane crosslinkable resin composition and method of producing the same, silane master batch, and heat-resistant product using heat-resistant silane crosslinked resin molded body |
US16/104,665 US10304584B2 (en) | 2013-09-27 | 2018-08-17 | Heat-resistant silane crosslinked resin molded body and method of producing the same, heat-resistant silane crosslinkable resin composition and method of producing the same, silane master batch, and heat-resistant product using heat-resistant silane crosslinked resin molded body |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-202666 | 2013-09-27 | ||
JP2013202666 | 2013-09-27 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/080,864 Continuation US10083776B2 (en) | 2013-09-27 | 2016-03-25 | Heat-resistant silane crosslinked resin molded body and method of producing the same, heat-resistant silane crosslinkable resin composition and method of producing the same, silane master batch, and heat-resistant product using heat-resistant silane crosslinked resin molded body |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015046478A1 true WO2015046478A1 (ja) | 2015-04-02 |
Family
ID=52743603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/075753 WO2015046478A1 (ja) | 2013-09-27 | 2014-09-26 | 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品 |
Country Status (5)
Country | Link |
---|---|
US (2) | US10083776B2 (ja) |
EP (1) | EP3050921B1 (ja) |
JP (1) | JP6452611B2 (ja) |
CN (1) | CN105579519B (ja) |
WO (1) | WO2015046478A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016140253A1 (ja) * | 2015-03-03 | 2016-09-09 | 古河電気工業株式会社 | シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品 |
WO2016140251A1 (ja) * | 2015-03-03 | 2016-09-09 | 古河電気工業株式会社 | シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品 |
WO2016140252A1 (ja) * | 2015-03-03 | 2016-09-09 | 古河電気工業株式会社 | シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PT109905A (pt) * | 2017-02-09 | 2018-08-09 | Cabopol Polymer Compounds S A | ¿formulação de material de isolamento de fio e produto dela obtido¿ |
EP3409711A1 (en) | 2017-06-01 | 2018-12-05 | SABIC Global Technologies B.V. | Process for the production of an ethylene-propylene-diene terpolymer (epdm) composition |
JP7083723B2 (ja) * | 2018-08-07 | 2022-06-13 | リケンテクノス株式会社 | 摺動材料組成物、摺動性成形物、および摺動性部材 |
WO2020075865A1 (ja) * | 2018-10-11 | 2020-04-16 | 旭化成株式会社 | リチウムイオン電池用セパレータ |
CA3232205A1 (en) * | 2021-09-21 | 2023-03-30 | Paul J. Caronia | Halogen free flame retardant polymeric compositions |
CN115819882B (zh) * | 2022-12-02 | 2023-07-07 | 哈尔滨理工大学 | 一种界面结构调控导热绝缘聚烯烃复合材料及其制备方法 |
CN116462925A (zh) * | 2023-06-02 | 2023-07-21 | 青岛睿智森油封有限公司 | 一种耐磨耐高温氟橡胶材料及其制备方法 |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5146341A (ja) * | 1974-10-18 | 1976-04-20 | Mitsubishi Petrochemical Co | Jishoseijushisoseibutsu |
JPS52108462A (en) * | 1976-03-09 | 1977-09-10 | Showa Electric Wire & Cable Co | Method of producing bridged polyolefin formed article |
JPS55129441A (en) * | 1979-03-28 | 1980-10-07 | Furukawa Electric Co Ltd:The | Method of crosslinking poly-alpha-olefin resin |
JPS57172925A (en) * | 1981-04-16 | 1982-10-25 | Shin Etsu Chem Co Ltd | High-filling of organic polymer with inorganic filler |
JPS633931A (ja) * | 1986-06-24 | 1988-01-08 | Furukawa Electric Co Ltd:The | 架橋ポリオレフィン組成物押出成形品の製造方法 |
JPS63221026A (ja) * | 1987-03-10 | 1988-09-14 | Furukawa Electric Co Ltd:The | シラン架橋ポリオレフイン押出成形品の製造方法 |
JPH07103273B2 (ja) * | 1987-02-02 | 1995-11-08 | 三菱化学株式会社 | 自消性重合体組成物 |
JP2000133048A (ja) * | 1998-10-30 | 2000-05-12 | Yazaki Corp | 耐トラッキング性絶縁電線、及び耐トラッキング性絶縁ケーブル |
JP2000143935A (ja) | 1998-08-31 | 2000-05-26 | Riken Vinyl Industry Co Ltd | 難燃性樹脂組成物とそれを用いた成形部品 |
JP2000315424A (ja) | 1998-04-27 | 2000-11-14 | Riken Vinyl Industry Co Ltd | 絶縁樹脂組成物およびそれを用いた絶縁電線と絶縁部材 |
JP2001101928A (ja) | 1999-09-29 | 2001-04-13 | Yazaki Corp | 難燃性樹脂組成物 |
JP2001240719A (ja) | 2000-02-29 | 2001-09-04 | Riken Vinyl Industry Co Ltd | 難燃性樹脂組成物とそれを用いた成形部品 |
JP2007508432A (ja) * | 2003-10-14 | 2007-04-05 | テサ・アクチエンゲゼルシヤフト | 高度に充填されたハロゲンを含まない難燃性のラッピングホイル |
JP2012149162A (ja) * | 2011-01-19 | 2012-08-09 | Furukawa Electric Co Ltd:The | シラン架橋樹脂成形体の製造方法及びそれを用いた成形体 |
JP2012255077A (ja) | 2011-06-08 | 2012-12-27 | Riken Technos Corp | シラン架橋性難燃ポリオレフィンとシラノール触媒樹脂組成物からなる電線成形体の製造方法 |
JP2013006993A (ja) * | 2011-06-27 | 2013-01-10 | Furukawa Electric Co Ltd:The | シラン架橋樹脂成形体の製造方法及びそれを用いた成形体 |
WO2013147148A1 (ja) * | 2012-03-30 | 2013-10-03 | 古河電気工業株式会社 | 耐熱性樹脂組成物の製造方法、並びに、その製造方法で製造された耐熱性樹脂組成物及び該耐熱性樹脂組成物を用いた成形品 |
JP2013227559A (ja) * | 2012-03-30 | 2013-11-07 | Furukawa Electric Co Ltd:The | 難燃性樹脂組成物の製造方法、並びに、その製造方法で製造された耐熱性樹脂組成物及び該耐熱性樹脂組成物を用いた成形品 |
WO2014084048A1 (ja) * | 2012-11-30 | 2014-06-05 | 古河電気工業株式会社 | 耐熱性シラン架橋性樹脂組成物を用いた成形体の製造方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL7512126A (nl) | 1974-10-18 | 1976-04-21 | Mitsubishi Petrochemical Co | Werkwijze voor het bereiden van een zelfdovende harssamenstelling en daaruit vervaardigde pro- dukten. |
US5482990A (en) * | 1995-01-17 | 1996-01-09 | Union Carbide Chemicals & Plastics Technology Corporation | Flame retardant compositions |
US6262161B1 (en) * | 1997-06-26 | 2001-07-17 | The Dow Chemical Company | Compositions having improved ignition resistance |
JP2001031831A (ja) * | 1999-07-19 | 2001-02-06 | Fujikura Ltd | 架橋性難燃樹脂組成物 |
CN1345893A (zh) * | 2000-09-30 | 2002-04-24 | 中国科学技术大学 | 一种无卤阻燃硅烷交联聚乙烯电缆料的制备方法 |
KR101351717B1 (ko) * | 2005-09-09 | 2014-01-14 | 스미토모 덴키 고교 가부시키가이샤 | 난연성 수지 조성물 및 그것을 이용한 전선 및 절연 튜브 |
WO2009045760A1 (en) * | 2007-09-28 | 2009-04-09 | Union Carbide Chemicals & Plastics Technology Llc | Bimodal filler systems for enhanced flame retardancy |
WO2010033396A1 (en) * | 2008-09-16 | 2010-03-25 | Union Carbide Chemicals & Plastics Technology Llc | Crack-resistant, flame retardant, halogen-free, cable assembly and coating composition |
WO2010063149A1 (en) * | 2008-12-05 | 2010-06-10 | Lanxess Deutschland Gmbh | SILANE-GRAFTED α-OLEFIN-VINYL ACETATE COPOLYMER CONTAINING CROSSLINKABLE SILYL GROUPS, PROCESS FOR THE PREPARATION THEREOF AND USE FOR THE PREPARATION OF INSULATION OR SHEATH MATERIALS FOR CABLES OR LINES |
JP5598843B2 (ja) * | 2010-03-17 | 2014-10-01 | 古河電気工業株式会社 | 多層電線およびその製造方法 |
CN105473654A (zh) * | 2013-08-27 | 2016-04-06 | 古河电气工业株式会社 | 耐热性硅烷交联树脂成型体及其制造方法、耐热性硅烷交联性树脂组合物及其制造方法、硅烷母料、以及使用了耐热性硅烷交联树脂成型体的耐热性产品 |
US20170370899A1 (en) * | 2016-06-22 | 2017-12-28 | Arizona Chemical Company, Llc | Methods for Evaluating Asphalt Mix Compositions Containing Reclaimed Asphalt |
-
2014
- 2014-09-26 EP EP14847485.1A patent/EP3050921B1/en active Active
- 2014-09-26 WO PCT/JP2014/075753 patent/WO2015046478A1/ja active Application Filing
- 2014-09-26 JP JP2015539405A patent/JP6452611B2/ja active Active
- 2014-09-26 CN CN201480053193.5A patent/CN105579519B/zh active Active
-
2016
- 2016-03-25 US US15/080,864 patent/US10083776B2/en active Active
-
2018
- 2018-08-17 US US16/104,665 patent/US10304584B2/en active Active
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5146341A (ja) * | 1974-10-18 | 1976-04-20 | Mitsubishi Petrochemical Co | Jishoseijushisoseibutsu |
JPS52108462A (en) * | 1976-03-09 | 1977-09-10 | Showa Electric Wire & Cable Co | Method of producing bridged polyolefin formed article |
JPS55129441A (en) * | 1979-03-28 | 1980-10-07 | Furukawa Electric Co Ltd:The | Method of crosslinking poly-alpha-olefin resin |
JPS57172925A (en) * | 1981-04-16 | 1982-10-25 | Shin Etsu Chem Co Ltd | High-filling of organic polymer with inorganic filler |
JPS633931A (ja) * | 1986-06-24 | 1988-01-08 | Furukawa Electric Co Ltd:The | 架橋ポリオレフィン組成物押出成形品の製造方法 |
JPH07103273B2 (ja) * | 1987-02-02 | 1995-11-08 | 三菱化学株式会社 | 自消性重合体組成物 |
JPS63221026A (ja) * | 1987-03-10 | 1988-09-14 | Furukawa Electric Co Ltd:The | シラン架橋ポリオレフイン押出成形品の製造方法 |
JP2000315424A (ja) | 1998-04-27 | 2000-11-14 | Riken Vinyl Industry Co Ltd | 絶縁樹脂組成物およびそれを用いた絶縁電線と絶縁部材 |
JP2000143935A (ja) | 1998-08-31 | 2000-05-26 | Riken Vinyl Industry Co Ltd | 難燃性樹脂組成物とそれを用いた成形部品 |
JP2000133048A (ja) * | 1998-10-30 | 2000-05-12 | Yazaki Corp | 耐トラッキング性絶縁電線、及び耐トラッキング性絶縁ケーブル |
JP2001101928A (ja) | 1999-09-29 | 2001-04-13 | Yazaki Corp | 難燃性樹脂組成物 |
JP2001240719A (ja) | 2000-02-29 | 2001-09-04 | Riken Vinyl Industry Co Ltd | 難燃性樹脂組成物とそれを用いた成形部品 |
JP2007508432A (ja) * | 2003-10-14 | 2007-04-05 | テサ・アクチエンゲゼルシヤフト | 高度に充填されたハロゲンを含まない難燃性のラッピングホイル |
JP2012149162A (ja) * | 2011-01-19 | 2012-08-09 | Furukawa Electric Co Ltd:The | シラン架橋樹脂成形体の製造方法及びそれを用いた成形体 |
JP2012255077A (ja) | 2011-06-08 | 2012-12-27 | Riken Technos Corp | シラン架橋性難燃ポリオレフィンとシラノール触媒樹脂組成物からなる電線成形体の製造方法 |
JP2013006993A (ja) * | 2011-06-27 | 2013-01-10 | Furukawa Electric Co Ltd:The | シラン架橋樹脂成形体の製造方法及びそれを用いた成形体 |
WO2013147148A1 (ja) * | 2012-03-30 | 2013-10-03 | 古河電気工業株式会社 | 耐熱性樹脂組成物の製造方法、並びに、その製造方法で製造された耐熱性樹脂組成物及び該耐熱性樹脂組成物を用いた成形品 |
JP2013227559A (ja) * | 2012-03-30 | 2013-11-07 | Furukawa Electric Co Ltd:The | 難燃性樹脂組成物の製造方法、並びに、その製造方法で製造された耐熱性樹脂組成物及び該耐熱性樹脂組成物を用いた成形品 |
WO2014084048A1 (ja) * | 2012-11-30 | 2014-06-05 | 古河電気工業株式会社 | 耐熱性シラン架橋性樹脂組成物を用いた成形体の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3050921A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016140253A1 (ja) * | 2015-03-03 | 2016-09-09 | 古河電気工業株式会社 | シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品 |
WO2016140251A1 (ja) * | 2015-03-03 | 2016-09-09 | 古河電気工業株式会社 | シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品 |
WO2016140252A1 (ja) * | 2015-03-03 | 2016-09-09 | 古河電気工業株式会社 | シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品 |
Also Published As
Publication number | Publication date |
---|---|
US10083776B2 (en) | 2018-09-25 |
US20160200881A1 (en) | 2016-07-14 |
EP3050921A4 (en) | 2017-04-19 |
JPWO2015046478A1 (ja) | 2017-03-09 |
US10304584B2 (en) | 2019-05-28 |
CN105579519A (zh) | 2016-05-11 |
US20180358147A1 (en) | 2018-12-13 |
CN105579519B (zh) | 2017-11-21 |
EP3050921B1 (en) | 2019-11-06 |
JP6452611B2 (ja) | 2019-01-16 |
EP3050921A1 (en) | 2016-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6623260B2 (ja) | 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品 | |
JP6391580B2 (ja) | 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品 | |
JP6523407B2 (ja) | 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品 | |
JP6452611B2 (ja) | 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品 | |
JP6219268B2 (ja) | 耐熱性樹脂組成物の製造方法、並びに、その製造方法で製造された耐熱性樹脂組成物及び該耐熱性樹脂組成物を用いた成形品 | |
JP6452610B2 (ja) | 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品 | |
JP6329948B2 (ja) | 耐熱性シラン架橋樹脂成形体及びその製造方法、並びに、耐熱性シラン架橋樹脂成形体を用いた耐熱性製品 | |
JP6265876B2 (ja) | 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品 | |
JP6407339B2 (ja) | 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、並びに、耐熱性シラン架橋樹脂成形体を用いた耐熱性製品 | |
WO2018180689A1 (ja) | 難燃性架橋樹脂成形体及びその製造方法、シランマスターバッチ、マスターバッチ混合物及びその成形体、並びに、難燃性製品 | |
JP2019019327A (ja) | シランカップリング剤予備混合フィラー及びそれを含むフィラー | |
JP6339720B2 (ja) | 難燃性架橋組成物 | |
JP6462606B2 (ja) | 耐熱性シラン架橋樹脂成形体及び耐熱性シラン架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、耐熱性製品 | |
JP6490618B2 (ja) | 難燃性架橋樹脂成形体及び難燃性架橋性樹脂組成物とそれらの製造方法、難燃性シランマスターバッチ、並びに、難燃性成形品 | |
JP2016188306A (ja) | 耐熱性シラン架橋樹脂成形体及び耐熱性シラン架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、耐熱性製品 | |
JP2016187924A (ja) | 耐熱性シラン架橋樹脂成形体及び耐熱性シラン架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、耐熱性製品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480053193.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14847485 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015539405 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014847485 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014847485 Country of ref document: EP |