WO2015045796A1 - 積層型二次電池 - Google Patents

積層型二次電池 Download PDF

Info

Publication number
WO2015045796A1
WO2015045796A1 PCT/JP2014/073463 JP2014073463W WO2015045796A1 WO 2015045796 A1 WO2015045796 A1 WO 2015045796A1 JP 2014073463 W JP2014073463 W JP 2014073463W WO 2015045796 A1 WO2015045796 A1 WO 2015045796A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
positive electrode
negative electrode
electrode member
secondary battery
Prior art date
Application number
PCT/JP2014/073463
Other languages
English (en)
French (fr)
Inventor
前吉弘隆
大塚大輔
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2015539064A priority Critical patent/JP6020737B2/ja
Publication of WO2015045796A1 publication Critical patent/WO2015045796A1/ja
Priority to US15/075,450 priority patent/US20160276713A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery such as a lithium ion secondary battery, and more particularly to a stacked secondary battery having a stacked structure in which a positive electrode member and a negative electrode member are repeatedly stacked via a separator layer.
  • batteries secondary batteries typified by lithium ion secondary batteries have been widely used as power sources for portable electronic devices such as mobile phones and portable personal computers.
  • the laminated secondary battery 101 includes a plurality of first electrodes 102, a plurality of first current collecting tabs 105a, and a plurality of separators that can be divided into a first portion and a second portion on the central axis A. 104a, a plurality of second electrodes 103 in which one of the parts divisible by the central axis B faces the first part and the other part faces the second part, and a plurality of second current collecting tabs 105b.
  • a first asymmetric portion 107 that is asymmetric with respect to the second portion and the central axis A is formed in the first portion of each separator 104a, and the other portion and the center are formed in one portion of each second electrode 103.
  • a second asymmetric part 108 that is asymmetric with respect to the axis B is formed, and all the first asymmetric parts 107 and all the second asymmetric parts 108 are configured to coincide with each other in the stacking direction.
  • the separator 104a a bag-like separator formed by stacking separator sheet materials and fusing and joining predetermined positions on the peripheral edge is used.
  • the landing bonding position 114 is the same position in each of the bag-like separators 104a when viewed from the stacking direction (see FIG. 1, FIG. 4, FIG. 5, etc. of Patent Document 1).
  • either the first electrode 102 or the second electrode 103 is erroneously stacked and the first current collecting tab 105a and the second current collecting tab 105a are second stacked. Even if the current collecting tab 105b overlaps in the stacking direction, the first asymmetrical portion 107 and the second asymmetrical portion 108 do not coincide with each other in the stacking direction, so that erroneous stacking of electrodes can be easily recognized. Thus, it is possible to prevent problems due to erroneous stacking of electrodes.
  • the sheet-like material for separator is overlapped, and a plurality of predetermined positions on the peripheral portion are fused and joined to each other in a bag-like separator 104a.
  • One electrode 102 or the second electrode 103 is accommodated, and the first electrode 102 or the second electrode 103 accommodated in the separator 104a is alternately laminated with the other electrode, and has a bag shape.
  • the position of the fusion bonding portion 114 at the peripheral edge of each separator 104a is the same position in each bag-like separator 104a when viewed from the stacking direction (FIGS. 1, 4 and 4 of Patent Document 1). 5 etc.).
  • the fusion bonded portion 114 and the vicinity thereof are thicker than the other regions due to the shrinkage of the separator sheet material during the fusion bonding, and the first and second electrodes 102 and 103 and the separator
  • the fusion bonded portions 114 are stacked, the thickness of the stacked body increases at the peripheral edge, warping occurs in each electrode and separator, causing displacement of the electrode and separator, There is a problem that the distance between the first electrode and the second electrode is increased and the battery characteristics are deteriorated.
  • This invention solves the said subject, and the thickness of the welding part (fusion-bonding part) of a peripheral part of the separator member adjacent to each other in the lamination direction is thick compared with the other area
  • An object is to provide a stacked secondary battery.
  • the laminated secondary battery of the present invention is A positive electrode member, a negative electrode member, a laminated structure in which a separator layer is interposed, and an electricity storage element including an electrolyte;
  • An exterior body that houses the electricity storage element;
  • a positive electrode lead terminal connected to a current collecting tab provided in the positive electrode member, and a part of the positive electrode lead terminal pulled out from the exterior body;
  • an electricity storage device comprising: a negative electrode lead terminal connected to a current collecting tab provided in the negative electrode member, and a part of the negative electrode lead terminal drawn out from the exterior body;
  • At least one of the positive electrode member and the negative electrode member is the pair of separator members in which a welded portion is formed on the peripheral edge by stacking a pair of separator sheet materials and welding a predetermined position on the peripheral edge.
  • the welding portion of the separator member adjacent to each other in the stacking direction of the positive electrode member and the negative electrode member is formed at a position that does not overlap when viewed from the stacking direction.
  • the separator member is formed in a bag shape by welding a plurality of positions of the peripheral edge portions of the paired sheet material for separator.
  • a bag-like separator is used by reliably forming at least one of the positive electrode member and the negative electrode member by using a member formed in a bag shape by welding a plurality of positions of the peripheral portions of the stacked sheet-like material for separator. It becomes possible to hold in the member, and the present invention can be made more effective.
  • the separator member only needs to have a form that holds at least one of the positive electrode member and the negative electrode member and can be positively stacked with the positive electrode member and the negative electrode member through the separator layer.
  • an opening is provided so that the current collecting tab can be led out on the one side.
  • weld a predetermined position on the side opposite to the one side so that the positive electrode member or the negative electrode member is held between the separator sheet materials (for example, a substantially cylindrical shape). Still other shapes are possible.
  • the laminated secondary battery of the present invention is configured as described above, and at least one of the positive electrode member and the negative electrode member is formed by stacking a pair of separator sheet materials and welding a predetermined position of the peripheral portion.
  • the separator member having a welded portion formed at the peripheral edge thereof is disposed so as to be sandwiched between a pair of separator sheet-like materials, and the current collecting tab is drawn out from the peripheral edge portion of the separator member, Since the welded portions of the separator members adjacent to each other in the stacking direction of the positive electrode member and the negative electrode member are formed at positions that do not overlap each other when viewed from the stacking direction, the welded portions of the peripheral portions of the separator members adjacent to each other in the stacking direction The thickness of the positive electrode member, the negative electrode member, the position of the current collecting tab, etc. Without battery characteristics are lowered the distance between the member and the negative electrode member is increased, it is possible to provide a highly reliable multilayer secondary battery.
  • FIG. 1 is a plan view showing a stacked secondary battery (lithium ion secondary battery) according to an embodiment (Embodiment 1) of the present invention
  • FIG. 2 is an exploded perspective view showing the main part configuration
  • FIG. 3 is a bag. It is a disassembled perspective view which shows the positive electrode member accommodated in the separator member and separator member.
  • FIG. 4 is a plan view showing the positional relationship between the welded portions of a pair of separator members adjacent in the stacking direction.
  • the laminated secondary battery 50 of Embodiment 1 includes a positive electrode member 1 formed by forming a positive electrode mixture containing a positive electrode active material on a positive electrode current collector, and a negative electrode active material.
  • a negative electrode member 2 formed by forming a negative electrode mixture containing a substance on a negative electrode current collector includes a laminated structure 4 in which a separator layer 13 is laminated, and an electrolyte (not shown).
  • the power storage element 5 has a structure accommodated in the outer layer body 6.
  • a positive electrode lead terminal 11 a is connected to a current collecting tab (positive electrode current collecting tab) 11 provided in the positive electrode member 1, and a tip portion thereof is led out from the exterior body 6, and a current collecting tab provided in the negative electrode member 2.
  • a negative electrode lead terminal 12 a is connected to the tab (negative electrode current collecting tab) 12, and a tip portion thereof is led out from the exterior body 6.
  • the positive electrode member 1 is formed in a bag shape by stacking separator sheet-like materials and welding a plurality of predetermined positions on the peripheral edge. It is accommodated in the member 3 and is held in a state of being sandwiched between separator layers (separator sheet material) 13 constituting the separator member 3. Further, the current collecting tab 11 of the positive electrode member 1 is drawn out from the opening of the bag-shaped separator member 3.
  • the laminated structure 4 described above is formed by alternately laminating the positive electrode member 1 and the negative electrode member 2 in a state of being accommodated in the bag-shaped separator member 3, and the positive electrode member 1 and the negative electrode member 2.
  • the separator layer 13 constituting the separator member 3 is interposed between the two.
  • the laminated structure 4 is formed by alternately stacking 67 positive electrode members 1 and 68 negative electrode members 2 accommodated in the bag-shaped separator member 3.
  • the positive electrode member is interposed between two separator layers (separator sheet material) 13. 1 is positioned, and the positive electrode member 1 is sandwiched between separator layers (separator sheet-like material) 13, and then a plurality of predetermined positions on the peripheral edge are welded to form the positive electrode member 1 in a bag shape as shown in FIG. A structure housed in the separator member 3 is obtained.
  • the position of the (fusion bonding part) 23 is configured so as not to overlap when viewed from the stacking direction.
  • the positions of the welding portions 23 formed on the four sides of the separator member 3 are set so that the current collecting tabs 11 do not overlap when viewed from the stacking direction. It is more important that the position of the welded portion 23 formed on the side orthogonal to the drawn side of the current collecting tab 11 does not overlap. This is because when the welded parts overlap, the part warps and shifts during lamination.
  • FIG. 5 shows separator members 3A and 3B in which the positions of a plurality of welded portions (fused joint portions) 23 at the peripheral portion are different from each other, with the negative electrode member 2 interposed between the separator members 3A and 3B being accommodated in the positive electrode member 1 respectively.
  • FIG. 5 shows typically the state laminated
  • the position of the welding portion 23 is different between the bag-shaped separator members 3 ⁇ / b> A and 3 ⁇ / b> B adjacent to each other in the stacking direction. Since 3A and 3B are alternately laminated, the position of the welded portion (fused joint portion) 23 is the same in every other layer.
  • the positive electrode member 1 and the negative electrode are caused by an increase in the overlap of the welded portions (fused joint portions) 23 at the peripheral edge of the separator members 3 (3A and 3B in FIG. 4) adjacent to each other in the stacking direction. It becomes possible to suppress the warp of the member 2 (that is, the warp of the laminated structure 4).
  • the positions of the positive electrode members 1 and the negative electrode members 2 and the positions of the current collecting tabs 11 and 12 are varied, or the distance between the positive electrode members 1 and the negative electrode members 2 is increased, resulting in deterioration of battery characteristics. Can be suppressed. As a result, it is possible to provide a stacked secondary battery 50 with high reliability.
  • the warpage of the multilayer structure 4 constituting the multilayer secondary battery 50 according to the first embodiment of the present invention and the amount of displacement of the current collecting tab (positive electrode current collecting tab 11) are examined by the method described below. It was.
  • the dimension of a laminated structure is width W: 130mm, thickness T: 10mm, and length L: 130.
  • FIG. 6 is a view of the laminated structure 4 as viewed from the direction in which the current collecting tab (the positive current collecting tab 11) is drawn.
  • FIG. 8 is a view for explaining the configuration of a stacked secondary battery 50 according to another embodiment (Embodiment 2) of the present invention.
  • the negative electrode member 2 is interposed in the state where the positive electrode member 1 is accommodated in two types of separator portions 3A and 3B in which the positions of the plurality of welded portions (fusion bonding portions) 23 at the peripheral edge portions are different from each other.
  • the three types of separator portions 3 ⁇ / b> A in which the positions of the plurality of welded portions (fused joint portions) 23 at the peripheral portion are different from each other.
  • 3B, 3C are stacked in the order of 3C, 3B, 3A from the bottom while the negative electrode member 2 is interposed in the state in which the positive electrode member 1 is accommodated in each, so that the laminated structure 4 is formed. (See FIG. 9).
  • the separator member 3A, 3B, 3C in which the positions of the plurality of welded portions (fused joint portions) 23 at the peripheral portion are different from each other in the state where the positive electrode member 1 is accommodated in the separator portion 3A, 3B, 3C. It is a figure which shows typically the state laminated
  • the positions of the welded portions 23 are different in the bag-shaped separator members 3A, 3B, and 3C that are adjacent to each other in the stacking direction. After three types of separator members 3C, 3B, and 3A having different positions of the welded portion 23 are sequentially stacked, the three types of separator members 3C, 3B, and 3A are sequentially stacked again.
  • the positions of the positive electrode members 1 and the negative electrode members 2 and the positions of the current collecting tabs 11 and 12 are varied, or the distance between the positive electrode members 1 and the negative electrode members 2 is increased, resulting in deterioration of battery characteristics. Can be suppressed. As a result, it is possible to provide a stacked secondary battery 50 with high reliability.
  • the warpage of the multilayer structure 4 constituting the multilayer secondary battery 50 and the positional deviation amount of the current collecting tab (positive current collecting tab 11) are also described in the above embodiment. It investigated by the method similar to the case of 1.
  • Table 3 shows the results of examining the warpage of the laminated structure 4.
  • the displacement amount of the positive electrode current collecting tab is 1.5 mm.
  • the displacement amount of the positive electrode current collecting tab was suppressed to 0.8 mm.
  • the case where the positive electrode member is accommodated in the bag-shaped separator member is described as an example.
  • the negative electrode member may be accommodated in the bag-shaped separator member. Is possible.
  • the separator member has a bag shape
  • the separator member does not necessarily have a bag shape, and at least one of a positive electrode member or a negative electrode member is interposed between separator layers. Any mode that can be held is acceptable.
  • the positive electrode member 1 is formed by welding the predetermined position of the peripheral part of two separator layers (sheet-like material for separators), one separator layer ( The positive electrode member 1 may be formed by folding the sheet material for separator) in half and welding a predetermined position of the peripheral edge.
  • the present invention is not limited to the above-described embodiment in other respects as well, with respect to the number of stacked positive electrode members and negative electrode members, the direction of drawing out current collecting tabs, etc. It is possible to add deformation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

 正極あるいは負極の集電タブの位置にばらつきが生じたり、正極と負極の間の距離が大きくなって特性が低下したりすることのない、信頼性の高い積層型二次電池を提供する。 正極部材1と負極部材2とを、セパレータ層13を介して積層した積層型二次電池50において、正極部材および負極部材の少なくとも一方は、一対のセパレータ用シート状材料(セパレータ層)を重ねて周縁部の所定の位置を溶着してなるセパレータ部材3の、上記一対のセパレータ用シート状材料13に挟まれるように配設され、かつ、集電タブ11がセパレータ部材3の周縁部から外部に引き出されているとともに、正極部材と負極部材の積層方向に互いに隣り合うセパレータ部材についてみた場合に、溶着部23が、積層方向から見て重なり合わない位置に形成された構成とする。 セパレータ部材3を、セパレータ層13の周縁部の複数位置が溶着された袋状の構造とする。

Description

積層型二次電池
 本発明は、リチウムイオン二次電池などの電池に関し、詳しくは、正極部材と、負極部材とが、セパレータ層を介して繰り返して積層された積層構造を有する積層型二次電池に関する。
 近年、携帯電話、携帯用パーソナルコンピュータなどの携帯用電子機器の電源としてリチウムイオン二次電池などに代表される電池(二次電池)が広く用いられるに至っている。
 ところで、このような電池として、図10に示すような構造を有する積層型二次電池が提案されている。
 この積層型二次電池101は、複数の第1の電極102と、複数の第1の集電タブ105aと、中心軸Aで第1の部分と第2の部分とに二分可能な複数のセパレータ104aと、中心軸Bで二分可能な部分の一方が第1の部分に対向し、他方の部分が第2の部分に対向した複数の第2の電極103と、複数の第2の集電タブ105bとを有している。
 そして、各セパレータ104aにおける第1の部分に、第2の部分と中心軸Aに関して非対称な第1の非対称部107が形成され、各第2の電極103における一方の部分に、他方の部分と中心軸Bに関して非対称な第2の非対称部108が形成されており、全ての第1の非対称部107と全ての第2の非対称部108とが積層方向で一致するように構成されている。
 そして、セパレータ104aとしては、セパレータ用シート状材料を重ねて、周縁部の所定の位置を融着接合させることにより形成された袋状のセパレータが用いられており、各セパレータ用シート状材料の融着接合位置114は、積層方向から見た場合おいて、袋状の各セパレータ104aにおいて同じ位置とされている(特許文献1の図1,図4,図5など参照)。
 上述のように構成された特許文献1の積層型二次電池101によれば、第1の電極102または第2の電極103のいずれかが誤積層されて第1の集電タブ105aと第2の集電タブ105bとが積層方向で重なったとしても、第1の非対称部107と第2の非対称部108とが積層方向で一致しなくなるため、電極の誤積層を容易に認識することが可能で、電極の誤積層による不具合を防止することが可能になる。
特開2012-54194号公報
 しかしながら、上述の特許文献1の積層型二次電池の場合、セパレータ用シート状材料を重ねて、周縁部の所定の複数位置を融着接合させることにより形成された袋状のセパレータ104a内に第1の電極102または第2の電極103が収容されており、セパレータ104a内に収容された第1の電極102または第2の電極103が、他方の電極と交互に積層されているとともに、袋状の各セパレータ104aの周縁部の融着接合部114の位置は、積層方向から見た場合において、袋状の各セパレータ104aにおいて同じ位置とされている(特許文献1の図1,図4,図5など参照)。
 そのため、融着接合部114およびその近傍領域は、融着接合の際のセパレータ用シート状材料の収縮により、厚みが他の領域よりも厚くなり、第1および第2の電極102,103やセパレータ104aの積層数が増加すると、融着接合部114が積み重なって、積層体の厚みが周縁部で厚くなり、各電極やセパレータに反りが生じて、電極やセパレータのずれが引き起こされたり、第1の電極と第2の電極との間の距離が大きくなって、電池特性が低下したりするというような問題点がある。
  本発明は、上記課題を解決するものであり、積層方向に互いに隣り合うセパレータ部材の、周縁部の溶着部(融着接合部)の厚みが、セパレータ部材の他の領域に比べて厚いことに起因して、各正極および負極の位置や、集電タブの位置などにばらつきが生じたり、正極と負極の間の距離が大きくなって電池特性が低下したりすることのない、信頼性の高い積層型二次電池を提供することを目的とする。
 上記課題を解決するために、本発明の積層型二次電池は、
 正極部材と、負極部材とが、セパレータ層を介して積層された積層構造体と、電解質とを備えた蓄電要素と、
 前記蓄電要素を収容する外装体と、
 前記正極部材が備える集電タブに接続され、一部が前記外装体から外部に引き出された正極リード端子と、
 前記負極部材が備える集電タブに接続され、一部が前記外装体から外部に引き出された負極リード端子と
 を備えた蓄電デバイスにおいて、
 前記正極部材および前記負極部材の少なくとも一方は、一対のセパレータ用シート状材料を重ねて周縁部の所定の位置を溶着することにより、前記周縁部に溶着部が形成されたセパレータ部材の、前記一対のセパレータ用シート状材料に挟まれるように配設され、かつ、前記集電タブが前記セパレータ部材の周縁部から外部に引き出されているとともに、
 前記正極部材と前記負極部材の積層方向に互いに隣り合う前記セパレータ部材の前記溶着部が、前記積層方向から見て重なり合わない位置に形成されていること
 を特徴としている。
 また、本発明の電池においては、前記セパレータ部材が、重ねた一対の前記セパレータ用シート状材料の周縁部の複数位置を溶着することにより袋状に形成されたものであることが望ましい。
 セパレータ部材として、重ねたセパレータ用シート状材料の周縁部の複数位置を溶着することにより袋状に形成されたものを用いることにより、正極部材および負極部材の少なくとも一方を確実に、袋状のセパレータ部材内に保持させることが可能になり、本発明をより実効あらしめることができる。
 ただし、セパレータ部材は、正極部材および負極部材の少なくとも一方を保持し、正極部材と負極部材とがセパレータ層を介して確実に積層することができるような形態であればよく、例えば、一辺の所定の位置を溶着して、該一辺に集電タブを導出させることができるような開口部を設け、正極部材および負極部材のいずれか一方の集電タブを該開口部から導出させた状態で、上記一辺と対向する辺の所定の位置を溶着して、正極部材または負極部材が、セパレータ用シート状材料間に保持されるような形状(例えば略筒状の形状)とすることも可能であり、さらに他の形状とすることも可能である。
 本発明の積層型二次電池は、上述のように構成されており、正極部材および負極部材の少なくとも一方は、一対のセパレータ用シート状材料を重ねて周縁部の所定の位置を溶着することにより、周縁部に溶着部が形成されたセパレータ部材の、一対のセパレータ用シート状材料に挟まれるように配設され、かつ、集電タブがセパレータ部材の周縁部から外部に引き出されているとともに、正極部材と負極部材の積層方向に互いに隣り合うセパレータ部材の溶着部が、積層方向から見て重なり合わない位置に形成されているので、積層方向に互いに隣り合うセパレータ部材の、周縁部の溶着部の厚みが、セパレータ部材の他の領域に比べて厚いことに起因して、各正極部材、負極部材の位置や、集電タブの位置などにばらつきが生じたり、正極部材と負極部材の間の距離が大きくなって電池特性が低下したりすることのない、信頼性の高い積層型二次電池を提供することができる。
本発明の一実施形態(実施形態1)にかかる積層型二次電池(リチウムイオン二次電池)を示す平面図である。 本発明の実施形態1にかかる積層型二次電池の要部構成を示す分解斜視図である。 本発明の実施形態1にかかる積層型二次電池の、袋状のセパレータ部材およびセパレータ部材に収容された正極部材を示す分解斜視図である。 本発明の実施形態1にかかる積層型二次電池の、積層方向に隣り合う一対のセパレータ部材の溶着部の位置関係を示す平面図である。 本発明の実施形態1にかかる積層型二次電池の、セパレータ部材の溶着部の位置関係を示す図である。 本発明の実施形態1にかかる積層型二次電池を構成する積層構造体の、反りの大きさを測定する方法を説明する図である。 本発明の実施形態1にかかる積層型二次電池を構成する集電タブ(正極集電タブ)の位置ずれ量を測定する方法を説明する図である。 本発明の他の実施形態(実施形態2)にかかる積層型二次電池の、積層方向に隣り合う3つのセパレータ部材の溶着部の位置関係を示す平面図である。 本発明の実施形態2にかかる積層型二次電池の、セパレータ部材の溶着部の位置関係を示す図である。 従来の積層型二次電池の構成を示す図である。
 以下に本発明の実施形態を示して、本発明の特徴とするところをさらに詳しく説明する。
[実施形態1]
 図1は本発明の一実施形態(実施形態1)にかかる積層型二次電池(リチウムイオン二次電池)を示す平面図、図2はその要部構成を示す分解斜視図、図3は袋状のセパレータ部材およびセパレータ部材に収容された正極部材を示す分解斜視図である。
 また、図4は、積層方向に隣り合う一対のセパレータ部材の溶着部の位置関係を示す平面図である。
 この実施形態1の積層型二次電池50は、図1~4に示すように、正極活物質を含む正極合材を、正極用集電体上に形成してなる正極部材1と、負極活物質を含む負極合材を、負極用集電体上に形成してなる負極部材2とが、セパレータ層13を介して積層された積層構造体4と、電解質(図示せず)とを備えた蓄電要素5が外層体6に収容された構造を有している。
 さらに、正極部材1が備える集電タブ(正極集電タブ)11には正極リード端子11aが接続され、その先端部が外装体6から外部に導出されているとともに、負極部材2が備える集電タブ(負極集電タブ)12には負極リード端子12aが接続され、その先端部が外装体6から外部に導出されている
 また、この実施形態1にかかる積層型二次電池50においては、正極部材1が、セパレータ用シート状材料を重ねて、周縁部の所定の複数位置を溶着することにより袋状に形成されたセパレータ部材3内に収容されており、セパレータ部材3を構成するセパレータ層(セパレータ用シート状材料)13に挟まれた状態で保持されている。また、正極部材1の集電タブ11は、袋状のセパレータ部材3の開口部から外部に引き出されている。
 そして、上述の積層構造体4は、袋状のセパレータ部材3に収容された状態の正極部材1と、負極部材2とを交互に積層することにより形成されており、正極部材1と負極部材2とに間には、セパレータ部材3を構成するセパレータ層13が介在するように構成されている。
 なお、この実施形態1では、袋状のセパレータ部材3に収容された状態の正極部材1を67枚、負極部材2を68枚、交互に積層することにより積層構造体4が形成されている。 
 また、正極部材1が袋状のセパレータ部材3に収容された構造体を形成するにあたっては、例えば図3に示すように、2枚のセパレータ層(セパレータ用シート状材料)13の間に正極部材1を位置させ、セパレータ層(セパレータ用シート状材料)13で正極部材1を挟み込んだ後、周縁部の所定の複数位置を溶着することにより、図2に示すような、正極部材1が袋状のセパレータ部材3に収容された構造体が得られる。
 そして、この実施形態1にかかる積層型二次電池50においては、図4に示すように、積層方向に互いに隣り合う袋状のセパレータ部材3(3A,3B)の、周縁部の複数の溶着部(融着接合部)23の位置が、積層方向から見て重なり合わないように構成されている。なお、この実施形態1では、図4に示すように、セパレータ部材3の4つの辺に形成された溶着部23の位置が集電タブ11が積層方向から見て重なり合わないようにしているが、集電タブ11の引き出された辺と直交する辺に形成された溶着部23の位置が重ならないようにすることがより重要である。これは、溶着部が重なった場合、その部分が反ってしまい、積層時にずれてしまうことによる。
 図5は、周縁部の複数の溶着部(融着接合部)23の位置が互いに異なるセパレータ部材3A,3Bを、それぞれに正極部材1が収容された状態で、負極部材2を間に介在させながら、交互に積層した状態を模式的に示す図である。
 この実施形態1にかかる積層型二次電池50においては、図5に示すように、溶着部23の位置が積層方向に互いに隣り合う袋状のセパレータ部材3A,3Bでは異なっているが、セパレータ部材3Aと3Bが交互に積層されていることから、1層おきに溶着部(融着接合部)23の位置が同じ位置になっている。
 したがって、すべてのセパレータ部材3において溶着部(融着接合部)23の位置が同じである場合に比べて、この実施形態1の構成の場合、溶着部(融着接合部)23の重なりの数が1/2に減少する。
 その結果、積層方向に互いに隣り合うセパレータ部材3(図4では、3A,3B)の、周縁部の溶着部(融着接合部)23の重なりが多くなることに起因する、正極部材1および負極部材2の反り(すなわち、積層構造体4の反り)を抑制することが可能になる。
 また、各正極部材1、負極部材2の位置や、集電タブ11,12の位置などにばらつきが生じたり、正極部材1と負極部材2の間の距離が大きくなって電池特性が低下したりすることを抑制することができる。そして、その結果、信頼性の高い積層型二次電池50を提供することが可能になる。
 なお、本発明の実施形態1にかかる積層型二次電池50を構成する積層構造体4の反りと、集電タブ(正極集電タブ11)の位置ずれ量を、以下に説明する方法で調べた。なお、積層構造体の寸法は、幅W:130mm、厚みT:10mm、長さL:130である。
 (1)積層型二次電池を構成する積層構造体の反り
 図6に示すように、本発明の実施形態1にかかる積層型二次電池50を構成する積層構造体4をテーブルT上に載置し、スケールSにより、左右の両端部の最も反った部分の寸法Xと、中央部分の寸法Yを測定し、その差(X-Y)を反り量とした。なお、図6は、集電タブ(正極集電タブ11)の引き出し方向から積層構造体4を見た図である。
 また、比較のため、すべてのセパレータ部材3において溶着部(融着接合部)の位置が同じになるようにして作製した積層構造体(比較例)について、上述の方法と同じ方法で反り量を調べた。
 その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、すべてのセパレータ部材3において溶着部の位置が同じである比較例の積層構造体の場合、反り量が25mmであったのに対し、本発明の実施形態1にかかる試料(積層構造体)の場合、反り量が22mmに抑えられることが確認された。
 (2)集電タブ(正極集電タブ)の位置ずれ量
 図7に示すように、複数の集電タブ(正極集電タブ11)のうち、最も突出した正極集電タブ11(11x)の先端位置と、最も後退した位置にある正極集電タブ11(11y)の先端位置の、正極集電タブ11の引き出し方向に沿う方向の位置の差Dを正極集電タブの位置ずれ量とした。
 また、比較のため、すべてのセパレータ部材3において溶着部(融着接合部)の位置が同じになるようにして作製した積層構造体(比較例)についても、上述の方法と同じ方法で正極集電タブの位置ずれ量を調べた。
 その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、すべてのセパレータ部材3において溶着部(融着接合部)の位置が同じである比較例の積層構造体の場合、正極集電タブの位置ずれ量が1.5mmであったのに対し、本発明の実施形態1にかかる試料(積層構造体)の場合、正極集電タブの位置ずれ量が1.0mmに抑えられることが確認された。
[実施形態2]
 図8は本発明の他の実施形態(実施形態2)にかかる積層型二次電池50の構成を説明する図である。
 実施形態1では、周縁部の複数の溶着部(融着接合部)23の位置が互いに異なる2種類のセパレータ部3A,3Bに正極部材1が収容された状態で、負極部材2を間に介在させながら交互に積層するようにしたが、この実施形態2では、図8に示すように、周縁部の複数の溶着部(融着接合部)23の位置が互いに異なる3種類のセパレータ部3A,3B,3Cを、それぞれに正極部材1が収容された状態で、負極部材2を間に介在させながら、下から3C,3B,3Aの順に繰り返して積層することにより積層構造体4を形成するようにした(図9参照)。
 なお、図8では、3種類のセパレータ部3A,3B,3Cにおいて、一辺側の溶着部23の配設態様のみを示し、他の辺においては図示を省略しているが、他の辺においても同様に、互いに異なる位置に溶着部が形成されている。
 なお、図9は、周縁部の複数の溶着部(融着接合部)23の位置が互いに異なるセパレータ部3A,3B,3Cを、それぞれに正極部材1が収容された状態で、負極部材2を間に介在させながら、3C,3B,3Aの順に繰り返して積層した状態を模式的に示す図である。
 図9に示すように、実施形態2にかかる積層型二次電池50においては、溶着部23の位置が、積層方向に互いに隣り合う袋状のセパレータ部材3A,3B,3Cにおいてそれぞれ異なっており、溶着部23の位置が異なる3種類のセパレータ部材3C,3B,3Aが順に積層された後、再び3種類のセパレータ部材3C,3B,3Aが順に積層されている。
 したがって、すべてのセパレータ部材3において溶着部(融着接合部)23の位置が同じである場合に比べて、この実施形態2の構成の場合、溶着部(融着接合部)23の重なりの数が1/3に減少する。
 その結果、セパレータ部材3(図9では、3A,3B,3C)の、周縁部の溶着部(融着接合部)23の重なりが多くなることに起因する、正極部材1および負極部材2の反り(すなわち、積層構造体4の反り)を抑制することが可能になる。
 また、各正極部材1、負極部材2の位置や、集電タブ11,12の位置などにばらつきが生じたり、正極部材1と負極部材2の間の距離が大きくなって電池特性が低下したりすることを抑制することができる。そして、その結果、信頼性の高い積層型二次電池50を提供することが可能になる。
 なお、本発明の実施形態2にかかる積層型二次電池50についても、それを構成する積層構造体4の反りと、集電タブ(正極集電タブ11)の位置ずれ量を、上記実施形態1の場合と同様の方法で調べた。
 積層構造体4の反りの大きさを調べた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 また、集電タブ(正極集電タブ11)の位置ずれ量を調べた結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表3に示すように、すべてのセパレータ部材3において溶着部(融着接合部)の位置が同じである比較例の積層構造体の場合、反り量が25mmであったのに対し、本発明の実施形態2にかかる試料(積層構造体)の場合、反り量が20mmに抑えられることが確認された。
 また、表4に示すように、すべてのセパレータ部材3において溶着部(融着接合部)の位置が同じである比較例の積層構造体の場合、正極集電タブの位置ずれ量が1.5mmであったのに対し、本発明の実施形態にかかる試料(積層構造体)の場合、正極集電タブの位置ずれ量が0.8mmに抑えられることが確認された。
 上記実施形態1,2では、正極部材が袋状のセパレータ部材内に収容されている場合を例にとって説明したが、場合によっては、負極部材を袋状セパレータ部材内に収容した構成とすることも可能である。
 また、上記実施形態1,2では、セパレータ部材が袋状である場合を例にとって説明したが、セパレータ部材は、必ずしも袋状である必要はなく、セパレータ層間に正極部材または負極部材の少なくとも一方を保持することが可能な態様であればよい。
 また、上記実施形態では、2枚のセパレータ層(セパレータ用シート状材料)周縁部の、所定の位置を溶着することにより、正極部材1を形成するようにしているが、1枚のセパレータ層(セパレータ用シート状材料)を2つ折りにして、周縁部の所定の位置を溶着することにより、正極部材1を形成するようにしてもよい。
 本発明は、さらにその他の点においても上記の実施形態に限定されるものではなく、正極部材と負極部材の積層数、集電タブの引き出し方向などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。
 1        正極部材
 2        負極部材
 3        セパレータ部材
 3A,3B,3C 溶着部の位置の異なるセパレータ部材
 4        積層構造体
 5        蓄電要素
 6        外装体
 11       集電タブ(正極集電タブ)
 11a      正極リード端子
 11x      最も突出した位置にある正極集電タブ
 11y      最も後退した位置にある正極集電タブ
 12       集電タブ(負極集電タブ)
 12a      負極リード端子
 13       セパレータ層(セパレータ用シート状材料)
 23       溶着部(融着接合部)
 50       積層型二次電池
 D        集電タブの位置ずれ量
 S        スケール
 T        テーブル
 X        積層構造体の左右の両端部の最も反った部分の寸法
 Y        積層構造体の中央部分の寸法

Claims (2)

  1.  正極部材と、負極部材とが、セパレータ層を介して積層された積層構造体と、電解質とを備えた蓄電要素と、
     前記蓄電要素を収容する外装体と、
     前記正極部材が備える集電タブに接続され、一部が前記外装体から外部に引き出された正極リード端子と、
     前記負極部材が備える集電タブに接続され、一部が前記外装体から外部に引き出された負極リード端子と
     を備えた蓄電デバイスにおいて、
     前記正極部材および前記負極部材の少なくとも一方は、一対のセパレータ用シート状材料を重ねて周縁部の所定の位置を溶着することにより、前記周縁部に溶着部が形成されたセパレータ部材の、前記一対のセパレータ用シート状材料に挟まれるように配設され、かつ、前記集電タブが前記セパレータ部材の周縁部から外部に引き出されているとともに、
     前記正極部材と前記負極部材の積層方向に互いに隣り合う前記セパレータ部材の前記溶着部が、前記積層方向から見て重なり合わない位置に形成されていること
     を特徴とする積層型二次電池。
  2.  前記セパレータ部材が、重ねた一対の前記セパレータ用シート状材料の周縁部の複数位置を溶着することにより袋状に形成されたものであることを特徴とする請求項1記載の積層型二次電池。
PCT/JP2014/073463 2013-09-30 2014-09-05 積層型二次電池 WO2015045796A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015539064A JP6020737B2 (ja) 2013-09-30 2014-09-05 積層型二次電池
US15/075,450 US20160276713A1 (en) 2013-09-30 2016-03-21 Laminated secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013203889 2013-09-30
JP2013-203889 2013-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/075,450 Continuation US20160276713A1 (en) 2013-09-30 2016-03-21 Laminated secondary battery

Publications (1)

Publication Number Publication Date
WO2015045796A1 true WO2015045796A1 (ja) 2015-04-02

Family

ID=52742943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073463 WO2015045796A1 (ja) 2013-09-30 2014-09-05 積層型二次電池

Country Status (3)

Country Link
US (1) US20160276713A1 (ja)
JP (1) JP6020737B2 (ja)
WO (1) WO2015045796A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170317375A1 (en) * 2016-05-02 2017-11-02 Samsung Sdi Co., Ltd. Electrode assembly
WO2019012825A1 (ja) * 2017-07-14 2019-01-17 日本電気株式会社 蓄電デバイス用の袋状セパレータ、その熱接合方法及び熱接合装置、並びに蓄電デバイス
JP2019192544A (ja) * 2018-04-26 2019-10-31 トヨタ自動車株式会社 積層電極体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021125288A1 (de) 2021-09-29 2023-03-30 Volkswagen Aktiengesellschaft Batteriezelle und Verfahren zu deren Herstellung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017112A (ja) * 2001-06-28 2003-01-17 Nec Tokin Tochigi Ltd 積層型二次電池
JP2007201248A (ja) * 2006-01-27 2007-08-09 Nec Tokin Corp 積層型電気化学デバイス
JP2012069378A (ja) * 2010-09-24 2012-04-05 Sanyo Electric Co Ltd 積層式電池
WO2012137593A1 (ja) * 2011-04-07 2012-10-11 日産自動車株式会社 電池、電池製造方法および袋詰電極
JP2013149813A (ja) * 2012-01-20 2013-08-01 Rohm Co Ltd ラミネート型エネルギーデバイス用電極構造およびその製造方法、および電気二重層キャパシタ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04174963A (ja) * 1990-11-06 1992-06-23 Matsushita Electric Ind Co Ltd 鉛蓄電池用セパレータおよびその製造法
JPH09320636A (ja) * 1996-06-04 1997-12-12 Sony Corp 非水電解液二次電池
JP5954068B2 (ja) * 2012-09-12 2016-07-20 株式会社豊田自動織機 蓄電装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017112A (ja) * 2001-06-28 2003-01-17 Nec Tokin Tochigi Ltd 積層型二次電池
JP2007201248A (ja) * 2006-01-27 2007-08-09 Nec Tokin Corp 積層型電気化学デバイス
JP2012069378A (ja) * 2010-09-24 2012-04-05 Sanyo Electric Co Ltd 積層式電池
WO2012137593A1 (ja) * 2011-04-07 2012-10-11 日産自動車株式会社 電池、電池製造方法および袋詰電極
JP2013149813A (ja) * 2012-01-20 2013-08-01 Rohm Co Ltd ラミネート型エネルギーデバイス用電極構造およびその製造方法、および電気二重層キャパシタ

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170317375A1 (en) * 2016-05-02 2017-11-02 Samsung Sdi Co., Ltd. Electrode assembly
EP3242346A1 (en) * 2016-05-02 2017-11-08 Samsung SDI Co., Ltd Electrode assembly
CN107342391A (zh) * 2016-05-02 2017-11-10 三星Sdi株式会社 电极组件
US10727527B2 (en) 2016-05-02 2020-07-28 Samsung Sdi Co., Ltd. Electrode assembly
CN107342391B (zh) * 2016-05-02 2022-04-15 三星Sdi株式会社 电极组件
WO2019012825A1 (ja) * 2017-07-14 2019-01-17 日本電気株式会社 蓄電デバイス用の袋状セパレータ、その熱接合方法及び熱接合装置、並びに蓄電デバイス
JPWO2019012825A1 (ja) * 2017-07-14 2020-06-18 日本電気株式会社 蓄電デバイス用の袋状セパレータ、その熱接合方法及び熱接合装置、並びに蓄電デバイス
JP7047842B2 (ja) 2017-07-14 2022-04-05 日本電気株式会社 蓄電デバイス用の袋状セパレータ、その熱接合方法及び熱接合装置、並びに蓄電デバイス
JP2019192544A (ja) * 2018-04-26 2019-10-31 トヨタ自動車株式会社 積層電極体

Also Published As

Publication number Publication date
JPWO2015045796A1 (ja) 2017-03-09
US20160276713A1 (en) 2016-09-22
JP6020737B2 (ja) 2016-11-02

Similar Documents

Publication Publication Date Title
KR102303827B1 (ko) 다수의 전극조립체를 구비하는 복합전극조립체 및 이를 포함하는 전기화학소자
US8815434B2 (en) Electrode assembly for secondary battery with wound and folded separator portions and secondary battery having the same
TWI467834B (zh) Battery, battery manufacturing method and bag electrode
KR102157284B1 (ko) 축전 소자
JP2011129523A (ja) 2次電池
JP6020737B2 (ja) 積層型二次電池
JP5180995B2 (ja) 電池
JP2012204305A (ja) 電池セル
JP2009016122A (ja) 積層型二次電池および組電池
JP5533548B2 (ja) 積層型電池
JP5676095B2 (ja) 積層型二次電池
JP2011238357A (ja) 電池
WO2011077989A1 (ja) 積層型二次電池
JP2009224102A (ja) 扁平型電池
US11495832B2 (en) Electrochemical cell
JP5838837B2 (ja) 電極収納セパレータ、蓄電装置及び車両
WO2019187401A1 (ja) 薄型電池
JP6075390B2 (ja) 電池
JP5561798B2 (ja) 積層型二次電池および組電池
US10892452B2 (en) Cell structure unit and multilayer cell
JP5265586B2 (ja) 電気化学デバイス
JP6793703B2 (ja) 電気化学セル
JP2023087373A (ja) 電池及び電池の製造方法
WO2019142702A1 (ja) 電池
JP2012190696A (ja) 電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849958

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539064

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849958

Country of ref document: EP

Kind code of ref document: A1