WO2015045411A1 - ガスセンサ - Google Patents
ガスセンサ Download PDFInfo
- Publication number
- WO2015045411A1 WO2015045411A1 PCT/JP2014/004955 JP2014004955W WO2015045411A1 WO 2015045411 A1 WO2015045411 A1 WO 2015045411A1 JP 2014004955 W JP2014004955 W JP 2014004955W WO 2015045411 A1 WO2015045411 A1 WO 2015045411A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- substrate
- light source
- sensor unit
- sensor
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 354
- 230000003287 optical effect Effects 0.000 claims description 71
- 239000004065 semiconductor Substances 0.000 claims description 68
- 239000000463 material Substances 0.000 claims description 63
- 238000004364 calculation method Methods 0.000 claims description 37
- 238000009529 body temperature measurement Methods 0.000 claims description 21
- 230000000903 blocking effect Effects 0.000 claims description 17
- 229910052787 antimony Inorganic materials 0.000 claims description 11
- 229910052738 indium Inorganic materials 0.000 claims description 11
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 9
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 9
- 230000005855 radiation Effects 0.000 claims description 6
- 239000012466 permeate Substances 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 31
- 239000007789 gas Substances 0.000 description 451
- 230000008859 change Effects 0.000 description 68
- 230000035945 sensitivity Effects 0.000 description 36
- 238000010521 absorption reaction Methods 0.000 description 32
- 238000000034 method Methods 0.000 description 29
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 28
- 238000012545 processing Methods 0.000 description 27
- 239000000126 substance Substances 0.000 description 25
- 230000000694 effects Effects 0.000 description 22
- 238000001514 detection method Methods 0.000 description 21
- 238000010586 diagram Methods 0.000 description 21
- 229910002092 carbon dioxide Inorganic materials 0.000 description 14
- 230000007613 environmental effect Effects 0.000 description 13
- 239000001569 carbon dioxide Substances 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 12
- 239000011347 resin Substances 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- 238000013461 design Methods 0.000 description 9
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000001745 non-dispersive infrared spectroscopy Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000007789 sealing Methods 0.000 description 7
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 6
- 230000003321 amplification Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000008103 glucose Substances 0.000 description 6
- 238000001451 molecular beam epitaxy Methods 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 5
- 230000031700 light absorption Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 230000032683 aging Effects 0.000 description 4
- 229910052785 arsenic Inorganic materials 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 102100037373 DNA-(apurinic or apyrimidinic site) endonuclease Human genes 0.000 description 3
- 101710109420 DNA-(apurinic or apyrimidinic site) endonuclease Proteins 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- 229910000673 Indium arsenide Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000013076 target substance Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 206010034960 Photophobia Diseases 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006757 chemical reactions by type Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006012 detection of carbon dioxide Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 208000013469 light sensitivity Diseases 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/59—Transmissivity
- G01N21/61—Non-dispersive gas analysers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N21/0303—Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N21/031—Multipass arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3504—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/0304—Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/12—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
- H01L31/16—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
- H01L31/167—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/062—LED's
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/068—Optics, miscellaneous
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/12—Circuits of general importance; Signal processing
Definitions
- the present invention relates to a gas sensor.
- the optical gas sensor includes a light source that emits a wavelength that is absorbed by molecules of a gas to be measured, and a sensor that reads the signal.
- the above environmental gas strongly absorbs light having a wavelength of around several ⁇ m (for example, in the case of CO 2 , around 4.3 ⁇ m), and therefore, a light source that emits light in this wavelength band, A sensor that outputs a signal corresponding to the intensity is required.
- LEDs that emit light in the middle to far-infrared region are mainly used for non-dispersive infrared (hereinafter referred to as NDIR) gas sensors and are under development.
- FIG. 29A is a conceptual diagram showing a configuration example of an NDIR type gas sensor according to a first conventional example.
- this NDIR type gas sensor detects a gas cell 910, a light source 920 that emits infrared light having a wavelength corresponding to a specific absorption wavelength band of the gas, and the intensity of light in that wavelength band.
- An infrared sensor 930 that can The light source 920 and the infrared sensor 930 are provided in the gas cell 910.
- the NDIR type gas sensor is used to obtain the concentration of a gas to be measured from the amount of infrared rays absorbed in the space between the light source 920 and the infrared sensor 930 in the gas cell by flowing or retaining the gas to be measured in the gas cell 910. is there. Therefore, when the intensity of the light source of the NDIR type gas sensor changes, the absolute value of the measured gas concentration is shifted, and thus accurate concentration measurement cannot be performed.
- FIG. 29B is a conceptual diagram showing a configuration example of an NDIR-type gas sensor according to a second conventional example.
- a reference sensor 931 that can detect light in a wavelength band that is not absorbed by the gas to be detected, and a wavelength that includes a wavelength band in which absorption by the gas to be detected occurs.
- a method is known in which output fluctuations of the light source 920 are canceled by taking both output ratios of the detection sensor 932 capable of detecting light (see, for example, Patent Document 1).
- Patent Document 2 discloses an NDIR type gas sensor using two wavelength bands.
- a bandpass filter that transmits only a specific wavelength band is used.
- a reference band-pass filter f′1 that transmits light in a wavelength band of about 3.9 ⁇ m, which is substantially not absorbed by carbon dioxide, and absorption by carbon dioxide.
- the gas to be detected is detected using an absorption wavelength band-pass filter f′2 that transmits light only in the wavelength band of about 3 ⁇ m (4.3 ⁇ m ⁇ (100 to 300 nm)).
- two band-pass filters for reference and absorption wavelength are required, and independent sensors are required for each of them (see FIG. 29B and Patent Document 1). For this reason, the number of parts is large, which is an obstacle to the simplification of the system.
- the present invention has been made in view of such circumstances, and an object thereof is to provide a gas sensor that can reduce measurement errors, is simple, small, and has high reliability.
- a gas sensor includes a first light source and a first sensor unit and a second sensor unit that are arranged so that light output from the first light source is incident thereon, A first substrate having a first main surface and a second main surface facing the first main surface, wherein the first light source and the first sensor unit are provided on the first main surface; A first substrate having a first main surface and a second main surface opposite to the first main surface, the second sensor portion being provided on the first main surface; The arrangement position of the portion is the first main surface of the first substrate, and the light reflected from the second main surface of the first substrate out of the light output from the first light source is incident. It is characterized by being set.
- the gas sensor may further include a calculation unit that receives an output signal from the first sensor unit and an output signal from the second sensor unit.
- the first sensor unit and the second sensor unit may have the same temperature characteristics.
- the first substrate and the second substrate are disposed adjacent to each other with their side surfaces facing each other, and a light blocking unit provided between the first substrate and the second substrate is provided. Furthermore, it is good also as providing.
- the gas sensor further includes a gas cell, and is disposed at a position away from the first substrate and the second substrate in the gas cell, and emits light emitted from the second main surface of the first substrate. It is good also as providing further the light reflection part which reflects toward 2 sensor parts.
- the amount of light scattered in the first substrate, and the first may be further characterized by further comprising a control layer for controlling the amount and angle of light emitted from the second main surface of the substrate to the space in the gas cell.
- the gas sensor may further include a light reflection layer provided on the second main surface of the first substrate and reflecting the light output from the first light source toward the first sensor unit. It may be a feature.
- the first sensor unit, the second sensor unit, and the first light source may be made of the same material and have the same stacked structure.
- the stacked structure may be a diode structure including at least two types of layers of a P-type semiconductor and an N-type semiconductor, and may include any material of indium or antimony.
- the gas sensor may further include an optical filter disposed in an optical path until light emitted from the second main surface of the first substrate enters the second sensor unit, and transmits only a specific wavelength band. This may be a feature.
- the first sensor unit and the second sensor unit include a plurality of light receiving units having the same structure, and the number of the light receiving units is the same between the first sensor unit and the second sensor unit. It may be characterized by being different.
- the first substrate and the second substrate may be made of the same material.
- the gas sensor further includes a second light source provided on the first main surface of the second substrate, and the second sensor unit includes the light output from the second light source, It may be set at a position where light reflected by the second main surface facing the first main surface of the second substrate enters.
- light emission / emission control for supplying power to the first light source and the second light source and receiving an output signal from the first sensor unit and an output signal from the second sensor unit. It is good also as providing further a part.
- the light emission / emission control unit may not supply power to the other light emitting unit while supplying power to one light emitting unit of the first light source and the second light source. May be a feature.
- the light emission / emission control unit may supply electric power of the same magnitude to the first light source and the second light source.
- the light emission / emission control unit applies power to the first light source and the second light source so that the first sensor unit and the second sensor unit have the same temperature.
- the power supplied may be controlled.
- the light emission / emission control unit includes a first temperature measurement unit that measures the temperature of the first sensor unit, and a second temperature measurement unit that measures the temperature of the second sensor unit. This may be a feature.
- the light emission and reception control unit calculates the temperature of the first sensor unit based on the resistance value of the first sensor unit, and the second sensor based on the resistance value of the second sensor unit.
- the temperature of the sensor unit may be calculated.
- the light emission / emission control unit may select a current or voltage of power supplied to the first light source and the second light source from a group consisting of a pulse width, an amplitude, and a duty ratio. It is good also as controlling at least one to be performed.
- the light emission / emission control unit may drive the first light source at a frequency F1 and drive the second light source at a frequency F2 (F1 ⁇ F2).
- a measurement error can be reduced, and a simple, small, and highly reliable gas sensor can be provided.
- a gas sensor having one light source will be described as a first aspect which is an example of the present embodiment.
- a gas sensor having two or more light sources will be described as a second aspect which is an example of the present embodiment.
- the first to twenty-first embodiments will be described as more specific aspects (that is, specific examples) of the present embodiment.
- the gas sensor which concerns on a 1st aspect is a gas sensor which has a 1st sensor part and a 2nd sensor part each arrange
- the gas sensor having this configuration can be used as a non-dispersive infrared gas sensor.
- This gas sensor has a first main surface (for example, a front surface) and a second main surface (for example, a back surface) opposite to the first main surface, and the first light source and the first sensor on the first main surface.
- a first substrate provided with a portion.
- the gas sensor has a first main surface (for example, a front surface) and a second main surface (for example, a back surface) opposite to the first main surface, and a second sensor portion is provided on the first main surface.
- a second substrate formed.
- the arrangement position of the first sensor part is the first main surface of the first substrate, and the position where the light reflected from the second main surface of the first substrate out of the light output from the first light source is incident. Is set to Thereby, without providing an optical filter (for example, a band-pass filter) in the optical path from the first light source to the first sensor unit, a change with time due to deterioration of the output of the first light source and output fluctuation due to temperature during operation can be achieved. It becomes possible to compensate precisely.
- an optical filter for example, a band-pass filter
- the gas sensor according to the first aspect may further include a gas cell capable of introducing a gas to be detected.
- a gas cell capable of introducing a gas to be detected.
- the gas sensor which concerns on a 1st aspect is further provided with the calculating part into which the output signal from a 1st sensor part and the output signal from a 2nd sensor part are input.
- the gas concentration can be calculated based on the output signal from the first sensor unit and the output signal from the second sensor unit.
- the gas sensor according to the embodiment of the present invention is based on the technical idea that the output signal of the first sensor unit provided on the same plane of the same substrate as the first light source is used as a reference signal for calculating the gas concentration.
- the calculation of the gas concentration may be an operation for calculating an absolute value of the gas concentration in the space, or an operation for determining whether or not a predetermined threshold value is exceeded.
- the first sensor unit and the second sensor unit have the same temperature characteristics.
- the “same temperature characteristic” means a state in which the temperature characteristic is substantially uniform to the extent that the effect of the present invention is not hindered. Specifically, under the condition where the gas to be detected does not exist, in the general operating temperature range of the gas sensor (for example, a range of 0 ° C. to 50 ° C.), the sensor temperature is Tx, and the output signal of the first sensor unit is S1, Consider a case where the output signal of the second sensor unit is S2.
- a / b is preferably 0.8 or more and 1.2 or less per 1 ° C., more preferably 0.9 or more and 1.1 or less, and 0.99 or more and 1.01 or less. More preferably it is.
- the ratio of the maximum value and the minimum value of the change coefficient ratio (a / b [/ ° C.]) of the output of the first sensor unit and the second sensor unit per 1 ° C. is 0.8 to 1.2, This is preferable because the concentration of the gas to be detected can be compensated with high accuracy regardless of the ambient temperature of the gas sensor.
- the output change coefficients (a and b) of the first sensor unit and the second sensor unit when the temperature of the first sensor unit and the second sensor unit is changed from 0 ° C. to 50 ° C. are obtained.
- the ratio of the change coefficient of output per 1 ° C. can be confirmed.
- the first sensor unit and the second sensor unit are made of the same material.
- the method of making it the same laminated structure is mentioned.
- the temperature characteristics of the first sensor unit and the second sensor unit are theoretically the same.
- the stacked structure is the same, and the first sensor unit and the second sensor unit are manufactured at the same time. It is preferable to form the second sensor portion at the same time.
- the areas in the substrate of the first sensor unit and the second sensor unit may be changed.
- the S / N ratio of the gas sensor as a whole minimum resolution of the gas concentration display value
- the light receiving area of the first sensor unit can be reduced, and the area occupied by the first light source can be increased accordingly, and the S / N ratio of the entire gas sensor can be improved.
- the first sensor unit and the second sensor unit may be formed of a large number of light receiving units.
- the light receiving area is proportional to the number of light receiving portions, and the larger the light receiving area, the higher the S / N ratio. Further, even if the light receiving areas of the first sensor unit and the second sensor unit are changed, the spectral sensitivity characteristic and the temperature characteristic do not change, so the effect of the present invention is maintained.
- the ratio of the number of light receiving parts may be n: m of about 1/500. 1/100 or 1/10 may be used. It is preferable to design the ratio of the number of light receiving portions according to the design of the cell and the light emission capability of the first light source.
- the spectral sensitivity characteristic of the first sensor unit and the spectral sensitivity characteristic of the second sensor unit become the same.
- the temperature characteristics of the first sensor section and the temperature characteristics of the second sensor section are the same, and the effects of the present invention can be exhibited most.
- the spectral sensitivity characteristic means sensitivity at each wavelength.
- an optical filter for example, a bandpass filter
- a band can be selected.
- Such an optical filter needs to be provided in the middle of the optical path, but is preferably provided on the second main surface of the first substrate and / or the second substrate. Since the optical filter can realize a transmission characteristic with a narrow half-value width (several tens of nm to several hundreds of nm), a specific wavelength can be easily selected.
- the optical sensor is provided to improve the selectivity of the gas sensor. It is possible to accurately measure the concentration of the gas to be detected without being affected. For this reason, it becomes a more preferable form to provide an optical filter.
- the first sensor unit and the second sensor unit have a large number of light receiving units having the same structure, and the number of the light receiving units is different.
- the number of light receiving units is not particularly limited, but in general, a light receiving unit installed on the same substrate as the first light source absorbs more light flux per unit area than a light receiving unit installed on a different substrate.
- the light receiving area of the first substrate may be smaller than the light receiving area of the second substrate. For this reason, it is preferable that the light receiving areas (number of light receiving parts) are different in order to keep the balance of the S / N ratios of the signals of both the first sensor part and the second sensor part without waste.
- the concentration is calculated based on the output signals (Ip1, Ip2) of the first sensor unit and the second sensor unit
- the minimum resolution of the entire gas sensor is the first sensor unit and the second sensor. It is determined by the S / N ratio of the part.
- the output signal ratio (Ip1 / Ip2) is determined by each material of the first substrate and the second substrate, each processing method of the second main surface of the first substrate and the second main surface of the second substrate, the presence or absence of the control layer, and its optical It varies depending on characteristics. As will be described later, if these are designed so that the output signal ratio becomes an appropriate ratio, a gas sensor having a desired accuracy can be obtained while improving the utilization efficiency of the substrate, minimizing the area of the sensor unit, and reducing the size. Can design.
- the gas cell is not particularly limited as long as it can introduce the gas to be detected. In other words, it only has to have an inlet for the gas to be detected. From the viewpoint of improving the accuracy of real-time detection of the gas to be detected, it is preferable that an outlet is provided in addition to the inlet.
- the material constituting the gas cell is not particularly limited. For example, materials such as metal, glass, ceramics, and stainless steel can be used, but not limited thereto. From the viewpoint of improving detection sensitivity, it is preferable that the material has a low absorption coefficient and high reflectance of light output from the first light source.
- a metal casing made of aluminum, a resin casing coated with aluminum, gold, silver-containing alloy, or a laminate of these is preferable. From the viewpoint of reliability and change with time, a resin casing coated with gold or an alloy layer containing gold is preferable.
- a part of the inner wall of the gas cell is covered with a highly reflective material from the viewpoint of efficiently entering light emitted from the second main surface facing the first main surface of the first substrate into the second sensor unit. Preferably it is. From the viewpoint of increasing the reflectance, the roughness of the inner wall in the gas cell is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 1 ⁇ m or less.
- the first substrate has a first light source and a first sensor unit on the first main surface.
- the material for the first substrate is not particularly limited. For example, Si, GaAs, sapphire, InP, InAs, Ge, and the like can be given. From the viewpoint that the first sensor unit and the first light source can be easily electrically insulated, it is preferable to use a semi-insulating substrate.
- a GaAs substrate is particularly preferable from the viewpoint that a semi-insulating substrate can be manufactured and the diameter can be increased.
- the material of the first substrate is a material having high transmittance for light output from the first light source. Further, from the viewpoint of highly accurately compensating for output fluctuations of the first light source, the material of the first substrate is a material that efficiently reflects the light output from the first light source on the second main surface. preferable.
- the material used for the first sensor unit, the second sensor unit, and the first light source is preferably a III-V group compound semiconductor, and is made of a group consisting of indium (In), aluminum (Al), and gallium (Ga). More preferably, it is a compound semiconductor of at least one group III atom selected and at least one group V atom selected from the group consisting of antimony (Sb) and arsenic (As), InSb, AlInSb, GaInSb, More preferably, it is a compound semiconductor containing at least AsInSb.
- the gas to be detected is CO2
- AlInSb or GaInSb may be used to detect absorption near the wavelength of 4.3 ⁇ m of CO2. Further, when detecting a gas such as evaporated alcohol, it is necessary to make the wavelength longer (9 to 10 ⁇ m). In this case, AsInSb is preferably used.
- the first substrate has a light amount scattered in the substrate out of the light output from the first light source on the second main surface of the first substrate from the viewpoint of light extraction efficiency and light reflection / scattering efficiency, and It is preferable to have a control layer for controlling the reflection / scattering angle, the amount of light emitted from the second main surface of the first substrate into the cell, and the radiation angle. Since the refractive index of a generally used substrate material is high, it is difficult to extract light from the substrate to the outside, and much of the light output from the first light source is scattered in the substrate.
- the control layer is provided on the second main surface of the first substrate, so that the S / N ratio of the entire sensor is increased (high resolution can be obtained). It becomes possible.
- Specific examples of the control layer include an antireflection film, a laminated film of a large number of materials having different refractive indexes, a roughened layer, or a combination thereof.
- the first light source is formed on the first main surface of the first substrate.
- the first light source is not particularly limited as long as it outputs light including a wavelength absorbed by the gas to be detected.
- the specific form of the first light source may be anything as long as it can be formed on the first main surface of the first substrate.
- Specific examples include MEMS and LEDs. Among them, from the viewpoint of reducing noise due to light absorption of components other than the gas to be detected, it is preferable to output only light in a wavelength band in which the gas to be detected has a large absorption.
- the LED structure may be desirable because the emission wavelength band is controlled by the band gap of the active layer.
- the reference band-pass filter is detected. Since the light in the absorption wavelength band of the gas is blocked, the output of the reference sensor becomes zero, and a stable gas sensor cannot be realized.
- the gas sensor according to the first aspect since a band-pass filter is unnecessary in the optical path from the first light source to the first sensor unit (which is a reference sensor), absorption of the gas to be detected is large. Even if the first light source that outputs only the light in the wavelength band is used, the output fluctuation can be compensated with high accuracy.
- the first light source preferably has a laminated structure portion of a PN junction or a PIN junction formed using a deposition method such as MBE (Molecular Beam Epitaxy) or CVD (Chemical Vapor Deposition).
- a deposition method such as MBE (Molecular Beam Epitaxy) or CVD (Chemical Vapor Deposition).
- MBE Molecular Beam Epitaxy
- CVD Chemical Vapor Deposition
- the laminated structure portion By supplying electric power to the laminated structure portion, it operates as an LED (Light Emitting Diode) and can emit light having a wavelength corresponding to the band gap of the material of the laminated structure portion.
- this laminated structure (common name: active layer) contains In or Sb, light in the infrared region (ie, infrared light) can be emitted.
- InSb, InAlSb, or InAsSb for the active layer, a wavelength of 1 to 10 ⁇ m can be output.
- the gas to be detected is carbon dioxide
- InAlSb for the active layer because the carbon dioxide gas exhibits strong absorption near a wavelength of 4.3 ⁇ m.
- a gas sensor with high sensitivity and high resolution can be realized by tuning the Al content so that the emission peak of the LED is 4.3 ⁇ m.
- the gas has a CO bond having absorption in the vicinity of 10 ⁇ m (for example, vaporized alcohol having absorption in the vicinity of 10 ⁇ m)
- InAsSb for the active layer.
- the band gap of the material used for the light emitting layer is tuned to the absorption wavelength of the gas to be detected, so that a specific filter can be used without using an optical filter (for example, a bandpass filter).
- an optical filter for example, a bandpass filter.
- Gas can be detected, and a gas sensor without an optical filter can be realized. If a gas sensor without an optical filter can be realized, the structure of the gas sensor is simplified and a more preferable form is obtained.
- the first sensor unit is formed on the first main surface of the first substrate.
- the arrangement position of the first sensor unit is not particularly limited as long as the light reflected from the second main surface facing the first main surface of the first substrate is incident on the light output from the first light source.
- the laminated structure of the first sensor unit is a diode structure of a PN junction or a PIN junction, and may include any material of indium or antimony.
- a mixed crystal material further including at least one material selected from the group consisting of Ga, Al, and As according to the absorption wavelength of the gas to be detected may be included.
- the light receiving element material and the laminated structure of the first sensor unit are preferably the same as the first light source material and the laminated structure.
- the first sensor unit of the present embodiment has a configuration in which a plurality of light receiving elements are connected in series.
- the amount of light incident on the first sensor unit tends to be larger than the amount of light incident on the second sensor unit.
- the total area of the light receiving part of the first sensor part can be made smaller than the total area of the light receiving part of the second sensor part.
- the second substrate is not particularly limited as long as it has the second sensor portion on the first main surface. Light incident from the second main surface side passes through the inside of the second substrate and is incident on the second sensor unit.
- the material for the second substrate is not particularly limited. For example, a Si substrate, a GaAs substrate, sapphire, and the like can be mentioned, but not limited thereto. From the viewpoint of improving measurement sensitivity, the material of the second substrate is preferably a material having high transparency to light incident from the second main surface side. From the viewpoint of miniaturization, it is preferable that the second substrate is disposed adjacent to the first substrate with the side surfaces facing each other, and the light blocking portion is disposed between the first substrate and the second substrate.
- the gas sensor of this form includes a light reflecting portion described later.
- said light shielding part is arrange
- the second sensor part is not particularly limited as long as it is disposed on the second substrate.
- the second sensor unit and the first sensor unit are formed on the same substrate in the manufacturing process. It is preferable to have the same laminated structure.
- the laminated structure of the second sensor portion is a PN junction or PIN junction diode structure, and preferably contains any material of indium or antimony.
- an optical filter that transmits only a specific wavelength band in the optical path until the light emitted from the second main surface of the first substrate enters the second sensor unit.
- the optical filter When the light output from the first light source is light in a wide wavelength band, it is particularly preferable to have the optical filter.
- the first substrate having the first sensor unit and the second substrate having the second sensor unit are originally the same wafer. If the first sensor unit and the second sensor unit have the same stacked structure, the first sensor unit and the second sensor unit Variations in the sensitivity characteristic between the two sensor parts and the temperature characteristic of the sensitivity are suppressed, and the effects of the present invention can be further exhibited.
- the gas sensor according to the first aspect preferably includes a light reflecting portion in the gas cell space on the second main surface side of the first substrate and the second substrate. That is, it is preferable that the light reflecting portion is provided on the second main surface side of the first substrate and the second main surface side of the second substrate at positions separated from the first substrate and the second substrate in the gas cell, respectively. .
- the light reflecting portion preferably reflects light emitted from the second main surface of the first substrate, and the reflected light enters the second sensor portion.
- the light reflecting portion is preferably a condensing light reflecting portion.
- a part of the light emitted from the light source is input to the second sensor unit without passing through the space in the gas cell, and a signal component that depends on the change in gas concentration is a signal component that does not depend on the change in gas concentration ( Offset), which may reduce the sensitivity of the gas sensor.
- a signal component that depends on the change in gas concentration is a signal component that does not depend on the change in gas concentration ( Offset), which may reduce the sensitivity of the gas sensor.
- Offset the change in gas concentration
- the description and preferred embodiments of each component of the gas sensor are applied independently or in combination to the first aspect described above, specific embodiments described later, and the like.
- the gas sensor according to the second aspect further includes a second light source provided on the first main surface of the second substrate.
- the second sensor unit is preferably set at a position where light reflected from the second main surface opposite to the first main surface of the second substrate is incident among the light output from the second light source. .
- the light output from the first light source passes through the optical path in the first substrate, which is an environment that does not depend on the presence or concentration of gas, and the like, and is monitored by the first sensor unit (as viewed from the first light source).
- the light receiving element ensures that even when the light emission characteristics of the first light source change due to changes in the usage environment or aging, the detection of the spatial state by the second sensor unit (the light receiving element for detecting the state as viewed from the first light source) is accurately performed. It becomes possible to do. The same applies to the light output from the second light source.
- the light output from the second light source passes through the optical path in the second substrate, which is an environment that does not depend on the presence or concentration of gas, and the like, and is monitored by the second sensor unit (as viewed from the second light source. Incident light. For this reason, even when the light emission characteristics of the second light source change due to changes in the usage environment or deterioration over time, the detection of the spatial state by the first sensor unit (the light receiving element for state detection as viewed from the second light source) is accurate. It becomes possible to do.
- the first sensor unit and the second sensor unit have the same temperature characteristics.
- the “same temperature characteristic” means a state in which the temperature characteristic is substantially uniform to the extent that the effect of the present invention is not hindered.
- the sensor temperature Tx that is a general use temperature range (for example, a range of 0 ° C. to 50 ° C.) of the gas sensor under the condition where the gas to be detected does not exist is first. Assume that the output signal of the sensor unit is S1, and the output signal of the second sensor unit is S2.
- a / b is preferably 0.8 or more and 1.2 or less per 1 ° C., more preferably 0.9 or more and 1.1 or less, and 0.99 or more and 1.01 or less. More preferably.
- the ratio of the maximum value and the minimum value of the ratio (a / b [/ ° C]) of the output change coefficient a per 1 ° C. of the first sensor unit and the output change coefficient b per 1 ° C. of the second sensor unit is 0. If it is 8 or more and 1.2 or less, even if the light emission characteristic of the first light source changes, the fluctuation of the light emission / light reception signal is compensated based on the output of the first sensor unit regardless of the operating environment temperature of the gas sensor. This is preferable because the spatial state can be accurately detected by the second sensor unit.
- the spatial state can be accurately detected by the unit.
- the output change coefficients (a and b) of the first sensor unit and the second sensor unit when the temperatures of the first sensor unit and the second sensor unit are changed from 0 ° C. to 50 ° C. are obtained. .
- the a / b / ⁇ T ratio when the temperature is changed by ⁇ T is calculated.
- the ratio of the change coefficient of the output per 1 ° C. can be confirmed.
- the first sensor unit and the second sensor unit are made of the same material and the same The method of making it the laminated structure of these is mentioned. By using the same material and the same laminated structure, the temperature characteristics of the first sensor unit and the second sensor unit are theoretically the same.
- the laminated structure of the first sensor unit and the laminated structure of the second sensor unit are manufactured simultaneously for each layer (that is, the first sensor part and the second sensor part are formed simultaneously). Further, by forming the first sensor unit and the second sensor unit simultaneously on the same substrate in the same process and in the same process, the spectral sensitivity characteristics of both sensor parts become the same, and the temperature characteristics of both sensor parts are It becomes the same and the effect of this invention is exhibited more.
- the spectral sensitivity characteristic means sensitivity at each wavelength.
- an optical filter for example, a bandpass filter
- the optical filter can realize a transmission characteristic with a narrow half-value width (several tens of nm to several hundreds of nm), a specific wavelength can be easily selected.
- the first sensor unit and the second sensor unit each have a plurality of light receiving units having the same structure, and the number of the light receiving units included in the first sensor unit and the second sensor unit It is preferable that the number of light receiving parts is the same.
- the gas sensor based on the output signal (Ip1) of the first sensor unit and the output signal (Ip2) of the second sensor unit, detection of a spatial state between the light emitting unit and the sensor unit (for example, , Calculation of the concentration of the substance to be detected existing in the space). For this reason, the minimum resolution of the gas sensor is determined by the S / N ratio of the first sensor unit and the second sensor unit.
- a light emitting and receiving control unit that supplies power to the first light source and the second light source and detects output signals from the first sensor unit and the second sensor unit is provided. The light emitting / receiving control unit may not supply power to the other light emitting unit while supplying power to one of the first light source and the second light source.
- the light emission / reception controller may supply the same amount of power to the first light source and the second light source.
- the light emission / emission control unit may control the power supplied to the first light source and the power supplied to the second light source so that the first sensor unit and the second sensor unit have the same temperature.
- some embodiments using the light emission / reception controller will be described.
- the sensitivity of the first sensor unit and the sensitivity of the second sensor unit are equal, the light emission characteristics of the first light source and the light emission characteristic of the second light source are equal, and the temperature of the first sensor unit and the second sensor unit When the temperatures are equal, the output signal obtained from the first sensor unit is equal to the output signal obtained from the second sensor unit. In this case, the effect of the present invention is more exhibited.
- the light receiving and emitting control unit alternately drives the first light source and the second light source. Or by supplying the same power to the first light source and the second light source, the amount of heat generated by the first light source and the amount of heat generated by the second light source are constantly equal.
- the temperature of the first light source is equal to the temperature of the second light source.
- the S / N ratio detected by the first sensor unit is SNR11
- the S / N ratio detected by the second sensor unit is SNR21
- the S / N ratio detected by the first sensor unit is SNR12
- the S / N ratio detected by the second sensor unit is SNR22.
- the S / N ratio obtained by the optical path not passing through the substance to be detected is expressed by Expression (1).
- SNR REF [(SNR11) 1/2 + (SNR22) 1/2 ] 1/2
- SNR TRASM [(SNR12) 1/2 + (SNR21) 1/2 ] 1/2 ... (2) Therefore, it can be seen from the equations (1) and (2) that the SNR of the system is improved by emitting and receiving light in both directions compared to the one-way case.
- signal when the first light source emits light ip_ REF-1 and the second light source is a signal ip_ TRASM_2 when emitted.
- signal when the second light source emits light ip_ REF_2 and the first light source is the signal ip_ TRASM_1 when emitted.
- Output signal ratio (Ip_ TRASM_1 / Ip_ REF_1) and (Ip_ TRASM_2 / Ip_ REF_2), each material of the first substrate and the second substrate, each of the second main surface of the second main surface and a second substrate of the first substrate It varies depending on the processing method, the presence or absence of a control layer formed on the second main surface of the substrate, the optical characteristics thereof, and the like as described later.
- the first substrate has a first light source and a first sensor unit on the first main surface.
- the second substrate has a second light source and a second sensor unit on the first main surface.
- materials for the first substrate and the second substrate include Si, GaAs, sapphire, InP, InAs, and Ge, but are not limited thereto, and may be selected according to the wavelength band to be used.
- a semi-insulating substrate is preferably used for each of the first substrate and the second substrate from the viewpoint that the sensor unit and the light emitting unit can be easily electrically insulated.
- a GaAs substrate is particularly preferable from the viewpoint that a semi-insulating substrate can be produced and that the diameter can be increased.
- each material of the first substrate and the second substrate has a high transmittance for light output from the light emitting unit.
- each material of the first substrate and the second substrate is a material that efficiently reflects light output from the light emitting element on the second main surface. Is preferred.
- a GaAs substrate is preferable from the viewpoint of easily forming the first sensor portion, the second sensor portion, the first light source, and the second light source having a laminated structure containing indium (In) or antimony (Sb) as described later. .
- a III-V group compound semiconductor is preferable, and indium (In), aluminum (Al), gallium (Ga) And a compound semiconductor of at least one group III atom selected from the group consisting of antimony (Sb) and arsenic (As), and more preferably a compound semiconductor of InSb or More preferably, it is a compound semiconductor containing at least AlInSb, GaInSb, and AsInSb.
- the detected gas is assumed for CO 2.
- the material used for the first sensor unit, the second sensor unit, the first light source, and the second light source may be AlInSb or GaInSb may be used. Further, when detecting a gas such as vaporized alcohol, it is necessary to further increase the wavelength (9 to 10 ⁇ m). In this case, AsInSb may be used for the first sensor unit, the second sensor unit, the first light source, and the second light source.
- the effect of the present invention can be exhibited most.
- the same film composition can be realized by stacking films on the same substrate in the same film formation process. That is, it may be preferable to form the first sensor unit, the second sensor unit, the first light source, and the second light source on the same wafer. Furthermore, it may be preferable to incorporate a pair of chips formed side by side in the wafer plane into the same gas sensor.
- the variation in the composition of the wafer in the film formation process can be reduced, the temperature characteristics of the first sensor section and the temperature characteristics of the second sensor section can be made equal, Since the light emission characteristic of the first light source and the light emission characteristic of the second light source can be made equal, high-precision temperature compensation is possible.
- control layer on the second main surface of the first substrate and the second main surface of the second substrate from the viewpoint of light extraction efficiency and light reflection / scattering efficiency.
- This control layer includes the amount of light scattered and reflected / scattered angle within the substrate, and the amount of light emitted from the second main surface of the substrate to the optical path (for example, a gas cell in the case of a gas sensor). It is a layer for controlling a radiation angle. Since the refractive index of a generally used substrate material is high, it is difficult to extract light from the substrate to the outside, and much of the light output from the light emitting element is scattered in the substrate.
- control layer on the second main surface of the first substrate and on the second main surface of the second main surface, the S / N ratio of the entire sensor is increased (high (Resolution can be obtained).
- control layer include an antireflection film, a laminated film of a large number of materials having different refractive indexes, a roughened layer, or a combination thereof.
- the first light source is formed on the first main surface of the first substrate, and the second light source is formed on the first main surface of the second substrate.
- the first light source and the second light source are not particularly limited as long as they output light including a wavelength that is absorbed by the substance to be detected (gas or the like).
- the specific forms of the first light source and the second light source may be anything as long as they can be formed on the first main surface of the first substrate and the first main surface of the second substrate, respectively. Specific examples include MEMS and LEDs.
- an LED structure may be desirable because the emission wavelength band can be controlled by the band gap of the active layer.
- the light-emitting element preferably has a laminated structure portion of a PN junction or a PIN junction formed using a deposition method such as MBE (Molecular Beam Epitaxy) or CVD (Chemical Vapor Deposition).
- a deposition method such as MBE (Molecular Beam Epitaxy) or CVD (Chemical Vapor Deposition).
- MBE Molecular Beam Epitaxy
- CVD Chemical Vapor Deposition
- this laminated structure contains In or Sb
- light in the infrared region that is, infrared light
- light having a wavelength of 1 to 12 ⁇ m can be output by using InSb, InAlSb, or InAsSb for the active layer.
- a narrow band gap material in which the active layer contains In and / or Sb generally has a large temperature characteristic (change in light emission characteristics depending on the temperature of the light emitting element itself).
- the gas sensor according to the second aspect it is possible to always accurately monitor even a large change in light emission characteristics, and it is always constant by controlling the operation of the light emitting element based on the monitoring result. It is possible to realize the light emission characteristics.
- the first sensor unit is formed on the first main surface of the first substrate, and the second sensor unit is formed on the first main surface of the second substrate.
- the arrangement position of the first sensor unit is a position where light reflected from the second main surface opposite to the first main surface of the first substrate is incident among the light output from the first light source.
- the arrangement position of the second sensor unit is a position where light reflected from the second main surface opposite to the first main surface of the second substrate is incident among the light output from the second light source.
- the length of the optical path P11 to the first sensor unit is L11
- the length of the optical path P12 to the second sensor unit is L12.
- the length of the optical path to the second sensor unit is L22
- the length of the optical path P21 to the first sensor unit is L21.
- it may be designed so that the transmission characteristics of the optical path P12 and the optical path P21 are similarly changed according to the concentration and absorption rate of the substance to be detected by the gas sensor.
- the laminated structure of the first sensor unit and the second sensor unit is a PN junction or PIN junction diode structure, and may include any material of indium or antimony.
- the diode structure may include a mixed crystal material further including at least one material selected from the group consisting of Ga, Al, and As in any of indium and antimony.
- the light receiving element material and the laminated structure of the first sensor section are preferably the same as the light emitting element material and the laminated structure.
- the first sensor unit and the second sensor unit of the present embodiment may have a plurality of light receiving elements connected in series. preferable. The reason is that by providing a large number of light receiving elements, the internal resistance of the entire sensor unit can be increased, and therefore, when connected to an amplifier, a high S / N ratio can be realized.
- the first substrate having the first sensor unit and the second substrate having the second sensor unit are originally the same wafer (that is, before dicing), and the first sensor unit and the second sensor unit have the same stacked structure. It is preferable that Thereby, the variation of the sensitivity characteristic between the 1st sensor part and the 2nd sensor part and the temperature characteristic of a sensitivity is suppressed, and the effect of the present invention can be exhibited more.
- the sensitivity of the first sensor unit is Ri1 ( ⁇ ) [A / W]
- the sensitivity of the second sensor unit is Ri2 ( ⁇ ) [A / W].
- the gas sensor according to the second aspect is a space outside the substrate located on the second main surface side of the first substrate and the second main surface side of the second substrate. It is preferable to provide a light reflection part inside. That is, it is preferable that the light reflecting portion is provided on the second main surface side of the first substrate and the second main surface side of the second substrate at positions separated from the first substrate and the second substrate in the gas cell, respectively. .
- the light reflecting portion preferably reflects light emitted from the second main surface of the first substrate and causes the reflected light to enter the second sensor portion.
- this light reflection part reflects the light radiate
- the light reflecting unit is a concentrating light. It is preferable that it is a reflection part.
- the light incident on the second sensor unit and the light incident on the first sensor unit out of the light output from the second light source are all space outside the substrate (external It is preferable that it has passed through (space).
- the first substrate on which the first light source and the first sensor unit are arranged and the second substrate on which the second sensor unit is arranged are arranged to face each other.
- the second substrate on which the second light source and the second sensor unit are arranged and the first substrate on which the first sensor unit is arranged are arranged to face each other. That is, it is preferable to arrange the first substrate and the second substrate so as to face each other.
- the first substrate and the second substrate so as to be adjacent to each other with their side surfaces facing each other.
- the side surfaces are simply arranged adjacent to each other, part of the light output from the light emitting unit is input to the light receiving unit on the adjacent substrate without passing through the external space, and the state of the external space changes.
- the dependent signal change becomes a signal component (offset) that does not depend on the state change of the external space, and the measurement sensitivity of the gas sensor may be lowered.
- a light blocking unit is provided between the side surface of the first substrate and the side surface of the second substrate. It is preferable to provide. So far, the case where the first substrate and the second substrate exist independently has been described, but when the light blocking unit is not required, the first sensor unit, the second sensor unit, the first light source, the second light source, The light source may be formed on the first main surface of the common substrate. In this case, the substrate may be designed so that the first sensor unit is formed near the first light source and the second sensor unit is formed on the second light source.
- the first aspect has the following effects (1) to (4).
- (1) The optical path from the first light source to the first sensor unit is in the first substrate, and there is no optical filter (for example, a bandpass filter) or space in the gas cell in the optical path. This makes it possible to suppress the attenuation of light in the optical path, regardless of the usage environment of the gas sensor, as compared to the case where a bandpass filter or a space in the gas cell exists in the optical path. It is possible to suppress a decrease in the S / N ratio of the signal to be transmitted.
- the second aspect has the following effects (5) to (8).
- the optical path from the first light source to the first sensor unit is in the first substrate, and the optical path from the second light source to the second sensor unit is in the second substrate, and an optical filter is included in these optical paths.
- the S / N ratio of the signal detected by the first sensor unit when detecting the optical signal from the first light source and the second sensor unit when detecting the optical signal from the second light source are detected.
- a decrease in the S / N ratio of the signal can be suppressed.
- the first power source and the second light source can be controlled by controlling the power supplied to the first light source and the second light source. It is easy to bring the sensor unit and the second sensor unit close to the same temperature, and high-precision temperature compensation is possible.
- the temperature characteristics of the first sensor unit and the temperature characteristics of the second sensor unit need to be the same.
- two chips that is, first chips
- (1 substrate and 2nd substrate) may be picked up and mounted. At this time, it is preferable that both substrates have the same shape and the same layout from the viewpoint of easy assembly of the gas sensor.
- the assembly can be easily performed, which may be preferable.
- the present embodiment compensates for signal fluctuations of light emission and light reception caused by changes over time and temperature changes in the usage environment, and even when the light emission characteristics of the light emitting part change or depending on the temperature, the light emitting element (first sensor part). Even if the sensitivity of the second sensor unit) changes, it is possible to provide a gas sensor that can detect the spatial state with higher accuracy by the state detection sensor unit.
- the gas sensor according to the present embodiment can be applied to various devices.
- CO 2 concentration is considered to have a correlation with sleep of living organisms, and when the measurement target gas of the gas sensor according to this embodiment is CO 2 , the ambient temperature is likely to change greatly. However, it becomes possible to detect the CO 2 concentration with high accuracy.
- a device for preventing a drowse in driving a car for example, when a predetermined CO 2 concentration is reached, an alarm is issued / automatic ventilation is performed). It is suitable as.
- the gas sensor according to the present embodiment since the gas sensor according to the present embodiment has a higher S / N ratio than the conventional gas sensor, it exhibits the same or better performance even if it is smaller and thinner than the conventional gas sensor.
- Application to a small device (for example, a portable communication device) or the like becomes possible.
- the specific dimensions of the device are preferably horizontal x vertical dimensions of 20 x 20 mm 2 or less, more preferably 15 x 15 mm 2 or less, and 10 x 10 mm 2 or less. Is preferably 10 mm or less, preferably 5 mm or less, and more preferably 3 mm or less.
- the gas sensor according to the present embodiment, it can be applied as a light emitting and receiving device for uses other than the gas sensor. That is, an invention derived by replacing all the “gas sensors” described above with “light emitting and receiving devices” is also a disclosed matter of the present specification. For example, it becomes possible to detect the state of the optical path space outside the substrate (the presence or concentration of a specific component of the fluid, etc., other than gas).
- the substance flowing in the optical path space between the first light source and the second sensor unit (in the case of two light sources and two sensors, between the first light source and the second sensor unit and between the second light source and the first sensor unit) It can be used in a component detection device (for example, water or body fluid) or a component concentration measurement device.
- a component detection device for example, water or body fluid
- this component detection device or component concentration measurement device can be used for measuring glucose concentration in blood when the substance flowing in the optical path space is blood.
- Detecting glucose in blood can measure glucose concentration in blood sugar by measuring absorption of light with a wavelength of 9.6 ⁇ m. That is, it is possible to realize a small, highly accurate and highly reliable non-invasive glucose concentration meter. By realizing such a glucose concentration meter, a diabetic patient can examine blood glucose level with high accuracy without damaging the skin by an invasive method by himself or herself. More accurate management of insulin) can be realized.
- FIG. 1 is a conceptual diagram showing a configuration example of a gas sensor according to a first embodiment of the present invention.
- the gas sensor includes a gas cell 10 into which a gas to be detected can be introduced, and a first light that outputs light in an infrared region (that is, infrared light) including a wavelength absorbed by the gas to be detected.
- the gas sensor includes a first substrate 41 having a main surface 411 and a second substrate having the second sensor unit 32 on the first main surface 421.
- the first sensor unit 31 reflects light (shown by a broken line) reflected on the second main surface 412 facing the first main surface 411 of the first substrate 41 out of the light output from the first light source 20. ) Is disposed at the incident position. Further, the first substrate 41 and the second substrate 42 are disposed so that the second main surface 412 and the second main surface 422 are opposed to each other in the gas cell 10, and the first light source is sandwiched between the spaces in the gas cell 10. 20 and the 2nd sensor part 32 are arranged in the position which counters. According to the gas sensor according to the first embodiment, the first sensor unit 31 includes the second main surface 412 facing the first main surface 411 of the first substrate 41 out of the light output from the first light source 20.
- FIG. 2 is a conceptual diagram showing a configuration example of a gas sensor according to the second embodiment of the present invention.
- the first substrate 41 and the second substrate 42 are arranged adjacent to each other with their side surfaces (that is, part of the outer peripheral side surface) facing each other.
- such an arrangement is called a parallel arrangement.
- the second embodiment is different from the first embodiment in that the first substrate 41 and the second substrate 42 are arranged in parallel.
- the second embodiment is the same as the first embodiment.
- the gas cell is particularly used in the second embodiment and third, fifth, and sixth embodiments described later. It is preferable that a part of the inner wall of 10 is covered with a highly reflective material. According to the gas sensor according to the second embodiment, the gas sensor can be further downsized by arranging the second substrate 42 and the first substrate 41 in parallel.
- FIG. 3 is a conceptual diagram showing a configuration example of a gas sensor according to a third embodiment of the present invention.
- a light blocking unit 50 is provided between the first substrate 41 and the second substrate 42.
- the third embodiment is different from the second embodiment in that the light blocking unit 50 is provided. Sealing resin may be used for the light blocking unit 50.
- the third embodiment is the same as the second embodiment.
- the light reflected by 412 reaches the first sensor unit 31 but does not reach the second sensor unit 32. Since all the light reaching the second sensor unit 32 is light that has passed through the space in the gas cell 10, gas detection with higher accuracy is possible.
- FIG. 4 is a conceptual diagram showing a configuration example of a gas sensor according to the fourth embodiment of the present invention.
- the gas sensor includes a light reflecting portion 60 in the gas cell space on the second main surface 412 side of the first substrate 41 and the second main surface 422 side of the second substrate 42. That is, the gas sensor is disposed at a position away from the first substrate 41 and the second substrate 42 in the gas cell 10, and the light emitted from the second main surface 412 of the first substrate 41 is directed to the second sensor unit 32.
- the light reflection part 60 which reflects is provided.
- the fourth embodiment is different from the second embodiment in that the light reflecting portion 60 is provided. For other configurations, the fourth embodiment is the same as the second embodiment.
- infrared light one-dot broken line
- the light reflecting section 60 can be reflected by the light reflecting section 60 and selectively incident on the second sensor section 32, so that a more sensitive gas sensor can be realized.
- FIG. 5 is a conceptual diagram showing a configuration example of a gas sensor according to a fifth embodiment of the present invention.
- the gas sensor is provided on the second main surface 412 of the first substrate 41, and the light (dotted line) scattered in the first substrate 41 out of the light output from the first light source 20. ), And the control layer 70 for controlling the light amount and the radiation angle of the light (dotted line) emitted from the second main surface 412 of the first substrate 41 to the space in the gas cell 10.
- the fifth embodiment is different from the second embodiment in that the control layer 70 is provided.
- the fifth embodiment is the same as the second embodiment.
- the control layer 70 by providing the control layer 70, the ratio of the amount of light to be incident on the first sensor unit 31 and the amount of light to be incident on the second sensor unit 32 can be controlled.
- An S / N ratio sensor can be easily designed.
- the control layer 70 may be provided on the second main surface of the second substrate 42.
- FIG. 6 is a conceptual diagram showing a configuration example of a gas sensor according to a sixth embodiment of the present invention.
- the gas sensor includes a light reflection layer 701 that is provided on the second main surface of the first substrate and reflects light output from the first light source toward the first sensor unit.
- the material used for the light reflecting layer 701 may be any material that reflects light, and may be any material that has a metallic luster and is totally reflective. Specifically, a material containing Al or Au may be preferable from the viewpoint of good reflectivity.
- the sixth embodiment is different from the second embodiment in that the light reflecting layer 701 is provided. For other configurations, the sixth embodiment is the same as the second embodiment.
- the gas sensor according to the sixth embodiment by providing the light reflecting layer 701, it is possible to increase the amount of light that is desired to enter the first sensor unit 31. Thereby, the S / N ratio of the signal of the 1st sensor part 31 can be raised. In some cases, the light receiving area of the first sensor unit can be reduced while maintaining the S / N ratio, and the utilization efficiency of the substrate can be increased.
- FIG. 7 is a sectional view showing a configuration example of the gas sensor according to the seventh embodiment of the present invention.
- reference numerals 201, 311, and 321 are first conductive type semiconductor layers (for example, N-type semiconductor layers), and reference numerals 202, 312, and 322 are second conductive type semiconductor layers (for example, P-type semiconductor layers).
- reference numerals 203, 204, 313, 314, 323, and 324 denote electrodes.
- the first light source 20 includes, for example, a first conductivity type semiconductor layer 201 formed on the first main surface 411 of the first substrate 41 and a first conductivity type semiconductor layer 201 formed on the semiconductor layer 201.
- the first sensor unit 31 includes, for example, a first conductivity type semiconductor layer 311 formed on the first main surface 411 of the first substrate 41 and a second conductivity type semiconductor formed on the semiconductor layer 311.
- the layer 312 and the electrode 313 and the electrode 314 formed over the semiconductor layer 312 are included.
- the second sensor unit 32 includes a first conductivity type semiconductor layer 321 formed on the first main surface 421 of the second substrate 42 and a second conductivity type semiconductor layer 322 formed on the semiconductor layer 321. And an electrode 323 and an electrode 324 formed over the semiconductor layer 322.
- the first conductivity type semiconductor layers 201, 311, and 321 are made of, for example, the same material and have the same film thickness.
- the second conductivity type semiconductor layers 202, 312, and 322 are made of, for example, the same material and have the same film thickness.
- the first sensor unit 31 and the second sensor unit 32 are shown as one element. However, from the viewpoint of the S / N ratio, a plurality of elements are electrically connected to form one sensor unit. Also good.
- the first light source 20 may also be a number of elements that are electrically connected.
- a genuine semiconductor layer (so-called i-type semiconductor layer) is inserted between each of the first conductivity type semiconductor layers 201, 311, and 321 and the second conductivity type semiconductor layers 202, 312, and 322, thereby forming a PIN junction. May be.
- the first conductive type semiconductor layers 201, 311, and 321 and the second conductive type semiconductor layers 202, 312, and 322 have the same material and film thickness.
- the first light source 20, the first sensor unit 31, and the second sensor unit 32 exhibit the same temperature characteristics, and it is possible to realize a highly accurate gas sensor regardless of changes in the environmental temperature. become.
- FIG. 8 is a conceptual diagram showing a configuration example of a gas sensor according to the eighth embodiment of the present invention. As shown in FIG. 8, this gas sensor incorporates all the features of the gas sensors of the third to sixth embodiments into the gas sensor according to the second embodiment. According to the gas sensor according to the eighth embodiment, it is possible to realize the most accurate and highly sensitive small gas sensor by incorporating all the features of the second to sixth embodiments.
- the light blocking unit 50 shown in FIG. 8 has the same role as the light blocking unit described in the third embodiment (FIG. 3).
- FIG. 9 is a conceptual diagram showing a configuration example of a gas sensor according to the ninth embodiment of the present invention.
- the first substrate 41 and the second substrate 42 of the gas sensor according to the first embodiment are respectively sealed with a sealing resin 200, and the first light source 20 and the first sensor are sealed.
- a driving unit and a signal processing unit are connected to the unit 31 and the second sensor unit 32. That is, in the gas sensor according to the ninth embodiment, output signals from the light source power supply unit 101 for supplying power to the first light source 20 and the first sensor unit 31 and the second sensor unit 32 are input.
- a gas concentration calculation unit 104 that calculates the gas concentration of the gas to be detected.
- the light source power supply unit 101 supplies a pulse signal (voltage or current) to the first light source 20.
- the gas sensor according to the ninth embodiment is introduced into the gas cell 10 by connecting a driving unit and a signal processing unit to the first light source 20, the first sensor unit 31, and the second sensor unit 32. The gas concentration of the detected gas can be automatically calculated and the result can be output.
- FIG. 10 is a conceptual diagram showing a configuration example of the gas sensor according to the tenth embodiment of the present invention.
- this gas sensor outputs from the first amplifying unit 102 and the second sensor unit 32 for amplifying the output signal from the first sensor unit 31 with respect to the gas sensor according to the ninth embodiment.
- the signal supplied by the drive signal supply unit 106 is a pulsed synchronization signal that determines the operation timing of the light source power supply unit 101, the first amplification unit 102, and the second amplification unit 103.
- a temperature measuring unit 105 that measures the temperature around or inside the gas cell 10.
- the emission spectrum of the first light source 20 may change depending on the environmental temperature.
- the amount of light absorption may change depending on the ambient temperature. Therefore, it is preferable that the temperature measuring unit 105 is provided because the temperature information obtained by the temperature measuring unit 105 is given to the gas concentration calculating unit 104 so that the deviation caused by the environmental temperature can be compensated.
- the first amplifying unit 102 and the second amplifying unit 103 are preferably amplifiers having a PSD (Phase Shift Detection) function (commonly called Lock-in Amp).
- PSD Phase Shift Detection
- the signal output from the drive signal supply unit 106 is a pulsed synchronization signal.
- the drive signal supply unit 106 transmits pulsed synchronization signals that determine the operation timing to the light source power supply unit 101, the first amplification unit 102, and the second amplification unit 103, respectively.
- the power consumption of the gas sensor can be reduced.
- the temperature measurement unit 105 gives temperature information to the gas concentration calculation unit 104, thereby making it possible to compensate for the deviation caused by the environmental temperature.
- FIG. 11 is a conceptual diagram showing a configuration example of a gas sensor according to an eleventh embodiment of the present invention.
- the gas sensor includes a first substrate 41 and second substrates 42 and 42 '. That is, two second substrates are provided.
- band pass filters f1 and f2 that transmit different wavelengths on the second main surface (back surface) of each of the second substrates 42 and 42 ', two types of gases can be detected simultaneously.
- three or more second substrates may be provided.
- a large number (two or more) of light receiving portions are provided on the first main surface, and an optical filter (for example, a bandpass filter) having an optical axis aligned with each of the light receiving portions is provided. May be.
- an optical filter for example, a bandpass filter
- the gas sensor according to the eleventh embodiment can exert its effect when detecting a mixed gas.
- the gas to be detected introduced into the gas cell 10 is a mixed gas of A gas and B gas
- the gas A has absorption at the wavelength 1
- the gas B has absorption at the wavelength 2.
- a gas sensor having a configuration in which a bandpass filter f1 that transmits light of wavelength 1 is provided on the second substrate 42 and a bandpass filter f2 that transmits light of wavelength 2 is provided on the second substrate 42 ′ is used.
- the concentration of each gas is obtained from the intensity of the output signal of the second sensor unit 32 provided on the second substrate 42 and the intensity of the output signal of the second sensor unit 32 ′ provided on the second substrate 42 ′. Can do.
- the gas to be detected introduced into the gas cell 10 is a mixed gas of A gas and B gas
- the gas A absorbs at wavelengths 1 and 2
- the gas B similarly absorbs at wavelengths 1 and 2.
- a gas sensor having a configuration in which a bandpass filter f1 that transmits light of wavelength 1 is provided on the second substrate 42 and a bandpass filter f2 that transmits light of wavelength 2 is provided on the second substrate 42 ′ is used.
- Ip1 and Ip2 can be represented by formula (3) and formula (4).
- Ip1 RiREF (T) ⁇ ⁇ (T) ⁇ ⁇ (3)
- Ip2 RiGAS (T) ⁇ ⁇ (T) ⁇ ⁇ ⁇ (1-A (C)) ...
- A Absorption rate due to gas concentration
- C Gas concentration
- ⁇ Emission intensity of the first light source
- ⁇ Transmission rate from the first light source to the first sensor part
- ⁇ From the substrate
- Ip1 ...
- Ip2 ...
- Output signal of the second sensor part RiREF ... Sensitivity of the first sensor part RiGAS ... Sensitivity of the second sensor part
- the temperature characteristics of the first light source may be different from the temperature characteristics of the respective sensors, but is the temperature characteristic g1 (T) of the first sensor unit equal to the temperature characteristic g2 (T) of the second sensor unit? If it has a proportional relationship, it becomes Ip2 / Ip11- (1-A (C)), the temperature dependence as a gas sensor can be removed, and a true absorption rate when gas molecules absorb can be obtained.
- the gas concentration C can be extracted from (1-A (C)) according to Lambert-Beer's law.
- ⁇ and ⁇ do not change according to the wavelength, and do not change according to the temperature. It may be used for temperature compensation.
- the resolution of the gas sensor can be expressed by equation (6).
- Resolution ( ⁇ C / ⁇ Ip) / (SNR) (6)
- ⁇ Ip is a signal change of the sensor
- ⁇ C is a detected gas concentration change SNR
- the first light source 20 and the first sensor unit 31 are formed on the same substrate (first substrate 41), and are based only on the light emitted from the first light source 20. Since a signal can be output, the amount of light emitted from the first light source 20 can be accurately measured.
- each light receiving unit of the first light source 20 and each light receiving unit of the first sensor unit 31 are capable of measuring the amount of light emitted by each light emitting unit. What is necessary is just to design arrangement
- the above-mentioned first light source is continuously turned on / off (pulse drive), and a signal when the first light source is on and a signal from the first sensor unit and the second sensor unit when the first light source is off are read,
- a signal difference By using the signal difference, disturbances and offsets due to circuits can be removed.
- the reason is that the offset due to the circuit and disturbance always occurs regardless of ON / OFF of the first light source. Therefore, if the signal difference between ON and OFF is taken, the offset component is removed.
- the ON / OFF switching frequency is preferably about 10 times (10 kHz).
- the power spectrum of this offset is inversely proportional to the frequency f and can be calculated as 1 / f (common names: pink noise, 1 / f noise). Therefore, the ON / OFF switching frequency is preferably set to a frequency band in which 1 / f noise does not appear.
- an amplitude modulation method (AM: Amplitude Modulation) often used in communication systems may be used.
- the first sensor unit and the second sensor unit are preferably quantum sensors because they can operate at high speed (has a response to high-speed optical pulses).
- the quantum type sensor since the internal resistance of the sensor changes depending on the temperature, the internal temperature of the gas sensor can be known by reading the internal resistance value of the sensor. By using this method, it is not necessary to separately provide the temperature measuring unit 105, so that a gas sensor capable of temperature compensation with a small number of components can be realized.
- FIG. 12 is a conceptual diagram showing a configuration example of a gas sensor according to a twelfth embodiment of the present invention.
- the gas sensor includes a first substrate 41 having a first light source 20 and a first sensor unit 31 on a first main surface 411, a first light source 20 ′, and a first sensor unit 31. And a second substrate 41 ′ having the first main surface 411 ′.
- the first substrate 41 and the second substrate 42 have the same structure.
- the light (shown by a broken line) reflected by the second main surface 412 facing the first main surface 411 of the first substrate 41 is incident on the first sensor unit 31.
- the light emitted from the second main surface 412 of the first substrate 41 (indicated by the alternate long and short dash line) is incident on the second main surface 412 ′ of the second substrate 41 ′, passes through the inside of the second substrate 41 ′, and the second sensor unit. Incident on 31 '.
- the light reflected by the second main surface 412' facing the first main surface 411 'of the second substrate 41' is the second sensor.
- the first substrate 41 and the second substrate 41 ′ are arranged with the second main surfaces 412 and 412 ′ facing each other.
- the first sensor unit 31 is disposed at a position where light reflected from the second main surface 412 of the first substrate 41 out of the light output from the first light source 20 is incident.
- the second sensor unit 31 ′ is disposed at a position where light (not shown) reflected by the second main surface 412 ′ of the second substrate 41 ′ out of the light output from the second light source 20 ′ enters.
- the gas sensor according to the twelfth embodiment includes a light emission / reception controller 501.
- the light emission / reception controller 501 supplies power to the first light source 20 and the second light source 20 ′, and detects output signals from the first sensor unit 31 and the second sensor unit 31 ′.
- the light emission / emission control unit 501 has the same temperature of the first sensor unit 31 formed in the vicinity of the first light source 20 and the temperature of the second sensor unit 31 ′ arranged in the vicinity of the second light source 20 ′.
- desired power is supplied to each of the first light source 20 and the second light source 20 ′.
- FIG. 13 is a conceptual diagram showing a configuration example of a gas sensor according to a thirteenth embodiment of the present invention.
- the first substrate 41 and the second substrate 41 ′ are arranged adjacent to each other with their side surfaces (that is, part of the outer peripheral side surface) facing each other.
- such an arrangement is called a parallel arrangement.
- the thirteenth embodiment differs from the twelfth embodiment in that the first substrate 41 and the second substrate 41 'are arranged in parallel.
- the gas sensor includes the light reflecting portion 60 in the space on the second main surface 412 side of the first substrate 41 and the second main surface 412 ′ side of the second substrate 41 ′. That is, this gas sensor is disposed at a position away from each of the first substrate 41 and the second substrate 41 ′, and reflects light emitted from the second main surface 412 of the first substrate 41 toward the second sensor unit 31 ′. And the light reflection part 60 which reflects the light radiate
- the thirteenth embodiment differs from the twelfth embodiment in that the first substrate 41 and the second substrate 41 ′ are arranged in parallel and the light reflecting portion 60 is provided.
- the thirteenth embodiment is the same as the twelfth embodiment.
- the gas sensor can be further miniaturized by arranging the first substrate 41 and the second substrate 41 ′ in parallel. Further, by providing the light reflecting unit 60, the light (one-dot broken line) emitted from the second main surface 412 of the first substrate 41 out of the light output from the first light source 20 is reflected by the light reflecting unit 60. It is possible to selectively enter the second sensor unit 31 ′. Further, out of the light output from the second light source 20 ′, the light (not shown) emitted from the second main surface 412 ′ of the second substrate 41 ′ is reflected by the light reflecting unit 60 and is reflected on the first sensor unit 31. It becomes possible to make it selectively enter. For this reason, it becomes possible to implement
- a light blocking unit 50 may be provided between the first substrate 41 and the second substrate 41 ′.
- the light blocking unit 50 may be a part of a resin mold used for sealing the first substrate 41 and the second substrate 41 ′.
- FIG. 15 is a sectional view showing a configuration example of a gas sensor according to a fourteenth embodiment of the present invention.
- the substrate is common and there is only one. That is, the gas sensor according to the fourteenth embodiment has a common substrate 40 in which the aforementioned first substrate and second substrate are integrated.
- the 1st light source 20, the 1st sensor part 31, 2nd light source 20 ', and 2nd sensor part 31' are arrange
- the gas sensor according to the fourteenth embodiment can sufficiently attenuate the reflected light from the first light source 20 to the second sensor unit 31 ′ and the reflected light from the second light source 20 ′ to the first sensor unit 31. It is effective in such cases. Moreover, since there are few components compared with 1st, 13th embodiment, it may be preferable.
- FIG. 16 is a sectional view showing a configuration example of the gas sensor according to the fifteenth embodiment of the present invention.
- the first light source 20 includes, for example, a first conductivity type (for example, N type) semiconductor layer 201 formed on the first main surface 411 of the first substrate 41, and the semiconductor layer 201.
- the semiconductor layer 202 and the electrode 203 of the second conductivity type (for example, P type) formed on the top, and the electrode 204 formed on the semiconductor layer 202 are included.
- the second light source 20 ′ includes, for example, a first conductivity type semiconductor layer 201 ′ formed on the first main surface 411 ′ of the second substrate 41 ′ and a second layer formed on the semiconductor layer 201 ′. It has a two-conductivity type semiconductor layer 202 ′ and an electrode 203 ′, and an electrode 204 ′ formed on the semiconductor layer 202 ′.
- the first sensor unit 31 includes, for example, a first conductivity type semiconductor layer 311 formed on the first main surface 411 of the first substrate 41 and a second conductivity type semiconductor layer 312 formed on the semiconductor layer 311. And an electrode 313 and an electrode 314 formed over the semiconductor layer 312.
- the second sensor unit 31 ′ includes, for example, a first conductive type semiconductor layer 311 ′ formed on the first main surface 411 ′ of the second substrate 41 ′ and a second conductive type formed on the semiconductor layer 311 ′.
- the first conductivity type semiconductor layers 201, 311, 201 ′, 311 ′ are made of, for example, the same material and have the same film thickness.
- the second conductivity type semiconductor layers 202, 312, 202 ′, 312 ′ are made of, for example, the same material and have the same film thickness. That is, the first light source 20, the second light source 20 ′, the first sensor unit 31, and the second sensor unit 31 ′ have compound semiconductors having the same film composition (that is, compound semiconductor stacked portions having the same composition). Further, as shown in FIG. 16, the first light source 20 and the second light source 20 ′ have the same structure (ie, the same shape and size). The first sensor unit 31 and the second sensor unit 31 ′ have the same structure.
- the first sensor unit 31 and the second sensor unit 31 ′ are shown as one element. However, from the viewpoint of the S / N ratio, a plurality of light receiving elements are electrically connected to form one sensor unit. It is good. Further, from the viewpoint of light emission efficiency, the first light source 20 and the second light source 20 ′ may also be a single light emitting unit by electrically connecting a plurality of light emitting elements. Further, a genuine semiconductor layer (so-called i-type semiconductor layer) is provided between the first conductive type semiconductor layers 201, 311, 201 ′, 311 ′ and the second conductive type semiconductor layers 202, 312, 202 ′, 312 ′. May be inserted to form a PIN junction.
- i-type semiconductor layer is provided between the first conductive type semiconductor layers 201, 311, 201 ′, 311 ′ and the second conductive type semiconductor layers 202, 312, 202 ′, 312 ′. May be inserted to form a PIN junction.
- the first conductive type semiconductor layers 201, 311, 201 ', 311' and the second conductive type semiconductor layers 202, 312, 202 ', 312' By adopting the same film thickness, the first light source 20, the second light source 20 ′, the first sensor unit 31, and the second sensor unit 31 ′ exhibit the same temperature characteristics, and the environmental temperature It becomes possible to realize a highly accurate gas sensor regardless of the change of. Moreover, since the 1st light source 20, 2nd light source 20 ', 1st sensor part 31, and 2nd sensor part 31' show the same temperature characteristic, it is the same as 1st light source 20 and 2nd light source 20 '. By supplying electric power of a magnitude, the first light source 20 and the second light source 20 ′ can be heated to the same temperature. Thereby, it becomes possible to make the 1st sensor part 31 and 2nd sensor part 31 'into the same temperature.
- FIG. 17 is a conceptual diagram showing a configuration example of a gas sensor according to the sixteenth embodiment of the present invention.
- the first substrate 41 and the second substrate 41 ′ of the gas sensor according to the twelfth embodiment are respectively sealed with a sealing resin 200 and a sealing resin 200 ′, and the first
- a light emitting / receiving control unit 501 is connected to the light source 20, the first sensor unit 31, the second light source 20 ', and the second sensor unit 31'.
- the gas sensor according to the sixteenth embodiment includes a gas cell 10 that surrounds a space between the first substrate 41 and the second substrate 41 ′ and can introduce a substance to be detected (gas or the like) into this space. Also good.
- the gas cell 10 is provided with an inlet for introducing a substance to be detected.
- the first substrate 41 and the second substrate 41 ′ are arranged with the second main surfaces 412 and 412 ′ facing each other.
- the light emitted from the second main surface 412 of the first substrate 41 passes through the space in the gas cell 10, and passes through the second main surface of the second substrate 41 ′.
- the light enters the surface 412 ′, passes through the second substrate 41 ′, and enters the second sensor unit 31 ′.
- the light emitted from the second main surface 412 ′ of the second substrate 41 ′ passes through the space in the gas cell 10 and passes through the second of the first substrate 41.
- the light enters the main surface 412, passes through the first substrate 41, and enters the first sensor unit 31. That is, a space (optical path space) serving as an optical path exists in the gas cell 10.
- FIG. 18 is a diagram illustrating an example of a circuit configuration according to the sixteenth embodiment.
- FIG. 18 shows a more detailed configuration example of the light emitting / receiving controller 501, and photodiodes are used for the first sensor unit 31 and the second sensor unit 31 ′, and the first light source 20 and the second light source 20 ′ are used. Shows the circuit configuration when LEDs are used.
- the light emission / reception control unit 501 supplies, for example, power to the first light source 20 to drive the first light source 20 (that is, emit light), and a second drive unit 502.
- a second driving unit 502 ′ that supplies power to the light source 20 ′ to drive the second light source 20 ′, a first signal processing unit 503 that processes a signal of the first sensor unit 31, and a second sensor unit 31.
- the signal from the second signal processing unit 503 ′ for processing the signal of ′, the signal from the first signal processing unit 503 and the second signal processing unit 503 ′ is calculated (for example, calculation of cell transmission characteristics, concentration calculation of substances and gases)
- a control circuit 505 that controls the first drive unit 502, the second drive unit 502 ′, and the calculation unit 504.
- first signal processing unit 503 and the second signal processing unit 503 ′ include an I / V conversion amplifier.
- the I / V conversion amplifier is effective because the output current can be converted into voltage when the first sensor unit 31 and the second sensor unit 31 ′ have a photodiode structure.
- the first drive unit 502 and the second drive unit 502 ′ may supply pulse signals (voltage or current) to the first light source 20 and the second light source 20 ′. preferable.
- the light emission and emission control is performed on the first light source 20, the second light source 20 ′, the first sensor unit 31, and the second sensor unit 31 ′.
- the unit 501 is connected. That is, the first drive unit 502 is connected to the connection terminals at both ends of the first light source 20.
- the second drive unit 502 ′ is connected to the connection terminals at both ends of the second light source 20 ′.
- the first signal processing unit 503 is connected to connection terminals at both ends of the first sensor unit 31.
- the second signal processing unit 503 ′ is connected to the connection terminals at both ends of the second sensor unit 31 ′.
- the gas sensor shown in FIG. 18 may alternately drive the first light source 20 and the second light source 20 ′.
- FIG. 19A shows the signal flow when driving the first light source 20
- FIG. 19B shows the signal flow when driving the second light source 20 ′.
- FIG. 20 is a conceptual diagram illustrating a configuration example of a gas sensor according to a seventeenth embodiment of the present invention.
- the gas sensor according to the seventeenth embodiment uses, for example, changeover switches 521 and 522, and a drive unit that alternately supplies power to the first light source 20 and the second light source 20 ′. 512. That is, in the seventeenth embodiment, the first light source 20 and the second light source 20 ′ are alternately driven by the common drive unit 512. This alternate driving can be performed by using the changeover switches 521 and 522.
- the size of the drive unit (for example, in the case of LSI, the chip area occupied by the circuit) may increase, so by using one drive unit, the entire circuit / LSI
- the chip utilization efficiency can be improved. That is, when the light emission current of the light emitting unit is large, for example, when the current is 1 mA or more, 10 mA or more, 50 mA or more, or 100 mA or more, the seventeenth embodiment is effective.
- FIG. 21 is a conceptual diagram showing a configuration example of the gas sensor according to the eighteenth embodiment of the present invention.
- the light emission / emission control unit 501 includes, for example, a first drive unit 502 that drives the first light source 20 at the frequency F1, and a second light source at the frequency F2.
- F1 and F2 are different numerical values (F1 ⁇ F2).
- the first demodulator 531 includes two signal components modulated at the frequency F1, that is, a signal incident on the second sensor unit 31 ′ from the first light source 20 and an incident on the first sensor unit 31 from the first light source 20. Demodulated signal.
- the second demodulator 531 ′ includes two signal components modulated at the frequency F2, that is, a signal incident on the first sensor unit 31 from the second light source 20 ′ and the second sensor unit 31 from the second light source 20 ′.
- the signal incident on ′ is demodulated.
- the calculation unit 504 receives signals from the first demodulator 531 and the second demodulator 531 ′ and outputs a calculation result corresponding to the substance transmittance (gas concentration or the like).
- the first light source 20 is driven with a signal having a frequency F1
- the second light source 20 ′ is driven with a frequency F2 (F1 ⁇ F2).
- F1 ⁇ F2 frequency F2
- both light emitting units can be driven without using a changeover switch, a temperature difference between the first sensor unit 31 and the second sensor unit 31 ′ is further less likely to occur, and high accuracy is achieved. Temperature compensation is possible.
- a combination of two signals Ip_tram_f2 that is incident on the first sensor unit 31 through the space is a signal A detected by the first signal processing unit 503.
- a signal B detected by the second signal processing unit 503 ′ is a combination of two signals Ip_transm_f1 that has passed through the second sensor unit 31 ′ through the signal (that is, a signal corresponding to light that has passed through the substance to be detected). It becomes.
- the first demodulator 531 receives the signal A, the signal B, and the synchronization signal ref1 having the frequency F1, and outputs demodulated Ip_ref_f1 and demodulated Ip_tram_f1.
- the second demodulator 531 ′ receives the synchronization signal ref2 of the signal A, the signal B, and the frequency F2, and outputs the demodulated Ip_ref_f2 and the demodulated Ip_transm_f2.
- the first demodulator 531 and the second demodulator 531 ′ may have any configuration as long as they can separate the amplitude component signals at the respective frequencies.
- An example of the first demodulator 531 and the second demodulator 531 ′ is Lock-in Amp. Lock-in Amp is effective in the present invention because it can extract and output only a signal having the same frequency as the reference signal (in the above case, a synchronization signal such as ref1 and ref2) from a signal having various frequency components. It is.
- FIG. 22 is a conceptual diagram showing a configuration example of the gas sensor according to the nineteenth embodiment of the present invention.
- the gas sensor according to the nineteenth embodiment includes a first substrate 41 on which a first temperature measurement unit 51 is formed in addition to the first light source 20 and the first sensor unit 31, and a second In addition to the light source and the second sensor unit, it includes a second substrate 41 ′ on which a second temperature measurement unit 51 ′ is formed.
- the first temperature measurement unit 51 and the second temperature measurement unit 51 ′ have the same structure and can accurately measure the temperature of the first sensor unit 31 and the temperature of the second sensor unit 31 ′, Any structure is acceptable.
- the first temperature measurement unit 51 and the second temperature measurement unit 51 ′ may have the same photodiode structure as the light emitting unit and the sensor unit.
- FIG. 23 shows a case where the first temperature measurement unit 51 has a thermistor structure.
- the first temperature measurement unit 51 uses the same substrate and the same substrate by using, for example, an N layer (preferably a semiconductor layer close to the first main surface of the substrate) of a photodiode. Since it can form in a manufacturing process, it may be preferable.
- the thermistor can obtain an output signal corresponding to the temperature of the sensor unit by applying a current. Although not shown, the same effect as described above can be obtained by adopting the thermistor structure also for the second temperature measurement unit 51 ′.
- the gas sensor according to the nineteenth embodiment further includes a temperature control unit 541.
- the temperature control unit 541 receives the temperature information from the first temperature measurement unit 51 and the temperature information from the second temperature measurement unit 51 ′, and the temperature of the first sensor unit 31 and the temperature of the second sensor unit 31 ′ are equal to each other.
- the control signal according to the electric power required for the 1st light source 20 and 2nd light source 20 ' is output so that it may become.
- the nineteenth embodiment of the present invention is particularly effective when the first substrate 41 and the second substrate 41 'are arranged apart from each other.
- a long optical path is required, and it is necessary to install the first substrate 41 and the second substrate 41 ′ in a place separated by design. There can be.
- the first substrate 41 and the second substrate 41 ′ are easily affected by a thermal disturbance such as a temperature gradient.
- the temperature of the first sensor unit 31 and the temperature of the second sensor unit 31 ′ are measured, and the first light source 20 and the second sensor unit 31 ′ are measured so that the respective temperatures are the same.
- Each desired power is applied to the two light sources 20 '.
- the temperature of the 1st sensor part 31 and the temperature of 2nd sensor part 31 ' can be made the same, and highly accurate temperature compensation is attained.
- the pulse width of the current (or voltage), the amplitude of the pulse, or the duty ratio of the pulse can be considered.
- the duty ratio is also called a duty value.
- FIG. 24 is a conceptual diagram illustrating a configuration example of a gas sensor according to the twentieth embodiment.
- the twentieth embodiment measures the temperature of the first sensor unit and the temperature of the second sensor unit and supplies the necessary power to the first light source and the second light source.
- the unit 541 outputs a control signal to the first driving unit and the second driving unit.
- the difference between the twentieth embodiment and the nineteenth embodiment is the temperature measurement method.
- the gas sensor according to the twentieth embodiment includes a first signal processing unit 503 that can calculate the resistance value of the first sensor unit 31 (FIG. 24 illustrates an example of the first signal processing unit 503, and other circuits. Is omitted.). As shown in FIG.
- the first signal processing unit 503 includes a current source 551 for supplying a reverse current to the photodiode (for example, the first sensor unit 31), an amplifier 552, an input of the current source 551, and the amplifier. And a capacitor 553 connected to the terminal.
- a voltage value corresponding to the resistance value of the photodiode is a signal having temperature information.
- the resistance value of the reverse bias changes according to the temperature, so that the temperature of the first sensor unit 31 can be accurately measured. For this reason, the twentieth embodiment can realize more accurate temperature compensation.
- a signal corresponding to the received light intensity output from the first sensor unit 31 can be separated from the DC component via the capacitor 553.
- the second signal processing unit can have the same configuration as the first signal processing unit shown in FIG.
- FIG. 25 is a conceptual diagram showing a configuration example of the gas sensor according to the twenty-first embodiment of the present invention. As shown in FIG. 25, this gas sensor has a band pass filter 35 on the second main surface 412 side of the first substrate 41, and a band pass filter 35 'on the second main surface 412' side of the second substrate 41 '.
- the bandpass filter 35 is disposed in the optical path from the second light source 20 ′ to the first sensor unit 31.
- the band pass filter 35 ′ is disposed in the optical path from the first light source 20 to the second sensor unit 31 ′.
- the bandpass filters 35 and 35 ' are optical filters that transmit different wavelengths, for example.
- the gas sensor according to the twenty-first embodiment can be used for, for example, a purpose of detecting a mixed substance (mixed gas or the like) qualitatively or quantitatively.
- a mixed substance mixed gas or the like
- gas A and gas B when the substance to be detected introduced into the cell is a mixed gas of gas A and gas B, consider the case where gas A has absorption at wavelength 1 and gas B has absorption at wavelength 2.
- a bandpass filter 35 ′ that transmits light of wavelength 1 is provided on the second substrate 41 ′
- a bandpass filter 35 that transmits light of wavelength 2 is provided on the first substrate 41. From the intensity of the output signal of the second sensor unit 31 ′ provided on the second substrate 41 ′ and the intensity of the output signal of the first sensor unit 31 provided on the first substrate 41, detection of gases A and B, The concentrations of the gases A and B can be obtained.
- a signal output by the first sensor unit 31 when the first light source 20 emits light is Ip_REF_1
- a signal output by the second sensor unit 31 ' is Ip_TRANSM_1
- Ip_ REF-1 and ip_ TRANSM_1 can be represented by the formula (7) and (8).
- the second light source 20 'ip_ a second signal sensor unit 31' outputs when the light emitting REF_2, ip_ a signal first sensor unit 31 outputs TRANSM_2.
- Ip_ REF_2 and Ip Transm 2 can be represented by the formula (9) and (10).
- Ip_ REF_1 Ri 1 (T) ⁇ ⁇ 1 (T) ⁇ ⁇ ⁇ (7)
- Ip_ TRASM_1 Ri 2 (T) ⁇ ⁇ 1 (T) ⁇ ⁇ ⁇ (1-A (C)) ...
- Ip_REF_2 Ri2 (T) * [ phi] 2 (T) * [alpha] (9)
- Ip_ TRASM_2 Ri 1 (T) ⁇ ⁇ 2 (T) ⁇ ⁇ ⁇ (1-A (C)) (10)
- the calculation unit 504 can calculate the calculation result 1 when the first light source emits light, and can calculate the calculation result 2 when the second light source emits light. That is, the calculation result 1 and the calculation result 2 can be expressed by the equations (11) and (12).
- Operation result 3 (Operation result 1 + Operation result 2) / 2 (13)
- the substance C to be measured can be extracted from (1-A (C)) according to Lambert-Beer's law.
- ⁇ and ⁇ do not change according to the wavelength and do not change depending on the temperature, but even if it changes, the temperature of the first substrate and / or the second substrate or cell is measured, This measurement result may be used for temperature compensation.
- the first light source 20 and the first sensor unit 31 are formed on the same substrate (first substrate 41), and are based only on the light emitted from the first light source 20. Since a signal can be output, the amount of light emitted from the first light source 20 can be accurately measured. The same applies to the amount of light emitted from the second light source 20 '.
- the light emitting elements of the light emitting unit 20 and the light receiving elements of the first sensor unit 31 are arranged so that each light emitting element can measure the amount of light emitted. Design appropriately.
- the above light emitting unit is continuously turned on / off (pulse driven), and signals from the first sensor unit and the second sensor unit are read when the light emitting unit is on and off, and the signal difference is used.
- disturbances and circuit offsets can be removed.
- the reason is that the offset due to the circuit and disturbance always occurs regardless of ON / OFF of the light emitting section, and therefore, if the signal difference between ON and OFF is taken, the offset component is removed.
- the ON / OFF switching frequency By setting the ON / OFF switching frequency to a sufficiently high value with respect to the frequency of disturbance radiation and circuit offset fluctuation, the effect of removing the offset becomes more remarkable.
- the ON / OFF switching frequency is preferably about 10 times (10 kHz).
- the power spectrum of this offset is inversely proportional to the frequency f, in other words, 1 / f (common names: pink noise, 1 / f noise). Therefore, the ON / OFF switching frequency may be set to a frequency band in which 1 / f noise does not appear.
- an amplitude modulation method such as ON / OFF described here, an amplitude modulation method (AM: Amplitude Modulation) often used in communication systems may be used.
- the first sensor unit and the second sensor unit are preferably quantum sensors because they can operate at high speed (have sufficient response to high-speed optical pulses). In the quantum sensor, since the internal resistance of the sensor changes depending on the temperature, the internal temperature of the gas sensor can be accurately known by reading the internal resistance value of the sensor.
- the present invention is not limited to the embodiment described above. A design change or the like may be added to the embodiment based on the knowledge of those skilled in the art, and the first aspect, which is an example of the present embodiment, the second aspect, and the first to first examples which are specific examples of the present embodiment.
- the twenty-first embodiment may be arbitrarily combined, and each aspect with such changes is also included in the scope of the present invention.
- the gas sensor of the present invention is not limited to an infrared gas sensor, and may be, for example, an ultraviolet gas sensor.
- the first light source and the second light source emit ultraviolet rays
- the first sensor unit receives a part of the emitted ultraviolet rays
- the second sensor unit receives the other part of the ultraviolet rays.
- a highly accurate concentration measuring device that is not affected by the environmental temperature can be realized.
- An example of the use of the concentration measuring device is a gas sensor.
- Example> An example of the present invention will be described using the gas sensor according to the tenth embodiment shown in FIG.
- a semi-insulating GaAs substrate is used for the first substrate 41 and the second substrate 42, and a PIN structure LED capable of emitting a wavelength of about 4.3 ⁇ m is used for the first light source 20, the first sensor unit 31, the second substrate 42.
- a PIN structure photodiode capable of detecting a wavelength in the vicinity of 4.3 ⁇ m was used for the two-sensor unit 32.
- the first light source (LED) 20, the first sensor unit 31, and the second sensor unit 32 all have the same stacked structure.
- an n-type AlInSb with a thickness of 1 ⁇ m and an i-type with a thickness of 2 ⁇ m On a GaAs substrate with a thickness of 230 ⁇ m, an n-type AlInSb with a thickness of 1 ⁇ m and an i-type with a thickness of 2 ⁇ m.
- An active layer, a 0.02 ⁇ m thick AlInSb barrier layer having a band gap larger than that of the i layer, and a 0.5 ⁇ m thick p-type AlInSb were formed on the substrate by MBE (Molecular Beam Epitaxy).
- the LED area (light emitting area) of the first light source 20 on the first substrate 41 was 0.26 mm 2
- the area (light receiving area) of the light receiving part of the first sensor unit 31 was 0.025 mm 2
- the light receiving area of the second sensor unit 32 was 0.28 mm 2 .
- the number of light receiving parts of the first sensor unit 31 is 36
- the number of light receiving parts of the second sensor unit 32 is 396.
- a similar wafer process was performed on the first substrate 41 and the second substrate 42. First, WET etching is performed to form a MESA type element (light receiving element, light emitting element), and then Si 3 N 4 is formed as an insulating layer. Finally, electrical connection is made to the n type layer and the p type layer. For this purpose, contact holes were formed, and finally metal wiring was formed.
- Ti was used as an adhesion layer
- Au for suppressing wiring resistance was used thereon.
- a Chipcoat G8345-6 resin manufactured by NAMICS which does not transmit light having a wavelength of 4.3 ⁇ m was used.
- the gas cell 10 an aluminum cylinder having a mirror-finished interior was used. The distance between the first substrate 41 and the second substrate 42 was 20 mm (distance to be the gas cell length). The overall size of the gas sensor is 10 ⁇ 10 ⁇ 25 mm 3 .
- the light source power supply unit 101 that supplies power to the first light source 20
- a pulse generator (pulse generation unit) that outputs a pulse of a rectangular wave is used.
- the first amplifying unit 102 uses a first lock-in amplifier
- the second amplifying unit 103 uses a second lock-in amplifier.
- the pulse generator trigger signal was used as the synchronization signal for both lock-in amplifiers.
- the gas to be detected used in this experiment was carbon dioxide (CO 2 ).
- the rate of change of the output signal / the output signal of the first sensor unit) and the rate of change of the output signal when the temperature compensation is not applied (respectively based on a temperature of 0 ° C.) are shown.
- the output signal of the second sensor unit 32 is about 0 when the environmental temperature is 30 ° C. and 40 ° C., respectively. .8% / 1000 ppm change was confirmed. It was also confirmed that when the temperature was changed by 10 ° C. (from 30 ° C. to 40 ° C.), the output signal changed by 10% / 10 ° C. That is, it can be understood that when the environmental temperature changes, a signal change much larger than the change (0.8% / 1000 ppm) of the output signal in the gas concentration range to be detected originally occurs, and the gas concentration cannot be detected correctly.
- the output signal of the first sensor unit 31 is affected by the temperature in the same manner as the second sensor unit 32, but not by the gas concentration.
- FIG. 28 when the temperature is not compensated and the temperature is changed from 0 to 60 ° C., a signal change of about 15% occurs.
- the temperature compensation of the present embodiment when the temperature compensation of the present embodiment is applied, that is, when a signal obtained by dividing the signal of the second sensor unit 32 by the signal of the first sensor unit 31 is output, the influence of the temperature is significantly less than 1%. Is shown to be suppressed. From the above, it was shown that the gas measurement accuracy can be greatly improved by the configuration of the present embodiment.
- a comparative example will be described using the gas sensor shown in FIG.
- a first sensor unit (reference sensor) 931 and a second sensor unit (detection sensor) 932 are arranged so as to face the first light source.
- a reference band-pass filter (selectively transmitting a wavelength band having a center wavelength of 3.9 ⁇ m and a half-value width of 0.2 ⁇ m) f ′ 1 is installed, and a detection band-pass filter (center wavelength 4) is installed in the detection sensor 932.
- the same measurement was performed with the same configuration as in Example except that f′2 was installed (selectively transmitting a wavelength band of .3 ⁇ m and a half-value width of 0.2 ⁇ m).
- the present invention can be applied to various gas concentration sensors, for example, a carbon concentration (CO 2 ) gas concentration sensor.
- a carbon concentration (CO 2 ) gas concentration sensor In an environment where humans are active on the earth, the concentration of carbon dioxide is set to several hundred ppm to 5,000 ppm. In some cases, the concentration may exceed 5000 ppm, but in many cases, it is necessary to monitor the concentration of carbon dioxide from the viewpoint of safety management, medical field, or environmental comfort.
- the present invention can monitor a relatively low concentration of carbon dioxide with a resolution of 200 ppm, 100, 50, 10 ppm or less and in a wide temperature range.
- a gas sensor that does not require temperature compensation and deterioration compensation can be realized with a simpler configuration.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Optical Measuring Cells (AREA)
Abstract
Description
これらのガスを高精度で測定するセンサには、化学反応式のガスセンサと光学式のガスセンサがある。測定精度の高さや、経時変化が少ないという観点から、光学式のガスセンサが特に注目されている。光学式のガスセンサは、測定対象のガスの分子が吸収する波長を放出する光源と、その信号を読み出すためのセンサを備えている。
上記の環境ガスは、波長が数μm付近(例えば、CO2の場合、波長4.3μm付近)の光を強く吸収するので、この波長帯の光を発光する光源と、該波長帯の光の強度に応じた信号を出力するセンサが要求される。中~遠赤外域で発光するLEDは、主として非分散型赤外線式(以下、NDIR方式)のガスセンサ用に用いられ、開発が進められている。
また、特許文献2では2波長帯を用いたNDIR方式のガスセンサを開示している。特許文献2のガスセンサでは、2つの光源を設けて、被検出ガスが吸収する波長の光と、被検出ガスが吸収しない波長の光のそれぞれをガスセルに通過させ、それぞれのセンサの出力比から検出したいガスの濃度を測定している。
さらに、光源とセンサの温度による信号の変化は、ガス濃度変化による信号変化より大きいため、温度の影響を除去するような補償は極めて難しい。
このような問題を解決するために、光路長を長くするという方法があるが、そうするとセンサ全体が大型化してしまうだけではなく、光源からの光の減衰が増え、センサ側が検出する信号のS/N比が低下してしまい、ガスセンサの測定バラツキが増えてしまい、高精度のガスセンサの実現は困難となる。
そこで、本発明は、このような事情に鑑みてなされたものであって、測定誤差を小さくすることができ、簡易かつ小型で信頼性の高いガスセンサを提供することを目的とする。
即ち、本発明の一態様に係るガスセンサは、第1の光源と、前記第1の光源から出力された光が入射するようにそれぞれ配置された第1センサ部および第2センサ部を備え、第1主面と該第1主面と対向する第2主面とを有し、該第1主面上に前記第1の光源と前記第1センサ部とが設けられた第1基板と、第1主面と該第1主面と対向する第2主面とを有し、該第1主面上に前記第2センサ部が設けられた第2基板と、をさらに備え、前記第1センサ部の配置位置は、前記第1基板の第1主面であって、前記第1の光源から出力された光のうちの該第1基板の第2主面で反射した光が入射する位置に設定されていることを特徴とする。
また、上記のガスセンサにおいて、前記第1センサ部と前記第2センサ部は、同一の温度特性を有することを特徴としてもよい。
また、上記のガスセンサにおいて、前記第1基板と前記第2基板とが互いに側面を対向させて隣り合って配置され、前記第1基板と前記第2基板との間に設けられた光遮断部をさらに備えることを特徴としてもよい。
また、上記のガスセンサにおいて、ガスセルをさらに備え、前記ガスセル内の前記第1基板及び前記第2基板からそれぞれ離れた位置に配置され、前記第1基板の第2主面から出射した光を前記第2センサ部に向けて反射する光反射部をさらに備えることを特徴としてもよい。
また、上記のガスセンサにおいて、前記第1基板の第2主面上に設けられ、前記第1の光源から出力された光を前記第1センサ部に向けて反射する光反射層をさらに備えることを特徴としてもよい。
また、上記のガスセンサにおいて、前記第1センサ部と前記第2センサ部及び前記第1の光源がそれぞれ、同一の材料で同一の積層構造からなることを特徴としてもよい。
また、上記のガスセンサにおいて、前記第1基板の第2主面から出射した光が前記第2センサ部に入射するまでの光路中に配置され、特定の波長帯のみを透過する光学フィルタをさらに備えることを特徴としてもよい。
また、上記のガスセンサにおいて、前記第1センサ部と前記第2センサ部は同一の構造の複数の受光部を有し、該受光部の数は前記第1センサ部と前記第2センサ部とで異なることを特徴としてもよい。
また、上記のガスセンサにおいて、前記第1基板と前記第2基板は、同一の材料からなることを特徴としてもよい。
また、上記のガスセンサにおいて、前記第1の光源及び前記第2の光源に電力を供給し、前記第1センサ部からの出力信号及び前記第2センサ部からの出力信号が入力される受発光制御部をさらに備えることを特徴としてもよい。
また、上記のガスセンサにおいて、前記受発光制御部は、前記第1の光源及び前記第2の光源の一方の発光部に電力を供給している間は、他方の発光部に電力を供給しないことを特徴としてもよい。
また、上記のガスセンサにおいて、前記受発光制御部は、前記第1センサ部と前記第2センサ部とが同じ温度となるように、前記第1の光源に供給する電力及び前記第2の光源に供給する電力を制御することを特徴としてもよい。
また、上記のガスセンサにおいて、前記受発光制御部は、前記第1センサ部の温度を測定する第1温度測定部と、前記第2センサ部の温度を測定する第2温度測定部と、を有することを特徴としてもよい。
また、上記のガスセンサにおいて、前記受発光制御部は、前記第1の光源及び前記第2の光源に供給される電力の電流又は電圧について、パルスの幅、振幅、及びデューティ比からなる群より選択される少なくとも一つを制御することを特徴としてもよい。
また、上記のガスセンサにおいて、前記受発光制御部は、前記第1の光源を周波数F1で駆動し、前記第2の光源を周波数F2(F1≠F2)で駆動することを特徴としてもよい。
第1の態様に係るガスセンサは、第1の光源と、第1の光源から出力された光が入射するようにそれぞれ配置された第1センサ部及び第2センサ部を有するガスセンサである。この構成のガスセンサは非分散型赤外線式のガスセンサとして用いることができる。
このガスセンサは、第1主面(例えば、表面)と、第1主面と対向する第2主面(例えば、裏面)とを有し、第1主面上に第1の光源と第1センサ部とが設けられた第1基板を備える。また、このガスセンサは、第1主面(例えば、表面)と、第1主面と対向する第2主面(例えば、裏面)とを有し、第1主面上に第2センサ部が設けられた第2基板を備える。第1センサ部の配置位置は、第1基板の第1主面であって、第1の光源から出力された光のうちの該第1基板の第2主面で反射した光が入射する位置に設定されている。これにより、第1の光源から第1センサ部に至る光路中に光学フィルタ(例えば、バンドパスフィルタ)を設けることなく、第1の光源出力の劣化による経時変化や動作時の温度による出力変動を精密に補償することが可能になる。
また、第1の態様に係るガスセンサは、第1センサ部からの出力信号と第2センサ部からの出力信号とが入力される演算部をさらに備えることが好ましい。第1センサ部からの出力信号と第2センサ部からの出力信号とに基づいて、ガス濃度の演算が可能になる。第1の光源と同一基板の同一平面上に設けられた第1センサ部の出力信号を、参照用信号としてガス濃度の演算に用いるという技術思想により、本発明の実施形態に係るガスセンサは、参照用フィルタを用いることのない簡易な構成で、従来よりも測定誤差を小さくすることができるという効果をより効果的に奏する。ここで、ガス濃度の演算とは、空間中のガス濃度の絶対値を演算するものであってもよいし、所定の閾値を超えるものであるか否かを判定する演算であってもよい。
また、第1センサ部と第2センサ部の温度特性を同じにするには、積層構造が同じであることと、同時に製造される(即ち、積層構造を構成する各層について、第1センサ部及び第2センサ部の間で同時に形成する)ことが好ましい。
このため、第1センサ部と第2センサ部の両方の信号のS/N比のバランスを無駄なく保つために、受光面積(受光部の数)が異なることは好ましい。第1の態様に係るガスセンサでは、第1センサ部と第2センサ部の出力信号(Ip1、Ip2)に基づいて、濃度を計算するため、ガスセンサ全体の最小分解能は第1センサ部と第2センサ部のS/N比で決まる。
出力信号比(Ip1/Ip2)は、第1基板及び第2基板の各材質、第1基板の第2主面及び第2基板の第2主面の各加工方法、制御層の有無やその光学特性等によって変化する。後述のように、これらを出力信号比が適切な割合になるように設計すれば、基板の利用効率を高め、センサ部の面積を最低限にして小型化を図りながら所望の精度を有するガスセンサが設計できる。
[ガスセル]
第1の態様に係るガスセンサにおいて、ガスセルは被検出ガスを導入することが可能なものであれば特に制限されない。すなわち、被検出ガスの導入口を有していれば良い。被検出ガスのリアルタイム検出の精度向上の観点から、前記導入口に加えて、導出口を備えていることが好ましい。
ガスセルを構成する材料は特に制限されない。例えば、金属、ガラス、セラミックス、ステンレス等の材料が挙げられるがこの限りではない。検出感度向上の観点から、第1の光源から出力された光の吸収係数が小さく、反射率が高い材料であることが好ましい。具体的にはアルミニウムからなる金属筐体や、アルミニウム、金、銀含む合金、もしくはこれらの積層体のコーティングが施された樹脂筐体、が好ましい。信頼性・経時変化の観点から金または金を含む合金層でコーティングされた樹脂筐体が好ましい。
第1基板の第1主面と対向する第2主面から出射した光を、効率的に第2センサ部に入射する観点から、ガスセルの内壁の一部が高い反射率の材料で覆われていることが好ましい。また、反射率を高める観点から、ガスセル内の内壁のラフネスは10μm以下が好ましく、5μm以下がより好ましく、1μm以下が更に好ましい。
第1の態様に係るガスセンサにおいて、第1基板は、第1主面上に第1の光源と第1センサ部を有する。第1基板の材料は特に制限されない。例えばSi、GaAs、サファイヤ、InP、InAs、Ge等が挙げられるがこの限りではなく、使用する波長帯に応じて選択すればよい。第1センサ部と第1の光源を電気的に絶縁させることが容易にできる観点から、半絶縁性基板を利用することが好ましい。半絶縁性基板が作製可能であり、大口径化が可能である観点から、GaAs基板は特に好ましい。測定感度向上の観点から、第1基板の材料は、第1の光源から出力される光の透過性が高いものであることが好ましい。また、第1の光源の出力変動を高精度に補償する観点から、第1基板の材料は、第2主面において第1の光源から出力された光が効率的に反射する材料であることが好ましい。
第1の態様に係るガスセンサにおいて、第1の光源は第1基板の第1主面上に形成される。第1の光源は、被検出ガスによって吸収される波長を含む光を出力するものであれば特に制限されない。第1の光源の具体的な形態は第1基板の第1主面上に形成できるものであれば何でも良い。具体的な例としては、MEMSやLEDが挙げられる。その中で、被検出ガス以外の成分の光吸収によるノイズを低減する観点から、被検出ガスの吸収が大きい波長帯の光のみを出力するものであることが好ましい。具体的には、発光波長帯をアクティブ層のバンドギャップでコントロールということから、LED構造は望ましい場合がある。
第1の態様に係るガスセンサにおいて、第1センサ部は、第1基板の第1主面上に形成される。第1センサ部の配置位置は、第1の光源から出力された光のうち、第1基板の第1主面と対向する第2主面において反射した光が入射する位置であれば特に制限されない。信号処理の応答速度の観点から、第1センサ部の積層構造としては、PN接合またはPIN接合のダイオード構造であり、インジウム若しくはアンチモンの何れかの材料を含んでも良い。更に被検出ガスの吸収波長に応じてGa、Al、Asからなる群より選択される少なくとも1つの材料をさらに含む混晶系の材料を含んでも良い。
また、温度特性を揃える観点から、第1センサ部の受光素子の材料及び積層構造は、第1の光源の材料及び積層構造と同様のものであることが好ましい。
また、第1の光源と第1センサ部とが同じ第1基板に配置されているため、第1センサ部に入射する光量は、第2センサ部に入射する光量よりも大きくなる傾向がある。このため、第1センサ部の受光部の総面積は、第2センサ部の受光部の総面積よりも小さくすることができる。これにより、ガスセンサのより一層の小型化が図られる。
第1の態様に係るガスセンサにおいて、第2基板は第1主面上に第2センサ部を有していれば特に制限されない。第2主面側から入射した光は、第2基板内部を通過して、第2センサ部に入射される。
第2基板の材料は特に制限されない。例えばSi基板、GaAs基板、サファイヤ等が挙げられるがこの限りではない。測定感度向上の観点から、第2基板の材料は、第2主面側から入射した光に対する透過性が高いものであることが好ましい。
小型化の観点から、第2基板は、第1基板と互いに側面を対向させて隣り合って配置され、第1基板と第2基板との間に光遮断部が配置されることが好ましい。この形態のガスセンサは、後述の光反射部を備えることが好ましい。また、上記の光遮断部は、第1基板及び第2基板の接合部に配置されることが好ましい。該光遮断部を有することにより、第1の光源から出力された光がガスセル内の空間を通過せずに第2センサ部に入射することを防ぐことができ、検出感度(ガス濃度変化による信号の変化)を向上することができるため好ましい。
第1の態様に係るガスセンサにおいて、第2センサ部は、第2基板上に配置されるものであれば特に制限されない。前述のとおり、第2センサ部と第1センサ部の温度特性を同等のものにする観点から、第2センサ部と第1センサ部は、その製造工程において同一基板上に形成されたものであることが好ましく、同じ積層構造を有することがより好ましい。
信号処理の応答速度の観点から、第2センサ部の積層構造としては、PN接合またはPIN接合のダイオード構造であり、インジウム若しくはアンチモンの何れかの材料を含むことが好ましい。
測定感度向上の観点から、第1基板の第2主面から放射された光が第2センサ部に入射するまでの光路中に、特定の波長帯のみを透過する光学フィルタを有することが好ましい。第1の光源から出力される光が広範な波長帯の光である場合、特に上記光学フィルタを有することが好ましい。
被検出ガスに対する検出感度向上の観点から、第1の態様に係るガスセンサは、第1基板及び第2基板の第2主面側のガスセル空間中に、光反射部を備えることが好ましい。即ち、ガスセル内の第1基板及び第2基板からそれぞれ離れた位置であって、第1基板の第2主面側及び第2基板の第2主面側に、光反射部を備えることが好ましい。該光反射部は、第1基板の第2主面から放射された光を反射し、該反射された光が第2センサ部に入射するものであることが好ましい。効率的に第2センサ部に光を入射させるために、該光反射部は、集光型光反射部であることが好ましい。
第1の光源から出射した光のうち、第2センサ部に入力される光は、全てガスセル内の空間を通過したものであることが好ましい。これを実現するためには、第1の光源と第1センサ部が配置されている第1基板と第2センサ部が配置される第2基板とを対向して配置する方法がある。一方で、ガスセンサ全体を小型化するためには、第1基板と第2基板とを互いに側面を対向させて隣り合うように配置することが好ましいが、単純に隣り合うように配置すると、第1の光源から出射した光のうち、一部がガスセル内の空間を通過せずに第2センサ部に入力され、ガス濃度の変化に依存する信号変化分がガス濃度の変化に依存しない信号成分(オフセット)になってしまい、ガスセンサの感度が低下する可能性がある。このため、上述したように第1基板と第2基板とを隣り合うように配置する場合には、第1基板と第2基板との間に光遮断部を備えていることが好ましい。
<第2の態様>
次に、第2の態様に係るガスセンサとして、2光源2センサ型のガスセンサについて説明する。このガスセンサの各構成部の説明及び好ましい形態は、上述の第1の態様や、後述の具体的な実施形態等にそれぞれ独立又は組み合わせて適用される。
第2の態様に係るガスセンサは、第1の態様で説明したガスセンサの構成に加えて、第2基板の第1主面上に設けられた、第2の光源をさらに備える。第2センサ部は、この第2の光源から出力された光のうち、第2基板の第1主面と対向する第2主面で反射した光が入射する位置に設定されていることが好ましい。
また、第2の光源から出力された光についても同様である。即ち、第2の光源から出力された光は、ガスの有無や濃度等に依存しない環境である第2基板中の光路を通過して第2センサ部(第2の光源からみて、モニタリング用の受光素子)に入射する。このため、使用環境の変化や経年劣化で第2の光源の発光特性が変化した場合でも、第1センサ部(第2の光源からみて、状態検知用の受光素子)による空間状態の検知を正確に行うことが可能になる。
第1センサ部及び第2センサ部の1℃あたりの出力の変化係数比の最大値と最小値を上述の範囲にする方法としては、第1センサ部及び第2センサ部を同一の材料で同一の積層構造にする方法が挙げられる。同一の材料及び同一の積層構造とすることにより、第1センサ部及び第2センサ部の温度特性は理論上同一となる。
また、同一基板上に、同一材料、同一工程で同時に第1センサ部と第2センサ部とを形成することによって、両センサ部の分光感度特性が同一になると共に、両センサ部の温度特性が同一となり、本発明の効果はより発揮される。ここで分光感度特性とは、各波長における感度を意味する。
基板面積の利用効率の観点から、第1センサ部及び第2センサ部は同一構造の受光部をそれぞれ複数有し、かつ、第1センサ部が有する受光部の数と、第2センサ部が有する受光部の数とが同一であることが好ましい。
本実施形態では、第1の光源及び第2の光源に電力を供給し、第1センサ部及び第2センサ部からの出力信号を検出する受発光制御部を備える。受発光制御部は、第1の光源及び第2の光源の一方の発光部に電力を供給している間は、他方の発光部に電力を供給しなくてもよい。また、受発光制御部は、第1の光源及び第2の光源に同じ大きさの電力を供給してもよい。或いは、受発光制御部は、第1センサ部と第2センサ部とが同じ温度になるように、第1の光源に供給する電力及び第2の光源に供給する電力を制御してもよい。後述のように、受発光制御部を利用したいくつかの実施形態を説明する。
後述のように、第1の光源と第2の光源とが、同一構造で同一組成の化合物半導体積層部からなる場合、受発光制御部が第1の光源と第2の光源とを交互に駆動させることによって、又は、第1の光源と第2の光源とに同一の電力を供給することによって、第1の光源が発熱する熱量と第2の光源が発熱する熱量とが定常的に等しくなり、第1の光源の温度と第2の光源の温度とが等しくなる。
SNRREF=[(SNR11)1/2+(SNR22)1/2]1/2・・・(1)
また、被検出物質を透過した光(第1の光源から第2センサ部へ、第2の光源から第1センサ部へ)で得られるS/N比は式(2)で示される。
SNRTRASM=[(SNR12)1/2+(SNR21)1/2]1/2
・・・(2)
従って、式(1)及び式(2)より、双方向に発光・受光を行うことによって、片方向の場合に比べて、システムのSNRが改善することが分かる。
第2の態様に係るガスセンサにおいて、第1基板は、第1主面上に第1の光源と第1センサ部とを有する。また、第2基板は、第1主面上に第2の光源と第2センサ部とを有する。第1基板、第2基板の各材料として、例えばSi、GaAs、サファイヤ、InP、InAs、Ge等が挙げられるがこの限りではなく、使用する波長帯に応じて選択すればよい。第1基板、第2基板にはそれぞれ、センサ部と発光部とを電気的に絶縁させることが容易にできる観点から、半絶縁性基板を利用することが好ましい。半絶縁性基板が作成可能であり、大口径化が可能である観点から、GaAs基板が特に好ましい。測定感度向上の観点から、第1基板、第2基板の各材料は、発光部から出力される光の透過性が高いものであることが好ましい。また、発光部の出力変動を高精度に補償する観点から、第1基板、第2基板の各材料は、発光素子から出力された光が第2主面において効率的に反射する材料であることが好ましい。さらに、後述のようにインジウム(In)若しくはアンチモン(Sb)を含む積層構造の第1センサ部、第2センサ部、第1の光源、第2の光源を形成しやすい観点から、GaAs基板が好ましい。
ガスセンサに用いる場合において、被検出ガスがCO2の場合を想定する。この場合、CO2の吸収波長4.3μm付近での光の吸収を検出するために、第1センサ部、第2センサ部、第1の光源、第2の光源に用いられる材料として、AlInSb若しくはGaInSbを利用するとよい。また、気化したアルコールのような気体を検出する場合、さらに長波長(9~10μm)にする必要がある。この場合は、第1センサ部、第2センサ部、第1の光源、第2の光源に、AsInSbを利用するとよい。
一般的に使われる基板材料の屈折率は高いため、基板から外部への光取り出しは難しく、発光素子から出力された光の多くが基板内で散乱することとなる。第2の態様に係るガスセンサにおいては、第1基板の第2主面上、第2主面の第2主面上に制御層を設けることによって、センサ全体のS/N比を高くする(高分解能が得られる)ように設計することが可能になる。制御層の具体例としては、反射防止膜や、屈折率の異なる多数の材料の積層膜、粗面化した層、又は、それらの組み合わせが挙げられる。
第2の態様に係るガスセンサにおいて、第1の光源は第1基板の第1主面上に形成され、第2の光源は第2基板の第1主面上に形成される。第1の光源と第2の光源は、被検出物質(ガス等)によって吸収される波長を含む光を出力するものであれば特に制限されない。第1の光源、第2の光源の具体的な形態は、第1基板の第1主面上、第2基板の第1主面上にそれぞれ形成できるものであれば何でもよい。具体的な例としては、MEMSやLEDが挙げられる。その中で、被検出物質(ガス等)以外の成分の光吸収によるノイズを低減する観点から、被検出物質の吸収が大きい波長帯の光のみを出力するものであることが好ましい。具体的には、発光波長帯をアクティブ層のバンドギャップでコントロールできるという理由から、LED構造が望ましい場合がある。
第2の態様に係るガスセンサにおいて、第1センサ部は第1基板の第1主面上に形成され、第2センサ部は第2基板の第1主面上に形成される。第1センサ部の配置位置は、第1の光源から出力された光のうち、第1基板の第1主面と対向する第2主面において反射した光が入射する位置である。第2センサ部の配置位置は、第2の光源から出力された光のうち、第2基板の第1主面と対向する第2主面において反射した光が入射する位置である。
センサ部を回路(増幅器)に接続した場合のS/N比の観点から、本実施形態の第1センサ部、第2センサ部は、複数の受光素子をそれぞれ直列に接続した形態であることが好ましい。その理由は、多数の受光素子を設けることによって、センサ部全体の内部抵抗を大きくすることができるため、増幅器に接続した場合、高いS/N比を実現できるからである。
被検出物質(ガス等)に対する検出感度向上の観点から、第2の態様に係るガスセンサは、第1基板の第2主面側及び第2基板の第2主面側に位置する基板外部の空間中に、光反射部を備えることが好ましい。即ち、ガスセル内の第1基板及び第2基板からそれぞれ離れた位置であって、第1基板の第2主面側及び第2基板の第2主面側に、光反射部を備えることが好ましい。この光反射部は、第1基板の第2主面から出射した光を反射し、この反射した光を第2センサ部に入射させるものであることが好ましい。また、この光反射部は、第2基板の第2主面から出射した光を反射し、この反射した光を第1センサ部に入射させるものであることが好ましい。第1の光源からの出力光を第2センサ部に効率的に入射させ、第2の光源からの出力光を第1センサ部に効率的に入射させるために、光反射部は集光型光反射部であることが好ましい。
第1の光源から出力された光のうち、第2センサ部に入射する光、第2の光源から出力された光のうち、第1センサ部に入射する光は、全て基板外部の空間(外部空間)を通過したものであることが好ましい。これを実現するためには、第1の光源と第1センサ部が配置されている第1基板と第2センサ部が配置される第2基板とを対向して配置する方法がある。同様に、第2の光源と第2センサ部が配置されている第2基板と第1センサ部が配置される第1基板とを対向して配置する方法がある。つまり、第1基板と第2基板とを対向して配置することが好ましい。
ここまで、第1基板と第2基板とが独立して存在する場合を説明したが、光遮断部を必要としない場合、第1センサ部、第2センサ部、第1の光源、第2の光源が共通の基板の第1主面上に形成されてもよい。この場合、第1センサ部が第1の光源付近に、第2センサ部が第2の光源に形成されように基板を設計するとよい。
[第1の態様の効果]
第1の態様は、以下の効果(1)~(4)を奏する。
(1)第1の光源から第1センサ部に至る光路は第1基板内にあり、該光路中に光学フィルタ(例えば、バンドパスフィルタ)やガスセル内の空間は存在しない。これにより、該光路中にバンドパスフィルタやガスセル内の空間が存在する場合と比べて、ガスセンサの使用環境によらず、該光路での光の減衰を抑えることができ、第1センサ部が検出する信号のS/N比の低下を抑えることができる。
(2)また、第1の光源は一つで足りるため、2つの異なる波長の第1の光源間で光量差が発生することはない。これにより、第1の光源の発光強度を定期的に校正しなくても、発光強度の変化による測定誤差を補償することができる。
(4)また、第1センサ部に光学フィルタは不要である。さらに、第1の光源は一つで足りる。このように、ガスセンサを構成する部品数を少なくすることができるため、簡易かつ小型のガスセンサを提供することができる。
第2の態様は、以下の効果(5)~(8)を奏する。
(5)第1の光源から第1センサ部に至る光路は第1基板内にあり、第2の光源から第2センサ部に至る光路は第2基板内にあり、これらの光路中に光学フィルタ(例えば、バンドパスフィルタ)や外部空間は存在しない。これにより、第1の光源から第1センサ部に至る光路中や第2の光源から第2センサ部に至る光路中に参照信号用バンドパスフィルタや外部空間が存在する場合と比べて、ガスセンサの使用環境によらず、これらの光路での光の減衰を抑えることができる。従って、第1の光源からの光信号を検出するときの第1センサ部が検出する信号のS/N比及び、第2の光源からの光信号を検出するときの第2センサ部が検出する信号のS/N比の低下を抑えることができる。
(7)第1の光源付近に配置される第1センサ部の温度と、第2の光源付近に配置される第2センサ部の温度は、それぞれの近くに配置された発光部に供給する(印加する)電力によって、支配される。このため、第1センサ部と第2センサ部とが温度によって変化する感度特性を有する場合でも、第1の光源に供給する電力及び第2の光源に供給する電力を制御することによって、第1センサ部と第2センサ部とを同一温度に近づけることが安易となり、高精度の温度補償が可能となる。
即ち、本実施形態は、経時変化や使用環境の温度変化により生じる、発光・受光の信号変動を補償し、発光部の発光特性が変化した場合でも、又は、温度によって発光素子(第1センサ部、第2センサ部)の感度が変化したとしても、状態検知用のセンサ部による空間状態の検知をより高精度に行うことを可能としたガスセンサを提供することができる。
以上記載したように、本実施形態に係るガスセンサは、種々の機器に適用することが可能であり、例えば建物や測定機器中の特定のガスの濃度を検出するためのガスセンサや、携帯電話やスマートフォンなどの携帯通信機器に搭載されるガスセンサや、自動車や電車、航空機等の移動手段中のガス濃度を検出するためのガスセンサとして用いることができる。
例えば、CO2濃度は生物の睡眠との相関性があると考えられており、本実施形態に係るガスセンサの測定対象ガスをCO2とした場合、周囲の温度が大きく変化しやすい環境下であっても、高精度にCO2濃度を検出することが可能になり、たとえば、車の運転における居眠り防止装置(例えば、所定のCO2濃度に達したら警報を発する/自動的に換気を行う等)として好適である。
次に、図面を参照して本実施形態の具体例(第1~第21実施形態)について説明する。なお、以下に説明する各図において、同一の構成を有する部分には同一の符号を付し、その繰り返しの説明は省略する。
[第1実施形態]
図1は本発明の第1実施形態に係るガスセンサの構成例を示す概念図である。図1に示すように、このガスセンサは、被検出ガスを導入することが可能なガスセル10と、被検出ガスによって吸収される波長を含む赤外線領域の光(即ち、赤外線)を出力する第1の光源20と、第1の光源20から出力された光が入射するようにそれぞれ配置された第1センサ部31及び第2センサ部32と、第1の光源20と第1センサ部31を第1主面411上に有する第1基板41と、第2センサ部32を第1主面421上に有する第2基板42と、を有するガスセンサである。
第1実施形態に係るガスセンサによれば、第1センサ部31は、第1の光源20から出力された光のうち、第1基板41の第1主面411と対向する第2主面412において反射した光(破線で示す)が入射する位置に配置されている。これにより、使用環境によらず第1の光源20の発光強度の変化による測定誤差を一定に補償することが可能な簡易、小型、かつ信頼性の高いガスセンサを実現できる。
図2は本発明の第2実施形態に係るガスセンサの構成例を示す概念図である。
図2に示すように、このガスセンサでは、第1基板41と第2基板42とが互いに側面(即ち、外周側面の一部)を対向させて隣り合って配置されている。本明細書では、このような配置を平行配置と呼ぶ。第1基板41と第2基板42とが平行配置されている点で第2実施形態は第1実施形態と異なる。それ以外の構成については、第2実施形態は第1実施形態と同じである。なお、第1基板の第2主面から出射した光を第2センサ部に効率的に入射させる観点から、第2実施形態及び、後述の第3、第5、第6実施形態では特に、ガスセル10の内壁の一部が高い反射率の材料で覆われていることが好ましい。
第2実施形態に係るガスセンサによれば、第2基板42と第1基板41とを平行配置させていることにより、ガスセンサの更なる小型化が可能である。
図3は本発明の第3実施形態に係るガスセンサの構成例を示す概念図である。図3に示すように、このガスセンサでは、第1基板41と第2基板42の間に光遮断部50が設けられている。この光遮断部50が設けられている点で、第3実施形態は第2実施形態と異なる。この光遮断部50には封止樹脂を利用しても良い。それ以外の構成については、第3実施形態は第2実施形態と同じである。
第3実施形態に係るガスセンサによれば、光遮断部50を備えることにより、第1の光源20から出力された赤外線領域の光(即ち、赤外線)のうち、第1基板41の第2主面412で反射した光が、第1センサ部31には到達するが、第2センサ部32には到達しない。第2センサ部32に到達する光は全てガスセル10内の空間を通過した光となるため、より高精度なガス検知が可能になる。
図4は本発明の第4実施形態に係るガスセンサの構成例を示す概念図である。図4に示すように、このガスセンサは、第1基板41の第2主面412側及び第2基板42の第2主面422側のガスセル空間中に、光反射部60を備える。即ち、このガスセンサは、ガスセル10内の第1基板41及び第2基板42からそれぞれ離れた位置に配置され、第1基板41の第2主面412から出射した光を第2センサ部32に向けて反射する光反射部60を備える。この光反射部60が設けられている点で、第4実施形態は第2実施形態と異なる。それ以外の構成については、第4実施形態は第2実施形態と同じである。
第4実施形態に係るガスセンサによれば、光反射部60を備えることにより、第1の光源20から出力された光のうち、第1基板41の第2主面412から出射した赤外線(一点破線)を、該光反射部60で反射し選択的に第2センサ部32に入射させることが可能になるため、より高感度なガスセンサを実現することが可能になる。
図5は本発明の第5実施形態に係るガスセンサの構成例を示す概念図である。図5に示すように、このガスセンサは、第1基板41の第2主面412上に設けられ、第1の光源20から出力される光のうち、第1基板41内で散乱する光(点線)の光量と、第1基板41の第2主面412からガスセル10内の空間へ放射される光(一点破線)の光量及び放射角度とを制御する制御層70を備える。この制御層70を備える点で、第5実施形態は第2実施形態と異なる。それ以外の構成については、第5実施形態は第2実施形態と同じである。
第5実施形態に係るガスセンサによれば、制御層70を備えることにより、第1センサ部31に入射させたい光量と第2センサ部32に入射させたい光量の比率を制御することができ、高S/N比のセンサを容易に設計することが可能になる。この制御層70は第2基板42の第2主面に設けても良い。
図6は本発明の第6実施形態に係るガスセンサの構成例を示す概念図である。図6に示すように、このガスセンサは、第1基板の第2主面上に設けられ、第1の光源から出力された光を第1センサ部に向けて反射する光反射層701を備える。光反射層701に使われる材料としては、光の反射をする材料であれば何でも良く、金属光沢をもつ全反射する材料であれば更に良い。具体的には、反射率が良いという観点から、AlやAuを含む材料は好ましい場合がある。この光反射層701を備える点で、第6実施形態は第2実施形態と異なる。それ以外の構成については、第6実施形態は第2実施形態と同じである。
第6実施形態に係るガスセンサによれば、光反射層701を備えることにより、第1センサ部31に入射させたい光量を高めることができる。これにより、第1センサ部31の信号のS/N比を高めることができる。場合によって、S/N比を保ったまま第1センサ部の受光面積を小さくし、基板の利用効率を高めることができる。
図7は本発明の第7実施形態に係るガスセンサの構成例を示す断面図である。図7において、符号201、311、321は第1導電型の半導体層(例えばN型半導体層)であり、符号202、312、322は第2導電型の半導体層(例えばP型半導体層)であり、符号203、204、313、314、323、324は電極を示す。
図7に示すように、第1の光源20は、例えば、第1基板41の第1主面411上に形成された第1導電型の半導体層201と、半導体層201上に形成された第2導電型の半導体層202及び電極203と、半導体層202上に形成された電極204とを有する。
また、第1センサ部31は、例えば、第1基板41の第1主面411上に形成された第1導電型の半導体層311と、半導体層311上に形成された第2導電型の半導体層312及び電極313と、半導体層312上に形成された電極314とを有する。
ここで、第1導電型の半導体層201、311、321は、例えば同一の材料からなり、同一の膜厚を有する。また、第2導電型の半導体層202、312、322は、例えば同一の材料からなり、同一の膜厚を有する。
なお、図7においては、第1センサ部31、第2センサ部32は一つの素子として示したが、S/N比の観点から複数の素子を電気的に接続して各々一つのセンサ部としてもよい。また、発光効率の観点から、第1の光源20も電気的に接続された多数の素子であっても良い。また、第1導電型の半導体層201、311、321と、第2導電型の半導体層202、312、322の間にそれぞれ真正半導体層(いわゆるi型半導体層)を挿入し、PIN接合を形成してもよい。
図8は本発明の第8実施形態に係るガスセンサの構成例を示す概念図である。
図8に示すように、このガスセンサは、第2実施形態に係るガスセンサに、第3~第6実施形態のガスセンサの特徴を全て組み込んでいる。第8実施形態に係るガスセンサによれば、第2~第6実施形態の特徴を全て組み込むことにより、最も高精度・高感度な小型のガスセンサを実現することが可能になる。図8に示す光遮断部50は第3実施形態(図3)で説明した光遮断部と同様の役割を持つ。
図9は本発明の第9実施形態に係るガスセンサの構成例を示す概念図である。
図9に示すように、このガスセンサは、第1実施形態に係るガスセンサの第1基板41及び第2基板42をそれぞれ封止樹脂200で封止し、かつ、第1の光源20、第1センサ部31及び第2センサ部32に対して、駆動部や信号処理部を接続した例である。
即ち、第9実施形態に係るガスセンサは、第1の光源20に対して電力を供給するための光源電源供給部101と、第1センサ部31及び第2センサ部32からの出力信号が入力され、被検出ガスのガス濃度を演算するガス濃度演算部104と、を備える。低消費電力化の観点から、光源電源供給部101はパルス状の信号(電圧または電流)を第1の光源20に与えるものであることが好ましい。
第9実施形態に係るガスセンサによれば、第1の光源20、第1センサ部31及び第2センサ部32に対して、駆動部や信号処理部を接続することにより、ガスセル10内に導入された被検出ガスのガス濃度を自動的に算出し、その結果を出力することができる。
図10は本発明の第10実施形態に係るガスセンサの構成例を示す概念図である。
図10に示すように、このガスセンサは、第9実施形態に係るガスセンサに対して、第1センサ部31からの出力信号を増幅するための第1増幅部102、第2センサ部32からの出力信号を増幅するための第2増幅部103、ガスセル10内の温度を測定するための温度測定部105、及び、光源電源供給部101と第1増幅部102と第2増幅部103とに駆動信号を供給するための駆動信号供給部106をさらに備える。
環境温度に起因したずれを補償するために、ガスセル10周囲または内部の温度を測定する温度測定部105を備えていることが好ましい。環境温度によって、第1の光源20の発光スペクトルが変化する場合がある。また、被検出ガスの種類によっては、環境温度によって光の吸収量が変化する場合がある。そこで、温度測定部105を備えていれば、該温度測定部105により得られる温度情報をガス濃度演算部104に与えることで、環境温度に起因するずれを補償することが可能になるため好ましい。
図11は本発明の第11実施形態に係るガスセンサの構成例を示す概念図である。
図11に示すように、このガスセンサは、第1基板41と、第2基板42、42´とを備える。即ち、2つの第2基板を備える。第2基板42、42´の各々の第2主面(裏面)に異なる波長を透過するバンドパスフィルタf1、f2を設けることによって、同時に2種類のガスを検出するこができる。当然ながら、3つ以上の第2基板を備えても良い。また、第2基板を共通にして、その第1主面上に多数(2つ以上)の受光部を設け、それぞれの受光部に光軸を合わせた光学フィルタ(例えば、バンドパスフィルタ)を設けても良い。
次に、本実施形態に係るガスセンサを用いたガス濃度演算方法の具体例について説明する。第1センサ部31が出力する信号をIp1、第2センサ部32が出力する信号をIp2とする。Ip1とIp2は式(3)及び式(4)で示すことができる。
Ip1 = RiREF(T) × φ(T) × α ・・・(3)
Ip2 = RiGAS(T) × φ(T) ×β×(1-A(C))
・・・(4)
但し、
A ・・・ ガス濃度による吸収率
C ・・・ ガス濃度
φ ・・・ 第1の光源の発光強度
α ・・・ 第1の光源から第1センサ部への伝達率
β ・・・ 基板からの光取り出し効率(若しくは、被検出物質(ガスなど)の吸収が無い場合の第1の光源から第2センサ部への伝達率)
Ip1 ・・・ 第1センサ部の出力信号
Ip2 ・・・ 第2センサ部の出力信号
RiREF・・・ 第1センサ部の感度
RiGAS・・・ 第2センサ部の感度
演算結果=Ip2/Ip1
=(RiGAS(T)×β×(1-A(C)))/(RiREF(T)×α) ・・・(5)
ここでは第1の光源の温度特性がそれぞれのセンサの温度特性が異なっていても良いが、第1センサ部の温度特性g1(T)と第2センサ部の温度特性g2(T)が等しいか、比例関係を持つのであれば、Ip2/Ip1∝(1-A(C))となり、ガスセンサとしての温度依存性が除去でき、ガスの分子が吸収するときの真正な吸収率を得ることができる。また、Lambert-Beerの法則より、(1-A(C))からガス濃度Cを抽出することができる。
分解能=(ΔC/ΔIp)/(SNR) ・・・(6)
但し、ΔIpはセンサの信号変化
ΔCは被検出ガス濃度変化
SNRは第1の光源がONとOFFした場合(パルス駆動)に得られるセンサ部のS/N比を示す。
式(5)から分かるように、第1の光源の光量は演算結果に表れないので、第1の光源が劣化しても、つまり、発光効率が変化しても、ガス濃度演算結果は変わらない。本実施形態に係るガスセンサは、第1の光源20と第1センサ部31とが同一基板(第1基板41)上に形成されており、第1の光源20から放出された光にのみ基づいた信号を出力することが可能であるため、第1の光源20からの発光量を正確に測定することが可能である。第1の光源が多数の発光部からなる場合は、各発光部が発光する各々の光量の測定が可能になるように、第1の光源20の各受光部と第1センサ部31の各受光部の配置を適切に設計すればよい。
ガスセンサ全体の消費電力の低減を目指し、第1の光源を低電流で駆動し、ガスセルを長くしすぎると、十分なS/N比がとれないことがある。つまり、短いガス路が必要となるが、ガス路が短い程、ガスの濃度の変化による信号の変化よりも、温度による信号の変化が著しくなる。この場合、効果的な温度補償方法が不可欠となる。
図12は本発明の第12実施形態に係るガスセンサの構成例を示す概念図である。図12に示すように、このガスセンサは、第1の光源20と第1センサ部31とを第1主面411上に有する第1基板41と、第1の光源20´と第1センサ部31´とを第1主面411´上に有する第2基板41´とを備える。第1基板41と第2基板42は互いに同一の構造を有する。
また、第12実施形態に係るガスセンサは、受発光制御部501を備える。受発光制御部501は、第1の光源20及び第2の光源20´に電力を供給し、第1センサ部31及び第2センサ部31´からの出力信号を検出する。受発光制御部501は、例えば、第1の光源20付近に形成された第1センサ部31の温度と、第2の光源20´付近に配置された第2センサ部31´の温度とが等しくなるように、第1の光源20と第2の光源20´とにそれぞれ所望の電力を供給する。
図13は本発明の第13実施形態に係るガスセンサの構成例を示す概念図である。図13に示すように、このガスセンサでは、第1基板41と第2基板41´とが互いに側面(即ち、外周側面の一部)を対向させて隣り合って配置されている。本明細書では、このような配置を平行配置と呼ぶ。第1基板41と第2基板41´とが平行配置されている点で第13実施形態は第12実施形態と異なる。
このように、第1基板41と第2基板41´とが平行配置されている点、及び、光反射部60が設けられている点で、第13実施形態は第12実施形態と異なる。それ以外の構成については、第13実施形態は第12実施形態と同じである。
図15は本発明の第14実施形態に係るガスセンサの構成例を示す断面図である。第13実施形態と違って、基板は共通で、一つのみとなる。即ち、第14実施形態に係るガスセンサは、前述の第1基板及び第2基板が一体化した共通の基板40を有する。そして、この基板40の第1の面側401側に、第1の光源20、第1センサ部31、第2の光源20´、第2センサ部31´がそれぞれ配置されている。第14実施形態に係るガスセンサは、第1の光源20から第2センサ部31´への反射光と、第2の光源20´から第1センサ部31への反射光とをそれぞれ十分に減衰できるような場合に有効である。また、第1、第13実施形態と比べて、部品数が少ないため、好ましい場合がある。
図16は本発明の第15実施形態に係るガスセンサの構成例を示す断面図である。
図16に示すように、第1の光源20は、例えば、第1基板41の第1主面411上に形成された第1導電型(例えば、N型)の半導体層201と、半導体層201上に形成された第2導電型(例えば、P型)の半導体層202及び電極203と、半導体層202上に形成された電極204とを有する。また、第2の光源20´は、例えば、第2基板41´の第1主面411´上に形成された第1導電型の半導体層201´と、半導体層201´上に形成された第2導電型の半導体層202´及び電極203´と、半導体層202´上に形成された電極204´とを有する。
また、第1の光源20、第2の光源20´、第1センサ部31、第2センサ部31´が同じ温度特性を示すことから、第1の光源20及び第2の光源20´に同じ大きさの電力を供給することにより、第1の光源20及び第2の光源20´を同じ温度に発熱させることができる。これにより、第1センサ部31及び第2センサ部31´を同じ温度にすることが可能となる。
図17は本発明の第16実施形態に係るガスセンサの構成例を示す概念図である。
図17に示すように、このガスセンサは、第12実施形態に係るガスセンサの第1基板41及び第2基板41´をそれぞれ封止樹脂200、封止樹脂200´で封止し、かつ、第1の光源20、第1センサ部31、第2の光源20´、第2センサ部31´に対して、受発光制御部501を接続した例である。
第16実施形態に係るガスセンサは、第1基板41と第2基板41´との間の空間を囲み、この空間に被検出物質(ガス等)を導入することが可能なガスセル10を有してもよい。図示しないが、このガスセル10には、被検出物質を導入するための導入口が設けられている。
図18に示すように、受発光制御部501は、例えば、第1の光源20に電力を供給して第1の光源20を駆動する(即ち、発光させる)第1駆動部502と、第2の光源20´に電力を供給して第2の光源20´を駆動する第2駆動部502´と、第1センサ部31の信号を処理する第1信号処理部503と、第2センサ部31´の信号を処理する第2信号処理部503´と、第1信号処理部503と第2信号処理部503´とからの信号を演算(例えば、セル透過特性の算出、物質やガスの濃度計算等)する演算部504と、第1駆動部502、第2駆動部502´及び演算部504を制御する制御回路505と、を備える。
これにより、ガスセル10内の光路空間の状態(特定のガスの有無や濃度、流体の特定成分の有無や濃度等)を検知することが可能になる。図18に示すガスセンサは、第1の光源20と第2の光源20´とを交互に駆動させてもよい。図19(a)は第1の光源20を駆動しているときの信号流れを示し、図19(b)は第2の光源20´を駆動しているときの信号の流れを示している。
図20は、本発明の第17実施形態に係るガスセンサの構成例を示す概念図である。
図20に示すように、第17実施形態に係るガスセンサは、例えば切り替えスイッチ521、522を利用して、第1の光源20、第2の光源20´に対して電力を交互に供給する駆動部512を有する。即ち、第17実施形態では、第1の光源20、第2の光源20´を共通の駆動部512で交互に駆動する。この交互駆動は、切り替えスイッチ521、522を利用することによって行うことができる。
発光部に流れる電流が大きい場合、駆動部のサイズ(例えば、LSIの場合、回路が占めるチップ面積)は大きくなってしまう場合があるので、駆動部を1つにすることで、回路・LSI全体のサイズを縮小することができ、チップの利用効率が改善できる。つまり、発光部の発光電流が大きい場合、例えば、1mA以上、若しくは10mA以上、若しくは50mA以上、若しくは100mA以上の場合、第17実施形態は有効である。
図21は、本発明の第18実施形態に係るガスセンサの構成例を示す概念図である。
図21に示すように、第18実施形態に係るガスセンサにおいて、受発光制御部501は、例えば、周波数F1で第1の光源20を駆動する第1駆動部502と、周波数F2で第2の光源を駆動する第2駆動部502´と、第1信号処理部503と、第2信号処理部503と、第1復調器531と、第2復調器531´と、演算部504とを有する。なお、F1とF2は異なる数値である(F1≠F2)。
第1復調器531は、周波数F1で変調された2つの信号成分、つまり第1の光源20から第2センサ部31´へ入射した信号及び、第1の光源20から第1センサ部31へ入射した信号を復調する。第2復調器531´は、周波数F2で変調された2つの信号成分、つまり第2の光源20´から第1センサ部31へ入射した信号及び、第2の光源20´から第2センサ部31´へ入射した信号を復調する。演算部504は、第1復調器531、第2復調器531´からの信号を受け、物質の透過率(ガス濃度等)に応じた演算結果を出力する。
この場合、第1の光源20から周波数F1で変調され、第1基板41の内部を通って第1センサ部31に入射した信号Ip_ref_f1と、第2の光源20´から周波数F2で変調され、光路空間を通って第1センサ部31に入射した信号(即ち、被検出物質を透過した光に応じた信号)Ip_trasm_f2の2つの信号の組み合わせが、第1信号処理部503で検出される信号Aとなる。また、第2の光源20´から周波数F2で変調され、第2基板の内部を通って第2センサ部31´に入射した信号Ip_ref_f2と、第1の光源20から周波数F1で変調され、光路空間を通って第2センサ部31´に入射した信号(即ち、被検出物質を透過した光に応じた信号)Ip_transm_f1の2つの信号の組み合わせが、第2信号処理部503´で検出される信号Bとなる。
第1復調器531、第2復調器531´はそれぞれの周波数での振幅成分の信号を分離することができれば、どのような構成でもよい。第1復調器531、第2復調器531´の一例として、Lock-in Ampが挙げられる。Lock-in Ampは、様々な周波数成分を有する信号から、参照信号(上記ではref1及びref2の様な同期信号)と同じ周波数の信号のみを抽出し、出力することができるため、本発明では有効である。
図22は、本発明の第19実施形態に係るガスセンサの構成例を示す概念図である。
図22に示すように、第19実施形態に係るガスセンサは、第1の光源20及び第1センサ部31に加えて、第1温度測定部51が形成された第1基板41と、第2の光源及び第2センサ部に加えて、第2温度測定部51´が形成された第2基板41´とを有する。
第1温度測定部51と第2温度測定部51´は互いに同様の構造を有し、第1センサ部31の温度及び第2センサ部31´の温度をそれぞれ精密に測定できる構造であれば、どのような構造でもよい。具体的な例としては、 第1温度測定部51と第2温度測定部51´は、発光部及びセンサ部と同様のフォトダイオード構造を有してもよい。
図24は、第20実施形態に係るガスセンサの構成例を示す概念図である。
第20実施形態は第19実施形態と同じく、第1センサ部の温度と第2センサ部の温度を測定し、第1の光源及び第2の光源に必要な電力を供給するために、温度制御部541が第1駆動部及び第2駆動部に制御信号を出力する。第20実施形態と第19実施形態の相違点は温度測定方法にある。第20実施形態に係るガスセンサは、第1センサ部31の抵抗値を算出することができる第1信号処理部503を有する(図24では、第1信号処理部503の一例を示し、その他の回路の図示は省略した。)。図24に示すように、第1信号処理部503は、フォトダイオード(例えば、第1センサ部31)に逆方向電流を流すための電流源551と、アンプ552と、電流源551とアンプの入力端子とに接続されたコンデンサ553とを有する。
なお、図示しないが、第2信号処理部についても、図24に示した第1信号処理部と同様の構成とすることができる。
本発明の第1から第21実施形態では、第1の光源20から第2センサ部31´までの光路中、及び/又は、第2の光源20´から第1センサ部31までの光路中に、特定の波長帯のみを透過する光学フィルタ(バンドパスフィルタ)を備えてもよい。
図25は、本発明の第21実施形態に係るガスセンサの構成例を示す概念図である。図25に示すように、このガスセンサは、第1基板41の第2主面412側にバンドパスフィルタ35を有し、第2基板41´の第2主面412´側にバンドパスフィルタ35´を有する。バンドパスフィルタ35は第2の光源20´から第1センサ部31に至る光路中に配置されている。また、バンドパスフィルタ35´は第1の光源20から第2センサ部31´に至る光路中に配置されている。バンドパスフィルタ35、35´は、例えば、互いに異なる波長を透過する光学フィルタである。
次に、本発明におけるガスセンサを用いた流体中にある特性物質の濃度演算方法の具体例について説明する。第1の光源20が発光したときの第1センサ部31が出力する信号をIp_REF_1、第2センサ部31´が出力する信号をIp_TRANSM_1とする。Ip_REF_1とIp_TRANSM_1は式(7)及び式(8)で示すことができる。また、第2の光源20´が発光したときの第2センサ部31´が出力する信号をIp_REF_2、第1センサ部31が出力する信号をIp_TRANSM_2とする。Ip_REF_2とIpTRANSM 2は式(9)及び式(10)で示すことができる。
Ip_TRASM_1=Ri2(T)×φ1(T)×β×(1-A(C))
・・・(8)
Ip_REF_2=Ri2(T)×φ2(T)×α ・・・(9)
Ip_TRASM_2=Ri1(T)×φ2(T)×β×(1-A(C))
・・・(10)
但し、
A ・・・ 被測定物質濃度による吸収率
C ・・・ 被測定物質の濃度
φ1 ・・・ 第1の光源の発光強度
φ2 ・・・ 第2の光源の発光強度
α ・・・ 第1の光源から第1センサ部への伝達率
β ・・・ 第1基板・第2基板からの光取り出し効率(若しくは、被検出物質の吸収が無い場合の、第1の光源から第2センサ部へ、第2の光源から第1センサ部への伝達率)
Ip_REF_1・・・第1の光源が発光するときの第1センサ部の出力信号
Ip_TRASM_1・・・第1の光源が発光するときの第2センサ部の出力信号
Ip_REF_2・・・第2の光源が発光するときの第2センサ部の出力信号
Ip_TRASM_2・・・第2の光源が発光するときの第1センサ部の出力信号
Ri1・・・ 第1センサ部の感度
Ri2・・・ 第2センサ部の感度
この交互駆動は制御回路部505からの制御信号によって、第1駆動部と第2駆動部が動作し、交互に第1駆動部と第2駆動部が発光する。
演算結果1=Ip_TRASM_1/Ip_REF_1
=(Ri2(T)×β×(1-A(C)))/(Ri1(T)×α)
・・・(11)
演算結果2=Ip_TRASM_2/IpREF_2
=(Ri1(T)×β×(1-A(C)))/(Ri2(T)×α)
・・・(12)
演算結果3=(演算結果1+演算結果2)/2 ・・・(13)
式(9)で示した演算結果を用いて、Lambert-Beerの法則より、(1-A(C))から被測定物質濃度Cを抽出することができる。
ここでは、α、βが波長に応じて変化しない、また温度によって変化しないことと仮定したが、仮に、変化したとしても、第1基板及び/又は第2基板、又はセルの温度を測定し、この測定結果を温度補償に利用してもよい。
式(7)~(13)から分かるように、発光部の光量は演算結果に表れないので、発光部が劣化しても、つまり、発光効率が変化しても、被検出物質の濃度演算結果は変わらない。本実施形態に係るガスセンサは、第1の光源20と第1センサ部31とが同一基板(第1基板41)上に形成されており、第1の光源20から放出された光にのみ基づいた信号を出力することが可能であるため、第1の光源20からの発光量を正確に測定することが可能である。第2の光源20´からの発光量に関しても同様である。発光部が多数の発光素子からなる場合は、各発光素子が発光する各々の光量の測定が可能になるように、発光部20の各発光素子と第1センサ部31の各受光素子の配置を適切に設計すればよい。
外乱の輻射及び回路オフセット揺らぎの周波数に対して、ON/OFFの切り替え周波数を十分高い値に設定することによりオフセットの除去効果はより著しくなる。具体的には外乱とオフセットの変動周波数帯が0~1kHzの場合、ON/OFFの切り替え周波数をその10倍(10kHz)程度にするとよい。一般的にはこのオフセットのパワースペクトルは周波数fに反比例し、言い換えれば1/fとなる(通称:ピンクノイズ、1/fノイズ)。そのため、ON/OFFの切り替え周波数を、1/fノイズの現れない周波数帯に設定するとよい。さらに、第7、第19実施形態では、第1復調器と第2復調器で信号の干渉がないように、十分な周波数の差Δfを設ける必要がある。また、ここで説明したON/OFFというような信号変調方式の他に、通信システムによく使われる振幅変調方式(AM:Amplitute Modulation)を用いてもよい。
また第1センサ部及び第2センサ部は、高速に動作することができる(高速光パルスに対して十分な応答性をもつ)ため量子型センサであることが好ましい。量子型センサは、センサの内部抵抗が温度によって変化するため、このセンサの内部抵抗値を読み取ることで、ガスセンサの内部の温度を正確に知ることができる。
本発明は、以上に記載した実施形態に限定されるものではない。当業者の知識に基づいて実施形態に設計の変更等を加えてもよく、また、本実施形態の一例である第1の態様、第2の態様、本実施形態の具体例である第1~第21実施形態を任意に組み合わせてもよく、そのような変更が加えられた各態様も本発明の範囲に含まれる。
また、本発明のガスセンサは、赤外線式のガスセンサに限定されるものではなく、例えば紫外線式のガスセンサであってもよい。この場合は、第1の光源、第2の光源が紫外線を放射し、この放射された紫外線の一部を第1センサ部が受光し、紫外線の他の一部を第2センサ部が受光する。
また、上記の技術を利用すれば、環境温度の影響を受けない、高精度の濃度測定装置が実現できる。濃度測定装置の用途の一例としては、ガスセンサが挙げられる。
<実施例>
本発明の実施例について、図10に示した第10実施形態に係るガスセンサを用いて説明する。第1基板41、第2基板42には半絶縁性のGaAs基板を利用し、第1の光源20には4.3μm付近の波長を発光できるPIN構造のLEDを、第1センサ部31、第2センサ部32には4.3μm付近の波長を検出できるPIN構造のフォトダイオードを利用した。
第1の光源(LED)20、第1センサ部31、第2センサ部32は全て同様の積層構造を持ち、厚み230μmのGaAs基板上に、厚み1μmのn型AlInSb、厚み2μmのi型のアクティブ層、i層よりバンドギャップの大きい厚み0.02μmのAlInSbのバリア層、厚み0.5μmのp型AlInSbをMBE(Molecular Beam Epitaxy)法を用いて基板上に成膜した。
第1の光源20に電源を供給する光源電源供給部101として、矩形波のパルスを出力するパルスジェネレーター(パルス発生部)を利用した。第1増幅部102には第1ロックインアンプを利用し、第2増幅部103には第2ロックインアンプを利用した。両方のロックインアンプの同期信号として、パルスジェネレーターのトリガー信号を利用した。この実験で利用した被検出ガスは二酸化炭素(CO2)とした。
このガスセンサを恒温槽内に設置し、恒温槽の温度を30℃及び40℃にそれぞれ設定し、ガスセル10内に濃度500ppm、1000ppm、2000ppm、3000ppm、5000ppmの二酸化炭素ガスを導入したときの、第2センサ部32の出力信号を(30℃、2000ppmの時を基準とする)を図26に示し、第1基板41上にある第1センサ部31の出力信号を図27に示す。
また、図28には二酸化炭素ガスの濃度を一定(1000ppm)にし、温度を0~60℃まで変化させた場合において、本実施形態の温度補償を適用した場合の出力信号(第2センサ部の出力信号/第1センサ部の出力信号)の変化率と、温度補償を適用しなかった場合の出力信号(第2センサ部の出力信号そのまま)の変化率(それぞれ温度0℃を基準)示す。
図26に示すように、第2センサ部32の出力信号は、二酸化炭素ガスの濃度を500~5000ppmまで変化させると、環境温度が30℃と40℃の場合のそれぞれにおいて、出力信号は約0.8%/1000ppm変化することが確認された。また、温度を10℃(30℃から40℃へ)変化させると、出力信号は10%/10℃も変化することが確認された。すなわち、環境温度が変化すると、本来検知したいガス濃度範囲における出力信号の変化(0.8%/1000ppm)よりはるかに大きい信号変化が生じてしまい、ガス濃度が正しく検知できないことが理解できる。
図28に示すように、温度補償しない場合であって温度を0~60℃変化させた場合は、約15%の信号変化が生じてしまう。これに対し、本実施形態の温度補償を適用した場合、すなわち第2センサ部32の信号を第1センサ部31の信号で除した信号を出力とする場合、温度による影響は1%以内に大幅に抑えられることが示される。以上から、本実施形態の構成により、大幅にガス測定精度が高められることが示された。
[測定実験]
次に、比較例について、図29(b)に示したガスセンサを用いて説明する。
図29(b)に示す様に、第1センサ部(参照用センサ)931と第2センサ部(検出用センサ)932を第1の光源に対向するように配置し、参照用センサ931には参照用のバンドパスフィルタ(中心波長3.9μm、半値幅0.2μmの波長帯を選択的に透過)f´1を設置し、検出用センサ932には検出用のバンドパスフィルタ(中心波長4.3μm、半値幅0.2μmの波長帯を選択的に透過)f´2を設置した以外は実施例と同様の構成とし、同様の測定を行った。
表1で示すように比較例ではメインセンサ信号(S2)とリファレンスセンサ信号(S1)の比のS/N比は3194に対して、本発明の実施例ではS1が100倍拡大されるため、S2/S1のS/N比は4380となり、1.4倍の改善が確認できる。
20 第1の光源
20´ 第2の光源
31 第1センサ部
31´、32 第2センサ部
40 基板(共通の基板)
41 第1基板
41´、42 第2基板
50 光遮断部
51 第1温度測定部
51´ 第2温度測定部
60 光反射部
70 制御層
101 光源電源供給部
102 第1増幅部
103 第2増幅部
104 ガス濃度演算部
105 温度測定部
106 駆動信号供給部
200 封止樹脂
201、311、321、201´、311´ 第1導電型の半導体層
202、312、322、202´、312´ 第2導電型の半導体層
203、204、313、314、323、324、203´、204´、313´、314´ 電極
411 第1主面
412 第2主面
501 受発光制御部
502 第1駆動部
502´ 第2駆動部
503 第1信号処理部
503´ 第2信号処理部
504 演算部
505 制御回路
512 駆動部
521、522 切り替えスイッチ
531 第1復調器
531´ 第2復調器
541 温度制御部
551 電流源
552 アンプ
553 コンデンサ
701 光反射層
910 ガスセル
920 第1の光源
930 赤外線センサ
931 参照用センサ
932 検出用センサ
Claims (21)
- 第1の光源と、
前記第1の光源から出力された光が入射するようにそれぞれ配置された第1センサ部および第2センサ部を備え、
第1主面と該第1主面と対向する第2主面とを有し、該第1主面上に前記第1の光源と前記第1センサ部とが設けられた第1基板と、
第1主面と該第1主面と対向する第2主面とを有し、該第1主面上に前記第2センサ部が設けられた第2基板と、をさらに備え、
前記第1センサ部の配置位置は、前記第1基板の第1主面であって、前記第1の光源から出力された光のうちの該第1基板の第2主面で反射した光が入射する位置に設定されているガスセンサ。 - 前記第1センサ部からの出力信号と前記第2センサ部からの出力信号とが入力される演算部をさらに備える請求項1に記載のガスセンサ。
- 前記第1センサ部と前記第2センサ部は、同一の温度特性を有する請求項1又は請求項2に記載のガスセンサ。
- 前記第1基板と前記第2基板とが互いに側面を対向させて隣り合って配置され、
前記第1基板と前記第2基板との間に設けられた光遮断部をさらに備える請求項1から請求項3の何れか一項に記載のガスセンサ。 - ガスセルをさらに備え、
前記ガスセル内の前記第1基板及び前記第2基板からそれぞれ離れた位置に配置され、前記第1基板の第2主面から出射した光を前記第2センサ部に向けて反射する光反射部をさらに備える請求項1から請求項4の何れか一項に記載のガスセンサ。 - 前記第1基板の第2主面上に設けられ、
前記第1の光源から出力される光のうち、前記第1基板内で散乱する光の光量と、前記第1基板の第2主面から前記ガスセル内の空間へ放射される光の光量及び放射角度とを制御する制御層をさらに備える請求項4又は請求項5に記載のガスセンサ。 - 前記第1基板の第2主面上に設けられ、前記第1の光源から出力された光を前記第1センサ部に向けて反射する光反射層をさらに備える請求項1から請求項6の何れか一項に記載のガスセンサ。
- 前記第1センサ部と前記第2センサ部及び前記第1の光源がそれぞれ、同一の材料で同一の積層構造からなる請求項1から請求項7の何れか一項に記載のガスセンサ。
- 前記積層構造は、少なくともP型半導体とN型半導体の2種類の層からなるダイオード構造であり、且つ、インジウム若しくはアンチモンの何れかの材料を含む請求項8に記載のガスセンサ。
- 前記第1基板の第2主面から出射した光が前記第2センサ部に入射するまでの光路中に配置され、特定の波長帯のみを透過する光学フィルタをさらに備える請求項1から請求項9の何れか一項に記載のガスセンサ。
- 前記第1センサ部と前記第2センサ部は同一の構造の複数の受光部を有し、
該受光部の数は前記第1センサ部と前記第2センサ部とで異なる請求項1から請求項10の何れか一項に記載のガスセンサ。 - 前記第1基板と前記第2基板は、同一の材料からなる請求項1から請求項11の何れか一項に記載のガスセンサ。
- 前記第2基板の第1主面上に設けられた、第2の光源をさらに備え、
前記第2センサ部は、前記第2の光源から出力された光のうち、前記第2基板の第2主面で反射した光が入射する位置に設定されている請求項1に記載のガスセンサ。 - 前記第1の光源及び前記第2の光源に電力を供給し、前記第1センサ部からの出力信号及び前記第2センサ部からの出力信号が入力される受発光制御部をさらに備える請求項13に記載のガスセンサ。
- 前記受発光制御部は、前記第1の光源及び前記第2の光源の一方の発光部に電力を供給している間は、他方の発光部に電力を供給しない請求項14に記載のガスセンサ。
- 前記受発光制御部は、前記第1の光源及び前記第2の光源に同じ大きさの電力を供給する請求項14又は請求項15に記載のガスセンサ。
- 前記受発光制御部は、
前記第1センサ部と前記第2センサ部とが同じ温度となるように、前記第1の光源に供給する電力及び前記第2の光源に供給する電力を制御する請求項14又は請求項15に記載のガスセンサ。 - 前記受発光制御部は、前記第1センサ部の温度を測定する第1温度測定部と、
前記第2センサ部の温度を測定する第2温度測定部と、を有する請求項17に記載のガスセンサ。 - 前記受発光制御部は、
前記第1センサ部の抵抗値に基づいて該第1センサ部の温度を算出し、
前記第2センサ部の抵抗値に基づいて該第2センサ部の温度を算出する請求項17又は請求項18に記載のガスセンサ。 - 前記受発光制御部は、
前記第1の光源及び前記第2の光源に供給される電力の電流又は電圧について、パルスの幅、振幅、及びデューティ比からなる群より選択される少なくとも一つを制御する請求項17から請求項19の何れか一項に記載のガスセンサ。 - 前記受発光制御部は、
前記第1の光源を周波数F1で駆動し、前記第2の光源を周波数F2(F1≠F2)で駆動する請求項17から請求項20の何れか一項に記載のガスセンサ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480053335.8A CN105593666B (zh) | 2013-09-27 | 2014-09-26 | 气体传感器 |
EP14847800.1A EP3051274B1 (en) | 2013-09-27 | 2014-09-26 | Gas sensor |
JP2015538916A JP6010702B2 (ja) | 2013-09-27 | 2014-09-26 | ガスセンサ |
US15/022,976 US10082464B2 (en) | 2013-09-27 | 2014-09-26 | Gas sensor |
US16/059,278 US10551314B2 (en) | 2013-09-27 | 2018-08-09 | Gas sensor |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-202031 | 2013-09-27 | ||
JP2013202031 | 2013-09-27 | ||
JP2014014700 | 2014-01-29 | ||
JP2014-014700 | 2014-01-29 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/022,976 A-371-Of-International US10082464B2 (en) | 2013-09-27 | 2014-09-26 | Gas sensor |
US16/059,278 Continuation US10551314B2 (en) | 2013-09-27 | 2018-08-09 | Gas sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015045411A1 true WO2015045411A1 (ja) | 2015-04-02 |
Family
ID=52742579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/004955 WO2015045411A1 (ja) | 2013-09-27 | 2014-09-26 | ガスセンサ |
Country Status (5)
Country | Link |
---|---|
US (2) | US10082464B2 (ja) |
EP (1) | EP3051274B1 (ja) |
JP (1) | JP6010702B2 (ja) |
CN (1) | CN105593666B (ja) |
WO (1) | WO2015045411A1 (ja) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017015679A (ja) * | 2015-06-30 | 2017-01-19 | 旭化成エレクトロニクス株式会社 | ガス濃度測定装置 |
JP2017015516A (ja) * | 2015-06-30 | 2017-01-19 | 旭化成エレクトロニクス株式会社 | ガスセンサ |
JP2017015508A (ja) * | 2015-06-30 | 2017-01-19 | 旭化成エレクトロニクス株式会社 | ガス濃度測定装置 |
JP2017020901A (ja) * | 2015-07-10 | 2017-01-26 | 旭化成エレクトロニクス株式会社 | ガスセンサ |
WO2017029792A1 (ja) * | 2015-08-18 | 2017-02-23 | 国立大学法人徳島大学 | 濃度測定装置 |
JP2017044646A (ja) * | 2015-08-28 | 2017-03-02 | 旭化成エレクトロニクス株式会社 | 受発光装置 |
JP2017183632A (ja) * | 2016-03-31 | 2017-10-05 | 旭化成エレクトロニクス株式会社 | 赤外線受光素子とその製造方法、ガスセンサ |
JP2017183633A (ja) * | 2016-03-31 | 2017-10-05 | 旭化成エレクトロニクス株式会社 | 赤外線受光素子とその製造方法、ガスセンサ |
JP2017228607A (ja) * | 2016-06-21 | 2017-12-28 | 旭化成エレクトロニクス株式会社 | 赤外線受光素子及びそれを備えるガスセンサ |
US10101291B2 (en) | 2016-03-11 | 2018-10-16 | Winbond Electronics Corp. | Mobile device having gas-sensing function |
JP2019174354A (ja) * | 2018-03-29 | 2019-10-10 | 旭化成エレクトロニクス株式会社 | 受発光装置及び光学式濃度測定装置 |
US10638581B2 (en) | 2016-06-24 | 2020-04-28 | Asahi Kasei Microdevices Corporation | Light-emitting/receiving device and light-detecting method |
WO2020225977A1 (ja) * | 2019-05-07 | 2020-11-12 | フィガロ技研株式会社 | 非分散型赤外線ガス検出装置 |
CN112649371A (zh) * | 2019-10-11 | 2021-04-13 | 天马日本株式会社 | 磁光测量设备 |
WO2021193592A1 (ja) * | 2020-03-27 | 2021-09-30 | 東京エレクトロン株式会社 | ガス濃度測定装置及び処理システム |
JP2022003321A (ja) * | 2020-06-23 | 2022-01-11 | 新光電気工業株式会社 | センサモジュール |
US11835451B2 (en) | 2021-03-25 | 2023-12-05 | Asahi Kasei Microdevices Corporation | Gas sensor |
JP7553297B2 (ja) | 2019-09-30 | 2024-09-18 | 旭化成エレクトロニクス株式会社 | 光学式濃度測定装置 |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10212776B2 (en) | 2016-12-28 | 2019-02-19 | Asahi Kasei Microdevices Corporation | Light receiving device and light emitting and receiving device |
US10895529B2 (en) * | 2017-01-26 | 2021-01-19 | Nec Corporation | Detecting system and detecting method |
FR3063543B1 (fr) * | 2017-03-03 | 2022-01-28 | Commissariat Energie Atomique | Procede de calibration d'un nez electronique. |
EP3372988B1 (de) * | 2017-03-10 | 2022-10-12 | Sensatronic GmbH | Verfahren und vorrichtung zum messen einer stoffkonzentration in einem gasförmigen medium mittels absorptionsspektroskopie |
IT201700035910A1 (it) * | 2017-03-31 | 2018-10-01 | St Microelectronics Srl | Dispositivo optoelettronico per la rilevazione selettiva di composti organici volatili e relativo procedimento di fabbricazione |
DE102018101766A1 (de) * | 2018-01-26 | 2019-08-01 | HELLA GmbH & Co. KGaA | Verfahren zur Überwachung mindestens einer Infrarotstrahlungsquelle und Vorrichtung zur Überwachung des Alterungszustandes einer Infrarotstrahlungsquelle |
CN108444935B (zh) * | 2018-03-21 | 2023-10-10 | 南京信息工程大学 | 一种非分光红外气体传感器的温度补偿方法及补偿装置 |
EP3581898B1 (de) | 2018-06-13 | 2020-07-29 | E+E Elektronik Ges.M.B.H. | Elektronische anordnung, optischer gassensor umfassend eine solche elektronische anordnung und verfahren zur kombinierten fotostrom- und temperaturmessung mittels einer solchen elektronischen anordnung |
US11079321B2 (en) | 2018-09-28 | 2021-08-03 | Stmicroelectronics S.R.L. | NDIR detector device for detecting gases having an infrared absorption spectrum |
US11073467B2 (en) | 2018-09-28 | 2021-07-27 | Stmicroelectronics S.R.L. | Miniaturized optical particle detector |
CN110927081B (zh) * | 2019-11-06 | 2022-05-10 | 华为技术有限公司 | 一种气体浓度检测装置、电子设备及方法 |
DE102020101218A1 (de) * | 2020-01-20 | 2021-07-22 | UMS - Umwelt-, Membran- und Sensortechnik GmbH & Co. KG | Gassensor mit sporadisch betriebener Referenzlichtquelle |
US11740179B2 (en) * | 2020-02-07 | 2023-08-29 | Lumileds Llc | Gas sensing system having quadric reflective surface |
JP2021148784A (ja) * | 2020-03-16 | 2021-09-27 | 旭化成エレクトロニクス株式会社 | ガスセンサモジュール |
US11480519B2 (en) * | 2020-04-24 | 2022-10-25 | Honeywell International Inc. | Methods, apparatuses, and systems for improving gas detecting devices |
US20230349852A1 (en) * | 2020-08-31 | 2023-11-02 | N5 Sensors, Inc. | Controller for optically-activated gas sensors |
US11747273B2 (en) | 2020-09-28 | 2023-09-05 | Asahi Kasei Microdevices Corporation | Gas sensor |
SE544494C2 (en) | 2020-10-21 | 2022-06-21 | Senseair Ab | Temperature controller for a temperature control mechanism |
CN114486790B (zh) * | 2020-10-28 | 2023-10-20 | 旭化成微电子株式会社 | 气体检测装置 |
DE102021128460A1 (de) * | 2020-11-12 | 2022-05-12 | Dräger Safety AG & Co. KGaA | Vorrichtung und Verfahren zum Detektieren eines Gases, insbesondere eines Kohlenwasserstoffs |
SE544539C2 (en) * | 2020-11-18 | 2022-07-05 | Senseair Ab | Method and device for determining a concentration of a component in a fluid |
US20230341317A1 (en) * | 2022-04-26 | 2023-10-26 | Advanced Semiconductor Engineering, Inc. | Sensing package, optical module and method for detecting light |
WO2023220039A1 (en) * | 2022-05-09 | 2023-11-16 | Matrix Sensors, Inc. | Gas sensor with drift compensation |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0572130A (ja) * | 1991-09-18 | 1993-03-23 | Shimadzu Corp | 2成分ガスアナライザー |
JPH08247889A (ja) * | 1995-03-15 | 1996-09-27 | Anritsu Corp | ガス濃度測定装置 |
JP2001503865A (ja) | 1996-11-01 | 2001-03-21 | アンドロス インコーポレイテッド | 新規な多重ガスndir分析器 |
US6331704B1 (en) * | 1998-01-20 | 2001-12-18 | Vickers, Incorporated | Hydraulic fluid contamination monitor |
WO2007080398A1 (en) | 2006-01-10 | 2007-07-19 | Gas Sensing Solutions Limited | Differentiating gas sensor |
JP2008509381A (ja) * | 2004-08-06 | 2008-03-27 | バルテック ゲーエムベーハー | 測定ガスの露点温度測定装置 |
JP2008157809A (ja) * | 2006-12-25 | 2008-07-10 | Sanyo Electric Co Ltd | レーザ出力制御装置および光学測定ユニット |
JP2008309583A (ja) * | 2007-06-13 | 2008-12-25 | Anritsu Corp | 波長安定化装置及び方法 |
JP2009257919A (ja) * | 2008-04-16 | 2009-11-05 | Panasonic Corp | 固体撮像装置、撮像システム及び検知装置 |
JP2010522868A (ja) * | 2007-03-12 | 2010-07-08 | ラディオメーター・バーゼル・アクチェンゲゼルシャフト | センサシステム及びセンサシステムに用いるためのサンプリングセル組立体 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5848481A (ja) | 1981-09-17 | 1983-03-22 | Nec Corp | モニタ−用光検出器内蔵面発光型発光ダイオ−ド |
US5942755A (en) | 1997-02-19 | 1999-08-24 | Dragerwerk Ag | Infrared optical gas-measuring system |
FR2871583A1 (fr) | 2004-06-14 | 2005-12-16 | Commissariat Energie Atomique | Dispositif de prelevement d'une partie d'un faisceau lumineux issu d'un composant electronique emetteur de lumiere |
US20060263256A1 (en) | 2005-05-17 | 2006-11-23 | Nitrex Metal Inc. | Apparatus and method for controlling atmospheres in heat treating of metals |
CN102057495B (zh) | 2008-06-04 | 2013-10-09 | 旭化成微电子株式会社 | 量子型红外线传感器以及使用该量子型红外线传感器的量子型红外线气体浓度仪 |
CN201222035Y (zh) * | 2008-06-18 | 2009-04-15 | 上海安誉智能科技有限公司 | 红外气体探测传感器 |
CN102954947A (zh) * | 2012-11-05 | 2013-03-06 | 煤炭科学研究总院 | 一种双光源四探测器红外气体传感器 |
CN203069508U (zh) | 2013-01-31 | 2013-07-17 | 广东卓耐普智能技术股份有限公司 | 一种红外气体传感器 |
-
2014
- 2014-09-26 WO PCT/JP2014/004955 patent/WO2015045411A1/ja active Application Filing
- 2014-09-26 JP JP2015538916A patent/JP6010702B2/ja active Active
- 2014-09-26 US US15/022,976 patent/US10082464B2/en active Active
- 2014-09-26 CN CN201480053335.8A patent/CN105593666B/zh active Active
- 2014-09-26 EP EP14847800.1A patent/EP3051274B1/en active Active
-
2018
- 2018-08-09 US US16/059,278 patent/US10551314B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0572130A (ja) * | 1991-09-18 | 1993-03-23 | Shimadzu Corp | 2成分ガスアナライザー |
JPH08247889A (ja) * | 1995-03-15 | 1996-09-27 | Anritsu Corp | ガス濃度測定装置 |
JP2001503865A (ja) | 1996-11-01 | 2001-03-21 | アンドロス インコーポレイテッド | 新規な多重ガスndir分析器 |
US6331704B1 (en) * | 1998-01-20 | 2001-12-18 | Vickers, Incorporated | Hydraulic fluid contamination monitor |
JP2008509381A (ja) * | 2004-08-06 | 2008-03-27 | バルテック ゲーエムベーハー | 測定ガスの露点温度測定装置 |
WO2007080398A1 (en) | 2006-01-10 | 2007-07-19 | Gas Sensing Solutions Limited | Differentiating gas sensor |
JP2008157809A (ja) * | 2006-12-25 | 2008-07-10 | Sanyo Electric Co Ltd | レーザ出力制御装置および光学測定ユニット |
JP2010522868A (ja) * | 2007-03-12 | 2010-07-08 | ラディオメーター・バーゼル・アクチェンゲゼルシャフト | センサシステム及びセンサシステムに用いるためのサンプリングセル組立体 |
JP2008309583A (ja) * | 2007-06-13 | 2008-12-25 | Anritsu Corp | 波長安定化装置及び方法 |
JP2009257919A (ja) * | 2008-04-16 | 2009-11-05 | Panasonic Corp | 固体撮像装置、撮像システム及び検知装置 |
Non-Patent Citations (3)
Title |
---|
AIDARALIEV M ET AL.: "Lattice-Matched GaInPAsSb/InAs Structures for Devices of Infrared Optoelectronics", SEMICONDUCTORS, vol. 36, no. 8, 2002, pages 944 - 949, XP055329341 * |
CROWDER J G ET AL.: "Minimally cooled InSb/lnAlSb LED and photodiode devices applied to nitrogen dioxide detection at ppm levels", ELECTRONICS LETTERS, vol. 36, no. 22, 26 October 2000 (2000-10-26), pages 1867 - 1869, XP006015853 * |
See also references of EP3051274A4 |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017015679A (ja) * | 2015-06-30 | 2017-01-19 | 旭化成エレクトロニクス株式会社 | ガス濃度測定装置 |
JP2017015516A (ja) * | 2015-06-30 | 2017-01-19 | 旭化成エレクトロニクス株式会社 | ガスセンサ |
JP2017015508A (ja) * | 2015-06-30 | 2017-01-19 | 旭化成エレクトロニクス株式会社 | ガス濃度測定装置 |
JP2017020901A (ja) * | 2015-07-10 | 2017-01-26 | 旭化成エレクトロニクス株式会社 | ガスセンサ |
KR20170134742A (ko) * | 2015-08-18 | 2017-12-06 | 토쿠시마 대학 | 농도 측정 장치 |
US10976240B2 (en) | 2015-08-18 | 2021-04-13 | Tokushima University | Concentration measurement device |
CN107923841A (zh) * | 2015-08-18 | 2018-04-17 | 国立大学法人德岛大学 | 浓度测定装置 |
JPWO2017029792A1 (ja) * | 2015-08-18 | 2018-05-31 | 国立大学法人徳島大学 | 濃度測定装置 |
TWI644092B (zh) * | 2015-08-18 | 2018-12-11 | Tokushima University | Concentration measuring device |
WO2017029792A1 (ja) * | 2015-08-18 | 2017-02-23 | 国立大学法人徳島大学 | 濃度測定装置 |
KR102082172B1 (ko) * | 2015-08-18 | 2020-02-27 | 가부시키가이샤 후지킨 | 농도 측정 장치 |
JP2017044646A (ja) * | 2015-08-28 | 2017-03-02 | 旭化成エレクトロニクス株式会社 | 受発光装置 |
US10101291B2 (en) | 2016-03-11 | 2018-10-16 | Winbond Electronics Corp. | Mobile device having gas-sensing function |
JP2017183632A (ja) * | 2016-03-31 | 2017-10-05 | 旭化成エレクトロニクス株式会社 | 赤外線受光素子とその製造方法、ガスセンサ |
JP2017183633A (ja) * | 2016-03-31 | 2017-10-05 | 旭化成エレクトロニクス株式会社 | 赤外線受光素子とその製造方法、ガスセンサ |
JP2017228607A (ja) * | 2016-06-21 | 2017-12-28 | 旭化成エレクトロニクス株式会社 | 赤外線受光素子及びそれを備えるガスセンサ |
US10638581B2 (en) | 2016-06-24 | 2020-04-28 | Asahi Kasei Microdevices Corporation | Light-emitting/receiving device and light-detecting method |
JP2019174354A (ja) * | 2018-03-29 | 2019-10-10 | 旭化成エレクトロニクス株式会社 | 受発光装置及び光学式濃度測定装置 |
JP7123599B2 (ja) | 2018-03-29 | 2022-08-23 | 旭化成エレクトロニクス株式会社 | 受発光装置及び光学式濃度測定装置 |
WO2020225977A1 (ja) * | 2019-05-07 | 2020-11-12 | フィガロ技研株式会社 | 非分散型赤外線ガス検出装置 |
JP7553297B2 (ja) | 2019-09-30 | 2024-09-18 | 旭化成エレクトロニクス株式会社 | 光学式濃度測定装置 |
CN112649371A (zh) * | 2019-10-11 | 2021-04-13 | 天马日本株式会社 | 磁光测量设备 |
JP2021063680A (ja) * | 2019-10-11 | 2021-04-22 | Tianma Japan株式会社 | 磁気光学式計測装置 |
JP7403272B2 (ja) | 2019-10-11 | 2023-12-22 | Tianma Japan株式会社 | 磁気光学式計測装置 |
WO2021193592A1 (ja) * | 2020-03-27 | 2021-09-30 | 東京エレクトロン株式会社 | ガス濃度測定装置及び処理システム |
JP2022003321A (ja) * | 2020-06-23 | 2022-01-11 | 新光電気工業株式会社 | センサモジュール |
JP7379283B2 (ja) | 2020-06-23 | 2023-11-14 | 新光電気工業株式会社 | センサモジュール |
US11835451B2 (en) | 2021-03-25 | 2023-12-05 | Asahi Kasei Microdevices Corporation | Gas sensor |
Also Published As
Publication number | Publication date |
---|---|
US10551314B2 (en) | 2020-02-04 |
EP3051274A1 (en) | 2016-08-03 |
CN105593666A (zh) | 2016-05-18 |
JPWO2015045411A1 (ja) | 2017-03-09 |
US20190072489A1 (en) | 2019-03-07 |
EP3051274B1 (en) | 2018-10-31 |
CN105593666B (zh) | 2018-09-14 |
US20160231244A1 (en) | 2016-08-11 |
EP3051274A4 (en) | 2017-05-17 |
JP6010702B2 (ja) | 2016-10-19 |
US10082464B2 (en) | 2018-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6010702B2 (ja) | ガスセンサ | |
JP5266321B2 (ja) | 量子型赤外線センサおよびそれを用いた量子型赤外線ガス濃度計 | |
KR101311322B1 (ko) | 적외선식 가스 검지기 및 적외선식 가스 계측 장치 | |
US9035256B2 (en) | Gas sensor with radiation guide | |
JP6626281B2 (ja) | ガスセンサ | |
JP6410679B2 (ja) | ガスセンサ | |
JP6208513B2 (ja) | 受発光装置 | |
JP5636557B2 (ja) | 赤外線センサの製造方法及び赤外線センサ並びに量子型赤外線ガス濃度計 | |
Alexandrov et al. | Portable optoelectronic gas sensors operating in the mid-IR spectral range (lambda= 3 5 um) | |
JP6294150B2 (ja) | 受発光装置 | |
JP2014142319A (ja) | 赤外線応用装置 | |
JP2014179427A (ja) | 赤外線発光素子及びガスセンサ | |
US9816920B2 (en) | Method for producing an integrated micromechanical fluid sensor component, integrated micromechanical fluid sensor component and method for detecting a fluid by means of an integrated micromechanical fluid sensor component | |
RU2753854C1 (ru) | Датчик химического состава вещества | |
JP6533719B2 (ja) | 受発光装置 | |
RU2727560C1 (ru) | Монолитный датчик химического состава вещества | |
US20230051794A1 (en) | Photodiode for wearable devices | |
JP2019219300A (ja) | 成分検出回路、成分検出システム | |
Alexandrov et al. | Parameters of optoelectronic devices based on semiconductor light-emitting and light-sensitive diodes under thermostabilization conditions | |
JPH06221933A (ja) | 光学式温度測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14847800 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015538916 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014847800 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014847800 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15022976 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |