WO2015194592A1 - 太陽電池用封止膜及びこれを用いた太陽電池 - Google Patents

太陽電池用封止膜及びこれを用いた太陽電池 Download PDF

Info

Publication number
WO2015194592A1
WO2015194592A1 PCT/JP2015/067474 JP2015067474W WO2015194592A1 WO 2015194592 A1 WO2015194592 A1 WO 2015194592A1 JP 2015067474 W JP2015067474 W JP 2015067474W WO 2015194592 A1 WO2015194592 A1 WO 2015194592A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
sealing film
monomer
acrylic resin
methacrylate
Prior art date
Application number
PCT/JP2015/067474
Other languages
English (en)
French (fr)
Inventor
央尚 片岡
恵子 西田
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2016529404A priority Critical patent/JPWO2015194592A1/ja
Publication of WO2015194592A1 publication Critical patent/WO2015194592A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5397Phosphine oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar cell sealing film that includes a wavelength conversion material, thereby increasing light rays contributing to power generation of a solar cell element and improving power generation efficiency.
  • a solar cell generally includes a surface-side transparent protective member 11 made of a glass substrate, a surface-side sealing film 13A made of a resin material such as ethylene-vinyl acetate copolymer (EVA), a silicon crystal
  • a solar battery cell 14 such as a system power generation element, a back surface side sealing film 13B, and a back surface side protective member (back cover) 12 are laminated in this order, deaerated under reduced pressure, and heated and pressurized to seal the surface side. It is manufactured by cross-linking and hardening the stop film 13A and the back surface side sealing film 13B.
  • any type of solar cell element such as a silicon crystal power generation element has a low spectral sensitivity to light in the ultraviolet region, and the problem that solar energy cannot be effectively utilized is known. It has been.
  • a layer containing a material (wavelength conversion material) that converts light in the ultraviolet region into light in the visible region or near-infrared region is provided on the light receiving surface side of the solar battery cell.
  • a technique for improving the power generation efficiency of a solar cell by emitting light having a wavelength that greatly contributes to the power generation of the solar cell.
  • a fluorescent substance such as an organic rare earth complex used as a wavelength conversion material has a problem that it is low in dispersibility or easily deteriorated in a resin material for a sealing film such as EVA.
  • a fluorescent substance such as an organic rare earth complex having an absorption peak at 300 to 450 nm and a fluorescence peak at 500 to 900 nm is included in resin particles composed of a vinyl compound or the like.
  • a solar cell sealing film in which the particles thus dispersed are dispersed in a sealing film.
  • an object of the present invention is a solar cell encapsulating film containing resin particles in which an organic rare earth complex is encapsulated in an acrylic resin as a wavelength conversion material, which prevents deterioration of the organic rare earth complex and improves power generation efficiency. It is providing the sealing film for solar cells which can maintain an effect for a long period of time.
  • Another object of the present invention is to provide a solar cell that can maintain high power generation efficiency for a long period of time by using the solar cell sealing film.
  • the object is a sealing film for a solar cell containing a resin material containing an olefin (co) polymer and a wavelength conversion material, wherein the wavelength conversion material is a resin particle made of an acrylic resin encapsulating an organic rare earth complex.
  • the acrylic resin contains a hydrophobic monomer having a higher n-octanol / water partition coefficient than methyl methacrylate as a monomer, and further reacts with an acrylic resin composition containing a crosslinking agent and an azo polymerization initiator. This is achieved by a sealing film for solar cells, which is a polymer obtained.
  • methyl methacrylate used for the preparation of the acrylic resin is highly hydrophilic, so that the resulting acrylic resin is likely to absorb moisture. It was considered that the organic rare earth complex deteriorates due to generation of acid by hydrolysis of the constituents of the resin composition. Therefore, in the present invention, the water resistance of the resulting acrylic resin is improved by adding a hydrophobic monomer as a monomer to the acrylic resin composition. As a result, the hygroscopicity of the acrylic resin is suppressed, acid is hardly generated, and deterioration of the organic rare earth complex included in the acrylic resin can be prevented. Therefore, as a wavelength conversion material, a solar cell sealing film containing resin particles in which an organic rare earth complex is encapsulated in an acrylic resin can maintain the effect of improving power generation efficiency for a long period of time. It is.
  • Preferred embodiments of the solar cell sealing film according to the present invention are as follows.
  • the acrylic resin composition further contains methyl methacrylate as a monomer.
  • the transparency of the acrylic resin can be improved.
  • the content of the hydrophobic monomer in the acrylic resin composition is 1 to 125 parts by mass with respect to 100 parts by mass of the methyl methacrylate. While sufficiently improving the water resistance of the resulting acrylic resin, it is possible to ensure the transparency of the solar cell sealing film containing resin particles.
  • the hydrophobic monomer is at least one monomer selected from the group consisting of a (meth) acrylate monomer having a hydroxyalkyl group having 4 or more carbon atoms as an alcohol residue, a styrene monomer, and a fluorine-containing monomer. It is. It is an effective hydrophobic monomer.
  • the hydrophobic monomer is styrene, n-butyl methacrylate, isobutyl methacrylate, trifluoromethyl methacrylate, trifluoroethyl acrylate, trifluoroethyl methacrylate and trifluoroisobutyl methacrylate, trifluoroisobutyl acrylate, perfluorohexyl ethyl methacrylate, It contains one or more monomers selected from the group consisting of perfluorohexyl ethyl acrylate, perfluoro octyl ethyl methacrylate, and perfluoro octyl ethyl acrylate.
  • the organic rare earth complex has the following formula (I): [In the formula, each R independently represents a hydrogen atom or an optionally substituted hydrocarbon group having 1 to 20 carbon atoms, and n is an integer of 1 to 4.] It is a europium complex represented by this.
  • the europium complex is preferable as an organometallic complex to be contained in the solar cell sealing film because it has excellent ultraviolet resistance, but it may be deteriorated by acid.
  • the organic rare earth complex is a europium complex in which all Rs are hydrogen atoms and n is 1 in the formula (I).
  • m-LLDPE ethylene / ⁇ -olefin copolymer
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • olefin (co) polymer is polymerized using a metallocene catalyst
  • the olefin (co) polymer is an ethylene / ⁇ -olefin copolymer (m-LLDPE) and / or an ethylene-polar monomer copolymer polymerized using a metallocene catalyst. It is excellent in processability, can form a crosslinked structure with a crosslinking agent, and can be a sealing film with high adhesiveness.
  • the ethylene-polar monomer copolymer is an ethylene-vinyl acetate copolymer or an ethylene-methyl (meth) acrylate copolymer (EMMA). It can be set as the sealing film which was more excellent in transparency and excellent in the softness
  • a solar cell characterized in that a solar cell element is sealed with the solar cell sealing film of the present invention. Since the solar cell sealing film of the present invention is used in the solar cell of the present invention, the power generation efficiency of the solar cell element is improved by the wavelength conversion material, and the high power generation efficiency is maintained for a long time. It can be said that it is a battery.
  • the solar cell sealing film containing the resin particles as a wavelength conversion material is a solar cell sealing film capable of maintaining the effect of improving the power generation efficiency of the solar cell element for a long period of time.
  • the solar cell of this invention is a solar cell by which high electric power generation efficiency is maintained for a long period of time.
  • the solar cell sealing film of the present invention contains at least a resin material containing an olefin (co) polymer and resin particles made of an acrylic resin including an organic rare earth complex as a wavelength conversion material.
  • the acrylic resin contains a hydrophobic monomer having a higher n-octanol / water partition coefficient than methyl methacrylate as a monomer, and further obtained by reacting an acrylic resin composition containing a crosslinking agent and an azo polymerization initiator. Polymer.
  • the acrylic resin is generally a resin obtained by polymerizing a (meth) acrylic monomer such as methyl methacrylate as a main component.
  • Methyl methacrylate is a (meth) acrylic monomer generally used for preparing acrylic resins.
  • methyl methacrylate has high hydrophilicity, the resulting acrylic resin is likely to absorb moisture, and the organic rare earth complex in the acrylic resin may deteriorate due to generation of acid due to hydrolysis of the components of the resin composition. is there.
  • the water resistance of the acrylic resin obtained is improved by making the composition for acrylic resins contain a hydrophobic monomer as a monomer.
  • (Meth) acryl means “acryl and methacryl”
  • (meth) acrylate means “acrylate and methacrylate”.
  • the sealing film for solar cells of the present invention contains the resin particles made of the acrylic resin encapsulating an organic rare earth complex as a wavelength conversion material, the effect of improving the power generation efficiency can be maintained for a long period of time. It is a sealing film for solar cells.
  • the hydrophobic monomer refers to a polymerizable monomer having a property of phase separation when mixed with water, and has no polar group in the structure or has no polarity even if it has a polar group in the structure.
  • N-octanol / water partition coefficient is higher than methyl methacrylate (partition coefficient of methyl methacrylate: 1.38).
  • a (meth) acrylate monomer having a hydroxyalkyl group having 4 or more carbon atoms, preferably 4 to 20 carbon atoms as an alcohol residue, a styrene monomer, a fluorine-containing monomer and the like are preferable.
  • Hydrophobic (meth) acrylate monomers include n-butyl (meth) acrylate (partition coefficient: 2.88), isobutyl (meth) acrylate, dodecyl (meth) acrylate, stearyl (meth) acrylate, 2-ethylhexyl (meth) ) Acrylate and the like.
  • the styrene monomer is a polymerizable monomer containing a styrene structure, and includes styrene (distribution coefficient: 2.95), o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ - Examples thereof include methyl styrene, p-methoxy styrene, p-tert-butyl styrene, p-phenyl styrene, o-chloro styrene, m-chloro styrene, p-chloro styrene and the like.
  • trifluoromethyl (meta ) Atacrylate trifluoroethyl (meth) a Relate (partition coefficient: 1.51)
  • trifluoroacetic isobutyl (meth) acrylate trifluorohexylethyl (meth) acrylate
  • perfluorooctyl ethyl (meth) acrylate may be used alone or in combination of two or more.
  • the hydrophobic monomer preferably includes a styrene monomer and a fluorine-containing monomer in that the water resistance of the resulting acrylic resin can be further improved.
  • styrene, n-butyl methacrylate, isobutyl methacrylate, trifluoromethyl methacrylate are preferable.
  • the hydrophobic monomer as the monomer in the acrylic resin composition may reduce the transparency of the acrylic resin, it is preferable to further contain methyl methacrylate as the monomer.
  • the content of the hydrophobic monomer in the acrylic resin composition is not particularly limited, but if it is too small, the effect of improving water resistance is low, and if it is too large, the acrylic resin obtained has a reduced transparency and a change in refractive index.
  • the transparency of the sealing film containing the resin particles may be reduced. Accordingly, the content of the hydrophobic monomer is preferably 1 to 125 parts by mass, more preferably 5 to 80 parts by mass, and particularly preferably 10 to 40 parts by mass with respect to 100 parts by mass of methyl methacrylate.
  • the resin particles are made of an acrylic resin containing an organic rare earth complex. Then, as described above, the acrylic resin reacts with the acrylic resin composition containing, as the monomer, methyl methacrylate as necessary in addition to the above hydrophobic monomer, and further containing a crosslinking agent and an azo polymerization initiator. It is a polymer obtained by this. It is preferable to use methyl methacrylate as the monomer.
  • the refractive index of the obtained acrylic resin can be made close to the resin material of the solar cell sealing film, the transparency resulting from the difference in refractive index even if the resin particles are contained in the solar cell sealing film Is less likely to occur, and a highly transparent solar cell sealing film can be obtained.
  • a crosslinking agent referred to as a monomer having a plurality of polymerizable double bonds in the present invention
  • the crosslinking agent is generally a polyfunctional monomer, and examples thereof include bifunctional (meth) acrylates containing an ethylene oxide group such as (poly) ethylene glycol di (meth) acrylate.
  • the content of the crosslinking agent in the acrylic resin composition is not particularly limited, but is preferably 0.1 to 40 parts by weight, more preferably 1 to 30 parts by weight with respect to 100 parts by weight of methyl methacrylate. 5 to 20 parts by mass is more preferable, and 6 to 20 parts by mass is particularly preferable.
  • an azo polymerization initiator used as a polymerization initiator is optimum for a polymerization reaction by suspension polymerization described later because it starts a reaction at a relatively low temperature.
  • the azo polymerization initiator is not particularly limited.
  • 2,2′-azobis (isobutyronitrile) (AIBN) 2,2′-azobis (2,4-dimethylvaleronitrile)
  • 2, Examples thereof include 2′-azobis (2-methylbutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl-2,2′-azobisisobutyrate and the like.
  • the content of the azo polymerization initiator in the acrylic resin composition is preferably 0.01 to 5% by mass, preferably 0.01 to 1% by mass with respect to 100% by mass of the (meth) acrylate monomer in the monomer. 0.25 to 0.8% by mass is particularly preferable. If the amount is less than this range, there is a possibility that the crosslinking reaction is not sufficiently performed. If the amount is more than this range, interaction occurs, and the reaction may not be sufficiently performed.
  • the polymerization initiator may contain an organic peroxide in addition to the azo polymerization initiator.
  • Polymerization initiators include benzoyl peroxide, 4-methylbenzoyl peroxide, isobutyryl peroxide, 1,1-di (t-butylperoxy) -2-methylcyclohexane, bis (4-t-butylcyclohexyl) peroxy Dicarbonate, pivaloyl t-butyl peroxide, pivaloyl t-hexyl peroxide, dilauroyl peroxide, 1,1,3,3, -tetramethylbutylperoxy-2-ethylhexanoate, t-hexylperoxy- Examples include 2-hexanoate and t-butylperoxy-2-ethylhexanoate.
  • the content of the organic peroxide in the acrylic resin composition is not particularly limited, but is preferably 0.01 to 2 parts by mass with respect to 100% by mass of the (meth) acrylate monomer in the monomer, 0.05 to 1% by mass is preferable, 0.1 to 0.5% by mass is more preferable, and 0.1 to 0.2% by mass is particularly preferable.
  • the method for polymerizing the above monomers to obtain an acrylic resin is not particularly limited, and can be performed by a conventionally known method such as suspension polymerization or emulsion polymerization.
  • suspension polymerization is preferable because it has advantages such as easy reaction control.
  • the monomer is polymerized in a solvent such as water in the presence of the polymerization initiator.
  • the solvent can include an organic solvent in addition to water.
  • organic solvent examples include alcohols such as methanol, ethanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, pentanol, ethylene glycol, propylene glycol, 1,4-butanediol; acetone, Examples thereof include ketones such as methyl ethyl ketone; astels such as ethyl acetate; (cyclo) paraffins such as isooctane and cyclohexane; aromatic hydrocarbons such as benzene and toluene. These may be used alone or in combination of two or more.
  • the temperature of the polymerization reaction can be appropriately adjusted according to the polymerization initiator used. When two or more kinds of polymerization initiators are used, the polymerization may be carried out by changing the temperature in several stages.
  • the method of encapsulating the organic rare earth complex in the acrylic resin is, for example, a method of encapsulating the resin composition obtained by dissolving or dispersing the organic rare earth complex in the acrylic resin composition by suspension polymerization or the like. Etc.
  • the shape of the resin particles is not particularly limited, but a spherical shape is preferable in terms of low dispersibility and light scattering properties.
  • the average particle diameter of the resin particles is not particularly limited, but if it is too large, the surface area per mass of the fine particles becomes small, so that the light emission efficiency may be reduced. Resin particles may be easily bonded to each other and dispersibility may be reduced. Accordingly, the average particle size of the resin particles is preferably 0.1 to 300 ⁇ m, more preferably 1 to 200 ⁇ m, and particularly preferably 10 to 150 ⁇ m.
  • the average particle diameter of the resin particles can be determined by a laser diffraction method, an image image obtained by an optical microscope or an electron microscope.
  • the organic rare earth complex can be used without any particular limitation.
  • examples thereof include lanthanoid complexes such as europium, samarium and terbium.
  • Europium complexes are particularly preferred in that the fluorescence is strong, the Stokes shift (difference between excitation maximum wavelength and emission maximum wavelength) is large, and the fluorescence lifetime is long.
  • the europium complex is composed of Eu ions (Eu 3+ ) and an organic ligand, and examples thereof include Eu (hfa) 3 (TPPO) 2 , Eu (hfa) 3 (BIPHEPO), Eu (TTA) 3 Phen and the like.
  • each R independently represents a hydrogen atom or an optionally substituted hydrocarbon group having 1 to 20 carbon atoms, and n is an integer of 1 to 4, preferably 1. .
  • the europium complex represented by this is preferable.
  • the hydrocarbon group having 1 to 20 carbon atoms may be aliphatic or aromatic, may contain an unsaturated bond or a hetero atom, and may be linear or branched.
  • alkyl group methyl group, ethyl group, propyl group etc.
  • alkenyl group vinyl group, allyl group, butenyl group etc.
  • alkynyl group ethynyl group, propynyl group, butynyl group etc.
  • cycloalkyl group cycloalkenyl group Group, phenyl group, naphthyl group, biphenyl group and the like.
  • the hydrocarbon group may be optionally substituted, and examples of the substituent include a halogen atom, a hydroxyl group, an amino group, a nitro group, and a sulfo group.
  • R in formula (I) is preferably all hydrogen atoms.
  • the europium complex of the formula (I) is preferable as an organometallic complex to be contained in a solar cell sealing film because of its excellent ultraviolet resistance, but may be deteriorated by an acid.
  • it can be set as the wavelength conversion material with higher weather resistance by preventing degradation by an acid by making it include in the said acrylic resin.
  • the above europium complex is preferably Eu (hfa) 3 (TPPO) 2 in which n in the formula (I) is 1 and all R are hydrogen atoms from the viewpoint of particularly excellent ultraviolet resistance.
  • Eu (hfa) 3 (TPPO) 2 is a europium complex in which two ligands of triphenylphosphine oxide and hexafluoroacetylacetone are coordinated to a rare earth metal europium which is a central element.
  • the content of the organic rare earth complex in the resin particles is not particularly limited as long as the effect of improving the power generation efficiency of the solar cell element can be obtained when it is contained in the solar cell sealing film.
  • the higher the organic rare earth complex content in the resin particles the higher the emission intensity, which is advantageous.
  • the content of the organic rare earth complex in the resin particles is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass, and particularly preferably 0.1 to 1% by mass.
  • the resin material of the sealing film for solar cells contains an olefin (co) polymer as a main component.
  • the olefin (co) polymer means an ethylene / ⁇ -olefin copolymer (for example, an ethylene / ⁇ -olefin copolymer (m-LLDPE) polymerized using a metallocene catalyst), polyethylene (for example, Olefin polymers such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE), etc.), polypropylene, polybutene, etc., and copolymers of olefins and polar monomers.
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • olefin (co) polymer it means a copolymer and has adhesiveness and transparency required for a sealing film for solar cells.
  • the olefin (co) polymer one of these may be used, or two or more may be mixed and used.
  • olefin (co) polymer an ethylene / ⁇ -olefin copolymer (m-LLDPE) polymerized using a metallocene catalyst, low density polyethylene (LDPE), linear low density polyethylene (LLDPE) is used.
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • an olefin (co) polymer can be formed using a metallocene catalyst because it is excellent in processability, can form a crosslinked structure with a crosslinking agent, and can form a solar cell sealing film with high adhesion.
  • a polymerized ethylene / ⁇ -olefin copolymer (m-LLDPE) and / or an ethylene-polar monomer copolymer is preferred.
  • m-LLDPE is composed mainly of a structural unit derived from ethylene, and further an ⁇ -olefin having 3 to 12 carbon atoms, such as propylene, 1-butene, 1-hexene, 1-octene, 4-methylpentene-1,
  • ethylene / ⁇ -olefin copolymer including a terpolymer having one or more kinds of structural units derived from 4-methyl-hexene-1, 4,4-dimethyl-pentene-1, or the like.
  • the ethylene / ⁇ -olefin copolymer examples include an ethylene / 1-butene copolymer, an ethylene / 1-octene copolymer, an ethylene-4-methyl-pentene-1 copolymer, an ethylene / butene / hexene copolymer. Center polymers, ethylene / propylene / octene terpolymers, ethylene / butene / octene terpolymers, and the like.
  • the content of ⁇ -olefin in the ethylene / ⁇ -olefin copolymer is preferably 5 to 40% by mass, more preferably 10 to 35% by mass, and further preferably 15 to 30% by mass. If the ⁇ -olefin content is small, the solar cell sealing film may have insufficient flexibility and impact resistance, and if it is too much, the heat resistance may be low.
  • the metallocene catalyst for polymerizing m-LLPDE a known metallocene catalyst may be used, and there is no particular limitation.
  • the metallocene catalyst is generally a compound having a structure in which a transition metal such as titanium, zirconium or hafnium is sandwiched between unsaturated cyclic compounds containing a ⁇ -electron cyclopentadienyl group or a substituted cyclopentadienyl group. And a promoter such as an aluminum compound such as alkylaluminoxane, alkylaluminum, aluminum halide, and alkylaluminum halide.
  • Metallocene catalysts are characterized by a uniform active site (single site catalyst), and usually a polymer having a narrow molecular weight distribution and an approximately equal comonomer content of each molecule is obtained.
  • the density of m-LLDPE is not particularly limited, but is preferably 0.860 to 0.930 g / cm 3.
  • the melt flow rate (MFR) of m-LLDPE is not particularly limited, but is preferably 1.0 g / 10 min or more, more preferably 1.0 to 50.0 g / 10 min. 3.0 to 30.0 g / 10 min is more preferable.
  • MFR is measured on condition of 190 degreeC and load 21.18N.
  • m-LLDPE commercially available m-LLDPE may be used.
  • Harmolex series Kernel series manufactured by Nippon Polyethylene Co., Ltd., Evolution series manufactured by Prime Polymer Co., Ltd., Excellen GMH series, Excellen FX series manufactured by Sumitomo Chemical Co., Ltd. and the like can be mentioned.
  • Examples of the polar monomer of the ethylene-polar monomer copolymer include vinyl esters, unsaturated carboxylic acids, salts thereof, esters thereof, amides thereof, and carbon monoxide. More specifically, vinyl esters such as vinyl acetate and vinyl propionate, unsaturated carboxylic acids such as acrylic acid, methacrylic acid, fumaric acid, itaconic acid, monomethyl maleate, monoethyl maleate, maleic anhydride, and itaconic anhydride.
  • Illustrative examples include one or more of unsaturated carboxylic acid esters such as n-butyl acrylate, isooctyl acrylate, methyl methacrylate, ethyl methacrylate, isobutyl methacrylate, dimethyl maleate, carbon monoxide, and sulfur dioxide. be able to.
  • ethylene-polar monomer copolymer examples include ethylene-vinyl ester copolymers such as ethylene-vinyl acetate copolymers, ethylene-acrylic acid copolymers, and ethylene-methacrylic acid copolymers.
  • the ethylene-polar monomer copolymer it is preferable to use a copolymer having a melt flow rate defined by JIS K7210 of 35 g / 10 min or less, particularly 3 to 6 g / 10 min.
  • a solar cell sealing film having excellent processability can be obtained.
  • the value of the melt flow rate (MFR) is measured based on the conditions of 190 ° C. and a load of 21.18 N according to JIS K7210.
  • ethylene-polar monomer copolymers examples include ethylene-vinyl acetate copolymer (EVA), ethylene-methyl methacrylate copolymer (EMMA), ethylene-ethyl methacrylate copolymer, and ethylene-methyl acrylate copolymer.
  • EVA ethylene-vinyl acetate copolymer
  • EMMA ethylene-methyl methacrylate copolymer
  • EMMA ethylene-ethyl methacrylate copolymer
  • ethylene-methyl acrylate copolymer examples include ethylene-methyl acrylate copolymer.
  • EVA and EMMA are particularly preferable.
  • the content of vinyl acetate in EVA is preferably 20 to 35% by mass, more preferably 22 to 30% by mass, and particularly preferably 24 to 28% by mass with respect to EVA.
  • the lower the content of EVA vinyl acetate units the harder the sheet obtained. If the content of vinyl acetate is too low, the resulting sheet may not have sufficient transparency when crosslinked and cured at high temperatures. Further, if the vinyl acetate content is too high, the hardness of the sheet may be insufficient.
  • the content of methyl methacrylate in EMMA is preferably 20 to 30% by mass, more preferably 22 to 28% by mass. If it is this range, a highly transparent sealing film will be obtained and it can be set as a solar cell with high electric power generation efficiency.
  • the density of the olefin (co) polymer is not particularly limited, but is generally 0.80 to 1.0 g / cm 3 , preferably 0.85 to 0.95 g / cm 3 .
  • resin such as polyvinyl acetal resin (for example, polyvinyl formal, polyvinyl butyral (PVB resin), modified PVB) is used as a resin material. You may mix.
  • an organic peroxide or a photopolymerization initiator is preferably contained to form a crosslinked structure of an ethylene-polar monomer copolymer.
  • an organic peroxide because a sealing film with improved temperature dependency of adhesive strength, moisture resistance, and penetration resistance can be obtained.
  • Any organic peroxide may be used as long as it decomposes at a temperature of 100 ° C. or higher to generate radicals.
  • the organic peroxide is generally selected in consideration of the film formation temperature, the adjustment conditions of the composition, the curing temperature, the heat resistance of the adherend, and the storage stability. In particular, those having a decomposition temperature of 70 hours or more with a half-life of 10 hours are preferred.
  • organic peroxide examples include 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, 2,5-dimethylhexane-2,5-dihydroperoxide, 3-di-t- Butyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne, ⁇ , ⁇ '-bis (t-butylperoxyisopropyl) benzene, n-butyl-4 , 4-bis (t-butylperoxy) butane, t-butylperoxy-2-ethylhexyl monocarbonate, t-hexylperoxyisopropyl monocarbonate, 2,2-bis (t-butylperoxy) butane, 1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) -3,3
  • the organic peroxide 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane or t-butylperoxy-2-ethylhexyl monocarbonate is particularly preferable.
  • crosslinked favorably and has the outstanding transparency is obtained.
  • the content of the organic peroxide used in the solar cell sealing film is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 3 parts by mass with respect to 100 parts by mass of the resin material. Is preferred. If the content of the organic peroxide is small, the crosslinking speed may be lowered during the crosslinking and curing, and if the content is large, the compatibility with the copolymer may be deteriorated.
  • photopolymerization initiator any known photopolymerization initiator can be used, but a photopolymerization initiator having good storage stability after blending is desirable.
  • photopolymerization initiators include 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, and 2-methyl-1- (4- (methylthio) phenyl).
  • Acetophenones such as -2-morpholinopropane-1, benzoins such as benzyldimethylketal, benzophenones such as benzophenone, 4-phenylbenzophenone and hydroxybenzophenone, thioxanthones such as isopropylthioxanthone and 2-4-diethylthioxanthone, As other special ones, methylphenylglyoxylate can be used. Particularly preferably, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4- (methylthio) phenyl) -2-morpholinopropane-1, Examples include benzophenone.
  • photopolymerization initiators may be optionally selected from one or more known photopolymerization accelerators such as a benzoic acid type such as 4-dimethylaminobenzoic acid or a tertiary amine type. It can be used by mixing at a ratio. Moreover, it can be used individually by 1 type of only a photoinitiator, or 2 or more types of mixture.
  • a photopolymerization accelerator such as a benzoic acid type such as 4-dimethylaminobenzoic acid or a tertiary amine type. It can be used by mixing at a ratio. Moreover, it can be used individually by 1 type of only a photoinitiator, or 2 or more types of mixture.
  • the content of the photopolymerization initiator is 0.1 to 5 parts by mass, preferably 0.2 to 3 parts by mass with respect to 100 parts by mass of the resin material.
  • the crosslinking adjuvant may be included as needed.
  • the crosslinking aid can improve the gel fraction of the ethylene-polar monomer copolymer and improve the adhesion and durability of the sealing film.
  • the content of the crosslinking aid is generally 10 parts by mass or less, preferably 0.1 to 5 parts by mass, more preferably 0.1 to 2.5 parts by mass with respect to 100 parts by mass of the resin material.
  • crosslinking aid generally, a compound having a radical polymerizable group as a functional group
  • a trifunctional crosslinking aid such as triallyl cyanurate and triallyl isocyanurate, and a (meth) acrylic ester (eg, NK ester) Etc.) of monofunctional or bifunctional crosslinking aids.
  • triallyl cyanurate and triallyl isocyanurate are preferable, and triallyl isocyanurate is particularly preferable.
  • the solar cell sealing film of the present invention may further contain an adhesion improver.
  • an adhesion improver a silane coupling agent can be used. Thereby, it can be set as the sealing film for solar cells which has the further outstanding adhesive force.
  • the silane coupling agent include ⁇ -chloropropyltrimethoxysilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, and ⁇ -glycidoxypropyl.
  • the content of the silane coupling agent is preferably 0.1 to 0.7 parts by mass, particularly 0.3 to 0.65 parts by mass with respect to 100 parts by mass of the resin material.
  • sealing film for solar cell of the present invention various properties (optical properties such as mechanical strength and transparency, heat resistance, light resistance, etc.) of the sealing film are improved or adjusted as necessary.
  • various additives such as a plasticizer, an acryloxy group-containing compound, a methacryloxy group-containing compound and / or an epoxy group-containing compound may be further included.
  • the composition is dissolved in a solvent (fine particles are dispersed), and this dispersion is coated on a suitable support with a suitable coating machine (coater) and dried to form a coating film to form a sheet-like material.
  • a suitable coating machine coater
  • the heating temperature at the time of film formation is a temperature at which the organic peroxide does not react or hardly reacts.
  • the temperature is preferably 50 to 90 ° C, particularly 40 to 80 ° C.
  • the thickness of the solar cell sealing film is not particularly limited, and can be appropriately set depending on the application. Generally, it is in the range of 50 ⁇ m to 2 mm.
  • the content of the wavelength conversion material (resin particles) in the solar cell sealing film is not particularly limited as long as the effect of improving the power generation efficiency of the solar cell element is obtained, and the content of the organic rare earth complex in the resin particles is not limited. Can be adjusted accordingly.
  • the organic rare earth complex is preferably blended in the range of 0.000001 to 1 part by mass with respect to 100 parts by mass of the resin material of the solar cell sealing film. If the amount is less than 0.000001 parts by mass, a sufficient power generation efficiency improvement effect may not be obtained, and it is preferable to add 0.00001 parts by mass or more, and particularly preferably 0.0001 parts by mass or more.
  • the structure of the solar cell of the present invention is not particularly limited as long as it includes a structure in which the solar cell element is sealed with the solar cell sealing film of the present invention.
  • the structure etc. which sealed the cell for solar cells by interposing the sealing film for solar cells of this invention between the surface side transparent protection member and the back surface side protection member, and making it bridge-integrate are mentioned.
  • the side (light-receiving surface side) where the light of the solar cell is irradiated is referred to as “front surface side”
  • the surface opposite to the light-receiving surface of the solar cell is referred to as “back surface side”.
  • the solar cell sealing film of the present invention is used in the solar cell of the present invention, the power generation efficiency of the solar cell element is improved by the wavelength conversion material, and the high power generation efficiency is maintained for a long time. It is a solar cell.
  • the front surface side transparent protective member 11 the front surface side sealing film 13A, the solar cell cell 14, the back surface side sealing.
  • the film 13B and the back surface side protection member 12 may be laminated, and the sealing film may be cross-linked and cured according to a conventional method such as heat and pressure.
  • a laminated body in which each member is laminated is heated at a temperature of 135 to 180 ° C., further 140 to 180 ° C., particularly 155 to 180 ° C., a degassing time of 0.1 to 5 minutes, and a press pressure. What is necessary is just to heat-press in 0.1-1.5 kg / cm ⁇ 2> and press time 5-15 minutes.
  • the solar cell 14 can be sealed by integrating the front surface side transparent protective member 11, the back surface side transparent member 12, and the solar cell 14.
  • the solar cell sealing film of the present invention can improve the power generation efficiency of the solar cell element by including the wavelength conversion material as described above, it is disposed on the light receiving surface side of the solar cell element in the solar cell. It is preferable to use as the sealing film 13A, that is, the sealing film 13A disposed between the surface-side transparent protective member 12 and the solar battery cell 14 in FIG.
  • the solar cell sealing film of the present invention is not limited to a solar cell using a single crystal or polycrystalline silicon crystal solar cell as shown in FIG. It can also be used for a sealing film of a thin film solar cell such as a solar cell and a copper indium selenide (CIS) solar cell.
  • the solar cell of the present invention is formed on a thin film solar cell element layer formed by a chemical vapor deposition method or the like on the surface of a surface side transparent protective member such as a glass substrate, a polyimide substrate, or a fluororesin transparent substrate.
  • the structure for laminating the battery sealing film and the back surface side protective member and adhering and integrating them On the solar cell element formed on the surface of the back surface side protective member, the structure for laminating the battery sealing film and the back surface side protective member and adhering and integrating them, the front surface side Laminated transparent protective member, bonded and integrated structure, or front side transparent protective member, front side sealing film, thin film solar cell element, back side sealing film, and back side protective member are laminated in this order, For example, a structure that is bonded and integrated.
  • the cell for solar cells and a thin film solar cell element are named generically, and are called a solar cell element.
  • the surface side transparent protective member 11 is usually a glass substrate such as silicate glass.
  • the thickness of the glass substrate is generally from 0.1 to 10 mm, and preferably from 0.3 to 5 mm.
  • the glass substrate may generally be chemically or thermally strengthened.
  • the back side protective member 12 is preferably a plastic film such as polyethylene terephthalate (PET) or polyamide. Further, a film obtained by laminating a fluorinated polyethylene film, particularly a fluorinated polyethylene film / Al / fluorinated polyethylene film in this order in consideration of heat resistance and wet heat resistance may be used.
  • PET polyethylene terephthalate
  • a film obtained by laminating a fluorinated polyethylene film, particularly a fluorinated polyethylene film / Al / fluorinated polyethylene film in this order in consideration of heat resistance and wet heat resistance may be used.
  • the sealing film for solar cells of this invention has the characteristics in the sealing film used for the surface side and / or back surface side of a solar cell (a thin film solar cell is included). Therefore, the members other than the sealing film such as the front surface side transparent protective member, the back surface side protective member, and the solar battery cell are not particularly limited as long as they have the same configuration as a conventionally known solar battery.
  • resin fine particles made of an acrylic resin encapsulating an organic rare earth complex contains a hydrophobic monomer as a monomer, and further contains a composition containing a crosslinking agent and an azo polymerization initiator.
  • a solar cell sealing film containing resin particles, which are polymers obtained by reaction, as a wavelength conversion material the fluorescence intensity is unlikely to decrease in a wet heat degradation test.
  • the monomer further contains methyl methacrylate and the content of the hydrophobic monomer is 1 to 125 parts by mass with respect to 100 parts by mass of methyl methacrylate, the transparency is also excellent. Therefore, it was shown that the sealing film for solar cells of this invention can maintain the effect which improves electric power generation efficiency for a long period of time.
  • the present invention it is possible to provide a solar cell in which the power generation efficiency of the solar cell element is improved by the wavelength conversion material and the high power generation efficiency is maintained for a long time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 アクリル樹脂に有機希土類錯体を内包させた樹脂粒子を波長変換材料として含み、太陽電池素子の発電効率を向上する効果を長期間維持することができる太陽電池用封止膜、及び太陽電池を提供する。 オレフィン(共)重合体を含む樹脂材料、及び波長変換材料を含む太陽電池用封止膜であって、前記波長変換材料が、有機希土類錯体を内包したアクリル樹脂からなる樹脂粒子であり、前記アクリル樹脂が、モノマーとしてメチルメタクリレートよりもn-オクタノール/水分配係数が高い疎水性モノマーを含み、さらに、架橋剤、及びアゾ系重合開始剤を含むアクリル樹脂用組成物を反応して得られる重合体であることを特徴とする太陽電池用封止膜、及びこれを用いた太陽電池。

Description

太陽電池用封止膜及びこれを用いた太陽電池
 本発明は、波長変換材料を含むことにより、太陽電池素子の発電に寄与する光線を増加させ、発電効率を向上できる太陽電池用封止膜に関する。
 近年、資源の有効利用や環境汚染の防止等の面から、太陽光を電気エネルギーに直接変換する太陽電池が広く使用され、さらに、発電効率や耐候性等の点から開発が進められている。
 太陽電池は、一般に、図1に示すように、ガラス基板などからなる表面側透明保護部材11、エチレン-酢酸ビニル共重合体(EVA)等の樹脂材料からなる表面側封止膜13A、シリコン結晶系発電素子などの太陽電池用セル14、裏面側封止膜13B、及び裏面側保護部材(バックカバー)12をこの順で積層し、減圧下で脱気した後、加熱加圧して表面側封止膜13A及び裏面側封止膜13Bを架橋硬化させて接着一体化することにより製造される。
 一方、一般にシリコン結晶系発電素子等、何れのタイプの太陽電池素子であっても紫外領域の光線に対しては分光感度が低く、太陽光のエネルギーを有効に活用できていないという問題点が知られている。この問題点を解決するために、太陽電池セルの受光面側に、紫外領域の光線を可視領域又は近赤外領域の波長の光線に変換する材料(波長変換材料)を含む層を設けることにより、太陽電池セルの発電に寄与の大きい波長の光を発光させて太陽電池セルの発電効率を向上させる技術が提案されている。ただし、波長変換材料として用いられる有機希土類錯体等の蛍光物質は、EVA等の封止膜の樹脂材料に分散性が低かったり、劣化し易かったりする問題がある。その問題を解決するため、特許文献1では、300~450nmに吸収ピークを有し、500~900nmに蛍光ピークを有する有機希土類錯体等の蛍光物質をビニル化合物等から構成される樹脂粒子中に内包させた粒子を、封止膜中に分散させた太陽電池用封止膜が提案されている。
特開2012-33605号公報
 しかしながら、本発明者らが、有機希土類錯体を内包させる樹脂粒子の樹脂材料について検討したところ、例えば、ポリ(メチルメタアクリレート)(PMMA)を主成分とするアクリル樹脂を樹脂材料として用いた場合、有機希土類錯体の劣化が生じて、発電効率を向上する効果が低下する場合があることが分かった。
 したがって、本発明の目的は、アクリル樹脂に有機希土類錯体を内包させた樹脂粒子を波長変換材料として含む太陽電池用封止膜であって、有機希土類錯体の劣化が防止され、発電効率を向上する効果を長期間維持することができる太陽電池用封止膜を提供することにある。
 また、本発明の目的は、その太陽電池用封止膜を用いて、高い発電効率を長期間維持することができる太陽電池を提供することにある。
 上記目的は、オレフィン(共)重合体を含む樹脂材料、及び波長変換材料を含む太陽電池用封止膜であって、前記波長変換材料が、有機希土類錯体を内包したアクリル樹脂からなる樹脂粒子であり、前記アクリル樹脂が、モノマーとしてメチルメタクリレートよりもn-オクタノール/水分配係数が高い疎水性モノマーを含み、さらに、架橋剤、及びアゾ系重合開始剤を含むアクリル樹脂用組成物を反応して得られる重合体であることを特徴とする太陽電池用封止膜によって達成される。
 本発明者らが、アクリル樹脂中の有機希土類錯体が劣化する要因を検討したところ、一般に、アクリル樹脂の調製に用いられるメチルメタクリレートが、親水性が高いため、得られるアクリル樹脂が吸湿し易くなり、樹脂用組成物の構成成分の加水分解による酸の発生等により有機希土類錯体が劣化するものと考えられた。そこで、本発明においては、アクリル樹脂用組成物に、モノマーとして疎水性モノマーを含有させることで、得られるアクリル樹脂の耐水性を向上させている。これにより、アクリル樹脂の吸湿性が抑制され、酸が発生し難くなり、アクリル樹脂に内包された有機希土類錯体の劣化を防止することができる。したがって、波長変換材料として、このアクリル樹脂に有機希土類錯体を内包させた樹脂粒子を含む太陽電池用封止膜は、発電効率を向上する効果を長期間維持することができる太陽電池用封止膜である。
 本発明に係る太陽電池用封止膜の好ましい態様は以下の通りである。
 (1)前記アクリル樹脂用組成物が、モノマーとして、さらにメチルメタクリレートを含む。アクリル樹脂の透明性を向上できる。
 (2)(1)において、前記アクリル樹脂用組成物における前記疎水性モノマーの含有量が、前記メチルメタクリレート100質量部に対して、1~125質量部である。得られるアクリル樹脂の耐水性を十分に向上させるとともに、樹脂粒子を含有させた太陽電池用封止膜の透明性を確保できる。
 (3)前記疎水性モノマーが、アルコール残基として炭素原子数4個以上のヒドロキシアルキル基を有する(メタ)アクリレートモノマー、スチレン系モノマー及びフッ素含有モノマーからなる群から選択される1種以上のモノマーである。有効な疎水性モノマーである。
 (4)前記疎水性モノマーが、スチレン、n-ブチルメタクリレート、イソブチルメタクリレート、トリフルオロメチルメタクリレート、トリフルオロエチルアクリレート、トリフルオロエチルメタクリレート及びトリフルオロイソブチルメタクリレート、トリフルオロイソブチルアクリレート、パーフルオロヘキシルエチルメタクリレート、パーフルオロヘキシルエチルアクリレート、パーフルオロオクチルエチルメタクリレート、パーフルオロオクチルエチルアクリレートからなる群から選択される1種以上のモノマーを含む。特に有効な疎水性モノマーである。
 (5)前記アクリル樹脂用組成物における前記アゾ系重合開始剤の含有量が、前記モノマーに含まれる(メタ)アクリレートモノマー100質量%に対して、0.25~0.8質量%である。
 (6)前記有機希土類錯体が、下記式(I):
Figure JPOXMLDOC01-appb-C000002
[式中、Rは、それぞれ独立して水素原子又は任意に置換されていても良い炭素原子数1~20の炭化水素基を表し、nは、1~4の整数である。]で表されるユウロピウム錯体である。上記ユウロピウム錯体は、耐紫外線性に優れているので太陽電池用封止膜に含有させる有機金属錯体として好ましいが、酸による劣化が生じる場合がある。本発明において、上記アクリル樹脂に内包させることで、酸による劣化を防止することで、より耐候性の高い波長変換材料とすることができる。
 (7)(5)において、前記有機希土類錯体が、前記式(I)において、Rが全て水素原子であり、nが1であるユウロピウム錯体である。
 (8)前記オレフィン(共)重合体が、メタロセン触媒を用いて重合されたエチレン・αオレフィン共重合体(m-LLDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、ポリプロピレン、ポリブテン、及びエチレン-極性モノマー共重合体からなる群から選択される1種以上の重合体である。
 (9)前記オレフィン(共)重合体が、メタロセン触媒を用いて重合されたエチレン・α-オレフィン共重合体(m-LLDPE)及び/又はエチレン-極性モノマー共重合体である。加工性に優れ、架橋剤による架橋構造を形成することができ、接着性が高い封止膜とすることができる。
 (10)前記エチレン-極性モノマー共重合体が、エチレン-酢酸ビニル共重合体又はエチレン-(メタ)アクリル酸メチル共重合体(EMMA)である。より透明性に優れ、柔軟性に優れた封止膜とすることができる。
 また、上記目的は、本発明の太陽電池用封止膜により太陽電池素子を封止してなることを特徴とする太陽電池によって達成される。本発明の太陽電池は、本発明の太陽電池用封止膜が用いられているので、波長変換材料により太陽電池素子の発電効率が向上されており、その高い発電効率が長期間維持される太陽電池であるといえる。
 本発明の太陽電池封止膜に含まれる波長変換材料は、疎水性モノマーを含む樹脂用組成物から得られるアクリル樹脂に有機希土類錯体を内包した樹脂粒子であるので、樹脂中の有機希土類錯体の劣化が防止されている。したがって、波長変換材料として、上記樹脂粒子を含む太陽電池用封止膜は、太陽電池素子の発電効率を向上する効果を長期間維持することができる太陽電池用封止膜である。そして、本発明の太陽電池は、高い発電効率が長期間維持される太陽電池であるといえる。
一般的な太陽電池の概略断面図である。
 本発明の太陽電池用封止膜は、少なくともオレフィン(共)重合体を含む樹脂材料、及び波長変換材料として、有機希土類錯体を内包したアクリル樹脂からなる樹脂粒子を含んでいる。そして、アクリル樹脂が、モノマーとしてメチルメタクリレートよりもn-オクタノール/水分配係数が高い疎水性モノマーを含み、さらに、架橋剤、及びアゾ系重合開始剤を含むアクリル樹脂用組成物を反応して得られる重合体である。
 アクリル樹脂は、一般に、主成分としてメチルメタクリレート等の(メタ)アクリル系モノマーを重合させた樹脂である。メチルメタクリレートは、一般的にアクリル樹脂の調製に用いられる(メタ)アクリル系モノマーである。しかしながら、メチルメタクリレートは親水性が高いため、得られるアクリル樹脂が吸湿し易くなり、樹脂用組成物の構成成分の加水分解による酸の発生等により、アクリル樹脂中の有機希土類錯体が劣化する場合がある。本発明においては、アクリル樹脂用組成物に、モノマーとして疎水性モノマーを含有させることで、得られるアクリル樹脂の耐水性を向上させている。これにより、アクリル樹脂の吸湿性が抑制され、酸が発生し難くなるため、アクリル樹脂に内包された有機希土類錯体の劣化を防止することができる。なお、「(メタ)アクリル」は「アクリル及びメタクリル」を示し、「(メタ)アクリレート」は「アクリレート及びメタクリレート」を示す。
 本発明の太陽電池用封止膜は、波長変換材料として、有機希土類錯体を内包した上記のアクリル樹脂からなる樹脂粒子を含んでいるので、発電効率を向上する効果を長期間維持することができる太陽電池用封止膜である。
 本発明において、疎水性モノマーとは、水と混合すると相分離する性質を有する重合性モノマーをいい、構造中に極性基を有さないか、有していても極性が発現し難い重合性モノマーであり、n-オクタノール/水分配係数がメチルメタクリレートより高い(メチルメタクリレートの分配係数:1.38)。具体的には、例えば、アルコール残基として炭素原子数4個以上、好ましくは4~20個のヒドロキシアルキル基を有する(メタ)アクリレートモノマー、スチレン系モノマー、フッ素含有モノマー等が好ましく挙げられる。疎水性の(メタ)アクリレートモノマーとしては、n-ブチル(メタ)アクリレート(分配係数:2.88)、イソブチル(メタ)アクリレート、ドデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等が挙げられ、スチレン系モノマーは、スチレン構造を含む重合性のモノマーであり、スチレン(分配係数:2.95)、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、p-メトキシスチレン、p-tert-ブチルスチレン、p-フェニルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン等が挙げられ、フッ素含有モノマーとしては、トリフルオロメチル(メタ)アタクリレート、トリフルオロエチル(メタ)アクリレート(分配係数:1.51)、トリフルオロイソブチル(メタ)アクリレート、パーフルオロヘキシルエチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート等が挙げられる。これらの(メタ)アクリレートモノマーは単独で用いても良く、2種以上組み合わせて用いても良い。疎水性モノマーとしては、得られるアクリル樹脂の耐水性をより向上できる点で、スチレン系モノマー、及びフッ素含有モノマーを含むことが好ましく、中でも、スチレン、n-ブチルメタクリレート、イソブチルメタクリレート、トリフルオロメチルメタクリレート、トリフルオロエチルアクリレート、トリフルオロエチルメタクリレート及びトリフルオロイソブチルメタクリレート、トリフルオロイソブチルアクリレート、パーフルオロヘキシルエチルメタクリレート、パーフルオロヘキシルエチルアクリレート、パーフルオロオクチルエチルメタクリレート、パーフルオロオクチルエチルアクリレートからなる群から選択される1種以上のモノマーを含むことが好ましく、特にスチレンを含むことが好ましい。
 本発明において、アクリル樹脂組成物におけるモノマーとして、疎水性モノマーのみでは、アクリル樹脂の透明性が低下する場合があるため、モノマーとして、さらにメチルメタクリレートを含むことが好ましい。アクリル樹脂用組成物における疎水性モノマーの含有量は、特に制限はないが、少な過ぎると耐水性向上の効果が低く、多過ぎると得られるアクリル樹脂の透明性の低下や屈折率の変化により、その樹脂粒子を配合した封止膜の透明性が低下する場合がある。したがって、疎水性モノマーの含有量は、メチルメタクリレート100質量部に対して、1~125質量部が好ましく、5~80質量部が好ましく、10~40質量部が特に好ましい。
 以下に、本発明の太陽電池用封止膜を構成する他の材料について説明する。
 [樹脂粒子(波長変換材料)]
 本発明において樹脂粒子は、有機希土類錯体を内包したアクリル樹脂からなる。そして、上述の通り、アクリル樹脂は、モノマーとして、上記の疎水性モノマーの他、必要に応じてメチルメタクリレートを含み、さらに、架橋剤、及びアゾ系重合開始剤を含むアクリル樹脂用組成物を反応して得られる重合体である。モノマーとしてメチルメタクリレートを用いることが好ましい。これにより、得られるアクリル樹脂の屈折率を太陽電池用封止膜の樹脂材料に近くすることができるため、太陽電池用封止膜に樹脂粒子を含有させても屈折率の違いから生じる透明性の低下が生じ難くなり、透明性の高い太陽電池用封止膜とすることができる。
 本発明において、アクリル樹脂用組成物に架橋剤(本発明において、複数個の重合性二重結合を有するモノマーのことをいう)を配合することで、十分な架橋度を確保し、樹脂粒子が、共存添加剤や溶剤の影響による膨潤を防止することができ、空隙発生による外観不良、気泡の発生、ヘイズ値の上昇及び透過率の低下を抑制することができる。架橋剤は、一般に、多官能モノマーであり、例えば、(ポリ)エチレングリコールジ(メタ)アクリレート等のエチレンオキサイド基を含む2官能(メタ)アクリレート等が挙げられる。アクリル樹脂用組成物における架橋剤の含有量は、特に制限はないが、メチルメタクリレート100質量部に対して、0.1~40質量部であることが好ましく、1~30質量部がより好ましく、5~20質量部が更に好ましく、6~20質量部が特に好ましい。
 本発明において、重合開始剤として用いるアゾ系重合開始剤は、比較的低温で反応開始するため、後述する懸濁重合による重合反応に最適である。アゾ系重合開始剤としては、特に制限はないが、例えば、2,2’-アゾビス(イソブチロニトリル)(AIBN)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(4-メチキシ-2,4-ジメチルバレロニトリル)、ジメチル-2,2’-アゾビスイソブチレート等が挙げられる。アクリル樹脂用組成物におけるアゾ系重合開始剤の含有量は、モノマー中の(メタ)アクリレートモノマー100質量%に対して0.01~5質量%が好ましく、0.01~1質量%が好ましく、0.25~0.8質量%が特に好ましい。この範囲より少ないと十分に架橋反応が行われない可能性があり、この範囲より多いと相互作用が生じ、反応が十分に行われない可能性がある。
 本発明において、重合開始剤として、アゾ系重合開始剤に加えて、有機過酸化物を含んでいても良い。重合開始剤として、ベンゾイルパーオキサイド、4-メチルベンゾイルペーオキサイド、イソブチリルパーオキサイド、1,1-ジ(t-ブチルパーオキシ)-2-メチルシクロヘキサン、ビス(4―t-ブチルシクロヘキシル)パーオキシジカーボネート、ピバロイルt-ブチルパーオキサイド、ピバロイルt-ヘキシルパーオキサイド、ジラウロイルパーオキサイド、1,1,3,3、-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2―ヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート等が挙げられる。アクリル樹脂用組成物における上記有機過酸化物の含有量は、特に制限はないが、モノマー中の(メタ)アクリレートモノマー100質量%に対して0.01~2質量部が好ましく、0.05~1質量%が好ましく、0.1~0.5質量%が更に好ましく、0.1~0.2質量%特に好ましい。
 本発明において、アクリル樹脂を得るために上記モノマーを重合する方法としては、特に制限はなく、懸濁重合や乳化重合等、従来公知の方法で行うことができる。中でも、反応制御が容易等の利点がある点で、懸濁重合が好ましい。懸濁重合は、上記モノマーを、上記重合開始剤の存在下で、水等の溶媒中で重合させる。溶媒は、水の他に有機溶剤を含めることができる。有機溶剤としては、例えば、メタノール、エタノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、t-ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、1,4-ブタンジオール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;酢酸エチル等のアステル類;イソオクタン、シクロへキサン等の(シクロ)パラフィン類;ベンゼン、トルエン等の芳香族炭化水素類などを挙げることができる。これらは単独で用いても2種以上を併用してもよい。重合反応の温度は、用いる重合開始剤に合わせて適宜調整することができる。2種類以上の重合開始剤を用いる場合は、数段階に温度を変えて重合しても良い。
 本発明において、アクリル樹脂に有機希土類錯体を内包させる方法としては、例えば、上述のアクリル樹脂用組成物に有機希土類錯体を溶解又は分散させたものを懸濁重合等により樹脂粒子化して内包させる方法等が挙げられる。
 本発明において、樹脂粒子の形状に特に制限はないが、分散性や光散乱性が低い点で球状が好ましい。また樹脂粒子の平均粒子径は、特に制限はないが、大き過ぎると微粒子の質量あたりの表面積が小さくなるため、発光効率が低下する場合があり、小さ過ぎると飛散し易く、ハンドリング性が悪く、樹脂粒子同士も結合し易くなり分散性が低下する場合がある。したがって、樹脂粒子の平均粒子径は0.1~300μmが好ましく、1~200μmがより好ましく、特に10~150μmが好ましい。樹脂粒子の平均粒子径は、レーザー回折法、光学顕微鏡や電子顕微鏡による画像イメージにより求めることができる。
 [有機希土類錯体]
 本発明において、有機希土類錯体としては、特に制限なく用いることができる。例えば、ユウロピウム、サマリウム、テルビウム等のランタノイド錯体等が挙げられる。特に蛍光が強く、ストークスシフト(励起極大波長と発光極大波長の差)が大きく、蛍光寿命が長い点で、ユウロピウム錯体が好ましい。ユウロピウム錯体は、Euイオン(Eu3+)と有機配位子から構成され、例えば、Eu(hfa)(TPPO)、Eu(hfa)(BIPHEPO)、Eu(TTA)Phen等が挙げられる。特に、耐候性の点で、下記式(I):
Figure JPOXMLDOC01-appb-C000003
 [式中、Rは、それぞれ独立して、水素原子又は任意に置換されていても良い炭素原子数1~20の炭化水素基を表し、nは、1~4の整数、好ましくは1である。]で表されるユウロピウム錯体が好ましい。炭素原子数1~20の炭化水素基は、脂肪族でも芳香族でも良く、不飽和結合やヘテロ原子を含んでいても良く、直鎖状でも分枝を有していても良い。例えば、アルキル基(メチル基、エチル基、プロピル基等)、アルケニル基(ビニル基、アリル基、ブテニル基等)、アルキニル基(エチニル基、プロピニル基、ブチニル基等)、シクロアルキル基、シクロアルケニル基、フェニル基、ナフチル基、ビフェニル基等が挙げられる。上記炭化水素基は任意に置換されていても良く、置換基としては、ハロゲン原子、ヒドロキシル基、アミノ基、ニトロ基、スルホ基等が挙げられる。式(I)におけるRは全て水素原子であることが好ましい。
 式(I)のユウロピウム錯体は、耐紫外線性に優れているので太陽電池用封止膜に含有させる有機金属錯体として好ましいが、酸による劣化が生じる場合がある。本発明において、上記アクリル樹脂に内包させることで、酸による劣化を防止することで、より耐候性の高い波長変換材料とすることができる。
 上記ユウロピウム錯体は、式(I)中のnが1であり、Rが全て水素原子であるEu(hfa)3(TPPO)2であることが、より耐紫外線性に特に優れる点で好ましい。Eu(hfa)3(TPPO)2はトリフェニルホスフィンオキシドとヘキサフルオロアセチルアセトンの2種の配位子が中心元素である希土類金属のユウロピウムに配位しているユウロピウム錯体である。
 樹脂粒子中の有機希土類錯体の含有量は、太陽電池用封止膜に含有させたときに太陽電池素子の発電効率の向上効果が得られれば、特に制限はない。樹脂粒子における有機希土類錯体の含有率が高い方が、発光強度が高くなり有利である。一方、含有率が高過ぎると、透明性に影響を与える場合があり、コスト的にも不利となる。したがって、樹脂粒子における有機希土類錯体の含有率は、0.01~10質量%が好ましく、0.05~5質量%がより好ましく、特に0.1~1質量%が好ましい。
 [樹脂材料]
 本発明において、太陽電池用封止膜の樹脂材料は、オレフィン(共)重合体を主成分として含む。ここで、オレフィン(共)重合体とは、エチレン・α-オレフィン共重合体(例えば、メタロセン触媒を用いて重合されたエチレン・α-オレフィン共重合体(m-LLDPE)等)、ポリエチレン(例えば、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)等)、ポリプロピレン、ポリブテン等のオレフィンの重合体又は共重合体、及びエチレン-極性モノマー共重合体等のオレフィンと極性モノマーとの共重合体を意味し、太陽電池用封止膜に要求される接着性、透明性等を有するものとする。オレフィン(共)重合体として、これらの1種を用いても良く、2種以上を混合して用いても良い。本発明において、オレフィン(共)重合体としては、メタロセン触媒を用いて重合されたエチレン・α-オレフィン共重合体(m-LLDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、ポリプロピレン、ポリブテン及びエチレン-極性モノマー共重合体からなる群から選択される少なくとも1種以上の重合体であることが好ましい。特に、加工性に優れ、架橋剤による架橋構造を形成することができ、接着性が高い太陽電池用封止膜を形成することができることから、オレフィン(共)重合体が、メタロセン触媒を用いて重合されたエチレン・α-オレフィン共重合体(m-LLDPE)及び/又はエチレン-極性モノマー共重合体であることが好ましい。
 (メタロセン触媒を用いて重合されたエチレン・α-オレフィン共重合体(m-LLDPE))
 m-LLDPEは、エチレン由来の構成単位を主成分とし、さらに炭素数3~12のα-オレフィン、例えば、プロピレン、1-ブテン、1-へキセン、1-オクテン、4-メチルペンテン-1、4-メチル-へキセン-1、4,4-ジメチル-ペンテン-1等由来の1種又は複数種の構成単位を有するエチレン・α-オレフィン共重合体(ターポリマー等も含む)である。エチレン・α-オレフィン共重合体の具体例としては、エチレン・1-ブテン共重合体、エチレン・1-オクテン共重合体、エチレン・4-メチル-ペンテン-1共重合体、エチレン・ブテン・ヘキセンターポリマー、エチレン・プロピレン・オクテンターポリマー、エチレン・ブテン・オクテンターポリマー等が挙げられる。エチレン・α-オレフィン共重合体におけるα-オレフィンの含有量は、5~40質量%が好ましく、10~35質量%がより好ましく、15~30質量%がさらに好ましい。α-オレフィンの含有量が少ないと太陽電池用封止膜の柔軟性や耐衝撃性が十分でない場合があり、多過ぎると耐熱性が低い場合がある。
 m-LLPDEを重合するメタロセン触媒としては、公知のメタロセン触媒を用いれば良く、特に制限はない。メタロセン触媒は、一般に、チタン、ジルコニウム、ハフニウム等の遷移金属をπ電子系のシクロペンタジエニル基又は置換シクロペンタジエニル基等を含有する不飽和環状化合物で挟んだ構造の化合物であるメタロセン化合物と、アルキルアルミノキサン、アルキルアルミニウム、アルミニウムハライド、アルキルアルミニウムルハライド等のアルミニウム化合物等の助触媒とを組合せたものである。メタロセン触媒は、活性点が均一であるという特徴があり(シングルサイト触媒)、通常、分子量分布が狭く、各分子のコモノマー含有量がほぼ等しい重合体が得られる。
 本発明において、m-LLDPEの密度(JIS K 7112に準ずる。以下同じ)は、特に制限はないが、0.860~0.930g/cm3が好ましい。また、m-LLDPEのメルトフローレート(MFR)(JIS-K7210に準ずる)は、特に制限はないが、1.0g/10分以上が好ましく、1.0~50.0g/10分がより好ましく、3.0~30.0g/10分がさらに好ましい。なお、MFRは、190℃、荷重21.18Nの条件で測定されたものである。
 本発明において、m-LLDPEは市販のものを使用することもできる。例えば、日本ポリエチレン社製のハーモレックスシリーズ、カーネルシリーズ、プライムポリマー社製のエボリューシリーズ、住友化学社製のエクセレンGMHシリーズ、エクセレンFXシリーズ等が挙げられる。
 (エチレン-極性モノマー共重合体)
 エチレン-極性モノマー共重合体の極性モノマーは、ビニルエステル、不飽和カルボン酸、その塩、そのエステル、そのアミド、一酸化炭素等を例示することができる。より具体的には、酢酸ビニル、プロピオン酸ビニルのようなビニルエステル、アクリル酸、メタクリル酸、フマル酸、イタコン酸、マレイン酸モノメチル、マレイン酸モノエチル、無水マレイン酸、無水イタコン酸等の不飽和カルボン酸、これら不飽和カルボン酸のリチウム、ナトリウム、カリウムなどの1価金属の塩やマグネシウム、カルシウム、亜鉛などの多価金属の塩、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸イソブチル、アクリル酸n-ブチル、アクリル酸イソオクチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソブチル、マレイン酸ジメチル等の不飽和カルボン酸エステル、一酸化炭素、二酸化硫黄などの一種又は二種以上などを例示することができる。
 エチレン-極性モノマー共重合体として、より具体的には、エチレン-酢酸ビニル共重合体のようなエチレン-ビニルエステル共重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体のようなエチレン-不飽和カルボン酸共重合体、前記エチレン-不飽和カルボン酸共重合体のカルボキシル基の一部又は全部が上記金属で中和されたアイオノマー、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-メタクリル酸メチル共重合体(EMMA)、エチレン-アクリル酸イソブチル共重合体、エチレン-アクリル酸n-ブチル共重合体のようなエチレン-不飽和カルボン酸エステル共重合体、エチレン-アクリル酸イソブチル-メタクリル酸共重合体、エチレン-アクリル酸n-ブチル-メタクリル酸共重合体のようなエチレン-不飽和カルボン酸エステル-不飽和カルボン酸共重合体及びそのカルボキシル基の一部又は全部が上記金属で中和されたアイオノマー等を代表例として例示することができる。
 エチレン-極性モノマー共重合体としては、JIS K7210で規定されるメルトフローレートが、35g/10分以下、特に3~6g/10分のものを使用するのが好ましい。このようなメルトフローレート有するエチレン-極性モノマー共重合体を用いることで、加工性に優れた太陽電池用封止膜とすることができる。なお、本発明において、メルトフローレート(MFR)の値は、JIS K7210に従い、190℃、荷重21.18Nの条件に基づいて測定されたものである。
 エチレン-極性モノマー共重合体としては、エチレン-酢酸ビニル共重合体(EVA)、エチレン-メタクリル酸メチル共重合体(EMMA)、エチレン-メタクリル酸エチル共重合体、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体が好ましく、EVA及びEMMAが特に好ましい。これにより、安価であり、透明性、柔軟性に優れる太陽電池用封止膜とすることができる。このような太陽電池用封止膜を用いることで、より耐久性に優れ、発電効率が高い太陽電池を製造することができる。
 EVAにおける酢酸ビニルの含有率は、EVAに対して20~35質量%、さらに22~30質量%、特に24~28質量%とするのが好ましい。EVAの酢酸ビニル単位の含有量が低い程、得られるシートが硬くなる傾向がある。酢酸ビニルの含有量が低過ぎると、高温で架橋硬化させる場合に、得られるシートの透明性が充分でない恐れがある。また、酢酸ビニル含有量が高過ぎるとシートの硬さが不十分となる場合がある。
 また、EMMAにおけるメタクリル酸メチルの含有率は20~30質量%、さらに22~28質量%とするのが好ましい。この範囲であれば、透明性の高い封止膜が得られ、発電効率が高い太陽電池とすることができる。
 オレフィン(共)重合体の密度は、特に限定されないが、一般に0.80~1.0g/cm、好ましくは0.85~0.95g/cmである。
 なお、本発明において、樹脂材料には、上述のオレフィン(共)重合体に加えて副次的にポリビニルアセタール系樹脂(例えば、ポリビニルホルマール、ポリビニルブチラール(PVB樹脂)、変性PVB)等の樹脂を配合しても良い。
 [有機過酸化物又は光重合開始剤]
 本発明の太陽電池用封止膜においては、有機過酸化物又は光重合開始剤を含有させ、エチレン-極性モノマー共重合体の架橋構造を形成することが好ましい。なかでも、接着力、耐湿性、耐貫通性の温度依存性が改善された封止膜が得られることから、有機過酸化物を用いるのが好ましい。
 前記有機過酸化物としては、100℃以上の温度で分解してラジカルを発生するものであれば、どのようなものでも使用することができる。有機過酸化物は、一般に、成膜温度、組成物の調整条件、硬化温度、被着体の耐熱性、貯蔵安定性を考慮して選択される。特に、半減期10時間の分解温度が70℃以上のものが好ましい。
 有機過酸化物としては、例えば、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、2,5-ジメチルヘキサン-2,5-ジヒドロパーオキサイド、3-ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン、α,α'-ビス(t-ブチルパーオキシイソプロピル)ベンゼン、n-ブチル-4,4-ビス(t-ブチルパーオキシ)ブタン、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシイソプロピルモノカーボネート、2,2-ビス(t-ブチルパーオキシ)ブタン、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、ベンゾイルパーオキサイド系硬化剤(t-ブチルパーオキシベンゾエート等)等が挙げられる。
 有機過酸化物として、特に、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、又はt-ブチルパーオキシ-2-エチルヘキシルモノカーボネートが好ましい。これにより、良好に架橋され、優れた透明性を有する太陽電池用封止膜が得られる。
 太陽電池用封止膜に使用する有機過酸化物の含有量は、樹脂材料100質量部に対して、好ましくは0.1~5質量部、より好ましくは0.2~3質量部であることが好ましい。有機過酸化物の含有量は、少ないと架橋硬化時において架橋速度が低下する場合があり、多くなると共重合体との相溶性が悪くなる恐れがある。
 また、光重合開始剤としては、公知のどのような光重合開始剤でも使用することができるが、配合後の貯蔵安定性の良いものが望ましい。このような光重合開始剤としては、例えば、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-(4-(メチルチオ)フェニル)-2-モルホリノプロパン-1などのアセトフェノン系、ベンジルジメチルケタ-ルなどのベンゾイン系、ベンゾフェノン、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノンなどのベンゾフェノン系、イソプロピルチオキサントン、2-4-ジエチルチオキサントンなどのチオキサントン系、その他特殊なものとしては、メチルフェニルグリオキシレ-トなどが使用できる。特に好ましくは、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-(4-(メチルチオ)フェニル)-2-モルホリノプロパン-1、ベンゾフェノン等が挙げられる。これら光重合開始剤は、必要に応じて、4-ジメチルアミノ安息香酸のような安息香酸系又は、第3級アミン系などの公知慣用の光重合促進剤の1種または2種以上を任意の割合で混合して使用することができる。また、光重合開始剤のみの1種単独または2種以上の混合で使用することができる。
 前記光重合開始剤の含有量は、樹脂材料100質量部に対して0.1~5質量部、好ましくは0.2~3質量部である。
 [架橋助剤]
 本発明の太陽電池用封止膜においては、必要に応じて、架橋助剤を含んでいてもよい。架橋助剤は、エチレン-極性モノマー共重合体のゲル分率を向上させ、封止膜の接着性及び耐久性を向上させることができるものである。
 架橋助剤の含有量は、樹脂材料100質量部に対して、一般に10質量部以下、好ましくは0.1~5質量部、さらに好ましくは0.1~2.5質量部で使用される。これにより、さらに接着性に優れる太陽電池用封止膜が得られる。
 架橋助剤(一般に、官能基としてラジカル重合性基を有する化合物)としては、トリアリルシアヌレート、トリアリルイソシアヌレート等の3官能の架橋助剤の他、(メタ)アクリルエステル(例、NKエステル等)の単官能又は2官能の架橋助剤等を挙げることができる。なかでも、トリアリルシアヌレートおよびトリアリルイソシアヌレートが好ましく、特にトリアリルイソシアヌレートが好ましい。
 [接着向上剤]
 本発明の太陽電池用封止膜においては、さらに、接着向上剤を含んでいても良い。接着向上剤としては、シランカップリング剤を用いることができる。これにより、さらに優れた接着力を有する太陽電池用封止膜とすることができる。前記シランカップリング剤としては、γ-クロロプロピルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリクロロシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシランを挙げることができる。これらシランカップリング剤は、単独で使用しても、又は2種以上組み合わせて使用しても良い。なかでも、γ-メタクリロキシプロピルトリメトキシシランが特に好ましく挙げられる。
 前記シランカップリング剤の含有量は樹脂材料100質量部に対して0.1~0.7質量部、特に0.3~0.65質量部であることが好ましい。
 [その他]
 本発明の太陽電池用封止膜においては、封止膜の種々の物性(機械的強度、透明性等の光学的特性、耐熱性、耐光性等)の改良あるいは調整のため、必要に応じて、可塑剤、アクリロキシ基含有化合物、メタクリロキシ基含有化合物及び/又はエポキシ基含有化合物などの各種添加剤をさらに含んでいてもよい。
 [太陽電池用封止膜]
 上述した本発明の太陽電池用封止膜を形成するには、公知の方法に準じて行えばよい。例えば、上述のように、波長変換材料として有機希土類錯体を内包させた樹脂粒子を調製した後、上記の他の各材料とともにスーパーミキサー(高速流動混合機)、ロールミル等を用いて公知の方法で混合した組成物を通常の押出成形、又はカレンダ成形(カレンダリング)等により成形してシート状物を得る方法により製造することができる。また、前記組成物を溶剤に溶解(微粒子については分散)させ、この分散液を適当な塗布機(コーター)で適当な支持体上に塗布、乾燥して塗膜を形成することによりシート状物を得ることもできる。なお、製膜時の加熱温度は、有機過酸化物を用いる場合は、有機過酸化物が反応しない或いはほとんど反応しない温度とすることが好ましい。例えば、50~90℃、特に40~80℃とするのが好ましい。太陽電池用封止膜の厚さは、特に制限されず、用途によって適宜設定することができる。一般に、50μm~2mmの範囲である。
 太陽電池用封止膜における上記波長変換材料(樹脂粒子)の含有量は、太陽電池素子の発電効率の向上効果が得られれば、特に制限はなく、樹脂粒子中の有機希土類錯体の含有量に応じて調整することができる。有機希土類錯体として、太陽電池用封止膜の樹脂材料100質量部に対して0.000001~1質量部の範囲内で配合されることが好ましい。0.000001質量部を下回ると、十分な発電効率の向上効果が得られない恐れがあり、さらに0.00001質量部以上配合することが好ましく、特に0.0001質量部以上配合することが好ましい。一方、1質量部を上回ると、太陽光を発電素子に十分に入射させるために必要な透明性を確保し難くなる恐れがあり、またコスト的にも不利になる傾向があり、さらに0.1質量部以下配合することが好ましく、特に0.01質量部以下配合することが好ましい。
 [太陽電池]
 本発明の太陽電池の構造は、本発明の太陽電池用封止膜により太陽電池素子が封止されてなる構造を含んでいれば特に制限されない。例えば、表面側透明保護部材と裏面側保護部材との間に、本発明の太陽電池用封止膜を介在させて架橋一体化させることにより太陽電池用セルを封止させた構造などが挙げられる。なお、本発明において、太陽電池用セルの光が照射される側(受光面側)を「表面側」と称し、太陽電池用セルの受光面とは反対面側を「裏面側」と称する。
 本発明の太陽電池は、本発明の太陽電池用封止膜が用いられているので、波長変換材料により太陽電池素子の発電効率が向上されており、その高い発電効率が長期間維持されている太陽電池である。
 前記太陽電池において、太陽電池用セルを十分に封止するには、例えば、図1に示すように表面側透明保護部材11、表面側封止膜13A、太陽電池用セル14、裏面側封止膜13B及び裏面側保護部材12を積層し、加熱加圧など常法にしたがって、封止膜を架橋硬化させればよい。
 加熱加圧するには、例えば、各部材を積層した積層体を、真空ラミネータで温度135~180℃、さらに140~180℃、特に155~180℃、脱気時間0.1~5分、プレス圧力0.1~1.5kg/cm2、プレス時間5~15分で加熱圧着すればよい。この加熱加圧時に、表面側封止膜13Aおよび裏面側封止膜13Bに含まれるオレフィン(共)重合体を架橋させることにより、表面側封止膜13Aおよび裏面側封止膜13Bを介して、表面側透明保護部材11、裏面側透明部材12、および太陽電池用セル14を一体化させて、太陽電池用セル14を封止することができる。
 本発明の太陽電池用封止膜は、上述のように、波長変換材料を含むことで太陽電池素子の発電効率を向上させることができるので、太陽電池における太陽電池素子の受光面側に配置される封止膜、すなわち、図1における表面側透明保護部材12と太陽電池セル14との間に配置される封止膜13Aとして利用することが好ましい。
 なお、本発明の太陽電池用封止膜は、図1に示したような単結晶又は多結晶のシリコン結晶系の太陽電池用セルを用いた太陽電池だけでなく、薄膜シリコン系、薄膜アモルファスシリコン系太陽電池、セレン化銅インジウム(CIS)系太陽電池等の薄膜太陽電池の封止膜にも使用することもできる。この場合は、例えば、ガラス基板、ポリイミド基板、フッ素樹脂系透明基板等の表面側透明保護部材の表面上に化学気相蒸着法等により形成された薄膜太陽電池素子層上に、本発明の太陽電池用封止膜、裏面側保護部材を積層し、接着一体化させた構造、裏面側保護部材の表面上に形成された太陽電池素子上に、本発明の太陽電池用封止膜、表面側透明保護部材を積層し、接着一体化させた構造、又は表面側透明保護部材、表面側封止膜、薄膜太陽電池素子、裏面側封止膜、及び裏面側保護部材をこの順で積層し、接着一体化させた構造等が挙げられる。なお、本発明において、太陽電池用セルや薄膜太陽電池素子を総称して太陽電池素子という。
 表面側透明保護部材11は、通常珪酸塩ガラスなどのガラス基板であるのがよい。ガラス基板の厚さは、0.1~10mmが一般的であり、0.3~5mmが好ましい。ガラス基板は、一般に、化学的に、或いは熱的に強化させたものであってもよい。
 裏面側保護部材12は、ポリエチレンテレフタレート(PET)やポリアミドなどのプラスチックフィルムが好ましく用いられる。また、耐熱性、耐湿熱性を考慮してフッ化ポリエチレンフィルム、特にフッ化ポリエチレンフィルム/Al/フッ化ポリエチレンフィルムをこの順で積層させたフィルムでも良い。
 なお、本発明の太陽電池用封止膜は、太陽電池(薄膜太陽電池を含む)の表面側及び/又は裏面側に用いられる封止膜に特徴を有する。したがって、表面側透明保護部材、裏面側保護部材、および太陽電池用セルなどの封止膜以外の部材については、従来公知の太陽電池と同様の構成を有していればよく、特に制限されない。
 以下、本発明を実施例により詳細に説明する。
 (1)波長変換材料(有機希土類錯体を内包した樹脂粒子)の調製
 表1に示した各材料を用いて、常法により懸濁重合を行い、球状の樹脂粒子(平均粒径100μm)を得た。
 (2)太陽電池用封止膜の調製
 表2に示す配合で各材料をロールミルに供給し、70℃において混練して太陽電池用封止膜組成物を調製した。この太陽電池用封止膜組成物を、70℃においてカレンダ成形し、放冷後、太陽電池用封止膜(厚さ0.46mm)を作製した。
 (3)架橋硬化サンプルの作製
 上記太陽電池用封止膜を2枚の白板ガラス(厚さ3.2mm)で挟み、得られた積層体を、真空ラミネータを用いて90℃において真空時間2分、プレス時間8分で圧着した後、155℃のオーブン中で30分間加熱して架橋硬化させることにより、サンプルを作製した。
 (4)評価方法
 (i)光線透過率(%)
 上記サンプルについて、分光光度計(日立製作所製、U-4100)を用いて400~1000nmのスペクトル測定を実施し、その平均値を光線透過率(%)とした。
 (ii)ヘイズ(%)
 上記サンプルについて、JIS K 7105(2000年)に従って、ヘイズメーター(日本電色工業株式会社製 NDH 2000型)を用いてヘイズ値(%)を測定した。
 (iii)湿熱劣化試験
 上記サンプルについて、分光光度計(日立ハイテクノロジーズ社製、F-7000)を用いて蛍光強度を測定した。測定条件:ホトマル電圧400V、励起側スリット20nm、蛍光側スリット10nm、スキャンスピード240nm/min。照射波長は325nmとした。波長をX軸、発光量をY軸に表した関数f(x)の、発光ピークの開始波長から終了波長における曲線と関数f(x)上のX=X0とX1の2点を結ぶ直線により囲まれる領域の面積を算出し、蛍光強度とした。次いで、85℃85%RH環境下に250時間放置し、再度蛍光強度を測定し、初期状態からの蛍光強度残存率を算出した。
 (5)評価結果
 各評価結果を表に示す。
Figure JPOXMLDOC01-appb-T000004
*1:トリフルオロメチルメタクリレート
*2:トリフルオロエチルメタクリレート
*3:トリフルオロイソブチルメタクリレート
*4:2,2’-アゾビス(イソブチロニトリル)(AIBN)
*5:ベンゾイルパーオキサイド(ナイパーBW(日油社製))
*6:1,1-ジ(t-ブチルパーオキシ)-2-メチルシクロヘキサン(パーヘキサMC(日油社製))
*7:エチレングリコールジメタクリレート(ライトエステルEG(共栄社化学社製))
*8:Eu(hfa)(TPPO)(ルミシスE-300(セントラルテクノ社製))
*9:C6042EuF(ルミシスE-400(セントラルテクノ社製))
*10:EVA:酢酸ビニル含有量:26質量%(ウルトラセン634、東ソー社製)
*11:t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(パーブチルE、日油社製)
*12:トリアリルイソシアヌレート(TAIC、日本化成社製)
*13:γ-メタクリロキシプロピルトリメトキシシラン(信越化学社製)
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表に示したように、有機希土類錯体を内包したアクリル樹脂からなる樹脂微粒子であり、そのアクリル樹脂が、モノマーとして疎水性モノマーを含み、さらに、架橋剤、アゾ系重合開始剤を含む組成物を反応して得られる重合体である樹脂粒子を、波長変換材料として含む太陽電池用封止膜は湿熱劣化試験において、その蛍光強度が低下し難い。特に、モノマーとして、さらにメチルメタクリレートを含み、上記疎水性モノマーの含有量が、メチルメタクリレート100質量部に対して、1~125質量部の場合は透明性にも優れる。したがって、本発明の太陽電池用封止膜は、発電効率を向上する効果を長期間維持できることが示された。
 なお、本発明は上記の実施の形態の構成及び実施例に限定されるものではなく、発明の要旨の範囲内で種々変形が可能である。
 本発明により、波長変換材料により太陽電池素子の発電効率が向上されており、高い発電効率が長期間維持される太陽電池を提供することができる。
 11       表面側透明保護部材
 12       裏面側保護部材
 13A      表面側封止膜
 13B      裏面側封止膜
 14       太陽電池用セル

Claims (10)

  1.  オレフィン(共)重合体を含む樹脂材料、及び
     波長変換材料を含む太陽電池用封止膜であって、
     前記波長変換材料が、有機希土類錯体を内包したアクリル樹脂からなる樹脂粒子であり、
     前記アクリル樹脂が、モノマーとしてメチルメタクリレートよりもn-オクタノール/水分配係数が高い疎水性モノマーを含み、さらに、架橋剤、及びアゾ系重合開始剤を含むアクリル樹脂用組成物を反応して得られる重合体であることを特徴とする太陽電池用封止膜。
  2.  前記アクリル樹脂用組成物が、モノマーとして、さらにメチルメタクリレートを含む請求項1に記載の波長変換材料。
  3.  前記アクリル樹脂用組成物における前記疎水性モノマーの含有量が、前記メチルメタクリレート100質量部に対して、1~125質量部である請求項2に記載の太陽電池用封止膜。
  4.  前記疎水性モノマーが、アルコール残基として炭素原子数4個以上のヒドロキシアルキル基を有する(メタ)アクリレートモノマー、スチレン系モノマー及びフッ素含有モノマーからなる群から選択される1種以上のモノマーである請求項1~3のいずれか1項に記載の太陽電池用封止膜。
  5.  前記疎水性モノマーが、スチレン、n-ブチルメタクリレート、イソブチルメタクリレート、トリフルオロメチルメタクリレート、トリフルオロエチルアクリレート、トリフルオロエチルメタクリレート及びトリフルオロイソブチルメタクリレート、トリフルオロイソブチルアクリレート、パーフルオロヘキシルエチルメタクリレート、パーフルオロヘキシルエチルアクリレート、パーフルオロオクチルエチルメタクリレート、パーフルオロオクチルエチルアクリレートからなる群から選択される1種以上のモノマーを含む請求項1~4のいずれか1項に記載の太陽電池用封止膜。
  6.  前記アクリル樹脂用組成物における前記アゾ系重合開始剤の含有量が、前記モノマーに含まれる(メタ)アクリレートモノマー100質量%に対して、0.25~0.8質量%である請求項1~5のいずれか1項に記載の太陽電池用封止膜。
  7.  前記有機希土類錯体が、下記式(I):
    Figure JPOXMLDOC01-appb-C000001

    [式中、Rは、それぞれ独立して水素原子又は任意に置換されていても良い炭素原子数1~20の炭化水素基を表し、nは、1~4の整数である。]
    で表されるユウロピウム錯体である請求項1~6のいずれか1項に記載の太陽電池用封止膜。
  8.  前記有機希土類錯体が、前記式(I)において、Rが全て水素原子であり、nが1であるユウロピウム錯体である請求項7に記載の太陽電池用封止膜。
  9.  前記オレフィン(共)重合体が、メタロセン触媒を用いて重合されたエチレン・αオレフィン共重合体(m-LLDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、ポリプロピレン、ポリブテン、及びエチレン-極性モノマー共重合体からなる群から選択される1種以上の重合体である請求項1~8のいずれか1項に記載の太陽電池用封止膜。
  10.  請求項1~9のいずれか1項に記載の太陽電池用封止膜により太陽電池素子を封止してなることを特徴とする太陽電池。
PCT/JP2015/067474 2014-06-17 2015-06-17 太陽電池用封止膜及びこれを用いた太陽電池 WO2015194592A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016529404A JPWO2015194592A1 (ja) 2014-06-17 2015-06-17 太陽電池用封止膜及びこれを用いた太陽電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014124167 2014-06-17
JP2014-124167 2014-06-17

Publications (1)

Publication Number Publication Date
WO2015194592A1 true WO2015194592A1 (ja) 2015-12-23

Family

ID=54935572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067474 WO2015194592A1 (ja) 2014-06-17 2015-06-17 太陽電池用封止膜及びこれを用いた太陽電池

Country Status (2)

Country Link
JP (1) JPWO2015194592A1 (ja)
WO (1) WO2015194592A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3811142B2 (ja) * 2003-06-24 2006-08-16 株式会社東芝 希土類錯体を用いたled素子及び発光媒体
JP2008255047A (ja) * 2007-04-04 2008-10-23 Osaka Univ 強発光性希土類錯体
WO2011013520A1 (ja) * 2009-07-29 2011-02-03 国立大学法人奈良先端科学技術大学院大学 希土類錯体及びその利用
JP2011222749A (ja) * 2010-04-09 2011-11-04 Hitachi Chem Co Ltd 波長変換型太陽電池封止材、これを用いた太陽電池モジュール及びこれらの製造方法
JP2012155887A (ja) * 2011-01-24 2012-08-16 Konica Minolta Holdings Inc 透明導電膜の製造方法、透明導電膜および有機エレクトロルミネッセンス素子
JP2012230968A (ja) * 2011-04-25 2012-11-22 Hitachi Chem Co Ltd 封止材シート及び太陽電池モジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3811142B2 (ja) * 2003-06-24 2006-08-16 株式会社東芝 希土類錯体を用いたled素子及び発光媒体
JP2008255047A (ja) * 2007-04-04 2008-10-23 Osaka Univ 強発光性希土類錯体
WO2011013520A1 (ja) * 2009-07-29 2011-02-03 国立大学法人奈良先端科学技術大学院大学 希土類錯体及びその利用
JP2011222749A (ja) * 2010-04-09 2011-11-04 Hitachi Chem Co Ltd 波長変換型太陽電池封止材、これを用いた太陽電池モジュール及びこれらの製造方法
JP2012155887A (ja) * 2011-01-24 2012-08-16 Konica Minolta Holdings Inc 透明導電膜の製造方法、透明導電膜および有機エレクトロルミネッセンス素子
JP2012230968A (ja) * 2011-04-25 2012-11-22 Hitachi Chem Co Ltd 封止材シート及び太陽電池モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROKI IWANAGA ET AL.: "Development of LED Devices using Eu(III) Complex", IEICE TECHNICAL REPORT, vol. 106, no. 17, 14 April 2006 (2006-04-14), pages 29 - 32 *

Also Published As

Publication number Publication date
JPWO2015194592A1 (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
WO2014054720A1 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP5562934B2 (ja) 太陽電池封止材用シート及び太陽電池モジュール
WO2010131716A1 (ja) 太陽電池封止材用シート及び太陽電池モジュール
WO2015108096A1 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
WO2015111702A1 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
WO2015194595A1 (ja) 波長変換材料及びこれを含む太陽電池用封止膜
WO2015194594A1 (ja) 波長変換材料及びこれを含む太陽電池用封止膜
WO2015046442A1 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
WO2015034060A1 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP5466926B2 (ja) 太陽電池封止材用シート及び太陽電池モジュール
JP2014209626A (ja) 太陽電池用封止膜及びこれを用いた太陽電池
WO2016140360A1 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
WO2015194592A1 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP2016004895A (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP2016004893A (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP2014197683A (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP2017222752A (ja) 太陽電池用封止材製造用組成物及び太陽電池用封止材
WO2015194593A1 (ja) 波長変換材料
JP5869211B2 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP2017103410A (ja) 太陽電池用封止材の製造方法及び太陽電池用封止材製造用組成物
JP2016213401A (ja) 太陽電池用封止材製造用組成物
WO2016104175A1 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP2015095505A (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP2017222753A (ja) 太陽電池用封止材製造用組成物及び太陽電池用封止材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809905

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529404

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15809905

Country of ref document: EP

Kind code of ref document: A1