WO2015046442A1 - 太陽電池用封止膜及びこれを用いた太陽電池 - Google Patents

太陽電池用封止膜及びこれを用いた太陽電池 Download PDF

Info

Publication number
WO2015046442A1
WO2015046442A1 PCT/JP2014/075660 JP2014075660W WO2015046442A1 WO 2015046442 A1 WO2015046442 A1 WO 2015046442A1 JP 2014075660 W JP2014075660 W JP 2014075660W WO 2015046442 A1 WO2015046442 A1 WO 2015046442A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
sealing film
fine particles
pair
surface side
Prior art date
Application number
PCT/JP2014/075660
Other languages
English (en)
French (fr)
Inventor
央尚 片岡
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2015539386A priority Critical patent/JPWO2015046442A1/ja
Priority to CN201480053334.3A priority patent/CN105580143A/zh
Publication of WO2015046442A1 publication Critical patent/WO2015046442A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar cell sealing film that seals a solar cell element in a solar cell, and in particular, by including a wavelength conversion material, the sun can increase the light rays contributing to the power generation of the solar cell and improve the power generation efficiency.
  • the present invention relates to a battery sealing film.
  • the solar cell generally has a surface side transparent protective member 21 made of a glass substrate or the like, a surface side sealing film 23A, a solar cell element 24 such as a silicon crystal power generation element, and a back side sealing film 23B.
  • a back surface side protection member (back cover) 22 are laminated in this order, deaerated under reduced pressure, and heated and pressurized to crosslink and cure the front surface side sealing film 23A and the back surface side sealing film 23B, thereby integrally bonding. Is manufactured.
  • any type of solar cell element such as a silicon crystal power generation element has a low spectral sensitivity to light in the ultraviolet region, and the problem that solar energy cannot be effectively utilized is known. It has been.
  • a technique for improving the power generation efficiency of solar cells by using a material (wavelength conversion material) that converts light in the ultraviolet region into light having a wavelength in the visible region or near infrared region.
  • a technique for example, Patent Documents 1 and 2 in which a fluorescent material (for example, a rare earth complex emitting fluorescence of 500 to 1000 nm) is included in a sealing material (sealing film) of a solar cell module has been proposed. ing.
  • an ultraviolet absorber may be added to the solar cell sealing film. It is known that the improvement effect is inhibited.
  • Patent Document 3 in order to achieve both improvement in power generation efficiency and weather resistance, a dispersion resin and a fluorescent material having an absorption wavelength peak at 300 nm or more and 450 nm or less are contained, and an ultraviolet absorber other than the fluorescent material is contained.
  • a sealing sheet having a rate of 0.15 parts by mass or less (preferably not substantially included) with respect to 100 parts by mass of the dispersed resin has been proposed.
  • the solar cell sealing film does not substantially contain an ultraviolet absorber
  • the weather resistance of the solar cell is not sufficient even if it contains a fluorescent material.
  • the front side sealing film contains a fluorescent material and the back cover side sealing film contains an ultraviolet absorber only to prevent yellowing of the back cover
  • the front side sealing film absorbs ultraviolet rays. It has been found that, although the agent is not contained, the effect of improving the power generation efficiency by the fluorescent material may be reduced during storage or use of the solar cell.
  • an object of the present invention is a solar cell sealing film that can improve the power generation efficiency of a solar electric ground element by including a wavelength conversion material, further improving the weather resistance of the solar cell, and the solar cell.
  • An object of the present invention is to provide a sealing film capable of maintaining the effect of improving the power generation efficiency during storage or use of a battery.
  • Another object of the present invention is to provide a solar cell having high power generation efficiency and excellent weather resistance using the solar cell sealing film.
  • the present inventors have included the ultraviolet absorber only in the back side sealing film and the front side side during storage or use of the solar cell, although the front side sealing film did not contain the ultraviolet absorber.
  • the organic ultraviolet absorbent added to the back side sealing film is It turned out that it shifted to the surface side sealing film during use, and the effect which improves the power generation efficiency of a fluorescent substance was inhibited.
  • the present inventors have further studied from these findings and have arrived at the present invention.
  • the above object is a pair of solar cell sealing films for forming a solar cell by sealing a solar cell element between a front surface side transparent protective member and a back surface side protective member
  • the surface-side sealing film between the solar cell element and the surface-side protective member includes a resin material, and a wavelength conversion substance that converts light in the ultraviolet region to light having a wavelength in the visible region or near infrared region
  • the back side sealing film between the solar cell element and the back side protective member contains a resin material and an inorganic ultraviolet shielding agent, and the front side sealing film and the back side sealing film are organic. This is achieved by a pair of solar cell sealing films characterized by being substantially free of ultraviolet absorbers.
  • the pair of solar cell sealing films of the present invention can improve the power generation efficiency of the solar cell by the wavelength conversion material contained in the front surface side sealing film, and the inorganic ultraviolet shielding contained in the back side sealing film.
  • the agent can protect the back side protection member (back cover) of the solar cell from ultraviolet rays and does not migrate to the surface side sealing film during storage or use of the solar cell. The improvement effect is not inhibited and the effect can be maintained.
  • Preferred embodiments of the solar cell sealing film according to the present invention are as follows.
  • the inorganic ultraviolet shielding agent is at least one kind of fine particles selected from the group consisting of titanium dioxide fine particles, zinc oxide fine particles, and cerium dioxide fine particles. Ultraviolet rays can be effectively shielded.
  • the wavelength converting material has the following formula (I):
  • each R independently represents a hydrogen atom or an optionally substituted hydrocarbon group having 1 to 20 carbon atoms, and n is an integer of 1 to 4.]
  • It is a europium complex represented by these. It is a wavelength conversion material with high stability, and the effect of improving the power generation efficiency of the solar cell can be maintained.
  • all R are hydrogen atoms and n is 1. Particularly excellent in ultraviolet resistance.
  • the content of the wavelength conversion material is 0.0001 to 1 part by mass with respect to 100 parts by mass of the resin material. Thereby, the effect of improving sufficient power generation efficiency is acquired.
  • the content of the inorganic ultraviolet shielding agent is 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin material.
  • the wavelength conversion material is contained in fine particles made of an acrylic resin, or is supported on the fine particles, and the fine particles are dispersed in the resin material.
  • the wavelength conversion material is contained in the fine particles.
  • the acrylic resin is a resin mainly composed of poly (meth) methyl acrylate.
  • the fine particles are spherical.
  • the resin material is a resin material containing an ethylene-polar monomer copolymer. It is excellent in processability, can form a crosslinked structure with a crosslinking agent, and can be a sealing film with high adhesiveness.
  • the ethylene-polar monomer copolymer is an ethylene-vinyl acetate copolymer. It can be set as the sealing film which was more excellent in transparency and excellent in the softness
  • the above object is to provide a solar cell in which a solar cell element is sealed by interposing a pair of sealing films between a front surface side transparent protective member and a back surface side protective member.
  • the front surface side sealing film between the front surface side protective member and the back surface side sealing film between the solar cell element and the back surface side protective member are a pair of solar cell sealing films of the present invention.
  • This is achieved by a solar cell characterized in that. Since the solar cell of the present invention uses the pair of solar cell sealing films of the present invention, the solar cell has high power generation efficiency, the high power generation efficiency is maintained during storage or use, and the weather resistance is excellent. It can be said that it is a battery.
  • the wavelength conversion material contained in the surface side sealing film can improve the power generation efficiency of the solar cell, and the inorganic ultraviolet shielding agent contained in the back side sealing film. Can protect the back side protection member (back cover) of the solar cell from ultraviolet rays and does not shift to the surface side sealing film during storage or use of the solar cell, thus improving the power generation efficiency by the wavelength conversion material The effect can be maintained without inhibiting the effect. Therefore, the solar cell of the present invention is a solar cell with high power generation efficiency, high power generation efficiency maintained during storage or use, and excellent weather resistance.
  • FIG. 1 is a schematic cross-sectional view for explaining a solar cell sealing film and a solar cell of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a general solar cell.
  • FIG. 1 is a schematic cross-sectional view for explaining a solar cell sealing film and a solar cell of the present invention.
  • the solar cell sealing film of the present invention is a front surface side sealing for sealing the solar cell element 14 between the front surface side transparent protective member 11 and the back surface side protective member (back cover) 12. It is a pair of two sealing films composed of a film 13A and a back surface side sealing film 13B.
  • the surface side sealing film 13A seals between the solar cell element 14 and the surface side transparent protective member 11 (transparent protective member on the light receiving surface side of the solar cell element 14), and the back surface side sealing film 13B is a solar cell element. 14 and the back surface side protection member 12 (protection member opposite to the light receiving surface of the solar cell element 14) is sealed.
  • the front surface side sealing film 13A includes a resin material and a wavelength converting substance
  • the back surface side sealing film 13B includes a resin material and an inorganic ultraviolet shielding agent.
  • the front side sealing film 13A and the back side sealing film 13B include substantially no organic ultraviolet absorber.
  • the organic ultraviolet absorber is contained in the surface side sealing film 13A after the storage test of the solar cell even if it is contained only in the back side sealing film 13B. Reduce the power generation efficiency improvement effect.
  • the organic ultraviolet absorber in the back surface side sealing film 13B was transferred to the front surface side sealing film 13A during the storage test. Therefore, in the present invention, not only the front surface side sealing film 13A but also the back surface side sealing film 13B stipulates that the organic ultraviolet absorber is not substantially contained.
  • the back side sealing film 13B contains an inorganic ultraviolet shielding agent in order to prevent deterioration of the back side protection member 12 such as yellowing due to ultraviolet rays.
  • the back side sealing film 13B contains an inorganic ultraviolet shielding agent
  • the effect of improving the power generation efficiency of the wavelength conversion material contained in the front side sealing film 13A after the storage test of the solar cell Almost never drops. This is presumably because the inorganic ultraviolet shielding agent is not compatible with the resin material, and thus it is difficult to migrate.
  • the organic ultraviolet absorber includes, for example, ultraviolet absorbers such as benzophenone, benzotriazole, triazine, salicylic acid, and cyanoacrylate, and does not substantially contain an organic ultraviolet absorber.
  • ultraviolet absorbers such as benzophenone, benzotriazole, triazine, salicylic acid, and cyanoacrylate.
  • the content of the organic ultraviolet absorber is 0.1 parts by mass or less, preferably 0.05 parts by mass or less, particularly 0 parts by mass with respect to 100 parts by mass of the resin material.
  • the inorganic ultraviolet shielding agent contained in the backside sealing film of the present invention is not particularly limited as long as it has a shielding function of reflecting or absorbing ultraviolet rays contained in sunlight.
  • examples thereof include fine particles such as titanium dioxide fine particles, zinc oxide fine particles, cerium dioxide fine particles, iron (III) oxide fine particles, zirconium dioxide fine particles, and aluminum oxide (III) fine particles.
  • the average particle diameter of these fine particles is not particularly limited, but is generally 20 ⁇ m or less, and preferably 1 nm to 0.5 ⁇ m.
  • These inorganic ultraviolet shielding agents may be used alone or in combination of two or more. It is preferably at least one selected from the group consisting of titanium dioxide fine particles, zinc oxide fine particles, and cerium dioxide fine particles in that ultraviolet rays can be effectively shielded.
  • titanium dioxide fine particles are preferable because they have a high ultraviolet shielding effect and high stability.
  • the content of the inorganic ultraviolet shielding agent is not particularly limited as long as the above effects are obtained.
  • the amount is 0.1 to 10 parts by weight, more preferably 0.5 to 10 parts by weight, and particularly preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the resin material.
  • the wavelength conversion material contained in the surface-side sealing film of the present invention is not particularly limited as long as it has a function of converting light in the ultraviolet region into light having a wavelength in the visible region or near infrared region.
  • a fluorescent material that converts ultraviolet light having a wavelength of 200 to 400 nm into light having a wavelength of 400 to 1000 nm is used.
  • fluorescent materials include metal complexes, inorganic phosphors, and organic phosphors.
  • the metal complex include lanthanoid complexes such as europium, samarium, and terbium, ruthenium complexes, iridium complexes, and the like.
  • Examples of the inorganic phosphor include ZnO: Zn, Y 2 O 2 S: Eu, Zn 2 SiO 4 : Mn, and the like.
  • Examples of organic phosphors include violanthrone derivatives, perylene derivatives, coumarin derivatives, xanthine derivatives, anthracene derivatives, rhodamine derivatives, pyrene derivatives, phenylene derivatives, and the like. These wavelength conversion materials may be used alone or in combination of two or more.
  • a metal complex is preferable in view of the intensity of fluorescence, the magnitude of Stokes shift (difference between excitation maximum wavelength and emission maximum wavelength), and the like.
  • a europium complex is preferable in terms of strong fluorescence, a large Stokes shift, and a long fluorescence lifetime.
  • the europium complex is composed of Eu ions (Eu 3+ ) and an organic ligand, and examples thereof include Eu (hfa) 3 (TPPO) 2 , Eu (hfa) 3 (BIPHEPO), Eu (TTA) 3 Phen and the like.
  • the europium complex in particular the following formula (I):
  • each R independently represents a hydrogen atom or an optionally substituted hydrocarbon group having 1 to 20 carbon atoms, and n is an integer of 1 to 4.]
  • the europium complex represented by this is preferable.
  • the hydrocarbon group having 1 to 20 carbon atoms may be aliphatic or aromatic, may contain an unsaturated bond or a hetero atom, and may be linear or branched.
  • alkyl group methyl group, ethyl group, propyl group etc.
  • alkenyl group vinyl group, allyl group, butenyl group etc.
  • alkynyl group ethynyl group, propynyl group, butynyl group etc.
  • cycloalkyl group cycloalkenyl group Group
  • phenyl group, naphthyl group, biphenyl group and the like may be aliphatic or aromatic, may contain an unsaturated bond or a hetero atom, and may be linear or branched.
  • alkyl group methyl group, ethyl group, propyl group etc.
  • alkenyl group vinyl group, allyl group, butenyl group etc.
  • alkynyl group ethynyl
  • the hydrocarbon group may be optionally substituted, and examples of the substituent include a halogen atom, a hydroxyl group, an amino group, a nitro group, and a sulfo group.
  • R in formula (I) is preferably all hydrogen atoms.
  • the europium complex has excellent weather resistance (particularly UV resistance) and heat resistance compared to other wavelength conversion materials, so that the wavelength conversion effect during use of solar cells should be maintained at a high level. And the effect of improving the power generation efficiency of the solar cell can be maintained.
  • the europium complex is preferably Eu (hfa) 3 (TPPO) 2 in which n in the formula (I) is 1 and all R are hydrogen atoms from the viewpoint of excellent ultraviolet resistance.
  • Eu (hfa) 3 (TPPO) 2 is a europium complex in which two ligands of triphenylphosphine oxide and hexafluoroacetylacetone are coordinated to a rare earth metal europium which is a central element.
  • the content of the wavelength conversion material is not particularly limited as long as the effect of improving the power generation efficiency is obtained.
  • the content is 0.0001 to 1 part by mass, more preferably 0.001 to 1 part by mass, and particularly preferably 0.001 to 0.1 part by mass with respect to 100 parts by mass of the resin material. . Thereby, the effect which improves more sufficient electric power generation efficiency is acquired.
  • the wavelength conversion material is contained in or supported by fine particles made of an acrylic resin dispersed in a resin material.
  • the solar cell sealing film in which the wavelength conversion material is uniformly disperse
  • the wavelength conversion material When the wavelength conversion material is contained in fine particles, deterioration due to the influence of acid or moisture that may occur in the sealing film for solar cells containing the ethylene-polar monomer copolymer can be further prevented. It is preferable in that it can be a solar cell sealing film in which the effect of improving the power generation efficiency is less likely to be lowered.
  • the wavelength conversion material is contained in or supported by the fine particles and blended in the resin material of the solar cell sealing film
  • the content of the wavelength conversion material in the solar cell sealing film will be described later. It adjusts with the compounding quantity of the microparticles
  • the fine particles are preferably formed of an acrylic resin.
  • the acrylic resin is polymerized using a (meth) acrylic monomer as a main component, and may contain another monomer copolymerizable with the (meth) acrylic monomer.
  • (meth) acrylic monomers examples include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, (meth) Examples include dodecyl acrylate, stearyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and tetrahydrofurfuryl (meth) acrylate. “(Meth) acrylic” means “acrylic or methacrylic”. These (meth) acrylic monomers may be used alone or in combination of two or more.
  • monomers copolymerizable with (meth) acrylic monomers include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, p-methoxystyrene, p-tert-butylstyrene.
  • Styrene monomers such as p-phenylstyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, ethylene, propylene, butylene, vinyl chloride, vinyl acetate, acrylonitrile, acrylamide, methacrylamide, N-vinylpyrrolidone, etc. Is mentioned.
  • a (meth) acrylic monomer having a plurality of polymerizable double bonds in the molecule may be copolymerized with the (meth) acrylic monomer.
  • crosslinkable (meth) acrylic monomers include trimethylolpropane triacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, decaethylene glycol dimethacrylate, and pentamethacrylate.
  • (Meta) such as decaethylene glycol, pentamethaethylene dimethacrylate, ethylene glycol 1,3-butylene dimethacrylate, allyl methacrylate, trimethylolpropane trimethacrylate, pentaerythritol tetramethacrylate, diethylene glycol dimethacrylate
  • An acrylic monomer is mentioned, These can also be used in combination of multiple types.
  • the method for polymerizing the monomer forming the resin is not particularly limited, and can be performed by a conventionally known method such as suspension polymerization or emulsion polymerization.
  • suspension polymerization is preferable because it has advantages such as easy reaction control.
  • a radical polymerization initiator can be used as the polymerization initiator in which the monomer is polymerized in a solvent such as water in the presence of a polymerization initiator soluble in the monomer.
  • limiting in particular as a radical polymerization initiator The peroxide etc. which are used normally are mention
  • organic peroxide examples include benzoyl peroxide, isobutyl peroxide, methyl ethyl ketone peroxide, t-butyl hydroperoxide, diisopropylbenzene hydroperoxide, and the like.
  • azo initiator 2,2′-azobisisobutyronitrile (azoisobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2 -Methylbutyronitrile), 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl-2,2'-azobisisobutyrate and the like.
  • the solvent can contain an organic solvent in addition to water.
  • the organic solvent include alcohols such as methanol, ethanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, pentanol, ethylene glycol, propylene glycol, 1,4-butanediol; acetone, Examples thereof include ketones such as methyl ethyl ketone; astels such as ethyl acetate; (cyclo) paraffins such as isooctane and cyclohexane; aromatic hydrocarbons such as benzene and toluene. These may be used alone or in combination of two or more.
  • the addition amount of the polymerization initiator is not particularly limited, and can be appropriately adjusted in consideration of the refractive index of the fine particles to be formed. Generally, the amount is 0.01 to 10 parts by weight with respect to 100 parts by weight of the monomer, preferably 0.01 to 2 parts by weight, particularly 0.1 to 1 part by weight with respect to 100 parts by weight of the monomer.
  • the refractive index of the fine particles made of acrylic resin is not particularly limited, but if it is too high compared to the refractive index of the resin material containing the ethylene-polar monomer copolymer of the sealing film, it becomes cloudy due to reflection and is transparent. Decreases and the haze value also increases. Therefore, poly (meth) acryl obtained by polymerizing methyl (meth) acrylate as an acrylic resin having a refractive index equal to or lower than that of the resin material so as not to affect the transparency of the solar cell sealing film. A resin mainly composed of methyl acid is preferred.
  • the wavelength conversion material may be contained in the fine particles or may be supported.
  • a method of mixing and producing a wavelength conversion material together with a polymerizable monomer, and mixing a wavelength conversion material into a dissolved resin And a method for making fine particles for example, a method in which a polymerizable monomer and a wavelength conversion material are mixed and manufactured is preferable.
  • the wavelength conversion material is supported on the fine particles
  • a method of dissolving the wavelength conversion material in a solvent such as acetone or toluene, mixing the fine particles with the fine particles, and drying can be cited.
  • the amount of the wavelength converting material to be contained or supported in the fine particles there is no particular limitation on the amount of the wavelength converting material to be contained or supported in the fine particles.
  • the content of the wavelength converting material in the fine particles is preferably 0.01 to 5% by mass, more preferably 0.05 to 2% by mass, particularly 0.1 to 1% by mass, and further 0.5 to 1% by mass. Particularly preferred is 0.7 to 1% by mass. If it is this range, the effect which prevents that the wavelength conversion effect falls by an ultraviolet-ray etc. can be maintained over a long period of time.
  • the content of the wavelength conversion material in the sealing film is particularly 0.0001 to 1 part by mass with respect to 100 parts by mass of the resin material of the sealing film, 0.001 to 0.1 parts by mass is preferable, and 0.005 to 0.01 parts by mass is particularly preferable.
  • the shape of the fine particles is not particularly limited, but a spherical shape is preferable in terms of low dispersibility and light scattering properties.
  • the average particle size of the fine particles is not particularly limited, but if it is too large, the surface area per mass of the fine particles is small, so that the light emission efficiency may be lowered. They may be easily bonded to each other and dispersibility may be reduced. Accordingly, the average particle size of the fine particles is preferably 5 to 200 ⁇ m, more preferably 20 to 150 ⁇ m, and particularly preferably 50 to 100 ⁇ m.
  • the resin material contained in the solar cell sealing film (front surface side sealing film and back surface side sealing film) of the present invention has adhesiveness and transparency required for the solar cell sealing film.
  • Examples thereof include ethylene-polar monomer copolymers, polyvinyl acetal resins (for example, polyvinyl formal, polyvinyl butyral (PVB resin), modified PVB), polyolefin resins, and the like.
  • the resin material contains an ethylene-polar monomer copolymer in that it is excellent in processability, can form a crosslinked structure with a crosslinking agent, and can be a sealing film with high adhesion. preferable.
  • These resins may be used alone or in combination of two or more.
  • examples of the polar monomer of the ethylene-polar monomer copolymer include vinyl esters, unsaturated carboxylic acids, salts thereof, esters thereof, amides, and carbon monoxide. More specifically, vinyl esters such as vinyl acetate and vinyl propionate, unsaturated carboxylic acids such as acrylic acid, methacrylic acid, fumaric acid, itaconic acid, monomethyl maleate, monoethyl maleate, maleic anhydride, and itaconic anhydride.
  • Illustrative examples include one or more of unsaturated carboxylic acid esters such as n-butyl acrylate, isooctyl acrylate, methyl methacrylate, ethyl methacrylate, isobutyl methacrylate, dimethyl maleate, carbon monoxide, and sulfur dioxide. be able to.
  • ethylene-polar monomer copolymer examples include ethylene-vinyl ester copolymers such as ethylene-vinyl acetate copolymers, ethylene-acrylic acid copolymers, and ethylene-methacrylic acid copolymers.
  • Representative examples include ethylene-unsaturated carboxylic acid ester-unsaturated carboxylic acid copolymers such as oxalic acid copolymers and ionomers in which some or all of the carboxyl groups have
  • the ethylene-polar monomer copolymer it is preferable to use a copolymer having a melt flow rate defined by JIS K7210 of 35 g / 10 min or less, particularly 3 to 6 g / 10 min.
  • a solar cell sealing film having excellent processability can be obtained.
  • the value of the melt flow rate (MFR) is measured based on the conditions of 190 ° C. and a load of 21.18 N according to JIS K7210.
  • an ethylene-vinyl acetate copolymer is particularly preferable.
  • EVA ethylene-vinyl acetate copolymer
  • the content of vinyl acetate in the ethylene-vinyl acetate copolymer is preferably 20 to 35% by mass, more preferably 22 to 30% by mass, and particularly preferably 24 to 28% by mass with respect to EVA.
  • the lower the content of EVA vinyl acetate units the harder the sheet obtained. If the content of vinyl acetate is too low, the resulting sheet may not have sufficient transparency when crosslinked and cured at high temperatures. Further, if the vinyl acetate content is too high, the hardness of the sheet may be insufficient.
  • a cross-linking agent, a cross-linking aid, an adhesion improver, and the like can be added to the solar cell sealing film of the present invention as necessary.
  • the crosslinking agent is capable of forming a crosslinked structure of the resin material, and is particularly effective when the resin material contains an ethylene-polar monomer copolymer. Thereby, the intensity
  • an organic peroxide or a photopolymerization initiator is preferably used. Among them, it is preferable to use an organic peroxide because a sealing film having improved temperature dependency of adhesive strength, transparency, moisture resistance, and penetration resistance can be obtained.
  • Any organic peroxide may be used as long as it decomposes at a temperature of 100 ° C. or higher to generate radicals.
  • the organic peroxide is generally selected in consideration of the film formation temperature, the adjustment conditions of the composition, the curing temperature, the heat resistance of the adherend, and the storage stability. In particular, those having a decomposition temperature of 70 hours or more with a half-life of 10 hours are preferred.
  • organic peroxide examples include, from the viewpoint of processing temperature and storage stability of the resin, for example, benzoyl peroxide curing agent, tert-hexyl peroxypivalate, tert-butyl peroxypivalate, 3, 5, 5- Trimethylhexanoyl peroxide, di-n-octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, succinic acid peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, 2,5-dimethyl-2,5-di (2-ethylhexanoylperoxy) hexane, 1-cyclohexyl-1-methylethyl Peroxy-2-ethylhexanoate, tert-hexylpa Oxy-2-ethylhexano
  • benzoyl peroxide-based curing agent any can be used as long as it decomposes at a temperature of 70 ° C. or higher to generate radicals, and those having a decomposition temperature of 50 hours or higher with a half-life of 10 hours are preferable, It can be appropriately selected in consideration of preparation conditions, film formation temperature, curing (bonding) temperature, heat resistance of the adherend, and storage stability.
  • Usable benzoyl peroxide curing agents include, for example, benzoyl peroxide, 2,5-dimethylhexyl-2,5-bisperoxybenzoate, p-chlorobenzoyl peroxide, m-toluoyl peroxide, 2, Examples include 4-dichlorobenzoyl peroxide and t-butyl peroxybenzoate.
  • the benzoyl peroxide curing agent may be used alone or in combination of two or more.
  • organic peroxides in particular 2,5-dimethyl-2,5di (tert-butylperoxy) hexane, 1,1-bis (tert-hexylperoxy) -3,3,5-trimethylcyclohexane, tert -Butylperoxy-2-ethylhexyl monocarbonate is preferred.
  • a laminate-forming sheet having excellent insulating properties can be obtained.
  • Such a sheet is effective when used as a solar cell sealing film.
  • the content of the organic peroxide is not particularly limited, but is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 3 parts by mass with respect to 100 parts by mass of the resin material.
  • photopolymerization initiator any known photopolymerization initiator can be used, but a photopolymerization initiator having good storage stability after blending is desirable.
  • photopolymerization initiators include 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, and 2-methyl-1- (4- (methylthio) phenyl).
  • Acetophenone series such as -2-morpholinopropane-1, benzoin series such as benzyldimethyl ketal, benzophenone series such as benzophenone, 4-phenylbenzophenone, hydroxybenzophenone, thioxanthone series such as isopropylthioxanthone, 2-4-diethylthioxanthone, Methylphenylglyoxylate can be used.
  • photopolymerization initiators may be optionally selected from one or more known photopolymerization accelerators such as a benzoic acid type such as 4-dimethylaminobenzoic acid or a tertiary amine type. It can be used by mixing at a ratio. Moreover, it can be used individually by 1 type of only a photoinitiator, or 2 or more types of mixture.
  • the content of the photopolymerization initiator is not particularly limited, but is preferably 0.5 to 5.0 parts by mass with respect to 100 parts by mass of the resin material.
  • the crosslinking aid can improve the gel fraction of the resin material and improve the adhesion and durability of the solar cell sealing film.
  • crosslinking aid compound having a radical polymerizable group as a functional group
  • examples of the crosslinking aid include trifunctional crosslinking aids such as triallyl cyanurate and triallyl isocyanurate, and (meth) acrylic esters (eg, NK ester) ) Monofunctional or bifunctional crosslinking aids.
  • trifunctional crosslinking aids such as triallyl cyanurate and triallyl isocyanurate, and (meth) acrylic esters (eg, NK ester) ) Monofunctional or bifunctional crosslinking aids.
  • triallyl cyanurate and triallyl isocyanurate are preferable, and triallyl isocyanurate is particularly preferable.
  • the content of the crosslinking aid is generally 10 parts by mass or less, preferably 0.1 to 5 parts by mass, more preferably 0.1 to 2.5 parts by mass with respect to 100 parts by mass of the resin material. . Thereby, the sealing film for solar cells which is further excellent in adhesiveness is obtained.
  • adhesion improver As the adhesion improver, a silane coupling agent can be used. Thereby, the adhesive force of the solar cell sealing film obtained can be further improved.
  • the silane coupling agent include ⁇ -chloropropyltrimethoxysilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, and ⁇ -glycidoxypropyl.
  • These silane coupling agents may be used alone or in combination of two or more. Of these, ⁇ -methacryloxypropyltrimethoxysilane is particularly preferred.
  • the content of the silane coupling agent is preferably 0.1 to 0.7 parts by mass, particularly 0.3 to 0.65 parts by mass with respect to 100 parts by mass of the resin material.
  • composition forming the solar cell sealing film of the present invention improves or adjusts various physical properties of the film (optical properties such as mechanical strength, adhesion, transparency, heat resistance, crosslinking speed, etc.), in particular.
  • various additives such as a plasticizer, an acryloxy group-containing compound, a methacryloxy group-containing compound, an epoxy group-containing compound and / or an anti-aging agent may be further included as necessary.
  • a sheet-like material can be obtained by dissolving the composition in a solvent and coating the solution on a suitable support with a suitable coating machine (coater) and drying to form a coating film.
  • the heating temperature during film formation is preferably a temperature at which the crosslinking agent does not react or hardly reacts.
  • the temperature is preferably 50 to 90 ° C, particularly 40 to 80 ° C.
  • the thickness of the surface side sealing film is not particularly limited, but may be in the range of 50 ⁇ m to 2 mm.
  • the solar cell of the present invention includes a pair of sealing films (a surface-side sealing film 13 ⁇ / b> A and a surface-side sealing film 13 ⁇ / b> A) between the solar cell element 14 between the surface-side transparent protective member 11 and the back-side protective member 12. It is sealed with the back side sealing film 13B) interposed. And the surface side sealing film 13A (sealing film between the solar cell element 14 and the surface side protection member 11) and the back surface side sealing film 13B (between the solar cell element 14 and the back surface side protection member 12) As the sealing film, the pair of solar battery sealing films of the present invention is used.
  • the front surface side transparent protective member 11 the front surface side sealing film 13A, the solar cell element 14, and the back surface side sealing film 13B.
  • the back surface side protection member 12 may be laminated
  • the laminate is removed by a vacuum laminator at a temperature of 135 to 180 ° C., further 140 to 180 ° C., particularly 155 to 180 ° C.
  • Heat pressing may be performed at an air time of 0.1 to 5 minutes, a press pressure of 0.1 to 1.5 kg / cm 2 , and a press time of 5 to 15 minutes.
  • the front side sealing film 13A and the back side sealing film 13B are interposed.
  • the solar cell element 14 can be sealed by integrating the front surface side transparent protective member 11, the rear surface side transparent member 12, and the solar cell element 14.
  • the surface-side transparent protective member 11 used in the solar cell of the present invention is usually a glass substrate such as silicate glass.
  • the thickness of the glass substrate is generally from 0.1 to 10 mm, and preferably from 0.3 to 5 mm.
  • the glass substrate may generally be chemically or thermally strengthened.
  • the back surface side protective member 12 used in the present invention is generally a plastic film such as polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • a white pigment such as titanium dioxide (titanium white) may be included.
  • the power generation efficiency is improved by the wavelength conversion material contained in the front surface side sealing film 13A, and the back surface side protective member 12 is made ultraviolet by the inorganic ultraviolet shielding agent contained in the back surface side sealing film 13B. Protected from. And since an organic ultraviolet absorber is not substantially contained and an inorganic ultraviolet shielding agent does not transfer to the surface side sealing film 13A, the improvement effect of the power generation efficiency by the wavelength conversion material is maintained. Therefore, it can be said that the solar cell of the present invention is a solar cell having high power generation efficiency, high power generation efficiency being maintained during storage or use, and excellent weather resistance.
  • the solar cell of the present invention is characterized by the pair of solar cell sealing films as described above. Therefore, the members other than the solar cell sealing film such as the front surface side transparent protective member, the back surface side protective member, and the solar cell element may have the same configuration as the conventionally known solar cell, and particularly limited. Not.
  • wavelength conversion material (1) -containing fine particles 1 95 parts by weight of methyl methacrylate, 5 parts by weight of ethylene glycol dimethacrylate, wavelength conversion material (1) (Eu (hfa) 3 (TPPO) 2 , Lumisys E-300 (Central Techno) (Manufactured by company) (all R in the above formula (1) are hydrogen atoms and n is 1))
  • TPPO ethylene glycol dimethacrylate
  • Lumisys E-300 Central Techno
  • All R in the above formula (1) are hydrogen atoms and n is 1
  • suspension polymerization is carried out by a conventional method, and the average particle size is 100 ⁇ m spherical fine particles (wavelength conversion material (1) -containing fine particles 1) were obtained.
  • wavelength conversion material (1) -containing fine particles 2 were produced. 3. Preparation of wavelength conversion material (1) -containing fine particles 3 1 except that Lumisis E-300 was blended in an amount of 0.5 parts by mass. Similarly, the wavelength conversion material (1) -containing fine particles 3 were produced. 4). Preparation of wavelength conversion material (1) -containing fine particles 4 1 except that 1 part by mass of Lumisis E-300 was added. Similarly, the wavelength conversion material (1) -containing fine particles 4 were produced. 5.
  • wavelength conversion material (1) supported fine particles Polymethylmethacrylate resin fine particles (manufactured by Negami Kogyo Co., Ltd., average particle size 100 ⁇ m) were added to wavelength conversion material (1), Eu (hfa) 3 (TPPO) 2 , Lumisys E- 300 (manufactured by Central Techno Co., Ltd.) was added (added to 0.1 parts by mass of the europium complex with respect to 100 parts by mass of the fine particles), stirred and dried to obtain spherical fine particles. 6). Production of Solar Cell Sealing Film Each material is supplied to a roll mill with the composition shown in the following table and kneaded at 70 ° C. to form each solar cell sealing film composition (front side sealing film, back side sealing film).
  • This solar cell sealing film composition was calendered at 70 ° C., allowed to cool, and then a solar cell sealing film (thickness 0.5 mm) was produced. 7).
  • Production of module model sample The produced sealing film for a solar cell was laminated as a pair of a front side sealing film and a back side sealing film in a combination of each example and comparative example shown in the following table, and was formed into two white plates.
  • the glass laminate (thickness: 3.2 mm) was sandwiched, and the resulting laminate was pressure-bonded at 90 ° C. with a vacuum time of 2 minutes and a press time of 8 minutes, and then heated in an oven at 155 ° C. for 45 minutes. Samples were prepared by crosslinking and curing.
  • Fluorescence intensity The fluorescence intensity of the sample was measured using a spectrophotometer (F-7000, manufactured by Hitachi High-Technologies Corporation). Measurement conditions: Photomultiplier voltage 400 V, excitation side slit 20 nm, fluorescence side slit 10 nm, scan speed 240 nm / min.
  • the irradiation wavelength was 325 nm for the wavelength conversion material (1) and 335 nm for the wavelength conversion materials (2) and (3).
  • the excitation peak wavelength of each wavelength conversion material itself is located on the shorter wavelength side than each of the above irradiation wavelengths, the light transmittance of white plate glass (absorption in white plate glass) exists in the ultraviolet region.
  • each irradiation wavelength was set as described above.
  • UV resistance (UV) resistance Using the ultraviolet lamp (Super UV, manufactured by Iwasaki Electric Co., Ltd.) for the above sample, a position of 235 mm from a light source that irradiates 1000 W / cm 2 of ultraviolet light under the condition of a black panel temperature of 63 ° C. When facing ultraviolet light and irradiating with ultraviolet rays, the time required to decrease to 30% of the fluorescence intensity before ultraviolet irradiation was measured.
  • Super UV manufactured by Iwasaki Electric Co., Ltd.
  • the fluorescence intensity of the wavelength conversion material contained in the front side sealing film after the storage test was lowered.
  • the fluorescence intensity of the wavelength conversion material contained in the front side sealing film after the storage test hardly decreased.
  • the fluorescence intensity remained more in the example using the wavelength conversion material (1).
  • the present invention it is possible to provide a solar cell in which the power generation efficiency of the solar cell element is improved by the wavelength conversion material and the high power generation efficiency is maintained over a long period of time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Sealing Material Composition (AREA)

Abstract

 波長変換材料を含むことで太陽電地素子の発電効率を向上することができ、太陽電池を長期間にわたって使用した場合であっても、発電効率を向上する効果を十分に維持することができる太陽電池用封止膜、及び太陽電池を提供する。 太陽電池素子を表面側透明保護部材と裏面側保護部材との間に封止して太陽電池を構成するための二枚一対の太陽電池用封止膜であって、前記太陽電池素子と前記表面側保護部材との間の表面側封止膜が、樹脂材料、及び紫外領域の光線を可視領域又は近赤外領域の波長の光線に変換する波長変換物質を含み、前記太陽電池素子と前記裏面側保護部材との間の裏面側封止膜が、樹脂材料、及び無機系紫外線遮蔽剤を含み、且つ前記表面側封止膜及び前記裏面側封止膜が、有機系紫外線吸収剤を実質的に含まないことを特徴とする一対の太陽電池用封止膜、及びこれを用いた太陽電池。

Description

太陽電池用封止膜及びこれを用いた太陽電池
 本発明は、太陽電池において太陽電池素子を封止する太陽電池用封止膜に関し、特に、波長変換材料を含むことにより、太陽電池の発電に寄与する光線を増加させ、発電効率を向上できる太陽電池用封止膜に関する。
 近年、資源の有効利用や環境汚染の防止等の面から、太陽光を電気エネルギーに直接変換する太陽電池が広く使用され、更に、発電効率や耐候性等の点から開発が進められている。
 太陽電池は、一般に、図2に示すように、ガラス基板などからなる表面側透明保護部材21、表面側封止膜23A、シリコン結晶系発電素子などの太陽電池素子24、裏面側封止膜23B、及び裏面側保護部材(バックカバー)22をこの順で積層し、減圧下で脱気した後、加熱加圧して表面側封止膜23A及び裏面側封止膜23Bを架橋硬化させて接着一体化することにより製造される。
 一方、一般にシリコン結晶系発電素子等、何れのタイプの太陽電池素子であっても紫外領域の光線に対しては分光感度が低く、太陽光のエネルギーを有効に活用できていないという問題点が知られている。この問題点を解決するために、紫外領域の光線を可視領域又は近赤外領域の波長の光線に変換する材料(波長変換材料)を用いることにより、太陽電池セルの発電効率を向上させる技術が提案されている。具体的には、蛍光物質(例えば、500~1000nmの蛍光を発する希土類錯体)を太陽電池モジュールの封止材(封止膜)に含有させる手法(例えば、特許文献1、2)等が提案されている。
 また、太陽電池用封止膜の耐候性を向上するために太陽電池用封止膜に紫外線吸収剤が添加される場合があるが、紫外線吸収剤が存在すると上記のような蛍光物質による発電効率の向上効果が阻害されることが知られている。特許文献3においては、発電効率の向上と耐候性の両立を図るため、分散樹脂と、300nm以上、450nm以下に吸収波長ピークを有する蛍光物質とを含み、前記蛍光物質以外の紫外線吸収剤の含有率が分散樹脂100質量部に対し0.15質量部以下(実質的に含まないことが好ましい)である封止シートが提案されている。
特開2006-303033号公報 特開2011-77088号公報 特開2011-210891号公報
 しかしながら、本発明者らの検討によると、太陽電池用封止膜が紫外線吸収剤を実質的に含有していない場合、蛍光物質を含有していても太陽電池の耐候性は十分とは言えず、特に太陽電池のバックカバーの黄変による外観不良等が生じ易いことが分かった。また、表面側封止膜に蛍光物質を含有させ、且つバックカバーの黄変を防止するため、裏面側封止膜にのみ紫外線吸収剤を含有させた場合、表面側封止膜には紫外線吸収剤が含まれていないにも係わらず、太陽電池の保管又は使用中に蛍光物質による発電効率の向上効果が低下する場合があることが分かった。
 従って、本発明の目的は、波長変換材料を含むことで太陽電地素子の発電効率を向上させることができる太陽電池用封止膜であって、更に太陽電池の耐候性を向上し、且つ太陽電池の保管又は使用中にその発電効率の向上効果を維持できる封止膜を提供することにある。
 また、本発明の目的は、その太陽電池用封止膜を用いた、発電効率が高く、耐候性に優れた太陽電池を提供することにある。
 本発明者らは、裏面側封止膜にのみ紫外線吸収剤を含有させ、表面側封止膜には紫外線吸収剤を含有させなかったにも係らず、太陽電池の保管又は使用中に表面側封止膜に含有させた蛍光物質(波長変換材料)による発電効率の向上効果が低下した原因を鋭意検討した結果、裏面側封止膜に添加した有機系紫外線吸収剤が、太陽電池の保管又は使用中に表面側封止膜に移行し、蛍光物質の発電効率を向上する効果を阻害していたことが分かった。本発明者らは、これらの知見から、更に検討を行い本発明に至った。
 即ち、上記目的は、太陽電池素子を表面側透明保護部材と裏面側保護部材との間に封止して太陽電池を構成するための二枚一対の太陽電池用封止膜であって、前記太陽電池素子と前記表面側保護部材との間の表面側封止膜が、樹脂材料、及び紫外領域の光線を可視領域又は近赤外領域の波長の光線に変換する波長変換物質を含み、前記太陽電池素子と前記裏面側保護部材との間の裏面側封止膜が、樹脂材料、及び無機系紫外線遮蔽剤を含み、且つ前記表面側封止膜及び前記裏面側封止膜が、有機系紫外線吸収剤を実質的に含まないことを特徴とする一対の太陽電池用封止膜によって達成される。
 本発明の一対の太陽電池用封止膜は、表面側封止膜に含まれる波長変換材料により、太陽電池の発電効率を向上することができ、裏面側封止膜に含まれる無機系紫外線遮蔽剤は、太陽電池の裏面側保護部材(バックカバー)を紫外線から保護することができ、且つ太陽電池の保管又は使用中に表面側封止膜には移行しないため、波長変換材料による発電効率の向上効果を阻害せず、その効果を維持することができる。
 本発明に係る太陽電池用封止膜の好ましい態様は以下の通りである。
(1)前記無機系紫外線遮蔽剤が、二酸化チタン微粒子、酸化亜鉛微粒子、及び二酸化セリウム微粒子からなる群から選択される少なくとも1種の微粒子である。紫外線を効果的に遮蔽することができる。
(2)前記波長変換材料が、下記式(I):
Figure JPOXMLDOC01-appb-C000002

[式中、Rは、それぞれ独立して水素原子又は任意に置換されていても良い炭素原子数1~20の炭化水素基を表し、nは、1~4の整数である。]
で表されるユウロピウム錯体である。安定性が高い波長変換材料であり、より太陽電池の発電効率の向上効果を維持することができる。
(3)前記式(I)において、Rが全て水素原子であり、nが1である。特に耐紫外線性に優れる。
(4)前記波長変換材料の含有量が、前記樹脂材料100質量部に対して、0.0001~1質量部である。これにより、十分な発電効率を向上する効果が得られる。
(5)前記無機系紫外線遮蔽剤の含有量が、前記樹脂材料100質量部に対して、0.1~10質量部である。これにより、十分な紫外線遮蔽効果が得られる。
(6)前記波長変換材料が、アクリル系樹脂からなる微粒子中に含有されているか、又は当該微粒子に担持されており、且つ前記微粒子が、前記樹脂材料中に分散されている。
(7)前記波長変換材料が、前記微粒子中に含有されている。
(8)前記アクリル系樹脂が、ポリ(メタ)アクリル酸メチルを主成分とする樹脂である。
(9)前記微粒子が、球状である。
(10)前記樹脂材料が、エチレン-極性モノマー共重合体を含む樹脂材料である。加工性に優れ、架橋剤による架橋構造を形成することができ、接着性が高い封止膜とすることができる。
(11)前記エチレン-極性モノマー共重合体が、エチレン-酢酸ビニル共重合体である。より透明性に優れ、柔軟性に優れた封止膜とすることができる。
 また、上記目的は、太陽電池素子を表面側透明保護部材と裏面側保護部材との間に二枚一対の封止膜を介在させて、封止してなる太陽電池において、前記太陽電池素子と前記表面側保護部材との間の表面側封止膜、及び前記太陽電池素子と前記裏面側保護部材との間の裏面側封止膜が、本発明の一対の太陽電池用封止膜であることを特徴とする太陽電池によって達成される。本発明の太陽電池は、本発明の一対の太陽電池用封止膜が用いられているので、発電効率が高く、その高い発電効率が保管又は使用中に維持され、且つ耐候性に優れた太陽電池であるといえる。
 本発明の太陽電池封止膜によれば、表面側封止膜に含まれる波長変換材料により、太陽電池の発電効率を向上することができ、裏面側封止膜に含まれる無機系紫外線遮蔽剤は、太陽電池の裏面側保護部材(バックカバー)を紫外線から保護することができ、且つ太陽電池の保管又は使用中に表面側封止膜には移行しないため、波長変換材料による発電効率の向上効果を阻害せず、その効果を維持することができる。従って、本発明の太陽電池は、発電効率が高く、その高い発電効率が保管又は使用中に維持され、且つ耐候性に優れた太陽電池である。
図1は本発明の太陽電池用封止膜及び太陽電池を説明するための概略断面図である。 図2は一般的な太陽電池の概略断面図である。
 以下に、本発明の太陽電池用封止膜及び太陽電池について、図面を参照しながら説明する。図1は本発明の太陽電池用封止膜及び太陽電池を説明するための概略断面図である。図示の通り、本発明の太陽電池用封止膜は、太陽電池素子14を表面側透明保護部材11と裏面側保護部材(バックカバー)12との間に封止するための、表面側封止膜13A及び裏面側封止膜13Bからなる二枚一対の封止膜である。表面側封止膜13Aは太陽電池素子14と表面側透明保護部材11(太陽電池素子14の受光面側の透明保護部材)との間を封止し、裏面側封止膜13Bは太陽電池素子14と裏面側保護部材12(太陽電池素子14の受光面と反対側の保護部材)の間を封止している。
 本発明は、一対の太陽電池用封止膜の内、表面側封止膜13Aが、樹脂材料、及び波長変換物質を含み、裏面側封止膜13Bが樹脂材料、及び無機系紫外線遮蔽剤を含み、且つ表面側封止膜13A及び裏面側封止膜13Bが、有機系紫外線吸収剤を実質的に含まないことを特徴とする。これにより、太陽電池の発電効率を向上することができ、その効果を保管又は使用中維持することができ、且つバックカバーの黄変等の劣化を防止することができる。後述する実施例で示すように、有機系紫外線吸収剤は、裏面側封止膜13Bにのみ含有させたとしても、太陽電池の保管試験後に表面側封止膜13Aに含有させた波長変換材料の発電効率向上効果を低下させる。これは、裏面側封止膜13B中の有機系紫外線吸収材が保管試験中に表面側封止膜13Aに移行したものと考えられる。従って、本発明においては、表面側封止膜13Aだけでなく、裏面側封止膜13Bも有機系紫外線吸収剤を実質的に含まないことを規定している。その上で、裏面側保護部材12の紫外線による黄変等の劣化を防止するため、裏面側封止膜13Bは無機系紫外線遮蔽剤を含んでいる。
 実施例で示すように、裏面側封止膜13Bに無機系紫外線遮蔽剤を含有させた場合は、太陽電池の保管試験後に表面側封止膜13Aに含有させた波長変換材料の発電効率向上効果はほとんど低下しない。これは、無機系紫外線遮蔽剤が樹脂材料と相溶していないため、移行し難いためと考えられる。
 なお、有機系紫外線吸収剤とは、例えば、ベンゾフェノン系、ベンゾトリアゾール系、トリアジン系、サリチル酸系、シアノアクリレート系等の紫外性吸収剤が挙げられ、有機系紫外線吸収剤を実質的に含まないとは、有機系紫外線吸収剤の含有量が、樹脂材料100質量部に対して、0.1質量部以下、好ましくは0.05質量部以下、特に0質量部のことをいう。
 以下、本発明の一対の太陽電池用封止膜について、より詳細に説明する。
[無機系紫外線遮蔽剤]
 本発明の裏面側封止膜に含まれる無機系紫外線遮蔽剤としては、太陽光線に含まれる紫外線を反射又は吸収する遮蔽機能を有していれば特に制限はない。例えば、二酸化チタン微粒子、酸化亜鉛微粒子、二酸化セリウム微粒子、酸化鉄(III)微粒子、二酸化ジルコニウム微粒子、酸化アルミニウム(III)微粒子等の微粒子が挙げられる。これらの微粒子の平均粒径は、特に制限はないが、一般に20μm以下であり、好ましくは、1nm~0.5μmである。
 これらの無機系紫外線遮蔽剤は単独で用いても、2種以上を組合せて用いても良い。紫外線を効果的に遮蔽することができる点で、二酸化チタン微粒子、酸化亜鉛微粒子、二酸化セリウム微粒子からなる群から選択される少なくとも1種であることが好ましい。特に紫外線遮蔽効果が高く、安定性が高い点で二酸化チタン微粒子が好ましい。
 無機系紫外線遮蔽剤の含有量は、上記効果が得られれば、特に制限はない。好ましくは、前記樹脂材料100質量部に対して、0.1~10質量部であり、更に好ましくは0.5~10質量部であり、特に好ましくは0.5~5質量部である。これにより、封止膜の加工特性を維持するともに、更に十分な紫外線遮蔽効果を得ることができる。
[波長変換材料]
 本発明の表面側封止膜に含まれる波長変換材料としては、紫外領域の光線を可視領域又は近赤外領域の波長の光線に変換する機能を有する物質であれば特に制限はない。一般に、200~400nmの波長の紫外線を、400~1000nmの波長の光線に変換する蛍光物質が用いられる。蛍光物質としては、金属錯体、無機蛍光体、有機蛍光体が挙げられル。金属錯体としては、ユーロピウム、サマリウム、テルビウム等のランタノイド錯体、ルテニウム錯体、イリジウム錯体等が挙げられ、無機蛍光体としては、ZnO:Zn、Y2 O2 S:Eu、Zn2 SiO4 :Mn等が挙げられ、有機蛍光体としては、ビオラントロン誘導体、ペリレン誘導体、クマリン誘導体、キサンチン誘導体、アントラセン誘導体、ローダミン誘導体、ピレン誘導体、フェニレン誘導体等が挙げられる。これらの波長変換材料は単独で用いても、2種以上を組合せて用いても良い。
 波長変換材料としては、蛍光の強さ、ストークスシフト(励起極大波長と発光極大波長の差)の大きさ等から金属錯体が好ましい。金属錯体としては、特に蛍光が強く、ストークスシフトが大きく、蛍光寿命が長い点で、ユーロピウム錯体が好ましい。ユーロピウム錯体は、Euイオン(Eu3+)と有機配位子から構成され、例えば、Eu(hfa)(TPPO)、Eu(hfa)(BIPHEPO)、Eu(TTA)Phen等が挙げられる。ユーロピウム錯体としては、特に下記式(I):
Figure JPOXMLDOC01-appb-C000003

[式中、Rは、それぞれ独立して水素原子又は任意に置換されていても良い炭素原子数1~20の炭化水素基を表し、nは、1~4の整数である。]で表されるユウロピウム錯体が好ましい。
 炭素原子数1~20の炭化水素基は、脂肪族でも芳香族でも良く、不飽和結合やヘテロ原子を含んでいても良く、直鎖状でも分枝を有していても良い。例えば、アルキル基(メチル基、エチル基、プロピル基等)、アルケニル基(ビニル基、アリル基、ブテニル基等)、アルキニル基(エチニル基、プロピニル基、ブチニル基等)、シクロアルキル基、シクロアルケニル基、フェニル基、ナフチル基、ビフェニル基等が挙げられる。上記炭化水素基は任意に置換されていても良く、置換基としては、ハロゲン原子、ヒドロキシル基、アミノ基、ニトロ基、スルホ基等が挙げられる。式(I)におけるRは全て水素原子であることが好ましい。
 このようなユウロピウム錯体は、他の波長変換材料と比較して、耐候性(特に耐紫外線性)、耐熱性に優れているため、太陽電池の使用中の波長変換効果を高い水準で維持することができ、より太陽電池の発電効率の向上効果を維持することができる。さらに、上記ユウロピウム錯体は、式(I)中のnが1であり、Rが全て水素原子であるEu(hfa)(TPPO)であることが、特に耐紫外線性に優れる点で好ましい。Eu(hfa)(TPPO)はトリフェニルホスフィンオキシドとヘキサフルオロアセチルアセトンの2種の配位子が中心元素である希土類金属のユウロピウムに配位しているユウロピウム錯体である。
 上記波長変換材料の含有量は、上記の発電効率の向上効果が得られれば、特に制限はない。好ましくは、前記樹脂材料100質量部に対して、0.0001~1質量部であり、更に好ましくは0.001~1質量部であり、特に好ましくは0.001~0.1質量部である。これにより、更に十分な発電効率を向上する効果が得られる。
 本発明において、波長変換材料は樹脂材料中に分散されたアクリル系樹脂からなる微粒子中に含有されているか、又はその微粒子に担持されていることが好ましい。これにより、波長変換材料が太陽電池用封止膜中に均一に分散されている太陽電池用封止膜とすることができる。即ち、波長変換材料の融点は、エチレン-極性モノマー共重合体を含む樹脂材料に比較して高い融点を示すため、樹脂材料と混合する際に均一に分散し難く、ムラが生じる場合がある。その場合、波長変換する効果にムラが生じ、発電効率を向上する効果が十分発揮されず、錯体の凝集等により劣化も生じ易くなる恐れがある。上記微粒子は上記樹脂材料における分散性が良いため、その微粒子に含有させるか、担持させることで、波長変換材料を樹脂材料中に均一に分散させることができ、発電効率を向上する効果を十分発揮させ、錯体の劣化も抑制することができる。
 波長変換材料は、微粒子中に含有されている方が、エチレン-極性モノマー共重合体を含む太陽電池用封止膜中に生じる場合がある酸や水分の影響による劣化をより防止することができ、より発電効率を向上する効果が低下し難い太陽電池封止膜とすることができる点で好ましい。
 なお、波長変換材料を微粒子に含有させるか、又は担持させて、太陽電池用封止膜の樹脂材料に配合する場合は、太陽電池用封止膜中の波長変換材料の含有量は、後述する波長変換材料を含む微粒子の配合量によって調整する。
 本発明において、波長変換材料が微粒子中に含有されているか、又はその微粒子に担持されている場合、微粒子はアクリル系樹脂から形成されていることが好ましい。アクリル系樹脂とは、主成分として(メタ)アクリル系モノマーを用いて重合させたものであり、(メタ)アクリル系モノマーと共重合可能な他のモノマーを含んでいてもよい。(メタ)アクリル系モノマーとしては、例えば、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸テトラヒドロフルフリル等が挙げられる。なお、「(メタ)アクリル-」は、「アクリル-又はメタクリル-」を示す。これらの(メタ)アクリル系モノマーは単独で用いてもよく、2種以上用いてもよい。(メタ)アクリル系モノマーと共重合可能な他のモノマーとしては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、p-メトキシスチレン、p-tert-ブチルスチレン、p-フェニルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン等のスチレン系モノマー、エチレン、プロピレン、ブチレン、塩化ビニル、酢酸ビニル、アクリロニトリル、アクリルアミド、メタクリルアミド、N-ビニルピロリドン等が挙げられる。
 また、分子間に架橋構造を有する樹脂粒子を得ようとする場合、重合性二重結合を分子中に複数個有する(メタ)アクリル系モノマーを上記(メタ)アクリル系モノマーと共重合させることができる。このような架橋性(メタ)アクリル系モノマーとしては、トリアクリル酸トリメチロールプロパン、ジメタクリル酸エチレングリコール、ジメタクリル酸ジエチレングリコール、ジメタクリル酸トリエチレングリコール、ジメタクリル酸デカエチレングリコール、ジメタクリル酸ペンタデカエチレングリコール、ジメタクリル酸ペンタコンタヘクタエチレングリコール、ジメタクリル酸1,3-ブチレン、メタクリル酸アリル、トリメタクリル酸トリメチロールプロパン、テトラメタクリル酸ペンタエリスリトール、ジメタクリル酸フタル酸ジエチレングリコール等の(メタ)アクリル系モノマーが挙げられ、これらを複数種組合せて用いることもできる。
 樹脂を形成するモノマーを重合する方法としては、特に制限はなく、懸濁重合や乳化重合等、従来公知の方法で行うことができる。中でも、反応制御が容易等の利点がある点で、懸濁重合が好ましい。懸濁重合は、上記モノマーを、モノマーに可溶な重合開始剤存在下で、水等の溶媒中で重合させる、重合開始剤としては、例えば、ラジカル重合開始剤を用いることができる。ラジカル重合開始剤としては特に制限はなく、通常使用される、過酸化物等があげられ、例えば、熱により遊離ラジカルを発生させる有機過酸化物やアゾ系開始剤を用いることができる。
 有機過酸化物としては例えば、ベンゾイルパーオキサイド、イソブチルパーオキサイド、メチルエチルケトンパーオキサイド、t-ブチルハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド等が挙げられる。アゾ系開始剤としては、2,2’-アゾビスイソブチロニトリル(アゾイソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(4-メチキシ-2,4-ジメチルバレロニトリル)、ジメチル-2,2’-アゾビスイソブチレート等が挙げられる。
 溶媒は、水の他に有機溶剤を含めることができる。有機溶剤としては、例えば、メタノール、エタノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、t-ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、1,4-ブタンジオール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;酢酸エチル等のアステル類;イソオクタン、シクロへキサン等の(シクロ)パラフィン類;ベンゼン、トルエン等の芳香族炭化水素類などを挙げることができる。これらは単独で用いても2種以上を併用してもよい。重合開始剤の添加量は特に制限はなく、形成される微粒子の屈折率等を考慮して適宜調整することができる。一般にモノマー100質量部に対して0.01~10質量部であり、好ましくは、モノマー100質量部に対して、0.01~2質量部、特に、0.1~1質量部である。
 アクリル系樹脂からなる微粒子の屈折率は、特に制限はないが、封止膜のエチレン-極性モノマー共重合体を含む樹脂材料の屈折率と比較して高過ぎると、反射により白濁し、透明性が低下し、ヘイズ値も大きくなることになる。従って、太陽電池用封止膜の透明性に影響を与えないように、上記樹脂材料と屈折率が同等またはそれ以下のアクリル系樹脂として、(メタ)アクリル酸メチルを重合したポリ(メタ)アクリル酸メチルを主成分とする樹脂が好ましい。
 本発明において、波長変換材料は、上述の通り、微粒子に含有されていても良く、担持されていても良い。微粒子に含有させる場合は、例えば、上述のアクリル系樹脂からなる微粒子を形成する際に、重合性のモノマーとともに、波長変換材料を混合して製造する方法、溶解した樹脂に波長変換材料を混合して微粒子化する方法等が挙げられる。特に、重合性のモノマーと波長変換材料を混合して製造する方法が好ましい。
 また、波長変換材料を微粒子に担持させる場合は、例えば、波長変換材料をアセトン、トルエン等の溶剤に溶解し、微粒子と混合した後乾燥させる方法等が挙げられる。
 微粒子に含有させるか、又は担持させる波長変換材料の量には特に制限はない。微粒子における波長変換材料の含有率が高い方が、発光強度が高くなり、耐光性、耐熱性も高くなる傾向がある。一方、含有率が高過ぎると、透明性に影響を与える場合があり、コスト的にも不利となる。従って、微粒子における波長変換材料の含有率は、0.01~5質量%が好ましく、0.05~2質量%がより好ましく、特に0.1~1質量%、更に0.5~1質量%、特に好ましくは0.7~1質量%である。この範囲であれば、紫外線等により波長変換効果が低下するのを防止する効果を長期に渡り維持することができる。
 波長変換材料を微粒子に含有させるか担持させる場合には、封止膜中の波長変換材料の含有量は、特に、封止膜の樹脂材料100質量部に対して0.0001~1質量部、好ましくは0.001~0.1質量部、特に0.005~0.01質量部が好ましい。
 本発明において、微粒子の形状に、特に制限はないが、分散性や光散乱性が低い点で球状が好ましい。また微粒子の平均粒子径は、特に制限はないが、大き過ぎると微粒子の質量あたりの表面積が小さくなるため、発光効率が低下する場合があり、小さ過ぎると飛散し易く、ハンドリング性が悪く、微粒子同士も結合し易くなり分散性が低下する場合がある。従って、微粒子の平均粒子径は5~200μmが好ましく、20~150μmがより好ましく、特に50~100μmが好ましい。
[樹脂材料]
 本発明の太陽電池封止膜(表面側封止膜、及び裏面側封止膜)に含まれる樹脂材料は、太陽電池用封止膜に要求される接着性、透明性等を有していれば特に制限はない。例えば、エチレン-極性モノマー共重合体、ポリビニルアセタール系樹脂(例えば、ポリビニルホルマール、ポリビニルブチラール(PVB樹脂)、変性PVB)、ポリオレフィン系樹脂等が挙げられる。本発明において、樹脂材料は、加工性に優れ、架橋剤による架橋構造を形成することができ接着性が高い封止膜とすることができる点で、エチレン-極性モノマー共重合体を含むことが好ましい。これらの樹脂は、単独で用いても、2種以上を組合せて用いても良い。
 本発明において、エチレン-極性モノマー共重合体の極性モノマーは、ビニルエステル、不飽和カルボン酸、その塩、そのエステル、そのアミド、一酸化炭素等を例示することができる。より具体的には、酢酸ビニル、プロピオン酸ビニルのようなビニルエステル、アクリル酸、メタクリル酸、フマル酸、イタコン酸、マレイン酸モノメチル、マレイン酸モノエチル、無水マレイン酸、無水イタコン酸等の不飽和カルボン酸、これら不飽和カルボン酸のリチウム、ナトリウム、カリウムなどの1価金属の塩やマグネシウム、カルシウム、亜鉛などの多価金属の塩、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸イソブチル、アクリル酸n-ブチル、アクリル酸イソオクチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソブチル、マレイン酸ジメチル等の不飽和カルボン酸エステル、一酸化炭素、二酸化硫黄などの一種又は二種以上などを例示することができる。
 エチレン-極性モノマー共重合体として、より具体的には、エチレン-酢酸ビニル共重合体のようなエチレン-ビニルエステル共重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体のようなエチレン-不飽和カルボン酸共重合体、前記エチレン-不飽和カルボン酸共重合体のカルボキシル基の一部又は全部が上記金属で中和されたアイオノマー、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-アクリル酸イソブチル共重合体、エチレン-アクリル酸n-ブチル共重合体のようなエチレン-不飽和カルボン酸エステル共重合体、エチレン-アクリル酸イソブチル-メタクリル酸共重合体、エチレン-アクリル酸n-ブチル-メタクリル酸共重合体のようなエチレン-不飽和カルボン酸エステル-不飽和カルボン酸共重合体及びそのカルボキシル基の一部又は全部が上記金属で中和されたアイオノマー等を代表例として例示することができる。
 エチレン-極性モノマー共重合体としては、JIS K7210で規定されるメルトフローレートが、35g/10分以下、特に3~6g/10分のものを使用するのが好ましい。このようなメルトフローレート有するエチレン-極性モノマー共重合体を用いることで、加工性に優れた太陽電池用封止膜とすることができる。なお、本発明において、メルトフローレート(MFR)の値は、JIS K7210に従い、190℃、荷重21.18Nの条件に基づいて測定されたものである。
 エチレン-極性モノマー共重合体としては、エチレン-酢酸ビニル共重合体(EVA)が特に好ましい。これにより、安価であり、透明性、柔軟性に優れる太陽電池用封止膜とすることができる。このような太陽電池用封止膜を用いることで、より耐久性に優れ、発電効率が高い太陽電池を製造することができる。エチレン-酢酸ビニル共重合体における酢酸ビニルの含有量は、EVAに対して20~35質量%、さらに22~30質量%、特に24~28質量%とするのが好ましい。EVAの酢酸ビニル単位の含有量が低い程、得られるシートが硬くなる傾向がある。酢酸ビニルの含有量が低過ぎると、高温で架橋硬化させる場合に、得られるシートの透明性が充分でない恐れがある。また、酢酸ビニル含有量が高過ぎるとシートの硬さが不十分となる場合がある。
 本発明の太陽電池用封止膜には、必要に応じて、架橋剤、架橋助剤、接着向上剤等を添加することができる。
[架橋剤]
 架橋剤は、樹脂材料の架橋構造を形成することができるもので、特に上記樹脂材料がエチレン-極性モノマー共重合体を含む場合に有効である。これにより太陽電池用封止膜の強度、接着性及び耐久性を向上することができる。架橋剤は、有機過酸化物又は光重合開始剤を用いることが好ましい。なかでも、接着力、透明性、耐湿性、耐貫通性の温度依存性が改善された封止膜が得られることから、有機過酸化物を用いるのが好ましい。
 前記有機過酸化物としては、100℃以上の温度で分解してラジカルを発生するものであれば、どのようなものでも使用することができる。有機過酸化物は、一般に、成膜温度、組成物の調整条件、硬化温度、被着体の耐熱性、貯蔵安定性を考慮して選択される。特に、半減期10時間の分解温度が70℃以上のものが好ましい。
 前記有機過酸化物としては、樹脂の加工温度・貯蔵安定性の観点から例えば、ベンゾイルパーオキサイド系硬化剤、tert-ヘキシルパーオキシピバレート、tert-ブチルパーオキシピバレート、3,5,5-トリメチルヘキサノイルパーオキサイド、ジ-n-オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、スクシニックアシドパーオキサイド、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、tert-ヘキシルパーオキシ-2-エチルヘキサノエート、4-メチルベンゾイルパーオキサイド、tert-ブチルパーオキシ-2-エチルヘキサノエート、m-トルオイル+ベンゾイルパーオキサイド、ベンゾイルパーオキサイド、1,1-ビス(tert-ブチルパーオキシ)-2-メチルシクロヘキサン、1,1-ビス(tert-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(tert-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(tert-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(tert-ブチルパーオキシ)シクロヘキサン、2,2-ビス(4,4-ジ-tert-ブチルパーオキシシクロヘキシル)プロパン、1,1-ビス(tert-ブチルパーオキシ)シクロドデカン、tert-ヘキシルパーオキシイソプロピルモノカーボネート、tert-ブチルパーオキシマレイックアシド、tert-ブチルパーオキシ-3,3,5-トリメチルヘキサン、tert-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ジ(メチルベンゾイルパーオキシ)ヘキサン、tert-ブチルパーオキシイソプロピルモノカーボネート、tert-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、tert-ヘキシルパーオキシベンゾエート、2,5-ジ-メチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン等が挙げられる。
 ベンゾイルパーオキサイド系硬化剤としては、70℃以上の温度で分解してラジカルを発生するものであればいずれも使用可能であるが、半減期10時間の分解温度が50℃以上のものが好ましく、調製条件、成膜温度、硬化(貼り合わせ)温度、被着体の耐熱性、貯蔵安定性を考慮して適宜選択できる。使用可能なベンゾイルパーオキサイド系硬化剤としては、例えば、ベンゾイルパーオキサイド、2,5-ジメチルヘキシル-2,5-ビスパーオキシベンゾエート、p-クロロベンゾイルパーオキサイド、m-トルオイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、t-ブチルパーオキシベンゾエート等が挙げられる。ベンゾイルパーオキサイド系硬化剤は1種でも2種以上を組み合わせて使用してもよい。
 有機過酸化物として、特に、2,5-ジメチル-2,5ジ(tert-ブチルパーオキシ)ヘキサン、1,1-ビス(tert-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、tert-ブチルパーオキシ-2-エチルヘキシルモノカーボネートが好ましい。これにより優れた絶縁性を有する積層体形成用シートが得られる。このようなシートは太陽電池用封止膜として用いた場合に有効である。
 有機過酸化物の含有量は特に制限はないが、樹脂材料100質量部に対して、好ましくは0.1~5質量部、より好ましくは0.2~3質量部であることが好ましい。
 また、光重合開始剤としては、公知のどのような光重合開始剤でも使用することができるが、配合後の貯蔵安定性の良いものが望ましい。このような光重合開始剤としては、例えば、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-(4-(メチルチオ)フェニル)-2-モルホリノプロパン-1などのアセトフェノン系、ベンジルジメチルケタ-ルなどのベンゾイン系、ベンゾフェノン、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノンなどのベンゾフェノン系、イソプロピルチオキサントン、2-4-ジエチルチオキサントンなどのチオキサントン系、メチルフェニルグリオキシレ-トなどが使用できる。好ましくは、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-(4-(メチルチオ)フェニル)-2-モルホリノプロパン-1、ベンゾフェノン等が挙げられる。これら光重合開始剤は、必要に応じて、4-ジメチルアミノ安息香酸のような安息香酸系又は、第3級アミン系などの公知慣用の光重合促進剤の1種または2種以上を任意の割合で混合して使用することができる。また、光重合開始剤のみの1種単独または2種以上の混合で使用することができる。前記光重合開始剤の含有量は特に制限はないが、樹脂材料100質量部に対して0.5~5.0質量部であることが好ましい。
[架橋助剤]
 架橋助剤は、樹脂材料のゲル分率を向上させ、太陽電池用封止膜の接着性及び耐久性を向上させることができる。
 前記架橋助剤(官能基としてラジカル重合性基を有する化合物)としては、トリアリルシアヌレート、トリアリルイソシアヌレート等の3官能の架橋助剤の他、(メタ)アクリルエステル(例、NKエステル等)の単官能又は2官能の架橋助剤等を挙げることができる。なかでも、トリアリルシアヌレートおよびトリアリルイソシアヌレートが好ましく、特にトリアリルイソシアヌレートが好ましい。
 前記架橋助剤の含有量は、樹脂材料100質量部に対して、一般に10質量部以下、好ましくは0.1~5質量部、更に好ましくは0.1~2.5質量部で使用される。これにより、更に接着性に優れる太陽電池用封止膜が得られる。
[接着向上剤]
 接着向上剤としては、シランカップリング剤を用いることができる。これにより、得られる太陽電池用封止膜の接着力を、更に向上させることができる。前記シランカップリング剤としては、γ-クロロプロピルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリクロロシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシランを挙げることができる。これらシランカップリング剤は、単独で使用しても、又は2種以上組み合わせて使用しても良い。なかでも、γ-メタクリロキシプロピルトリメトキシシランが特に好ましく挙げられる。前記シランカップリング剤の含有量は樹脂材料100質量部に対して0.1~0.7質量部、特に0.3~0.65質量部であることが好ましい。
[その他]
 本発明の太陽電池用封止膜を形成する組成物は、膜の種々の物性(機械的強度、接着性、透明性等の光学的特性、耐熱性、架橋速度等)の改良あるいは調整、特に機械的強度の改良のため、必要に応じて、可塑剤、アクリロキシ基含有化合物、メタクリロキシ基含有化合物、エポキシ基含有化合物及び/又は老化防止剤などの各種添加剤をさらに含んでいてもよい。
[太陽電池用封止膜の形成]
 上述した太陽電池用封止膜を形成するには、公知の方法に準じて行えばよい。例えば、上記の各材料をスーパーミキサー(高速流動混合機)、ロールミル等を用いて公知の方法で混合した組成物を通常の押出成形、又はカレンダ成形(カレンダリング)等により成形してシート状物を得る方法により製造することができる。また、前記組成物を溶剤に溶解させ、この溶液を適当な塗布機(コーター)で適当な支持体上に塗布、乾燥して塗膜を形成することによりシート状物を得ることもできる。尚、製膜時の加熱温度は、架橋剤が反応しない或いはほとんど反応しない温度とすることが好ましい。例えば、50~90℃、特に40~80℃とするのが好ましい。表面側封止膜の厚さは、特に制限されないが、50μm~2mmの範囲であればよい。
[太陽電池]
 本発明の太陽電池は、図1に示すように、太陽電池素子14を表面側透明保護部材11と裏面側保護部材12との間に二枚一対の封止膜(表面側封止膜13A及び裏面側封止膜13B)を介在させて封止したものである。そして、表面側封止膜13A(太陽電池素子14と表面側保護部材11との間の封止膜)、及び裏面側封止膜13B(太陽電池素子14と裏面側保護部材12との間の封止膜)が、本発明の一対の太陽電池用封止膜が用いられている。
 本発明の太陽電池において、太陽電池素子を十分に封止するには、図1に示すように表面側透明保護部材11、表面側封止膜13A、太陽電池素子14、裏面側封止膜13B及び裏面側保護部材12を積層し、加熱加圧など常法に従って、封止膜を架橋硬化させればよい。
 前記加熱加圧するには、例えば、樹脂材料としてエチレン-極性モノマー共重合体を用いる場合、前記積層体を、真空ラミネータで温度135~180℃、さらに140~180℃、特に155~180℃、脱気時間0.1~5分、プレス圧力0.1~1.5kg/cm2、プレス時間5~15分で加熱圧着すればよい。この加熱加圧時に、表面側封止膜13A及び裏面側封止膜13Bに含まれるエチレン-極性モノマー共重合体を架橋させることにより、表面側封止膜13A及び裏面側封止膜13Bを介して、表面側透明保護部材11、裏面側透明部材12、及び太陽電池素子14を一体化させて、太陽電池素子14を封止することができる。
 本発明の太陽電池に使用される表面側透明保護部材11は、通常珪酸塩ガラスなどのガラス基板であるのがよい。ガラス基板の厚さは、0.1~10mmが一般的であり、0.3~5mmが好ましい。ガラス基板は、一般に、化学的に、或いは熱的に強化させたものであってもよい。
 本発明で使用される裏面側保護部材12は、一般に、ポリエチレンテレフタレート(PET)などのプラスチックフィルムである。反射性を高めるため、二酸化チタン(チタン白)等の白色顔料を含有させても良い。
 本発明の太陽電池においては、表面側封止膜13Aに含まれる波長変換材料により、発電効率が向上され、裏面側封止膜13Bに含まれる無機系紫外線遮蔽剤により裏面側保護部材12が紫外線から保護されている。そして、有機系紫外線吸収剤が実質的に含まれておらず、無機系紫外線遮蔽剤は表面側封止膜13Aには移行しないので、波長変換材料による発電効率の向上効果が維持されている。従って、本発明の太陽電池は、発電効率が高く、その高い発電効率が保管又は使用中に維持され、且つ耐候性に優れた太陽電池であるといえる。
 なお、本発明の太陽電池は、上述のような一対の太陽電池用封止膜に特徴を有する。従って、表面側透明保護部材、裏面側保護部材、及び太陽電池素子等の太陽電池用封止膜以外の部材については、従来公知の太陽電池と同様の構成を有していればよく、特に制限されない。
 以下、本発明を実施例により詳細に説明する。
1.波長変換材料(1)含有微粒子1の調製
 メタクリル酸メチル95質量部、エチレングリコールジメタクリレート5質量部、波長変換材料(1)(Eu(hfa)(TPPO)、ルミシスE-300(セントラルテクノ社製)(上記式(1)のRが全て水素原子であり、nが1であるもの))0.1質量部及び開始剤を用い、常法により懸濁重合を行い、平均粒子径が100μmの球状微粒子(波長変換材料(1)含有微粒子1)を得た。
2.波長変換材料(1)含有微粒子2の調製
 上記1.において、ルミシスE-300を0.05質量部で配合したこと以外は上記1.と同様に波長変換材料(1)含有微粒子2を作製した。
3.波長変換材料(1)含有微粒子3の調製
 上記1.において、ルミシスE-300を0.5質量部で配合したこと以外は上記1.と同様に波長変換材料(1)含有微粒子3を作製した。
4.波長変換材料(1)含有微粒子4の調製
 上記1.において、ルミシスE-300を1質量部で配合したこと以外は上記1.と同様に波長変換材料(1)含有微粒子4を作製した。
5.波長変換材料(1)担持微粒子の調製
 ポリメタクリル酸メチル樹脂微粒子(根上工業株式会社製、平均粒子径100μm)に、波長変換材料(1)、Eu(hfa)(TPPO)、ルミシスE-300(セントラルテクノ社製))のアセトン溶液を添加し(微粒子100質量部に対してユウロピウム錯体0.1質量部となるように添加)、撹拌後、乾燥し、球状微粒子を得た。
6.太陽電池用封止膜の作製
 下記表に示す配合で各材料をロールミルに供給し、70℃において混練して各太陽電池用封止膜組成物(表面側封止膜、裏面側封止膜)を調製した。この太陽電池用封止膜組成物を、70℃においてカレンダ成形し、放冷後、太陽電池用封止膜(厚さ0.5mm)を作製した。
7.モジュールモデルサンプルの作製
 作製した太陽電池用封止膜を下記表に示す各実施例、比較例の組合せで表面側封止膜及び裏面側封止膜を一対として積層し、それを2枚の白板ガラス(厚さ3.2mm)で挟み、得られた積層体を真空ラミネータを用いて90℃において真空時間2分、プレス時間8分で圧着した後、155℃のオーブン中で45分間加熱して架橋硬化させることにより、サンプルを作製した。
(評価方法)
(1)蛍光強度
 上記サンプルについて、分光光度計(日立ハイテクノロジーズ社製、F-7000)を用いて蛍光強度を測定した。測定条件:ホトマル電圧400V、励起側スリット20nm、蛍光側スリット10nm、スキャンスピード240nm/min。照射波長は波長変換材料(1)の場合は325nm、波長変換材料(2)及び(3)の場合は335nmとした。なお、各波長変換材料自体の励起ピーク波長は、上記各照射波長よりも短波長側に位置しているが、白板ガラスの光線透過率(白板ガラスでの吸収)が紫外線領域に存在しており、白板ガラスの吸収は短波長側にかけて強くなる傾向がある。したがって、短波長側の紫外線は強く吸収され、合わせガラス構造の試験では見かけ励起のピーク波長が長波長側にシフトすることから、各照射波長を上記のとおりとした。
 波長をX軸、発光量をY軸に表した関数f(x)の、発光ピークの開始波長から終了波長における曲線と関数f(x)上のX=XとXの2点を結ぶ直線により囲まれる領域の面積を算出し、蛍光強度とした。
(2)保管試験
 上記サンプルについて、温度30℃、湿度60%RH環境下に30日間保管し、保管前後の蛍光強度から残存率を算出した。
(3)耐紫外線(UV)性
 上記サンプルについて、紫外線ランプ(スーパーUV、岩崎電気製)を用い、ブラックパネル温度63℃の条件下において、1000W/cmの紫外線を照射する光源から235mmの位置に対向させて配置し、紫外線を照射した場合に、紫外線照射前の蛍光強度に対して30%まで低下するのに要する時間を測定した。
(評価結果)

 各評価結果を表に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008



 上記表に示したように、裏面側封止膜に有機系紫外線吸収剤を含有させた比較例においては、保管試験後に表面側封止膜に含有させた波長変換材料の蛍光強度が低下した。
 一方、裏面側封止膜に無機系紫外線遮蔽剤を含有させた実施例においては、保管試験後に表面側封止膜に含有させた波長変換材料の蛍光強度はほとんど低下しなかった。なお、耐UV性試験においては、波長変換材料(1)を用いた実施例の場合に蛍光強度がより残存していた。
 なお、本発明は上記の実施の形態の構成及び実施例に限定されるものではなく、発明の要旨の範囲内で種々変形が可能である。
 本発明により、波長変換材料により太陽電池素子の発電効率が向上されており、高い発電効率が長期間にわたって維持される太陽電池を提供することができる。
 11、21       表面側透明保護部材
 12、22       裏面側保護部材
 13A、23A     表面側封止膜
 13B、23B     裏面側封止膜
 14、24       太陽電池素子

Claims (13)

  1.  太陽電池素子を表面側透明保護部材と裏面側保護部材との間に封止して太陽電池を構成するための二枚一対の太陽電池用封止膜であって、
     前記太陽電池素子と前記表面側保護部材との間の表面側封止膜が、樹脂材料、及び紫外領域の光線を可視領域又は近赤外領域の波長の光線に変換する波長変換物質を含み、前記太陽電池素子と前記裏面側保護部材との間の裏面側封止膜が、樹脂材料、及び無機系紫外線遮蔽剤を含み、且つ前記表面側封止膜及び前記裏面側封止膜が、有機系紫外線吸収剤を実質的に含まないことを特徴とする一対の太陽電池用封止膜。
  2.  前記無機系紫外線遮蔽剤が、二酸化チタン微粒子、酸化亜鉛微粒子、及び二酸化セリウム微粒子からなる群から選択される少なくとも1種の微粒子である請求項1に記載の一対の太陽電池用封止膜。
  3.  前記波長変換材料が、下記式(I):
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは、それぞれ独立して水素原子又は任意に置換されていても良い炭素原子数1~20の炭化水素基を表し、nは、1~4の整数である。]
    で表されるユウロピウム錯体である請求項1又は2に記載の一対の太陽電池用封止膜。
  4.  前記式(I)において、Rが全て水素原子であり、nが1である請求項3に記載の一対の太陽電池用封止膜。
  5.  前記波長変換材料の含有量が、前記樹脂材料100質量部に対して、0.0001~1質量部である請求項1~4のいずれか1項に記載の一対の太陽電池用封止膜。
  6.  前記無機系紫外線遮蔽剤の含有量が、前記樹脂材料100質量部に対して、0.1~10質量部である請求項1~5のいずれか1項に記載の一対の太陽電池用封止膜。
  7.  前記波長変換材料が、アクリル系樹脂からなる微粒子中に含有されているか、又は当該微粒子に担持されており、且つ前記微粒子が、前記樹脂材料中に分散されている請求項1~6のいずれか一項に記載の太陽電池用封止膜。
  8.  前記波長変換材料が、前記微粒子中に含有されている請求項7に記載の太陽電池用封止膜。
  9.  前記アクリル系樹脂が、ポリ(メタ)アクリル酸メチルを主成分とする樹脂である請求項7又は8に記載の太陽電池用封止膜。
  10.  前記微粒子が、球状である請求項7~9のいずれか1項に記載の太陽電池用封止膜。
  11.  前記樹脂材料が、エチレン-極性モノマー共重合体を含む樹脂材料である請求項1~10のいずれか1項に記載の一対の太陽電池用封止膜。
  12.  前記エチレン-極性モノマー共重合体が、エチレン-酢酸ビニル共重合体である請求項11に記載の一対の太陽電池用封止膜。
  13.  太陽電池素子を表面側透明保護部材と裏面側保護部材との間に二枚一対の封止膜を介在させて、封止してなる太陽電池において、
     前記太陽電池素子と前記表面側保護部材との間の表面側封止膜、及び前記太陽電池素子と前記裏面側保護部材との間の裏面側封止膜が、請求項1~12のいずれか1項に記載の一対の太陽電池用封止膜であることを特徴とする太陽電池。
PCT/JP2014/075660 2013-09-26 2014-09-26 太陽電池用封止膜及びこれを用いた太陽電池 WO2015046442A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015539386A JPWO2015046442A1 (ja) 2013-09-26 2014-09-26 太陽電池用封止膜及びこれを用いた太陽電池
CN201480053334.3A CN105580143A (zh) 2013-09-26 2014-09-26 太阳能电池用密封膜及使用其的太阳能电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-199300 2013-09-26
JP2013199300 2013-09-26

Publications (1)

Publication Number Publication Date
WO2015046442A1 true WO2015046442A1 (ja) 2015-04-02

Family

ID=52743568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075660 WO2015046442A1 (ja) 2013-09-26 2014-09-26 太陽電池用封止膜及びこれを用いた太陽電池

Country Status (3)

Country Link
JP (1) JPWO2015046442A1 (ja)
CN (1) CN105580143A (ja)
WO (1) WO2015046442A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160370611A1 (en) * 2015-06-17 2016-12-22 Boe Technology Group Co., Ltd. Sealant curing device and packaging method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107393990A (zh) * 2017-08-01 2017-11-24 安徽恒瑞新能源股份有限公司 一种太阳能电池封装方法
CN109545981A (zh) * 2018-11-27 2019-03-29 江苏拓正茂源新能源有限公司 一种有机太阳能电池及其制备方法
CN114361279B (zh) * 2022-01-11 2024-01-05 奎达高分子材料科技(宜兴)有限公司 一种pvb双玻光伏组件结构及压装工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269373A (ja) * 2005-03-25 2006-10-05 Osaka Univ 色素増感太陽電池
WO2008110567A1 (en) * 2007-03-13 2008-09-18 Basf Se Photovoltaic modules with improved quantum efficiency
JP2011119559A (ja) * 2009-12-07 2011-06-16 Bridgestone Corp 太陽電池用封止膜及び太陽電池
JP2011210891A (ja) * 2010-03-29 2011-10-20 Hitachi Chem Co Ltd 波長変換型太陽電池封止シート、及び太陽電池モジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269373A (ja) * 2005-03-25 2006-10-05 Osaka Univ 色素増感太陽電池
WO2008110567A1 (en) * 2007-03-13 2008-09-18 Basf Se Photovoltaic modules with improved quantum efficiency
JP2011119559A (ja) * 2009-12-07 2011-06-16 Bridgestone Corp 太陽電池用封止膜及び太陽電池
JP2011210891A (ja) * 2010-03-29 2011-10-20 Hitachi Chem Co Ltd 波長変換型太陽電池封止シート、及び太陽電池モジュール

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160370611A1 (en) * 2015-06-17 2016-12-22 Boe Technology Group Co., Ltd. Sealant curing device and packaging method
US9897829B2 (en) * 2015-06-17 2018-02-20 Boe Technology Group Co., Ltd. Sealant curing device and packaging method

Also Published As

Publication number Publication date
JPWO2015046442A1 (ja) 2017-03-09
CN105580143A (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
WO2014054720A1 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP4479933B2 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
WO2015046442A1 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP2012004146A (ja) 太陽電池用封止膜及びこれを用いた太陽電池
WO2015108096A1 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
WO2015034060A1 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP5788721B2 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
WO2015194594A1 (ja) 波長変換材料及びこれを含む太陽電池用封止膜
WO2015194595A1 (ja) 波長変換材料及びこれを含む太陽電池用封止膜
JP2014015544A (ja) エチレン−酢酸ビニル共重合体シート、並びにこれを用いた合わせガラス用中間膜、合わせガラス、太陽電池用封止膜及び太陽電池
JP2014209626A (ja) 太陽電池用封止膜及びこれを用いた太陽電池
WO2016140360A1 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP2011119559A (ja) 太陽電池用封止膜及び太陽電池
JP5788712B2 (ja) エチレン−極性モノマー共重合体シート、並びにこれを用いた合わせガラス用中間膜、合わせガラス、太陽電池用封止膜及び太陽電池
CN113604107A (zh) 水性油墨、胶膜及其应用
WO2010013659A1 (ja) 太陽電池用封止膜、及びこれを用いた太陽電池
WO2015194592A1 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP2014197683A (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP2016004895A (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP2015095505A (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP5869211B2 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP2016004893A (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP2010177398A (ja) 太陽電池用封止膜、及びこれを用いた太陽電池
JP5852409B2 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
WO2016104175A1 (ja) 太陽電池用封止膜及びこれを用いた太陽電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480053334.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848699

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539386

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848699

Country of ref document: EP

Kind code of ref document: A1