WO2011077989A1 - 積層型二次電池 - Google Patents

積層型二次電池 Download PDF

Info

Publication number
WO2011077989A1
WO2011077989A1 PCT/JP2010/072368 JP2010072368W WO2011077989A1 WO 2011077989 A1 WO2011077989 A1 WO 2011077989A1 JP 2010072368 W JP2010072368 W JP 2010072368W WO 2011077989 A1 WO2011077989 A1 WO 2011077989A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
degrees
bag
secondary battery
separators
Prior art date
Application number
PCT/JP2010/072368
Other languages
English (en)
French (fr)
Inventor
育央 小嶋
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Publication of WO2011077989A1 publication Critical patent/WO2011077989A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a stacked secondary battery.
  • batteries used for mobile terminals such as mobile phones and notebook computers are often required to be light and have a high capacity. Therefore, a laminated secondary battery in which battery elements such as electrodes and electrolytes are sealed using a laminate film having a relatively high degree of freedom in shape has been adopted.
  • the stacked secondary battery is easy to have a structure such as a battery pack or a battery module in which two or more cells are stacked and the cells are connected in series.
  • Such stacked secondary batteries are increasingly used in devices that require a large current, such as electric assist bicycles, electric tools, and electric vehicles.
  • FIG. 1A is a perspective view showing a configuration of a stacked secondary battery
  • FIG. 1B is a schematic view of a stacked body.
  • the stacked secondary battery includes a stacked body 18 including a positive electrode sheet 13 and a negative electrode sheet 14 that are stacked via a separator 15.
  • An aluminum lead 16 is connected to the positive electrode sheet 13, and a nickel lead 17 is connected to the negative electrode sheet 14.
  • the separator 15 is formed by processing two films having the same direction of taking a resin film at the time of manufacture, that is, machine direction (hereinafter abbreviated as MD) into a bag shape.
  • MD machine direction
  • the laminated secondary battery has a laminated body 18 in which bag-like separators 15 containing positive electrode sheets 13 and negative electrode sheets 14 are alternately laminated.
  • the laminate 18 is accommodated in the aluminum laminate film 11.
  • the aluminum laminate film 11 is sealed after the electrolytic solution 12 is injected.
  • the separator 15 Since the separator 15 is made of a polymer material such as a resin, it has anisotropy in breaking strength depending on the orientation direction of the molecules constituting the separator 15. That is, the separator 15 has a high breaking strength with respect to a specific direction and a low breaking strength with respect to a direction orthogonal to the specific direction.
  • the separator that electrically separates the positive electrode sheet and the negative electrode sheet is generally a porous film made of a synthetic resin such as polyethylene or polypropylene.
  • a breaking strength in a direction perpendicular to MD that is, transverse direction (hereinafter abbreviated as TD) smaller than the breaking strength of MD are more preferably used from the viewpoint of thermal shrinkage.
  • Patent Document 1 discloses a stacked secondary battery including a stacked body in which a positive electrode and a negative electrode face each other with a separator interposed therebetween. At least one of the positive electrode and the negative electrode is covered with a separator on both sides. The separator is joined by a fusion joint part arranged around the positive electrode or the negative electrode with a gap. Between the inner peripheral portion, the outer peripheral portion, or the adjacent fusion bonded portions of the fusion bonded portion, a fusion sealed portion that is continuously fused is provided. The separator is sealed so as to separate the inside containing the positive electrode or the negative electrode from the outside.
  • a positive electrode sheet (or a negative electrode sheet) with a conductive connection tab drawn out is inserted into the bag-shaped separator.
  • FIG. 2A is a conceptual diagram showing a manufacturing method of a bag-shaped separator
  • FIG. 2B is a schematic diagram showing MD and TD of the manufactured bag-shaped separator.
  • the bag-like separator 23 stores the electrode sheet 22 by the separator drawn out from the two separator rolls 21 wound in a reel shape, aligns the MDs, and overlaps and heat-seals them. It is processed by.
  • Patent Document 2 discloses a film-shaped battery separator having a lead pin and a film-shaped battery separator that is used after being laminated and wound. A reinforcing layer is formed on a portion of the film-like battery separator that comes into contact with the lead pin.
  • Patent Document 2 describes a method in which two porous films are bonded to form one separator.
  • the MD (corresponding to the molecular orientation) of one porous film is preferably tilted by 80 to 100 degrees with respect to the MD (corresponding to the molecular orientation) of the other porous film.
  • Patent Document 2 discloses a method in which two porous films are bonded to form one separator. In particular, it is considered good to bond both porous membranes into a single separator so that the MD of one porous membrane and the MD of the other porous membrane are at an angle of 80 to 100 degrees. Yes. However, in this method, when the porous membranes are bonded to each other, the microporosity of the porous membranes is impaired, and the function as a separator may be reduced.
  • An object of the present invention is to provide a stacked type secondary battery that can solve at least one of the problems of the background art.
  • the stacked secondary battery according to an aspect of the present invention includes a stacked body in which positive electrode sheets and negative electrode sheets are alternately stacked via separators, and at least one of the separator pairs adjacent to each other.
  • the crossing angle between the machine direction of one separator and the machine direction of the other separator is 45 degrees or more and 135 degrees or less.
  • the stacked secondary battery preferably includes a plurality of separator pairs, and the size of the crossing angle in each separator pair is preferably different from the crossing angle in other separator pairs.
  • the crossing angle between adjacent separators is 90 degrees.
  • a stacked secondary battery including a stacked body in which a positive electrode sheet and a negative electrode sheet are alternately stacked via a pair of separators that are in contact with each other without being bonded to each other. Including. In at least one separator pair of the separator pairs, the crossing angle between the machine direction of one separator and the machine direction of the other separator is not less than 45 degrees and not more than 135 degrees.
  • the stacked secondary battery preferably includes a plurality of separator pairs, and the size of the crossing angle for each separator pair is different from the crossing angle for the other separator pairs.
  • the crossing angles of the machine direction of the two separators are all 90 degrees.
  • a stacked secondary battery includes a positive electrode sheet, a negative electrode sheet, and peripheral edges of a first separator and a second separator, and one electrode sheet. And a laminated body in which the other electrode sheet and the bag-like separator are alternately laminated.
  • the crossing angle between the machine direction of the first separator and the machine direction of the second separator is not less than 45 degrees and not more than 135 degrees.
  • the stacked secondary battery includes a bag-shaped separator in which the intersection angle between the machine direction of the first separator and the machine direction of the second separator is 0 degree, and the intersection angle is 45 degrees. It is preferable that the bag-shaped separator having the angle of 135 degrees or less and the bag-shaped separator having the crossing angle of 0 degree are alternately arranged.
  • the crossing angle in each bag-shaped separator is not less than 45 degrees and not more than 135 degrees, and the machine directions of the first separator constituting the bag-shaped separator are all in the same direction. It is preferable to face.
  • the crossing angle in each bag separator is 45 degrees or more and 135 degrees or less, and the crossing angles in each bag separator are all different.
  • the present invention it is possible to provide a laminated secondary battery excellent in safety in which a separator does not break even when stress in a specific direction is applied from the outside, and a short circuit does not occur between a positive electrode and a negative electrode.
  • the microporosity of the separator is not impaired. Thereby, a possibility that the function as a separator may be impaired is reduced.
  • the multilayer secondary battery of the present invention has a configuration substantially similar to that shown in FIGS. 1A and 1B.
  • the stacked secondary battery includes a stacked body 18 having a positive electrode sheet (positive electrode sheet) 13, a negative electrode sheet (negative electrode sheet) 14, and a separator 15.
  • the positive electrode sheet 13 and the negative electrode sheet 14 are alternately stacked via the separator 15.
  • the laminate 18 is accommodated in the laminate film 11.
  • the separator 15 electrically isolates the positive electrode sheet 13 and the negative electrode sheet 14.
  • the separator 15 is generally a porous film made of a synthetic resin such as polyethylene or polypropylene.
  • the separator 15 has anisotropy in breaking strength according to the orientation direction of molecules constituting such a synthetic resin. Specifically, the separator 15 has a high breaking strength in a specific direction and a low breaking strength in a direction perpendicular to this direction.
  • a separator in which the breaking strength in the film take-off direction (MD) at the time of production is stronger than the TD breaking strength is used.
  • the crossing angle of the MDs of the separators adjacent to each other through one electrode sheet is changed, or the crossing angle of the MDs of the separators is changed through two separators.
  • the two separators are processed into a bag shape without aligning the MD, and a positive electrode sheet or a negative electrode sheet is placed in the bag. Laminate.
  • one of the positive electrode sheet 13 and the negative electrode sheet 14 is inserted into a bag-shaped separator processed into a bag shape.
  • the separator 15 of each layer processed into the bag shape is not aligned in the direction where the breaking strength is weak. Therefore, it has been found that even when an external force is applied to the multilayer secondary battery for some reason, it is possible to provide a multilayer secondary battery that prevents an internal short circuit.
  • the bag-shaped separator 26 is formed by joining the peripheral portions of both separators and accommodates one electrode sheet.
  • the laminated body 18 is formed by alternately laminating the other electrode sheet and the bag-like separator.
  • a woven fabric, a nonwoven fabric, a porous film, or the like can be used as the separator 15.
  • polypropylene and polyethylene-based porous films are thin and have a large area, and are preferable in terms of film strength and film resistance.
  • FIG. 3A is a conceptual diagram showing a manufacturing method of the bag-shaped separator of the present invention
  • FIG. 3B is a schematic diagram showing machine direction of the manufactured bag-shaped separator 26.
  • the separators 15a and 15b drawn out from the two separator rolls 24a and 24b wound up in a reel shape are heat-sealed at a certain angle and processed into a bag shape.
  • the positive electrode sheet 13 is accommodated in the bag-shaped separator 26, but the negative electrode sheet may be accommodated in the bag-shaped separator 26. Moreover, you may accommodate both electrode sheets in the bag-shaped separator 26.
  • the MD crossing angle is preferably 45 degrees or more and 135 degrees or less, and more preferably 75 degrees or more and 105 degrees or less, from the viewpoint of prevention of internal short circuit and the amount of dent in the battery by the impact test.
  • the laminated secondary battery may have a plurality of bag-like separators 26.
  • the MD of one separator 15a is oriented in a direction different from the MD of the other separator 15b.
  • the crossing angle between the MD of one separator 15a and the MD of the other separator 15b is preferably 45 degrees or more and 135 degrees or less.
  • some of the plurality of bag-like separators 26 may be composed of two separators 15a and 15b with a uniform MD. It is preferable that the bag-like separators 26 having the same MD crossing angle and the bag-like separators 26 having different MD crossing angles are alternately stacked. Thereby, an internal short circuit is prevented and the amount of dents in the battery by the collision test is reduced.
  • each of the bag-like separators 26 preferably has different MD crossing angles of the separators 15a and 15b constituting the bag-like separator. This is preferable in preventing an internal short circuit and reducing the amount of dents in the battery by the collision test.
  • the MDs of the separators 15a and 15b constituting the bag-shaped separator are joined at different angles. And it is preferable that MD of one separator (1st separator) 15a of each bag-like separator is the same direction. This is preferable in preventing an internal short circuit and reducing the amount of dents in the battery by the collision test.
  • the MDs of the separators 15a and 15b may be joined at different angles. This is preferable for preventing an internal short circuit and reducing the amount of dents in the battery by a collision test.
  • the MDs of the other separators may be randomly configured on the basis of the MD of one separator 15a constituting the laminate. In this case, since the direction in which the separator is difficult to break is randomly directed, the film is hardly broken regardless of the direction from which the external force is applied.
  • the positive electrode sheet 13 and the negative electrode sheet 14 are stacked via a separator pair composed of two separators 15.
  • the MDs of the two separators 15 face each other at different angles. It is preferable that the crossing angle of MD of one separator with respect to MD of the other separator is 45 degrees or more and 135 degrees or less. Thereby, an internal short circuit can be prevented and the amount of dents in the battery by the collision test can be reduced.
  • the two separators constituting the separator pair are in contact with each other without being bonded.
  • the stacked secondary battery may have a plurality of separator pairs.
  • the crossing angles of the MDs of the two separators constituting each separator pair are preferably different from each other. Thereby, an internal short circuit can be prevented and the amount of dents in the battery by the collision test can be reduced.
  • the MD crossing angles of the two separators are all 90 degrees. Thereby, an internal short circuit can be prevented and the amount of dents in the battery by the collision test can be reduced.
  • the stacked secondary battery according to the third embodiment includes a stacked body 18 in which a plurality of positive electrode sheets 13 and a plurality of negative electrode sheets 14 are alternately stacked via separators 15.
  • the crossing angle between the MD of one separator and the MD of the other separator is 45 degrees or more and 135 degrees or less.
  • the crossing angle of MDs of adjacent separators is preferably different for each separator pair. Thereby, an internal short circuit can be prevented and the amount of dents in the battery by the collision test can be reduced.
  • the crossing angles of the adjacent separator MDs are all 90 degrees. Thereby, an internal short circuit can be prevented and the amount of dents in the battery by the collision test can be reduced.
  • the separators 15 constituting the stacked body 18 are not bonded to each other, the microporosity of the separators 15 is not impaired. Thereby, a possibility that the function as the separator 15 may be impaired is reduced.
  • Example 1 A mixture of 92 parts by weight of lithium manganate (LiMn 2 O 4) powder, 5 parts by weight of carbon black and 3 parts by weight of polyvinylidene fluoride was applied to an aluminum foil, dried and rolled to form a positive electrode having a length of 105 mm and a width of 55 mm. Produced. The aluminum lead had a width of 10 mm and a thickness of 200 ⁇ m. A positive electrode having an aluminum lead formed integrally was produced.
  • LiMn 2 O 4 lithium manganate
  • a mixture of 91 parts by weight of graphite, 1 part by weight of carbon black, and 8 parts by weight of polyvinylidene fluoride was applied onto a copper foil, dried and rolled to produce a negative electrode having a length of 109 mm and a width of 59 mm. did.
  • the nickel lead had a width of 10 mm and a thickness of 200 ⁇ m.
  • a negative electrode integrally formed with nickel leads was produced.
  • FIG. 4 is a diagram showing the MD of each separator constituting the bag-like separator in each example and each comparative example.
  • FIG. 4A is a diagram showing the MD of one separator 15a among the separators constituting the bag-shaped separator
  • FIG. 4B is a diagram showing the MD 61 of the other separator 15b. That is, FIG. 4A is a plan view of the bag-shaped separator as viewed from one surface, and FIG. 4B is a plan view of the bag-shaped separator as viewed from the other surface.
  • the positive electrode was sandwiched between two separators, and only the aluminum lead 16 was pulled out to join the periphery to produce a bag-shaped separator 26.
  • the negative electrode sheet was used alone. That is, the negative electrode sheet was not inserted into the bag-like separator 26.
  • separators 15a and 15b those having a three-layer structure of polypropylene / polyethylene / polypropylene having a TD breaking strength of 160 kgf / cm 2 and an MD breaking strength of 900 kgf / cm 2 were used.
  • Separator 15a, 15b had a width of 59 mm and a height of 111 mm.
  • the crossing angles of MD41 of one separator 15a and MD61 of the other separator 15b were all 45 degrees as shown in FIG.
  • Ten bag-shaped separators 26 containing the positive electrode sheet were prepared. Bag-shaped separators 26 and negative electrode sheets were alternately laminated to produce an electrode laminate.
  • the electrode laminate was housed in an aluminum laminate film, impregnated with an electrolytic solution, and the aluminum laminate film was sealed to produce a laminated secondary battery.
  • the outer dimensions of the obtained laminated secondary battery were 72 mm in width, 130 mm in height, and 5 mm in thickness excluding the aluminum lead and nickel lead.
  • Example 2 Of the separators constituting the bag-like separator 26, the crossing angle between the MD42 of one separator 15a and the MD61 of the other separator 15b was 60 degrees. Otherwise, a laminated secondary battery was produced in the same manner as in Example 1.
  • Example 3 Of the separators constituting the bag-like separator 26, the crossing angle between the MD 43 of one separator 15a and the MD 61 of the other separator 15b was set to 75 degrees. Otherwise, a laminated secondary battery was produced in the same manner as in Example 1.
  • Example 4 Of the separators constituting the bag-shaped separator 26, the crossing angle between the MD 44 of one separator 15a and the MD 61 of the other separator 15b was 90 degrees. Otherwise, a laminated secondary battery was produced in the same manner as in Example 1.
  • FIG. 5 shows a collision test in which the weight is dropped toward the laminated secondary battery.
  • a metal round bar 32 having a diameter of 15.8 mm is placed in parallel with the width direction of the battery 33 on the battery 33 having the bag-like separator 26.
  • a weight 31 having a height of 610 mm and a weight 31 is freely dropped and collided with a round bar 32.
  • the amount of the dent which arises in the battery 33, and the presence or absence of the short circuit between a positive electrode sheet and a negative electrode sheet were investigated.
  • Table 1 shows the relationship between the dent amount of the battery and the presence or absence of an internal short circuit with respect to the MD crossing angle of the bag-like separator 26.
  • Example 1 the crossing angle of MD of the bag-like separator is 45 degrees.
  • the MD of one separator 15a is axisymmetric with the MD41 of Example 1 with respect to the axis perpendicular to the MD61 of the other separator 15b, that is, when the MD crossing angle is 135 degrees, a collision test is performed. Went. Similar tests were performed for Examples 2 to 3 and Comparative Examples 2 to 4.
  • the MD crossing angle is 45 degrees in Example 1, 135 degrees, 60 degrees in Example 2 is 120 degrees, 75 degrees in Example 3 is 105 degrees, and 5 degrees in Comparative Example 2.
  • a collision test was also conducted on a stacked secondary battery having a bag-like separator in which the temperature was changed to 175 degrees, 15 degrees in Comparative Example 3 was changed to 165 degrees, and 30 degrees in Comparative Example 4 was changed to 150 degrees.
  • the dent amount of the battery after the test and the presence or absence of an internal short circuit were the same as the corresponding examples (Example 1, Example 2, Example 3, Comparative Example 2, Comparative Example 3, Comparative Example 4). .
  • the crossing angle between the MD of one separator 15a and the MD of the other separator 15b is preferably 45 degrees or more and 135 degrees or less. In this case, it was confirmed that the dent amount of the battery after the test was small and no internal short circuit occurred.
  • Examples 5 to 8, Comparative Examples 5 to 8 A laminated secondary battery in which a positive electrode sheet and a negative electrode sheet were laminated via two separators was produced.
  • the same procedure as in Example 1 was performed except that two separators were interposed between the positive electrode sheet and the negative electrode sheet without producing a bag-shaped separator.
  • the outer dimensions of the obtained laminated secondary battery were 72 mm in width, 130 mm in height, and 5.5 mm in thickness excluding the aluminum lead and nickel lead.
  • the two separators are not joined by welding or the like, and are disposed in contact with each other.
  • a collision test was performed on each of the stacked secondary batteries.
  • Table 2 shows the relationship between the dent amount of the battery and the presence or absence of an internal short circuit with respect to the MD crossing angle of the two separators.
  • the crossing angle of the MDs of the two separators is 45 degrees in Example 5 is 135 degrees, 60 degrees in Example 6 is 120 degrees, 75 degrees in Example 7 is 105 degrees, and 5 degrees in Comparative Example 6.
  • a collision test was also conducted on a battery having a laminated body in which the temperature was changed to 175 degrees, 15 degrees in Comparative Example 7 to 165 degrees, and 30 degrees in Comparative Example 8 to 150 degrees.
  • the dent amount of the battery after the test and the presence or absence of an internal short circuit were the same as those of Example 5, Example 6, Example 7, Comparative Example 6, Comparative Example 7, and Comparative Example 8, respectively.
  • Example 9 to 12 Comparative Examples 9 to 12
  • a laminated secondary battery having a laminate in which a positive electrode sheet and a negative electrode sheet were laminated via a single separator was produced.
  • a secondary battery was manufactured in the same procedure as in Example 1 except that one separator was disposed between the positive electrode sheet and the negative electrode sheet without forming the separator in a bag shape.
  • the outer dimensions of the laminated secondary battery were 72 mm in width, 130 mm in height, and 5 mm in thickness, excluding the aluminum lead and nickel lead. Stacked secondary batteries with crossing angles of MDs of separators adjacent to each other through electrode sheets of 45 degrees, 60 degrees, 75 degrees, 90 degrees, 0 degrees, 5 degrees, 15 degrees, and 30 degrees are respectively produced. Thus, Example 9, Example 10, Example 11, Example 12, Comparative Example 9, Comparative Example 10, Comparative Example 11, and Comparative Example 12 were obtained. A collision test was performed on each of the stacked secondary batteries.
  • Table 3 shows the relationship between the dent amount of the battery and the presence or absence of an internal short circuit with respect to the MD crossing angle of adjacent separators.
  • the crossing angle of the MDs of the adjacent separators is 45 degrees in Example 9 is 135 degrees, 60 degrees in Example 10 is 120 degrees, 75 degrees in Example 11 is 105 degrees, and 5 degrees in Comparative Example 10 is 5 degrees.
  • a collision test was also performed on a battery having a laminated body in which 15 degrees of Comparative Example 11 was changed to 165 degrees and 30 degrees of Comparative Example 12 was changed to 150 degrees at 175 degrees.
  • the dent amount of the battery after the test and the presence or absence of an internal short circuit were the same as those in Example 9, Example 10, Example 11, Comparative Example 10, Comparative Example 11, and Comparative Example 12, respectively.
  • the separator does not break even when stress in a specific direction is applied from the outside, and a short circuit between the positive electrode and the negative electrode does not occur, and it is possible to provide a laminated secondary battery excellent in safety. It was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)

Abstract

 特定の方向の応力が外部から加わってもセパレータが破膜せず、正の電極シートと負の電極シートとの間での短絡が生じることのない安全性に優れた積層型二次電池が提供される。積層型二次電池は、正極シートと、負極シートと、2枚のセパレータの周縁部を接合した袋状セパレータ(26)とを備える。積層型二次電池は、一方のセパレータ(15a)のマシンダイレクション(41~44)と他方のセパレータ(15b)のマシンダイレクション(61)との間の交差角度が45度以上135度以下である袋状セパレータ(26)を少なくとも1つ備える。袋状セパレータ(26)の内部には正および負の電極シートのうちの一方が配設されており、他方の電極シートと袋状セパレータ(26)とが交互に積層されている。

Description

積層型二次電池
 本発明は、積層型二次電池に関するものである。
 近年、携帯電話やノートパソコンなどの携帯端末に使用される電池は軽量かつ高容量のものが必要とされることが多い。そのため、比較的形状の自由度が高いラミネートフィルムを用いて電極や電解質等の電池要素を密閉した積層型二次電池が採用されるようになってきた。また、積層型二次電池は、2個以上のセルを積層させてセル同士を直列接続した電池パックや電池モジュールなどの構造にし易い。このような積層型二次電池は、電動アシスト自転車、電動工具、電気自動車のように、大電流が必要となる機器に使用される例が増大している。
 図1Aは積層型二次電池の構成を示す斜視図であり、図1Bは積層体の模式図である。積層型二次電池は、セパレータ15を介して積層された正極シート13および負極シート14を含む積層体18を有する。
 正極シート13にはアルミリード16が接続されており、負極シート14にはニッケルリード17が接続されている。セパレータ15は、製造時における樹脂フィルムの引き取り方向、つまりマシンダイレクション(以下、MDと略す)が揃っている2枚のフィルムが袋状に加工されて成る。この袋状セパレータ15の中に正極シート13が収納されている。
 積層型二次電池は、正極シート13を収納した袋状セパレータ15と負極シート14とが交互に積層された積層体18を有する。積層体18はアルミラミネートフィルム11に収納されている。アルミラミネートフィルム11は、電解液12が注入された後に密封される。
 セパレータ15は、樹脂のような高分子材料から成るため、セパレータ15を構成する分子の配向方向に応じて破断強度に異方性を有する。つまり、セパレータ15は、ある特定の方向に対して破断強度が強く、これと直交する方向に対して破断強度が弱い。
 正極シートと負極シートを電気的に隔離するセパレータは、ポリエチレン、ポリプロピレン等の合成樹脂製の多孔質フィルムであるのが一般的である。それらのセパレータとして、MDと直交する方向、つまりトランスバースダイレクション(以下、TDと略す)の破断強度が、MDの破断強度よりも小さくなるものが、熱収縮の点からより好ましく用いられる。
 特許第3934888号公報(以下、特許文献1と称す。)は、正極と負極とがセパレータを介して対向する積層体を含む積層型二次電池を開示している。正極または負極の少なくとも一方は、両面がセパレータで覆われている。セパレータは、正極または負極の周囲に間隔をあけて並べられた融着接合部によって接合されている。この融着接合部の内周部、外周部もしくは隣接する融着接合部の間には、連続的に融着した融着封止部が設けられている。セパレータは、正極または負極を収容した内部と外部とを分けるように封止されている。
 セパレータは袋状に加工された後、この袋状セパレータに、導電接続用のタブを引き出した正極シート(あるいは負極シート)が挿入される。
 図2Aは袋状セパレータの製造方法を示す概念図であり、図2Bは製造した袋状セパレータのMDおよびTDを示す模式図である。
 袋状セパレータ23は、図3に示すように、リール状に巻き取られた2本のセパレータロール21から引き出されたセパレータによって電極シート22を収納し、MDをそろえて重ね合わせて熱融着することによって加工される。
 特開平11-135099号公報(以下、特許文献2と称す。)には、リードピンを有するフィルム状の電極と積層捲回されて用いられるフィルム状の電池用セパレータが開示されている。このフィルム状の電池用セパレータの、リードピンと接触する部分には、補強層が形成されている。
 セパレータの破膜を防止することで、セパレータ自体の破断強度を高めることができる。破断強度を高める例として、2枚の多孔質膜を貼りあわせて1枚のセパレータにする方法が特許文献2に記載されている。とくに、一方の多孔質膜のMD(分子配向に対応)が、他方の多孔質膜のMD(分子配向に対応)に対して80度~100度傾けられていることが好ましいとされている。
 特許文献1のように、MDが一致した2つのセパレータシートから袋状セパレータを作成した場合、図2Bに示すように、各セパレータのMDまたはTDが一定方向に向く。そのため、破断し易い方向(MDと並行方向)と一致した物理的な力が加わって電池が変形した場合、セパレータが破膜して正極と負極との間で短絡が生じる可能性がある。
 セパレータが破膜することを防止する方法として、セパレータ自体の破断強度を高める方法がある。特許文献2では、2枚の多孔質膜を貼りあわせて1枚のセパレータにする方法が開示されている。とくに、一方の多孔質膜のMDと他方の多孔質膜のMDとが80~100度の角度になるように、両多孔質膜を接着して1枚のセパレータにすることが良いとされている。しかし、この方法では、多孔質膜が互いに接着される際に、多孔質膜の微多孔性が損なわれ、セパレータとしての機能が低下する恐れがある。
 また、安全性の観点から言って、構成部品同士による危険性の回避だけでなく、より信頼性の高い積層型二次電池を提供するため、更なる改善が求められている。
 このように、特定の方向の応力が外部から加わってもセパレータが破膜することのない安全性に優れた積層型二次電池が望まれている。
 本発明の目的は上記背景技術の課題の少なくとも一つを解決できる積層型二次電池を提供することである。
特許第3934888号公報 特開平11-135099号公報
 本発明の一態様における積層型二次電池は、正の電極シートと負の電極シートとがセパレータを介して交互に積層された積層体を含み、互いに隣接する前記セパレータ対のうちの少なくとも1つのセパレータ対において、一方のセパレータのマシンダイレクションと他方のセパレータのマシンダイレクションとの間の交差角度が45度以上135度以下である。
 一例によれば、積層型二次電池は、セパレータ対を複数有し、各々のセパレータ対における交差角度の大きさは他のセパレータ対における交差角度と異なっていることが好ましい。
 別の例によれば、積層型二次電池は、隣接するセパレータの交差角度が90度であることが好ましい。
 本発明の別の態様における積層型二次電池は、正の電極シートと負の電極シートとが、互いに接着しないで接する2枚のセパレータからなるセパレータ対を介して交互に積層された積層体を含む。セパレータ対のうちの少なくとも1つのセパレータ対において、一方のセパレータのマシンダイレクションと他方のセパレータのマシンダイレクションとの間の交差角度は45度以上135度以下である。
 一例によれば、積層型二次電池は、セパレータ対を複数有し、各々のセパレータ対に対する交差角度の大きさは他のセパレータ対に対する交差角度と異なっていることが好ましい。
 別の例によれば、2枚のセパレータのマシンダイレクションの交差角度がすべて90度であることが好ましい。
 本発明のさらに別の態様における積層型二次電池は、正の電極シートと、負の電極シートと、第1のセパレータと第2のセパレータとの周縁部が接合されて成り、一方の電極シートを収容する複数の袋状セパレータと、他方の電極シートと袋状セパレータとが交互に積層された積層体と、を備える。少なくとも1つの袋状セパレータについて、第1のセパレータのマシンダイレクションと第2のセパレータのマシンダイレクションとの間の交差角度が45度以上135度以下である。
 一例によれば、積層型二次電池は、第1のセパレータのマシンダイレクションと第2のセパレータのマシンダイレクションとの間の交差角度が0度である袋状セパレータを有し、交差角度が45度以上135度以下である袋状セパレータと、交差角度が0度である袋状セパレータとが交互に配置されていることが好ましい。
 別の例によれば、積層型二次電池は、各々の袋状セパレータにおける交差角度が45度以上135度以下であり、袋状セパレータを構成する第1のセパレータのマシンダイレクションが全て同じ方向を向いていることが好ましい。
 さらに別の例によれば、積層型二次電池は、各々の袋状セパレータにおける交差角度が45度以上135度以下であり、各々の袋状セパレータにおける交差角度は全て異なっていることが好ましい。
 本発明により、特定の方向の応力が外部から加わってもセパレータが破膜せず、正極負極間での短絡が生じることのない安全性に優れた積層型二次電池の提供が可能となる。
 また、マシンダイレクションの方向が異なる2つのセパレータは互いに接着されていないため、セパレータの微多孔性が損なわれることがない。これにより、セパレータとしての機能が損なわれる虞が低減される。
 本発明の上記及び他の目的、特徴、利点は、本発明を例示した添付の図面を参照する以下の説明から明らかとなろう。
積層型二次電池の概略構成を示す斜視図である。 積層型二次電池の積層体の構成を示す斜視図である。 袋状セパレータの製造方法の一例を示す概念図である。 図2Aに示す方法により製造された袋状セパレータのMDおよびTDを示す模式図である。 袋状セパレータの製作方法を示す概念図である。 製作された袋状セパレータのマシンダイレクションを示す模式図である。 袋状セパレータを構成する各セパレータのMDを示す図である。 おもりを落下させる衝突試験を示す図である。
 以下、図面を参照して本発明の実施形態を説明する。
 本発明の積層型二次電池は、図1Aおよび図1Bとほぼ同様の構成を有する。積層型二次電池は、正の電極シート(正極シート)13と負の電極シート(負極シート)14とセパレータ15とを有する積層体18を備えている。正極シート13と負極シート14は、セパレータ15介して交互に積層されている。積層体18はラミネートフィルム11に収納されている。
 セパレータ15は、正極シート13と負極シート14とを電気的に隔離する。セパレータ15は、ポリエチレン、ポリプロピレン等の合成樹脂製の多孔質フィルムであるのが一般的である。セパレータ15は、このような合成樹脂を構成する分子の配向方向に応じて、破断強度に異方性を有する。具体的には、セパレータ15は、ある特定の方向に対する破断強度が強く、この方向に直交する方向に対する破断強度は弱い。セパレータとしては、、熱収縮の観点から、製造時におけるフィルムの引き取り方向(MD)の破断強度がTDの破断強度よりも強くなるものが用いられる。
 本発明では、1枚の電極シートを介して互いに隣接するセパレータのMDの交差角度を変えたり、または2枚のセパレータを介してセパレータのMDの交差角度を変えたりする。もしくは、2枚のセパレータを貼り合わせて1枚のセパレータにするのではなく、2枚のセパレータのMDを揃えずに袋状に加工して、その袋の中に正極シートまたは負極シートを入れて積層する。
 第1の実施形態における積層型二次電池では、正極シート13または負極シート14の一方が、袋状に加工された袋状セパレータ内に挿入されている。その袋状に加工された各層のセパレータ15は破断強度の弱い方向が揃っていない。したがって、積層型二次電池に何らかの原因で外力が加わった場合であっても、内部短絡を防止する積層型二次電池を提供できることが見出された。
 袋状セパレータ26は、両セパレータの周縁部が接合されて成り、一方の電極シートを収容する。積層体18は、他方の電極シートと袋状セパレータとが交互に積層されて成る。
 セパレータ15としては、織布、不織布、多孔膜等を用いることができる。特にポリプロピレン、ポリエチレン系の多孔膜が、薄膜かつ大面積であり、膜強度や膜抵抗の面で好ましい。
 図3Aは本発明の袋状セパレータの製作方法を示す概念図、図3Bは製作した袋状セパレータ26のマシンダイレクションを示す模式図である。リール状に巻き取られた2本のセパレータロール24a,24bから引き出されたセパレータ15a,15bは、ある角度で交差させて熱融着し袋状に加工される。
 なお、図では袋状セパレータ26に正極シート13が収容されているが、袋状セパレータ26に収容されるのは負極シートであっても良い。また、両方の電極シートを袋状セパレータ26に収容しても良い。
 MDの交差角度は、内部短絡の防止、衝撃試験による電池の凹み量の観点から、45度以上135度以下であることが好ましく、75度以上105度以下であることがより好ましい。
 積層型二次電池は、袋状セパレータ26を複数有していて良い。複数の袋状セパレータのうちの少なくとも1つについて、一方のセパレータ15aのMDが他方のセパレータ15bのMDと異なる方向に向いていることが好ましい。一方のセパレータ15aのMDと他方のセパレータ15bのMDとの間の交差角度は45度以上、135度以下であることが好ましい。これにより、内部短絡が防止され、衝突試験による電池の凹み量が少なくなる。
 一例として、複数の袋状セパレータ26のうちのいくつかは、MDが揃った2枚のセパレータ15a,15bから構成されていても良い。MDの交差角度が揃っている袋状セパレータ26と、MDの交差角度が異なっている袋状セパレータ26とが、交互に積層していることが好ましい。これにより、内部短絡が防止され、衝突試験による電池の凹み量が少なくなる。
 別の例として、各々の袋状セパレータ26は、当該袋状セパレータを構成するセパレータ15a、15bのMDの交差角度がそれぞれ異なっていることが好ましい。これにより、内部短絡を防止し、衝突試験による電池の凹み量を少なくするうえで好ましい。
 別の例として、袋状セパレータ26は、袋状セパレータを構成するセパレータ15a,15bのMDが互いに異なる角度で接合されている。そして、それぞれの袋状セパレータのうちの一方のセパレータ(第1のセパレータ)15aのMDが全て同じ方向であるのが好ましい。これにより、内部短絡を防止し、衝突試験による電池の凹み量を少なくするうえで好ましい。
 袋状セパレータ26は、セパレータ15a,15bのMDが互いに異なる角度で接合されていても良い。これは、内部短絡を防止し、衝突試験による電池の凹み量を少なくするうえで好ましい。
 また、積層体を構成するひとつのセパレータ15aのMDを基準として、他のセパレータのMDはランダムに構成されていても良い。この場合、セパレータが破断し難い方向がランダムに向けられるため、どの方向から外力が加わっても破膜しにくくなる。
 本発明の第2の実施形態における積層型二次電池は、正極シート13と負極シート14が2枚のセパレータ15からなるセパレータ対を介して積層されている。2枚のセパレータ15のMDは互いに異なる角度で対向している。一方のセパレータのMDに対する他方のセパレータのMDの交差角度が45度以上、135度以下であることが好ましい。これにより、内部短絡を防止し、衝突試験による電池の凹み量を少なくすることができる。
 セパレータ対を構成する2枚のセパレータは、互いに接着されないで接している。積層型二次電池は、複数組のセパレータ対を有していても良い。各セパレータ対を構成する2枚のセパレータのMDの交差角度は、それぞれ異なることが好ましい。これにより、内部短絡を防止し、衝突試験による電池の凹み量を少なくすることができる。
 2枚のセパレータのMDの交差角度は、すべて90度であるのが特に好ましい。これにより、内部短絡を防止し、衝突試験による電池の凹み量を少なくすることができる。
 第3の実施形態の積層型二次電池は、複数の正極シート13と複数の負極シート14がセパレータ15を介して交互に積層した積層体18を有する。互いに隣接するセパレータ15からなるセパレータ対のうちの少なくとも1つのセパレータ対において、一方のセパレータのMDと他方のセパレータのMDとの間の交差角度が45度以上135度以下である。これにより、内部短絡を防止し、衝突試験による電池の凹み量を少なくすることができる。
 隣接するセパレータのMDの交差角度は、各セパレータ対で異なっているのが好ましい。これにより、内部短絡を防止し、衝突試験による電池の凹み量を少なくすることができる。
 隣接するセパレータのMDの交差角度がすべて90度であるのが好ましい。これにより、内部短絡を防止し、衝突試験による電池の凹み量を少なくすることができる。
 上述した、第1~第3の実施形態の積層型二次電池では、積層体18を構成するセパレータ15同士が接着されていないため、セパレータ15の微多孔性が損なわれることがない。これにより、セパレータ15としての機能が損なわれる虞が低減される。
 以下に本発明の実施例を詳述する。
 (実施例1)
 マンガン酸リチウム(LiMn2O4)粉末92重量部、カーボンブラック5重量部、ポリフッ化ビニリデン3重量部からなる混合物を、アルミニウム箔に塗布乾燥してロール掛けを行なって、長さ105mm、幅55mmの正極を作製した。アルミリードは幅10mm、厚さ200μmであった。アルミリードを一体に形成した正極を作製した。
 また、91重量部のグラファイト、1重量部のカーボンブラック、8重量部のポリフッ化ビニリデンからなる混合物を、銅箔上に塗布乾燥してロール掛けを行ない、長さ109mm、幅59mmの負極を作製した。ニッケルリードは幅10mm、厚さ200μmであった。ニッケルリードを一体に形成した負極を作製した。
 図4は、各実施例および各比較例における袋状セパレータを構成する各セパレータのMDを示す図である。図4(a)は袋状セパレータを構成するセパレータのうちの一方のセパレータ15aのMDを示す図、図4(b)は他方のセパレータ15bのMD61を示す図である。つまり、図4(a)は袋状セパレータを一方の面から見た平面図であり、図4(b)は袋状セパレータを他方の面から見た平面図である。
 正極を2枚のセパレータで挟み、アルミリード16だけを引き出して周囲を接合し、袋状セパレータ26を作製した。負極シートは単独で使用した。すなわち負極シートは袋状セパレータ26内に挿入しなかった。
 セパレータ15a,15bは、TD破断強度160kgf/cm、MD破断強度900kgf/cmの、ポリプロピレン/ポリエチレン/ポリプロピレンの三層構造をもつものを使用した。セパレータ15a,15bの幅は59mm、高さは111mmであった。
 一方のセパレータ15aのMD41と他方のセパレータ15bのMD61の交差角度は、図1に示すとおり全て45度とした。正極シートを収納した袋状セパレータ26を10枚用意した。袋状セパレータ26と負極シートとを交互に積層して電極積層体を作製した。
 アルミラミネートフィルムに電極積層体を収納し、電解液を含浸させてからアルミラミネートフィルムを密封して積層型二次電池を作製した。得られた積層型二次電池の外形寸法は、アルミリード、ニッケルリード部を除いて幅72mm、高さ130mm、厚さ5mmであった。
 (実施例2)
 袋状セパレータ26を構成するセパレータのうちの一方のセパレータ15aのMD42と他方のセパレータ15bのMD61との交差角度を60度とした。それ以外は実施例1と同様にして積層型二次電池を作製した。
 (実施例3)
 袋状セパレータ26を構成するセパレータのうちの一方のセパレータ15aのMD43と他方のセパレータ15bのMD61との交差角度を75度とした。それ以外は実施例1と同様にして積層型二次電池を作製した。
 (実施例4)
 袋状セパレータ26を構成するセパレータのうちの一方のセパレータ15aのMD44と他方のセパレータ15bのMD61との交差角度を90度とした。それ以外は実施例1と同様にして積層型二次電池を作製した。
 (比較例1)
 袋状セパレータ26を構成するセパレータのうちの一方のセパレータ15aのMD51と他方のセパレータ15bのMD61との交差角度を0度とした。それ以外は実施例1と同様にして積層型二次電池を作製した。
 (比較例2)
 袋状セパレータ26を構成するセパレータのうちの一方のセパレータ15aのMD52と他方のセパレータ15bのMD61との交差角度を5度とした。それ以外は実施例1と同様にして積層型二次電池を作製した。
 (比較例3)
 袋状セパレータ26を構成するセパレータのうちの一方のセパレータ15aのMD53と他方のセパレータ15bのMD61との交差角度を15度とした。それ以外は実施例1と同様にして積層型二次電池を作製した。
 (比較例4)
 袋状セパレータ26を構成するセパレータのうちの一方のセパレータ15aのMD54と他方のセパレータ15bのMD61との交差角度を30度とした。それ以外は実施例1と同様にして積層型二次電池を作製した。
 (衝撃試験)
 図5は、おもりを積層型二次電池に向けて落下させる衝突試験を示している。上記の袋状セパレータ26を備えた電池33の上に、直径15.8mmの金属製の丸棒32を、電池33の幅方向と平行にして乗せている。この衝撃試験では、高さ610mmから9.1kgのおもり31を自由落下させて丸棒32に衝突させる。そして、電池33に生じる凹み量と、正極シートと負極シートとの間の短絡の有無を調査した。
 袋状セパレータ26のMDの交差角度に対する電池の凹み量と内部短絡の有無との関係を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 比較例1の電池では、明らかに電池の凹み量が大きく、正極と負極との間が内部短絡している。これに対し、実施例1~実施例4の電池では、凹み量も小さく、内部短絡が生じていないことがわかった。
 実施例1では袋状セパレータのMDの交差角度が45度である。これに対し、一方のセパレータ15aのMDが、他方のセパレータ15bのMD61と垂直な軸に対して実施例1のMD41と線対称な場合、つまりMDの交差角度が135度の場合についても衝突試験を行った。実施例2~3、比較例2~4に関しても同様の試験を行った。
 具体的には、MDの交差角度を、実施例1の45度を135度に、実施例2の60度を120度に、実施例3の75度を105度に、比較例2の5度を175度に、比較例3の15度を165度に、比較例4の30度を150度に変えた袋状セパレータを有する積層型二次電池についても衝突試験を行った。試験後の電池の凹み量と内部短絡の有無は、それぞれ対応する例(実施例1、実施例2、実施例3、比較例2、比較例3、比較例4)と同様の結果となった。
 これらの結果から、一方のセパレータ15aのMDと他方のセパレータ15bのMDとの交差角度は45度以上135度以下であることが好ましい。この場合には、試験後の電池の凹み量が小さく、内部短絡が発生しないことが確認できた。
 (実施例5~8、比較例5~8)
 正極シートと負極シートを、2枚のセパレータを介して積層する積層型二次電池を作製した。袋状セパレータを作製せずに正極シートと負極シート間にそれぞれ2枚のセパレータを介する以外は実施例1と同様にした。なお、得られた積層型二次電池の外形寸法はアルミリード、ニッケルリード部を除いて幅72mm、高さ130mm、厚さ5.5mmであった。この2枚のセパレータは、溶接等の接合がされておらず、互いに接して配設されている。互いに接する2枚のセパレータのMDの交差角度をすべて45度、60度、75度、90度、0度、5度、15度、30度とした積層型二次電池を、それぞれ作製して、実施例5、実施例6、実施例7、実施例8、比較例5、比較例6、比較例7、比較例8とした。それぞれの積層型二次電池について衝突試験を行った。
 2枚のセパレータのMDの交差角度に対する電池の凹み量と内部短絡の有無との関係を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 2枚のセパレータのMDの交差角度を、実施例5の45度を135度に、実施例6の60度を120度に、実施例7の75度を105度に、比較例6の5度を175度に、比較例7の15度を165度に、比較例8の30度を150度に変更した積層体を有する電池についても衝突試験を行った。試験後の電池の凹み量と内部短絡の有無は、それぞれ実施例5、実施例6、実施例7、比較例6、比較例7、比較例8と同様の結果となった。
 これらの結果から、互いに接する2枚のセパレータのMDの角度が45度以上、135度以下であれば、試験後の電池の凹み量が小さく、内部短絡が発生しないことが確認できた。
 (実施例9~12、比較例9~12)
 次に、実施例9~12について説明を行う。これらの実施例では、正極シートと負極シートが1枚のセパレータを介して積層された積層体を有する積層型二次電池を作製した。セパレータを袋状にせずに、正極シートと負極シートとの間に1枚のセパレータを配置する以外は、実施例1と同様な手順で二次電池を製造した。
 積層型二次電池の外形寸法は、アルミリードおよびニッケルリード部を除いて、幅72mm、高さ130mm、厚さ5mmであった。電極シートを介して互いに隣接するセパレータのMDの交差角度をすべて45度、60度、75度、90度、0度、5度、15度、30度とした積層型二次電池を、それぞれ作製して、実施例9、実施例10、実施例11、実施例12、比較例9、比較例10、比較例11、比較例12とした。それぞれの積層型二次電池について衝突試験を行った。
 隣接するセパレータのMDの交差角度に対する電池の凹み量と内部短絡の有無との関係を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 隣接するセパレータのMDの交差角度を、実施例9の45度を135度に、実施例10の60度を120度に、実施例11の75度を105度に、比較例10の5度を175度に、比較例11の15度を165度に、比較例12の30度を150度に変更した積層体を有する電池についても衝突試験を行った。試験後の電池の凹み量と内部短絡の有無は、それぞれ実施例9、実施例10、実施例11、比較例10、比較例11、比較例12と同様の結果となった。
 これらの結果から、隣接するセパレータのMDの交差角度が45度以上、135度以下であれば、試験後の電池の凹み量が小さく、内部短絡が発生しないことが確認できた。
 これより、特定の方向の応力が外部から加わってもセパレータが破膜せず、正極と負極との間での短絡が生じない、安全性に優れた積層型二次電池を提供できることが確認できた。
 この出願は、2009年12月24日に出願された日本国特許出願番号第2009-291672号を基礎とする優先権を主張し、参照によりその開示の全てをここに取り込む。
 以上、本発明の望ましい実施形態について提示し、詳細に説明したが、本発明は上記実施形態に限定されるものではなく、要旨を逸脱しない限り、さまざまな変更及び修正が可能であることを理解されたい。すなわち、当業者であれば、当然なしえるであろう各種変形、修正もまた本発明に含まれる。
11 ラミネートフィルム
12 電解液
13 正極シート
14 負極シート
15,15a、15b セパレータ
16 アルミリード
17 ニッケルリード
18 積層体
21,24a,24b セパレータロール
23,26 袋状セパレータ
31 おもり
32 丸棒
33 電池
41 実施例1の袋状セパレータを構成する一方のセパレータのMD
42 実施例2の袋状セパレータを構成する一方のセパレータのMD
43 実施例3の袋状セパレータを構成する一方のセパレータのMD
44 実施例4の袋状セパレータを構成する一方のセパレータのMD
51 比較例1の袋状セパレータを構成する一方のセパレータのMD
52 比較例2の袋状セパレータを構成する一方のセパレータのMD
53 比較例3の袋状セパレータを構成する一方のセパレータのMD
54 比較例4の袋状セパレータを構成する一方のセパレータのMD
61 実施例および比較例の袋状セパレータを構成する他方のセパレータのMD

Claims (10)

  1.  複数の正の電極シートと複数の負の電極シートとがセパレータを介して交互に積層された積層体を含む積層型二次電池であって、
     互いに隣接する前記セパレータからなるセパレータ対のうちの少なくとも1つのセパレータ対において、一方のセパレータのマシンダイレクションと他方のセパレータのマシンダイレクションとの間の交差角度が45度以上135度以下である、積層型二次電池。
  2.  前記セパレータ対を複数有し、各々の前記セパレータ対における前記交差角度の大きさは、他のセパレータ対における前記交差角度と異なっている、請求項1に記載の積層型二次電池。
  3.  前記交差角度が90度である、請求項1に記載の積層型二次電池。
  4.  正の電極シートと負の電極シートとが、互いに接着しないで接する2枚のセパレータからなるセパレータ対を介して交互に積層された積層体を含む積層型二次電池であって、
     前記セパレータ対のうちの少なくとも1つのセパレータ対において、一方の前記セパレータのマシンダイレクションと他方の前記セパレータのマシンダイレクションとの間の交差角度が45度以上135度以下である、積層型二次電池。
  5.  前記セパレータ対を複数有し、各々の前記セパレータ対に対する前記交差角度の大きさは他のセパレータ対に対する前記交差角度と異なっている、請求項4に記載の積層型二次電池。
  6.  前記交差角度が90度である、請求項4に記載の積層型二次電池。
  7.  正の電極シートと、
     負の電極シートと、
     第1のセパレータと第2のセパレータとの周縁部が接合されて成り、一方の前記電極シートを収容する複数の袋状セパレータと、
     他方の前記電極シートと前記袋状セパレータとが交互に積層された積層体と、を備え、
     少なくとも1つの前記袋状セパレータについて、前記第1のセパレータのマシンダイレクションと前記第2のセパレータのマシンダイレクションとの間の交差角度が45度以上135度以下である、積層型二次電池。
  8.  前記第1のセパレータのマシンダイレクションと前記第2のセパレータのマシンダイレクションとの間の交差角度が0度である前記袋状セパレータを有し、
     前記交差角度が45度以上135度以下である前記袋状セパレータと、前記交差角度が0度である前記袋状セパレータとが交互に配置されている、請求項7に記載の積層型二次電池。
  9.  各々の前記袋状セパレータにおける前記交差角度が45度以上135度以下であり、前記袋状セパレータを構成する前記第1のセパレータのマシンダイレクションが全て同じ方向を向いている、請求項7に記載の積層型二次電池。
  10.  各々の前記袋状セパレータにおける前記交差角度が45度以上135度以下であり、各々の前記袋状セパレータにおける前記交差角度は全て異なっている、請求項7に記載の積層型二次電池。
     
PCT/JP2010/072368 2009-12-24 2010-12-13 積層型二次電池 WO2011077989A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-291672 2009-12-24
JP2009291672A JP2011134525A (ja) 2009-12-24 2009-12-24 積層型二次電池

Publications (1)

Publication Number Publication Date
WO2011077989A1 true WO2011077989A1 (ja) 2011-06-30

Family

ID=44195519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072368 WO2011077989A1 (ja) 2009-12-24 2010-12-13 積層型二次電池

Country Status (2)

Country Link
JP (1) JP2011134525A (ja)
WO (1) WO2011077989A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2122740A1 (en) * 2006-12-19 2009-11-25 Byd Company Limited Stacked-type lithium ion battery
CN113078415A (zh) * 2020-01-06 2021-07-06 天能帅福得能源股份有限公司 一种改善重物冲击性能的软包锂离子电池及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015002094A1 (ja) * 2013-07-05 2017-02-23 Necエナジーデバイス株式会社 電池セル
CN111316472A (zh) * 2017-10-31 2020-06-19 株式会社杰士汤浅国际 铅蓄电池
KR20230135543A (ko) * 2022-03-16 2023-09-25 주식회사 엘지에너지솔루션 이차전지의 건식 전극용 필름

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722853Y2 (ja) * 1988-12-23 1995-05-24 株式会社ユアサコーポレーション アルカリ蓄電池
JP2002110132A (ja) * 2000-10-03 2002-04-12 Nippon Petrochem Co Ltd バッテリーセパレータ用不織布
JP2003346766A (ja) * 2002-05-23 2003-12-05 Matsushita Electric Ind Co Ltd リチウムイオン二次電池
WO2008074239A1 (en) * 2006-12-19 2008-06-26 Byd Company Limited Stacked-type lithium ion battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291121A (en) * 1991-09-12 1994-03-01 Texas Instruments Incorporated Rail splitting virtual ground generator for single supply systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722853Y2 (ja) * 1988-12-23 1995-05-24 株式会社ユアサコーポレーション アルカリ蓄電池
JP2002110132A (ja) * 2000-10-03 2002-04-12 Nippon Petrochem Co Ltd バッテリーセパレータ用不織布
JP2003346766A (ja) * 2002-05-23 2003-12-05 Matsushita Electric Ind Co Ltd リチウムイオン二次電池
WO2008074239A1 (en) * 2006-12-19 2008-06-26 Byd Company Limited Stacked-type lithium ion battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2122740A1 (en) * 2006-12-19 2009-11-25 Byd Company Limited Stacked-type lithium ion battery
EP2122740A4 (en) * 2006-12-19 2011-11-16 Byd Co Ltd STACKED ION-LITHIUM BATTERY
CN113078415A (zh) * 2020-01-06 2021-07-06 天能帅福得能源股份有限公司 一种改善重物冲击性能的软包锂离子电池及其制备方法

Also Published As

Publication number Publication date
JP2011134525A (ja) 2011-07-07

Similar Documents

Publication Publication Date Title
US11075374B2 (en) Method for producing electrode assembly and method for producing nonaqueous electrolyte secondary battery
US8741468B2 (en) Film-packaged electric device
JP5054419B2 (ja) シート状二次電池
JP5541514B2 (ja) 積層型二次電池
WO2013105361A1 (ja) 超音波溶接用チップ、超音波溶接機、及び電池の製造方法
WO2010026774A1 (ja) 積層型二次電池
WO2013031891A1 (ja) 非水電解液二次電池
EP3316349B1 (en) Method for manufacturing electrochemical device
JP2015199095A (ja) 超音波溶接装置、及び電池の製造方法
WO2011077989A1 (ja) 積層型二次電池
JP2020513148A (ja) 電極タブの溶接特性を改善した電極及びこれを含む二次電池
WO2017033514A1 (ja) 電気化学デバイス
WO2011096334A1 (ja) 積層型二次電池
JP2014167881A (ja) 電池及び電池の製造方法
WO2013018551A1 (ja) 電池
KR101147605B1 (ko) 이차전지의 제조방법
JP4655554B2 (ja) 蓄電モジュール及びその製造方法
JP2013093498A (ja) 蓄電デバイスおよびシート状リード部材
JP5866939B2 (ja) 電気デバイス
CN105720292B (zh) 电化学电池及便携设备
JP2012209269A (ja) シート状二次電池の製造方法
WO2017057691A1 (ja) 電気化学デバイスとその製造方法
JP2008091268A (ja) 薄型電池
KR20180104953A (ko) 파우치형 이차전지
JP6612568B2 (ja) 電気化学セルおよび携帯機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839222

Country of ref document: EP

Kind code of ref document: A1