WO2015045009A1 - 非水電解質電池及び電池パック - Google Patents

非水電解質電池及び電池パック Download PDF

Info

Publication number
WO2015045009A1
WO2015045009A1 PCT/JP2013/075742 JP2013075742W WO2015045009A1 WO 2015045009 A1 WO2015045009 A1 WO 2015045009A1 JP 2013075742 W JP2013075742 W JP 2013075742W WO 2015045009 A1 WO2015045009 A1 WO 2015045009A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
lithium
active material
electrode active
Prior art date
Application number
PCT/JP2013/075742
Other languages
English (en)
French (fr)
Inventor
圭吾 保科
哲也 笹川
充 石橋
義之 五十崎
高見 則雄
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2013/075742 priority Critical patent/WO2015045009A1/ja
Priority to JP2015538662A priority patent/JP6113852B2/ja
Publication of WO2015045009A1 publication Critical patent/WO2015045009A1/ja
Priority to US15/066,145 priority patent/US10305106B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Embodiments of the present invention relate to a nonaqueous electrolyte battery and a battery pack.
  • Non-aqueous electrolyte batteries that are charged and discharged by moving lithium ions between a negative electrode and a positive electrode are actively researched as high energy density batteries.
  • This non-aqueous electrolyte battery is expected to be used as a medium- and large-sized power supply in addition to being used as a power supply for small electronic devices. In such medium and large-sized applications, life characteristics and high safety are required.
  • a lithium transition metal composite oxide As a positive electrode active material of a nonaqueous electrolyte battery, for example, a lithium transition metal composite oxide is used. Co, Mn, Ni or the like is used as the transition metal.
  • olivine compounds such as spinel type lithium manganate, olivine type lithium iron phosphate, and olivine type lithium manganese phosphate as active cathode materials that are inexpensive and highly safe has been actively conducted.
  • the olivine type compound has low electron conductivity, and it was difficult to obtain good charge / discharge characteristics. Among them, it was difficult to obtain lithium manganese phosphate having good charge / discharge characteristics.
  • carbon coatings for improving electron conductivity are known. Further, it is known that increasing the carbon coating amount on the olivine type compound improves electron conductivity and improves charge / discharge characteristics. It was also found that lithium manganese phosphate progresses as the potential drops at the end of discharge.
  • the problem to be solved by the present invention is to provide a non-aqueous electrolyte battery that can exhibit high energy density and excellent life characteristics, and a battery pack including the non-aqueous electrolyte battery.
  • a nonaqueous electrolyte battery includes a negative electrode, a positive electrode, and a nonaqueous electrolyte.
  • the negative electrode includes a negative electrode active material having a lithium storage / release potential of 0.8 V (vs. Li / Li + ) or higher.
  • the positive electrode in LiMn 1-xy Fe x A y PO 4 (wherein a 0 ⁇ x ⁇ 0.3 and 0 ⁇ y ⁇ 0.1, A is Mg, Ca, Al, Ti, and Zn, and Zr comprising comprising a positive electrode active material represented by at least one selected from the group), and a material capable of occluding lithium 3.3V (vs. Li / Li + ) potential below.
  • a battery pack is provided.
  • This battery pack includes the nonaqueous electrolyte battery according to the first embodiment.
  • FIG. 2 It is a cross-sectional schematic diagram of an example flat type nonaqueous electrolyte battery according to the first embodiment. It is an expanded sectional view of the A section of FIG. It is a partial notch perspective view which shows typically the flat type nonaqueous electrolyte battery of the other example which concerns on 1st Embodiment. It is an expanded sectional view of the B section of FIG. It is an exploded perspective view of an example battery pack concerning a 2nd embodiment. It is a block diagram which shows the electric circuit of the battery pack shown in FIG. 2 is a discharge curve related to Example 1. 6 is a discharge curve related to Comparative Example 1.
  • a nonaqueous electrolyte battery includes a negative electrode, a positive electrode, and a nonaqueous electrolyte.
  • the negative electrode includes a negative electrode active material a lithium absorbing and releasing potential is 0.8V (vs. Li / Li + ) or more.
  • the positive electrode in LiMn 1-xy Fe x A y PO 4 (wherein a 0 ⁇ x ⁇ 0.3 and 0 ⁇ y ⁇ 0.1, A is Mg, Ca, Al, Ti, and Zn, and Zr
  • a positive electrode active material selected from the group consisting of a positive electrode active material and a material capable of occluding lithium at a potential of 3.3 V (vs. Li / Li + ) or lower.
  • a potential of 3.3 V vs. Li / Li +
  • the nonaqueous electrolyte battery according to the first embodiment can prevent the potential of the positive electrode from abruptly decreasing at the end of discharge, it can prevent deterioration of the positive electrode when charging and discharging are repeated.
  • the nonaqueous electrolyte battery according to the embodiment is excellent in output characteristics in a low charge state, even when discharging with a large current in a low charge state, the potential drop of the positive electrode can be mitigated, As a result, deterioration of the positive electrode can be prevented. Thanks to these, the nonaqueous electrolyte battery according to the first embodiment can exhibit excellent life characteristics.
  • the energy density of the positive electrode can be improved.
  • the first embodiment it is possible to provide a nonaqueous electrolyte battery that can exhibit high energy density and excellent life characteristics.
  • the negative electrode active material at least the negative electrode active material having a lithium storage / release potential of 0.8 V (vs. Li / Li + ) or more as described above is used.
  • Lithium storage and release potential 0.8V With negative electrode active material which is (vs. Li / Li +) or more, difficult to lower the positive electrode potential is, 0.8V (vs. Li / Li +) at lower potential than the The reductive decomposition of the nonaqueous electrolyte is likely to occur, and the charge / discharge efficiency of the negative electrode is lowered.
  • a negative electrode active material having a lithium storage / release potential of 2.0 V (vs. Li / Li + ) or less.
  • titanium composite oxide is preferable.
  • the titanium composite oxide include spinel lithium titanate, monoclinic ⁇ -type titanium composite oxide, anatase-type titanium composite oxide and ramsdelide-type lithium titanate, TiNb 2 O 7 and Ti 2 Nb 2 O 9.
  • titanium-containing oxides include spinel-structured lithium titanate.
  • the negative electrode active material having a lithium storage / release potential of 0.8 V (vs. Li / Li + ) or more include niobium composite oxides such as Nb 2 O 5 and Nb 12 O 29 .
  • the negative electrode active material can include one or more negative electrode active materials having a lithium storage / release potential of 0.8 V (vs. Li / Li + ) or higher.
  • the positive electrode active material represented by LiMn 1-xy Fe x A y PO 4 it is preferably a cathode active material including to example Mg and the metal element A.
  • the positive electrode may also include a plurality of kinds of positive electrode active material represented by LiMn 1-xy Fe x A y PO 4.
  • the positive electrode may also include LiMn 1-xy Fe x A y PO 4 in a further non-electrode active material represented positive electrode active material one or more.
  • Examples of the substance that can occlude lithium at a potential of 3.3 V (vs. Li / Li + ) or less included in the positive electrode include various oxides, fluorides, sulfides, and polymer compounds. A substance that does not contain lithium at the time of inclusion in the positive electrode is preferable. A substance that can occlude lithium at a potential of 2.8 V or higher is more preferable.
  • Examples of the oxide include vanadium oxides such as V 6 O 13 and V 2 O 5 , manganese oxides such as MnO 2, and molybdenum oxides such as MoO 3 .
  • Other examples include complex oxides such as Cu 2 V 2 O 7 , Fe 2 (MoO 4 ) 3 , and Fe 2 (WO 4 ) 3 .
  • Examples of the fluoride include iron fluoride such as FeF 3 .
  • Examples of the sulfide include titanium sulfide such as TiS 2 .
  • the ratio of the weight of the positive electrode active material to the weight of the substance capable of occluding lithium at a potential of 3.3 V (vs. Li / Li + ) or less is preferably 10 or more and 100 or less. Within this range, it is possible to further prevent the potential of the positive electrode from rapidly decreasing at the end of discharge while preventing the energy density from decreasing.
  • the ratio of the weight of the positive electrode active material in the positive electrode to the weight of the substance capable of occluding lithium at a potential of 3.3 V (vs. Li / Li + ) or less is more preferably 10 or more and 40 or less.
  • the positive electrode contains a substance capable of occluding lithium at a potential of 3.3 V (vs. Li / Li + ) or less is that the non-aqueous electrolyte battery is disassembled, the positive electrode is taken out, and single electrode evaluation is performed. Can be confirmed. The confirmation method will be described below.
  • the discharged nonaqueous electrolyte battery is disassembled and the positive electrode is taken out.
  • the taken out positive electrode is washed with a chain carbonate such as ethyl methyl carbonate.
  • a tripolar cell using lithium metal as a reference electrode and a counter electrode is produced.
  • the three-electrode cell was charged to 4.25V (vs. Li / Li + ), then 2V (vs. Li / Li + ) until to discharge, examine the potential to lithium metal between the working electrode.
  • the charge / discharge rate is a current value of 0.2 C or less.
  • a substance capable of occluding lithium at a potential of 3.3 V (vs. Li / Li +) or less can be identified by X-ray diffraction (XRD) measurement when the crystallinity of the substance is high. .
  • XRD X-ray diffraction
  • the nonaqueous electrolyte battery is discharged and disassembled in a glove box in an argon atmosphere, and the electrode is taken out.
  • the electrode is washed with a chain carbonate such as ethyl methyl carbonate. After washing and drying, take it out from the glove box and stick it on the glass sample plate.
  • a double-sided tape or the like is used, and it is noted that the electrode does not peel off or floats.
  • the electrode may be cut to an appropriate size for attaching to the glass sample plate. Further, a Si standard sample may be added on the electrode in order to correct the peak position.
  • the glass plate with the electrodes attached is placed in a powder X-ray diffractometer, and a diffraction pattern is obtained using Cu-K ⁇ rays.
  • a diffraction pattern LiMn 1-xy Fe x A y PO 4 from (equation a 0 ⁇ x ⁇ 0.3 and 0 ⁇ y ⁇ 0.1, A is, Mg, Ca, Al, Ti, Zn And a substance capable of occluding lithium at a potential of 3.3 V (vs. Li / Li +) or less from a peak other than the peak caused by a peak other than the peak caused by (at least one selected from the group consisting of Zr and Zr) .
  • the nonaqueous electrolyte battery according to the first embodiment includes a negative electrode, a nonaqueous electrolyte, and a positive electrode.
  • the nonaqueous electrolyte battery according to the first embodiment can further include a separator, an exterior material, a positive electrode terminal, and a negative electrode terminal.
  • the negative electrode and the positive electrode can constitute an electrode group with a separator interposed therebetween.
  • the nonaqueous electrolyte can be held on the electrode group.
  • the exterior material can accommodate the electrode group and the nonaqueous electrolyte.
  • the positive electrode terminal can be electrically connected to the positive electrode.
  • the negative electrode terminal can be electrically connected to the negative electrode.
  • the negative electrode can include a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material described above can be included in the negative electrode active material layer.
  • the negative electrode active material layer can further include a conductive agent and a binder.
  • the negative electrode active material layer can be formed on one side or both sides of the negative electrode current collector.
  • the negative electrode current collector is one that is electrochemically stable in a potential range nobler than 0.8 V (vs. Li / Li + ), such as an aluminum foil or Mg, Ti, Zn, Mn, Fe, It is preferably formed from an aluminum alloy foil containing elements such as Cu and Si.
  • the conductive agent can improve the current collecting performance and suppress the contact resistance between the negative electrode active material and the current collector.
  • the conductive agent include carbonaceous materials such as acetylene black, carbon black, graphite, carbon nanofiber, and carbon nanotube. These carbonaceous materials may be used alone or a plurality of carbonaceous materials may be used.
  • the binder can bind the active material and the conductive agent to the current collector.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and fluorine rubber, acrylic resin, cellulose such as carboxymethyl cellulose, and the like.
  • the compounding ratio of the negative electrode active material, the conductive agent and the binder is such that the negative electrode active material is 70% by mass to 96% by mass, the conductive agent is 2% by mass to 28% by mass, and the binder is 2% by mass to 28% by mass. % Or less is preferable. If the conductive agent is less than 2% by mass, the current collection performance of the negative electrode active material layer may be reduced, and the large current characteristics of the nonaqueous electrolyte battery may be reduced. On the other hand, if the binder is less than 2% by mass, the binding property between the negative electrode active material layer and the negative electrode current collector is lowered, and the cycle characteristics may be lowered. On the other hand, from the viewpoint of increasing the capacity, the conductive agent and the binder are each preferably 28% by mass or less.
  • the negative electrode can be produced, for example, by the following method. First, a negative electrode active material, a conductive agent, and a binder are suspended in a solvent to prepare a slurry. This slurry is applied to one or both sides of the negative electrode current collector and dried to form a negative electrode active material layer. Then press. Alternatively, the negative electrode active material, the conductive agent, and the binder can be formed in a pellet shape and used as the negative electrode active material layer.
  • the positive electrode can include a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material described above and a material capable of occluding lithium at a potential of 3.3 V (vs. Li / Li + ) or less can be included in the positive electrode layer.
  • the positive electrode active material layer can further include a further positive electrode active material, a conductive agent, and a binder.
  • the positive electrode active material layer may be formed on one side or both sides of the positive electrode current collector.
  • the positive electrode current collector is preferably an aluminum foil or an aluminum alloy foil containing one or more elements selected from Mg, Ti, Zn, Mn, Fe, Cu, and Si.
  • Examples of further positive electrode active materials that can be included in the positive electrode include various lithium-containing oxides.
  • lithium-containing oxides examples include lithium manganese composite oxide (eg, LixMn 2 O 4 or Li x MnO 2 ), lithium nickel composite oxide (eg, Li x NiO 2 ), lithium cobalt composite oxide (eg, Li x CoO 2), lithium nickel cobalt composite oxide (e.g., LiNi 1-y Co y O 2), lithium manganese cobalt composite oxide (e.g., Li x Mn y Co 1- y O 2), lithium nickel-cobalt-manganese composite oxides (for example, LiNi 1-yz Co y Mn z O 2), lithium nickel cobalt aluminum composite oxide (e.g., LiNi 1-yz Co y Al z O 2), lithium manganese nickel complex oxide having a spinel structure (e.g., Li x Mn 2-y Ni y O 4) are included. In the above, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and 0 ⁇ z ⁇ 1 are preferable.
  • lithium manganese composite oxide Li x Mn 2 O 4
  • lithium cobalt composite oxide Li x CoO 2
  • lithium nickel cobalt composite oxide Li x Ni 1-y Co y O 2
  • lithium manganese cobalt composite oxide Li x Mn y Co 1- y O 2
  • lithium-nickel-cobalt-manganese composite oxide e.g., LiNi 1-yz Co y Mn z O 2
  • 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and 0 ⁇ z ⁇ 1 are preferable.
  • those that can be used in the negative electrode can be used in the same manner.
  • LiMn 1-xy Fe x A y PO 4 represented by the positive electrode active material and 3.3V (vs. Li / Li + ) further can be substances in any of occluding lithium following potential
  • the total amount of the positive electrode active material, the conductive agent, and the binder are blended at a ratio of 80% by mass to 95% by mass, 3% by mass to 18% by mass, and 2% by mass to 17% by mass, respectively. It is preferable.
  • the conductive agent can exhibit the effects described above by adjusting the amount to 3% by mass or more. By making the amount of the conductive agent 18% by mass or less, the decomposition of the nonaqueous electrolyte on the surface of the conductive agent under high temperature storage can be reduced.
  • Sufficient electrode strength can be obtained by setting the binder to an amount of 2% by mass or more. By setting the binder to an amount of 17% by mass or less, the amount of the binder, which is an insulating material in the positive electrode, can be reduced, and the internal resistance can be reduced.
  • the positive electrode can be produced, for example, by the following method. First, a cathode active material containing a positive electrode active material represented by LiMn 1-xy Fe x A y PO 4, 3.3V (vs. Li / Li +) material capable of occluding lithium in the following potential, conductivity A slurry is prepared by suspending the agent and the binder in a solvent. This slurry is applied to one or both sides of the current collector and dried to form a positive electrode active material layer. Then press. Alternatively, a positive electrode active material, a material capable of occluding lithium at a potential of 3.3 V (vs. Li / Li + ) or less, a conductive agent, and a binder are formed into pellets and used as a positive electrode active material layer. You can also.
  • Nonaqueous electrolyte As the non-aqueous electrolyte, a liquid non-aqueous electrolyte or a gel non-aqueous electrolyte can be used.
  • the liquid non-aqueous electrolyte is prepared by dissolving the electrolyte in an organic solvent.
  • the concentration of the electrolyte is preferably in the range of 0.5 to 2.5 mol / l.
  • the gel-like nonaqueous electrolyte is prepared by combining a liquid electrolyte and a polymer material.
  • Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), trifluorometa Lithium salts such as lithium sulfonate (LiCF 3 SO 3 ) and bistrifluoromethylsulfonylimitolithium [LiN (CF 3 SO 2 ) 2 ] are included. These electrolytes can be used alone or in combination of two or more.
  • the electrolyte preferably contains LiPF 6 .
  • organic solvents examples include propylene carbonate (PC), ethylene carbonate (EC), cyclic carbonates such as vinylene carbonate; diethyl carbonate (DEC), dimethyl carbonate (DMC), chain like methyl ethyl carbonate (MEC) Carbonates; cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran (2MeTHF), dioxolane (DOX); chain ethers such as dimethoxyethane (DME) and dietoethane (DEE); ⁇ -butyrolactone (GBL), acetonitrile ( AN) and sulfolane (SL). These organic solvents can be used alone or in combination of two or more.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • MEC chain like methyl ethyl carbonate
  • COX dioxolane
  • chain ethers such as
  • Examples of more preferable organic solvents include two or more selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC). And a mixed solvent containing ⁇ -butyrolactone (GBL). By using such a mixed solvent, a nonaqueous electrolyte battery having excellent low temperature characteristics can be obtained.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • MEC methyl ethyl carbonate
  • GBL ⁇ -butyrolactone
  • polymer material examples include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), and polyethylene oxide (PEO).
  • PVdF polyvinylidene fluoride
  • PAN polyacrylonitrile
  • PEO polyethylene oxide
  • a porous film formed from a material such as polyethylene, polypropylene, cellulose, and polyvinylidene fluoride (PVdF), a synthetic resin nonwoven fabric, and the like can be used.
  • PVdF polyvinylidene fluoride
  • a porous film made of polyethylene or polypropylene is preferable from the viewpoint of improving safety because it can be melted at a constant temperature to interrupt the current.
  • Exterior material As the exterior member, a laminated film bag-like container or a metal container is used.
  • Examples of the shape include a flat type, a square type, a cylindrical type, a coin type, a button type, a sheet type, and a laminated type.
  • a large battery mounted on a two-wheel to four-wheel automobile or the like may be used.
  • the laminate film for example, a multilayer film in which a metal layer is interposed between resin films can be used.
  • the metal layer is preferably an aluminum foil or an aluminum alloy foil for weight reduction.
  • a polymer material such as polypropylene (PP), polyethylene (PE), nylon, and polyethylene terephthalate (PET) can be used.
  • the laminate film can be formed into the shape of an exterior member by sealing by heat sealing.
  • the laminate film preferably has a thickness of 0.2 mm or less.
  • the metal container can be formed from aluminum or an aluminum alloy.
  • the aluminum alloy preferably contains elements such as magnesium, zinc and silicon.
  • the content of transition metals such as iron, copper, nickel and chromium is preferably 100 ppm or less. Thereby, it becomes possible to dramatically improve long-term reliability and heat dissipation in a high temperature environment.
  • the metal container preferably has a thickness of 0.5 mm or less, and more preferably has a thickness of 0.2 mm or less.
  • the positive electrode terminal is preferably formed from a material that is electrically stable and has electrical conductivity in a range where the potential with respect to the lithium ion metal is 3.0 V or more and 4.5 V or less. It is preferably formed from Al or an aluminum alloy containing elements such as Mg, Ti, Zn, Mn, Fe, Cu and Si.
  • the positive electrode terminal is preferably formed of the same material as the positive electrode current collector in order to reduce contact resistance with the positive electrode current collector.
  • the negative electrode terminal is preferably formed from a material that is electrically stable and has electrical conductivity in a range where the potential with respect to the lithium ion metal is 1.0 V or more and 3.0 V or less. It is preferably formed from Al or an aluminum alloy containing an element such as Mg, Ti, Zn, Mn, Fe, Cu, or Si. The negative electrode terminal is preferably formed from the same material as the negative electrode current collector in order to reduce the contact resistance with the negative electrode current collector.
  • FIG. 1 is a schematic cross-sectional view of an example of a flat type nonaqueous electrolyte secondary battery according to the first embodiment.
  • FIG. 2 is an enlarged cross-sectional view of a part A in FIG.
  • a nonaqueous electrolyte battery 10 shown in FIGS. 1 and 2 includes a flat wound electrode group 1.
  • the flat wound electrode group 1 includes a negative electrode 3, a separator 4, and a positive electrode 5, as shown in FIG.
  • the separator 4 and the positive electrode 5, the separator 4 is interposed between the negative electrode 3 and the positive electrode 5.
  • Such a flat wound electrode group 1 includes a laminate formed by laminating the negative electrode 3, the separator 4, and the positive electrode 5 such that the separator 4 is interposed between the negative electrode 3 and the positive electrode 5.
  • the negative electrode 3 can be formed on the outside by winding it in a spiral shape and press molding.
  • the negative electrode 3 includes a negative electrode current collector 3a and a negative electrode layer 3b. As shown in FIG. 2, the outermost negative electrode 3 has a configuration in which a negative electrode layer 3b is formed only on one surface on the inner surface side of the negative electrode current collector 3a. In the other negative electrode 3, negative electrode layers 3b are formed on both surfaces of the negative electrode current collector 3a.
  • the positive electrode 5 has positive electrode layers 5b formed on both surfaces of the positive electrode current collector 5a.
  • the negative electrode terminal 6 is connected to the negative electrode current collector 3 a of the outermost negative electrode 3, and the positive electrode terminal 7 is the positive electrode current collector of the inner positive electrode 5. It is connected to the body 5a.
  • the wound electrode group 1 is housed in a bag-like container 2 made of a laminate film in which a metal layer is interposed between two resin layers.
  • the negative terminal 6 and the positive terminal 7 are extended from the opening of the bag-like container 2 to the outside.
  • the liquid non-aqueous electrolyte is injected from the opening of the bag-like container 2 and stored in the bag-like container 2.
  • the bag-like container 2 is hermetically sealed with the wound electrode group 1 and the liquid non-aqueous electrolyte by heat-sealing the opening with the negative electrode terminal 6 and the positive electrode terminal 7 interposed therebetween.
  • nonaqueous electrolyte battery which is another example of the nonaqueous electrolyte battery according to the first embodiment, will be described with reference to FIGS.
  • FIG. 3 is a partially cutaway perspective view schematically showing another example of a flat non-aqueous electrolyte battery according to the first embodiment.
  • FIG. 4 is a schematic cross-sectional view of a portion B in FIG.
  • a battery 10 ′ shown in FIGS. 3 and 4 includes a stacked electrode group 11.
  • the laminated electrode group 11 is housed in a container 12 made of a laminate film in which a metal layer is interposed between two resin films.
  • the stacked electrode group 11 has a structure in which positive electrodes 13 and negative electrodes 15 are alternately stacked with a separator 14 interposed therebetween.
  • the protruding negative electrode current collector 15 a is electrically connected to the strip-shaped negative electrode terminal 16.
  • the tip of the strip-shaped negative electrode terminal 16 is drawn out from the container 12 to the outside.
  • the positive electrode current collector 13a of the positive electrode 13 has a side protruding from the positive electrode 13 on the side opposite to the protruding side of the negative electrode current collector 15a.
  • the positive electrode current collector 13 a protruding from the positive electrode 13 is electrically connected to the belt-like positive electrode terminal 17.
  • the front end of the strip-like positive electrode terminal 17 is located on the side opposite to the negative electrode terminal 16 and is drawn out from the side of the container 12.
  • a nonaqueous electrolyte battery includes a positive electrode active material represented by LiMn 1-xy Fe x A y PO 4, a material capable of occluding lithium 3.3V (vs. Li / Li + ) potential below
  • a positive electrode active material represented by LiMn 1-xy Fe x A y PO 4
  • a battery pack is provided.
  • This battery pack includes the nonaqueous electrolyte battery according to the first embodiment.
  • the battery pack according to the second embodiment may include one nonaqueous electrolyte battery or a plurality of nonaqueous electrolyte batteries. Further, when the battery pack according to the second embodiment includes a plurality of nonaqueous electrolyte batteries, each single cell can be electrically connected in series or in parallel, and can be connected in series and parallel. It can also be arranged in combination.
  • FIG. 5 is an exploded perspective view of an example battery pack according to the second embodiment.
  • 6 is a block diagram showing an electric circuit of the battery pack shown in FIG.
  • the battery pack 20 shown in FIGS. 5 and 6 includes a plurality of flat batteries 10 having the structure shown in FIGS. 1 and 2.
  • the plurality of single cells 10 are laminated so that the negative electrode terminal 6 and the positive electrode terminal 7 extending to the outside are aligned in the same direction, and are fastened with an adhesive tape 22, thereby constituting an assembled battery 23. .
  • These unit cells 10 are electrically connected to each other in series as shown in FIG.
  • the printed wiring board 24 is disposed so as to face the side surface from which the negative electrode terminals 6 and the positive electrode terminals 7 of the plurality of single cells 10 extend. As shown in FIG. 6, a thermistor 25, a protection circuit 26, and a terminal 27 for energizing external devices are mounted on the printed wiring board 24. An insulating plate (not shown) is attached to the surface of the printed wiring board 24 facing the assembled battery 23 in order to avoid unnecessary connection with the wiring of the assembled battery 23.
  • a positive lead 28 is connected to the positive terminal 7 of the unit cell 10 located in the lowermost layer of the assembled battery 23, and the tip thereof is inserted into the positive connector 29 of the printed wiring board 24 to be electrically connected.
  • the negative electrode lead 30 is connected to the negative electrode terminal 6 of the unit cell 10 located in the uppermost layer of the assembled battery 23, and the tip thereof is inserted into the negative electrode connector 31 of the printed wiring board 24 to be electrically connected.
  • These connectors 29 and 31 are connected to the protection circuit 26 through wirings 32 and 33 formed on the printed wiring board 24, respectively.
  • the thermistor 25 detects the temperature of each unit cell 10 and transmits the detection signal to the protection circuit 26.
  • the protection circuit 26 can cut off the plus side wiring 34a and the minus side wiring 34b between the protection circuit 26 and the energization terminal 27 to the external device under a predetermined condition.
  • An example of the predetermined condition is when, for example, a signal is received from the thermistor 25 that the temperature of the unit cell 10 is equal to or higher than the predetermined temperature.
  • Another example of the predetermined condition is when an overcharge, overdischarge, overcurrent, or the like of the unit cell 10 is detected. This detection of overcharge or the like is performed for each single cell 10 or the entire single cell 10.
  • the battery voltage When detecting each single battery 10, the battery voltage may be detected, or the positive electrode potential or the negative electrode potential may be detected. In the latter case, a lithium electrode used as a reference electrode is inserted into each unit cell 10.
  • a wiring 35 for voltage detection is connected to each single cell 10, and a detection signal is transmitted to the protection circuit 26 through these wirings 35.
  • Protective sheets 36 made of rubber or resin are disposed on the three side surfaces of the assembled battery 23 excluding the side surfaces from which the positive electrode terminal 7 and the negative electrode terminal 6 protrude.
  • the assembled battery 23 is stored in a storage container 37 together with each protective sheet 36 and the printed wiring board 24. That is, the protective sheet 36 is disposed on both the inner side surface in the long side direction and the inner side surface in the short side direction of the storage container 37, and the printed wiring board 24 is disposed on the inner side surface on the opposite side in the short side direction. Yes.
  • the assembled battery 23 is located in a space surrounded by the protective sheet 36 and the printed wiring board 24.
  • the lid 38 is attached to the upper surface of the storage container 37.
  • a heat shrink tape may be used for fixing the assembled battery 23.
  • protective sheets are arranged on both side surfaces of the assembled battery, the heat shrinkable tube is circulated, and then the heat shrinkable tube is thermally contracted to bind the assembled battery.
  • the battery pack 20 shown in FIGS. 5 and 6 has a configuration in which a plurality of unit cells 10 are connected in series.
  • the battery pack according to the second embodiment has a plurality of unit cells 10 in order to increase the battery capacity. May be connected in parallel.
  • the battery pack according to the second embodiment may include a plurality of unit cells 10 connected in combination of series connection and parallel connection.
  • the assembled battery pack 20 can be further connected in series or in parallel.
  • the battery pack 20 shown in FIGS. 5 and 6 includes a plurality of unit cells 10, the battery pack according to the second embodiment may include one unit cell 10.
  • the battery pack according to the present embodiment is suitably used for applications that require excellent cycle characteristics when a large current is taken out. Specifically, it is used as a power source for a digital camera, or as an in-vehicle battery for, for example, a two-wheel to four-wheel hybrid electric vehicle, a two-wheel to four-wheel electric vehicle, and an assist bicycle. In particular, it is suitably used as a vehicle-mounted battery.
  • the battery pack according to the second embodiment includes the nonaqueous electrolyte battery according to the first embodiment, the battery pack can exhibit excellent charge / discharge characteristics while exhibiting high energy density.
  • Example 1 In Example 1, an evaluation cell was produced by the following procedure.
  • lithium manganese phosphate LiMn 0.8 Fe 0.2 PO 4 containing iron was prepared. Further, manganese dioxide MnO 2 was prepared. Manganese dioxide is a substance that can occlude lithium at a potential of about 3.0 V (vs. Li / Li + ).
  • the prepared lithium manganese phosphate and manganese dioxide were mixed at a weight ratio of 10: 1 to obtain a mixture. 90% by weight of the above mixture, 5% by weight of acetylene black, and 5% by weight of polyvinylidene fluoride (PVdF) were added to N-methylpyrrolidone (NMP) and mixed to prepare a positive electrode slurry. After the produced positive electrode slurry is applied to both surfaces of a 15 ⁇ m thick aluminum foil current collector, the applied slurry is dried and pressed to include the positive electrode current collector and the positive electrode layer formed on both surfaces thereof. A positive electrode was produced.
  • PVdF polyvinylidene fluoride
  • Ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 1: 2 to prepare a non-aqueous solvent.
  • LiPF 6 as an electrolyte was dissolved at a concentration of 1.0 mol / L.
  • a non-aqueous electrolyte was prepared.
  • the positive electrode and negative electrode prepared above are made to face each other through a glass filter as a separator, and these members are put in a bipolar glass cell, and the positive electrode and the negative electrode are respectively connected to the positive electrode terminal and the negative electrode of the glass cell. Connected to the terminal. Subsequently, the nonaqueous electrolyte prepared as described above was poured into the glass cell, and the positive electrode, the negative electrode, and the separator were sufficiently impregnated with the nonaqueous electrolyte. In this state, the glass container was sealed to prepare an evaluation cell of Example 1.
  • Example 2 An evaluation cell of Example 2 was prepared in the same manner as in Example 1 except that lithium manganese phosphate containing iron and manganese dioxide were mixed at a weight ratio of 20: 1 to obtain a mixture.
  • Example 3 An evaluation cell of Example 3 was prepared in the same manner as in Example 1 except that lithium manganese phosphate containing iron and manganese dioxide were mixed at a weight ratio of 40: 1 to obtain a mixture.
  • Example 4 An evaluation cell of Example 4 was produced in the same manner as in Example 1 except that lithium manganese phosphate containing iron and manganese dioxide were mixed at a weight ratio of 100: 1 to obtain a mixture.
  • Example 5 An evaluation cell of Example 5 was produced in the same manner as in Example 1 except that vanadium oxide V 2 O 5 was used instead of manganese dioxide.
  • Vanadium oxide is a substance that can occlude lithium at a potential of about 3.0 V (vs. Li / Li + ).
  • Example 6 An evaluation cell of Example 6 was produced in the same manner as in Example 1 except that molybdenum oxide MoO 3 was used instead of manganese dioxide.
  • Molybdenum oxide is a substance that can occlude lithium at a potential of about 2.5 V (vs. Li / Li + ).
  • Example 7 An evaluation cell of Example 7 was produced in the same manner as in Example 1 except that iron fluoride FeF 3 was used instead of manganese dioxide.
  • Iron fluoride is a substance that can occlude lithium at a potential of about 3.0 V (vs. Li / Li + ).
  • Example 8 Except that in place of the manganese dioxide with titanium disulfide TiS 2 in the same manner as in Example 1 to prepare an evaluation cell of Example 8.
  • Titanium sulfide is a substance that can occlude lithium at a potential of about 2.4 V (vs. Li / Li + ).
  • Example 9 Example 1 except that lithium manganese phosphate LiMn 0.8 Fe 0.1 Mg 0.1 PO 4 containing iron and magnesium was used as the positive electrode active material instead of lithium manganese phosphate LiMn 0.8 Fe 0.2 PO 4 containing iron Thus, an evaluation cell of Example 9 was produced.
  • Example 10 Example 1 except that lithium manganese phosphate LiMn 0.9 Fe 0.05 Mg 0.05 PO 4 containing iron and magnesium was used as the positive electrode active material instead of lithium manganese manganese LiMn 0.8 Fe 0.2 PO 4 containing iron Thus, an evaluation cell of Example 10 was produced.
  • Example 11 The same as Example 1 except that lithium manganese phosphate LiMn 0.7 Fe 0.2 Mg 0.1 PO 4 containing iron and magnesium was used as the positive electrode active material instead of lithium manganese phosphate LiMn 0.8 Fe 0.2 PO 4 containing iron. Thus, an evaluation cell of Example 11 was produced.
  • Example 12 Example 1 except that lithium manganese phosphate LiMn 0.85 Fe 0.1 Ca 0.05 PO 4 containing iron and calcium was used instead of lithium manganese manganese LiMn 0.8 Fe 0.2 PO 4 containing iron as the positive electrode active material. Thus, an evaluation cell of Example 12 was produced.
  • Example 13 The same as Example 1 except that lithium manganese phosphate LiMn 0.85 Fe 0.1 Al 0.05 PO 4 containing iron and aluminum was used instead of lithium manganese manganese LiMn 0.8 Fe 0.2 PO 4 containing iron as the positive electrode active material. Thus, an evaluation cell of Example 13 was produced.
  • Example 14 Example 1 except that lithium manganese phosphate LiMn 0.85 Fe 0.1 Ti 0.05 PO 4 containing iron and titanium was used instead of lithium manganese manganese LiMn 0.8 Fe 0.2 PO 4 containing iron as a positive electrode active material. Thus, an evaluation cell of Example 14 was produced.
  • Example 15 The same as Example 1 except that lithium manganese phosphate LiMn 0.85 Fe 0.1 Zn 0.05 PO 4 containing iron and zinc was used instead of lithium manganese manganese LiMn 0.8 Fe 0.2 PO 4 containing iron as the positive electrode active material. Thus, an evaluation cell of Example 15 was produced.
  • Example 16 The same as Example 1 except that lithium manganese phosphate LiMn 0.85 Fe 0.1 Zr 0.05 PO 4 containing iron and zirconium was used instead of lithium manganese phosphate LiMn 0.8 Fe 0.2 PO 4 containing iron as the positive electrode active material. Thus, an evaluation cell of Example 16 was produced.
  • Example 17 An evaluation cell of Example 17 was produced in the same manner as in Example 1 except that the monoclinic ⁇ -type titanium composite oxide TiO 2 (B) was used instead of the spinel type lithium titanate.
  • Comparative Example 1 An evaluation cell of Comparative Example 1 was produced in the same manner as in Example 1 except that manganese dioxide was not used in preparing the positive electrode slurry.
  • Comparative Example 2 An evaluation cell of Comparative Example 2 was produced in the same manner as in Example 1 except that lithium manganese phosphate containing iron and manganese dioxide were mixed at a weight ratio of 5: 1 to obtain a mixture.
  • Comparative Example 3 An evaluation cell of Comparative Example 3 was produced in the same manner as in Example 1 except that lithium manganese phosphate containing iron and manganese dioxide were mixed at a weight ratio of 120: 1 to obtain a mixture.
  • Comparative Example 4 An evaluation cell of Comparative Example 4 was produced in the same manner as Comparative Example 1 except that a monoclinic ⁇ -type titanium composite oxide was used instead of the spinel type lithium titanate.
  • the negative electrode layer contains spinel type lithium titanate, and the positive electrode layer occludes lithium at a potential of lithium manganese phosphate containing iron and 3.3 V (vs. Li / Li + ) or less.
  • the negative electrode layer contains spinel type lithium titanate and the positive electrode layer contains lithium manganese phosphate containing iron. It can be seen that a better capacity retention ratio was obtained compared to Comparative Example 1 in which the layer did not contain a substance capable of occluding lithium at a potential of 3.3 V (vs. Li / Li + ) or less.
  • Example 5 to 8 using a substance capable of occluding lithium at a potential of 3.3 V (vs. Li / Li + ) or less other than manganese dioxide were also used in Example 1. It can be seen that a good capacity retention rate was obtained in the same manner as above. Further, from the results shown in Table 1, an example using lithium manganese phosphate different from that of Example 1 in that it contains any of Mg, Ca, Al, Ti, Zn, and Zr as the positive electrode active material. 9 to 16, it can be seen that a good capacity retention ratio was obtained as in Example 1.
  • the negative electrode layer contains a monoclinic ⁇ -type titanium composite oxide
  • the negative electrode layer contains spinel type lithium titanate.
  • the positive electrode layer includes lithium manganese phosphate containing iron and a substance capable of occluding lithium at a potential of 3.3 V (vs. Li / Li + ) or less, thereby maintaining the capacity retention rate. It can be seen that the improvement was achieved.
  • Examples 1 to 4 in which the weight ratio of the lithium manganese phosphate containing iron to the manganese dioxide is 10 to 100 are as follows. It can be seen that a better capacity retention ratio was obtained than in Comparative Example 3 in which the weight ratio to the weight was 120. Furthermore, from the results shown in Table 1, Examples 1 to 3, in which the weight ratio of the lithium manganese phosphate containing iron to the manganese dioxide is 10 to 40, the manganese dioxide containing the weight of lithium manganese phosphate containing iron It can be seen that a better capacity retention rate was obtained than in Example 4 in which the weight ratio to 100 was 100.
  • the comparative example 2 showed the capacity
  • Example 1 ⁇ Evaluation of discharge curves of Example 1 and Comparative Example 1>
  • single electrode evaluation was performed as described above to obtain a discharge curve.
  • FIG. 7 shows a discharge curve for the positive electrode of Example 1.
  • FIG. 8 shows a discharge curve for the positive electrode of Comparative Example 1.
  • the discharge curve shown in FIG. 7 has a plateau in the vicinity of 3 V (vs. Li / Li + ), and an inflection point due to lithium occlusion in manganese dioxide was confirmed. On the other hand, in the discharge curve shown in FIG. 8, no plateau was observed below 3.3 V (vs. Li / Li + ). From this discharge curve, it can be seen that in the evaluation cell of Example 1, manganese dioxide contained in the positive electrode layer was able to occlude lithium in the vicinity of 3 V (vs. Li / Li + ).
  • a nonaqueous electrolyte battery includes a positive electrode active material represented by LiMn 1-xy Fe x A y PO 4, a material capable of occluding lithium 3.3V (vs. Li / Li + ) potential below
  • a positive electrode active material represented by LiMn 1-xy Fe x A y PO 4
  • negative electrode side lead 31 ... negative electrode side connector, 32, 33 ... wiring, 34a ... plus-side wiring, 34b ... minus-side wiring, 35 ... wiring for voltage detection, 36 ... protection sheet, 37 ... storage container, 38 ... lid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

実施形態によると、非水電解質電池が提供される。この非水電解質電池は、負極と、正極と、非水電解質とを含む。負極は、リチウム吸蔵放出電位が0.8V(vs. Li/Li+)以上である負極活物質を含む。正極は、LiMn1-x-yFexyPO4(式中、0<x≦0.3及び0≦y≦0.1であり、Aは、Mg、Ca、Al、Ti、Zn及びZrからなる群より選択される少なくとも1種である)で表される正極活物質と、3.3V(vs. Li/Li+)以下の電位でリチウムを吸蔵することができる物質とを含む。

Description

非水電解質電池及び電池パック
 本発明の実施形態は、非水電解質電池及び電池パックに関する。
 リチウムイオンが負極と正極との間を移動することにより充放電が行われる非水電解質電池は、高エネルギー密度電池として、盛んに研究が進められている。
 この非水電解質電池は、小型電子機器用電源としての利用に加え、中大型電源としての利用も期待される。そのような中大型用途では、寿命特性や高い安全性が要求される。
 非水電解質電池の正極活物質としては、例えば、リチウム遷移金属複合酸化物が用いられている。遷移金属には、Co、Mn又はNiなどが用いられている。近年、安価かつ安全性の高い正極材料としてスピネル型マンガン酸リチウムや、オリビン型リン酸鉄リチウム、オリビン型リン酸マンガンリチウムなどオリビン型化合物の研究が盛んとなっている。
 この中で、オリビン型化合物は電子伝導性が低いため、良好な充放電特性を得ることが困難であった。中でも、良好な充放電特性を有するリン酸マンガンリチウムを得ることは困難であった。これまでに、電子伝導性の向上させるための炭素被覆が知られている。また、オリビン型化合物への炭素被覆量を多くすることにより電子伝導性が向上し、充放電特性が向上することが知られている。また、リン酸マンガンリチウムは放電末期に電位が下がることで劣化が進行することがわかった。
特開2008-34306号公報
Advanced Functional Materials. 2010, 20, 3260-3265
 本発明が解決しようとする課題は、高いエネルギー密度を示すと共に優れた寿命特性を示すことができる非水電解質電池及びこの非水電解質電池を含む電池パックを提供することにある。
 第1実施形態によると、非水電解質電池が提供される。この非水電解質電池は、負極と、正極と、非水電解質とを含む。負極は、リチウム吸蔵放出電位が0.8V(vs. Li/Li+)以上である負極活物質を含む。正極は、LiMn1-x-yFexyPO4(式中、0<x≦0.3及び0≦y≦0.1であり、Aは、Mg、Ca、Al、Ti、Zn及びZrからなる群より選択される少なくとも1種である)で表される正極活物質と、3.3V(vs. Li/Li+)以下の電位でリチウムを吸蔵することができる物質とを含む。
 第2実施形態によると、電池パックが提供される。この電池パックは、第1実施形態に係る非水電解質電池を含む。
第1実施形態に係る一例の扁平型非水電解質電池の断面模式図である。 図1のA部の拡大断面図である。 第1実施形態に係る他の例の扁平型非水電解質電池を模式的に示す部分切欠斜視図である。 図3のB部の拡大断面図である。 第2実施形態に係る一例の電池パックの分解斜視図である。 図5に示す電池パックの電気回路を示すブロック図である。 実施例1に関する放電曲線である。 比較例1に関する放電曲線である。
 以下、実施の形態を図面を参照しながら説明する。なお、以下の説明において、同一又は類似した機能を発揮する構成要素には全ての図面を通じて同一の参照符号を付し、重複する説明は省略する。なお、各図は実施の形態の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる点があるが、これらは以下の説明と公知の技術を参酌して適宜設計変更することができる。
 (第1の実施形態)
 第1実施形態によると、非水電解質電池が提供される。この非水電解質電池は、負極と、正極と、非水電解質とを含む。負極は、リチウム吸蔵放出電位が0.8V(vs. Li/Li+)以上である負極活物質を含む。正極は、LiMn1-x-yFexyPO4(式中、0<x≦0.3及び0≦y≦0.1であり、Aは、Mg、Ca、Al、Ti、Zn及びZrからなる群より選択される少なくとも1種である)で表される正極活物質と、3.3V(vs. Li/Li+)以下の電位でリチウムを吸蔵することができる物質とを含む。
 非水電解質電池において、リチウム吸蔵放出電位が0.8V(vs. Li/Li+)以上である負極活物質を用いると、電解液の還元分解が起こりにくくなり負極の充放電効率が高くなる。そのため、リチウム吸蔵放出電位が0.8V(vs. Li/Li+)以上である負極活物質を用いると、正極の放電電位が下がりやすくなるという懸念がある。そのため、このような負極活物質を含む負極と、リン酸マンガンリチウムを含む正極とを非水電解質電池において併用すると、正極の電位が放電末期に急激に低下するという問題があった。
 発明者らは、この問題を鑑みて鋭意研究した結果、正極において、鉄を含むリン酸マンガンリチウムと3.3V(vs. Li/Li+)以下の電位でリチウムを吸蔵することができる物質とを併用することによって、負極の高い充放電効率を利用しつつ、放電末期に正極の電位が急激に低下することを防ぐことができると共に、低い充電状態での出力特性を向上させることができることを見出した。
 第1の実施形態に係る非水電解質電池は、放電末期に正極の電位が急激に低下することを防ぐことができるので、充放電を繰り返した際の正極の劣化を防ぐことができる。また、実施形態に係る非水電解質電池は、低い充電状態での出力特性に優れるので、低い充電状態の際に大電流で放電を行っても、正極の電位の低下を緩和することができ、ひいては正極の劣化を防ぐことができる。これらのおかげで、第1の実施形態に係る非水電解質電池は、優れた寿命特性を示すことができる。
 また、上記LiMn1-x-yFexyPO4で表される化合物は、正極活物質として用いると、正極のエネルギー密度を向上させることができる。
 よって、第1の実施形態によると、高いエネルギー密度を示すと共に優れた寿命特性を示すことができる非水電解質電池を提供することができる。
 負極活物質としては、先に説明した、リチウム吸蔵放出電位が0.8V(vs. Li/Li+)以上である負極活物質を少なくとも用いる。リチウム吸蔵放出電位が0.8V(vs. Li/Li+)以上である負極活物質を用いると、正極電位が下がりにくいが、0.8V(vs. Li/Li+)よりも卑な電位では非水電解質の還元分解が発生しやすく負極の充放電効率が低くなる。
 エネルギー密度の観点から、リチウム吸蔵放出電位が2.0V(vs. Li/Li+)以下である負極活物質を用いることが好ましい。
 リチウム吸蔵放出電位が0.8V(vs. Li/Li+)以上である負極活物質の中でも、チタン複合酸化物が好ましい。チタン複合酸化物としては、スピネル構造のチタン酸リチウム、単斜晶系β型チタン複合酸化物、アナターゼ型チタン複合酸化物及びラムスデライド型チタン酸リチウムや、TiNb27及びTi2Nb29などのチタン含有酸化物が挙げられる。中でも、スピネル構造のチタン酸リチウムは、サイクル特性、レート特性に優れるために、好ましい。リチウム吸蔵放出電位が0.8V(vs. Li/Li+)以上である負極活物質の他の例としては、例えばNb25及びNb1229などのニオブ複合酸化物が挙げられる。
 負極活物質は、リチウム吸蔵放出電位が0.8V(vs. Li/Li+)以上である負極活物質を1種以上含むことができる。
 LiMn1-x-yFexyPO4で表される正極活物質としては、金属元素Aとして例えばMgを含む正極活物質が好ましい。正極は、LiMn1-x-yFexyPO4で表される正極活物質を複数種含むこともできる。
 正極は、LiMn1-x-yFexyPO4で表される正極活物質以外の更なる正極活物質を1種以上含むこともできる。
 正極が含む3.3V(vs. Li/Li+)以下の電位でリチウムを吸蔵することができる物質としては、例えば、種々の酸化物、フッ化物、硫化物、ポリマー化合物を用いることができる。正極に含有させた時点でリチウムを含まない物質が好ましい。また、2.8V以上の電位でリチウムを吸蔵することができる物質がより好ましい。
 上記酸化物としては、V613、V25などのバナジウム酸化物、MnO2などのマンガン酸化物、MoO3などのモリブデン酸化物が挙げられる。その他、Cu227、Fe2(MoO43、Fe2(WO43などの複合酸化物が挙げられる。好ましくは、マンガン酸化物である。上記フッ化物としてはFeF3などのフッ化鉄が挙げられる。上記硫化物としてはTiS2などのチタン硫化物が挙げられる。
 正極における、正極活物質の重量の3.3V(vs. Li/Li+)以下の電位でリチウムを吸蔵することができる物質の重量に対する比は、10以上100以下であることが好ましい。この範囲内にあると、エネルギー密度が低下することを防ぎながら、放電末期に正極の電位が急激に低下することを更に防ぐことができる。正極における、正極活物質の重量の3.3V(vs. Li/Li+)以下の電位でリチウムを吸蔵することができる物質の重量に対する比は、10以上40以下であることがより好ましい。
 正極が3.3V(vs. Li/Li+)以下の電位でリチウムを吸蔵することができる物質を含んでいることは、非水電解質電池を分解し、正極を取り出し単極評価を行うことで確認することができる。以下にその確認方法について説明する。
 まず、放電状態の非水電解質電池を分解し、正極を取り出す。取り出した正極を、エチルメチルカーボネートなどの鎖状カーボネートを用いて洗浄する。作用極に取り出した正極を用い、参照極及び対極にリチウム金属を用いた三極式セルを作製する。この三極式セルを4.25V(vs. Li/Li+)に充電し、次いで2V(vs. Li/Li+)まで放電させて、その間の作用極のリチウム金属に対する電位を調べる。充放電レートはいずれも0.2 C以下の電流値とする。かくして、正極の放電曲線を得ることができる。
 得られた放電曲線において、4.1V(vs. Li/Li+)及び3.5 V(vs. Li/Li+)付近にLiMn1-x-yFexyPO4で表される正極活物質のマンガン及び鉄の酸化還元に由来するプラトーが見られる。正極に3.3V(vs. Li/Li+)以下の電位でリチウムを吸蔵することができる物質が含まれていない場合は、3.3V(vs. Li/Li+)以下に放電曲線の変曲点が見られない。一方、正極に3.3V(vs. Li/Li+)以下の電位でリチウムを吸蔵することができる物質が含まれている場合、放電曲線は、3.3V(vs. Li/Li+)以下にプラトーを有し、変曲点が見られる。具体的には、図7及び図8をそれぞれ参照されたい。
 3.3V(vs. Li/Li+)以下の電位でリチウムを吸蔵することができる物質は、物質の結晶性が高い場合、X線回折(X‐ray diffraction:XRD)測定にて同定し得る。XRD測定方法を以下に記す。
 非水電解質電池を放電状態にしてアルゴン雰囲気のグローブボックス内で解体し、電極を取り出す。電極をエチルメチルカーボネートなどの鎖状カーボネートを用いて洗浄する。洗浄・乾燥後、グローブボックスから取り出し、ガラス試料板上に貼り付ける。このとき、両面テープなどを用い、電極が剥がれないことや浮かないことに留意する。また、必要であれば、電極をガラス試料板に貼り付けるのに適切な大きさに切断してもよい。また、ピーク位置を補正するためSi標準試料を電極上に加えてもよい。次いで、電極が貼り付けられたガラス板を粉末X線回折装置に設置し、Cu-Kα線を用いて回折パターンを取得する。得られた回折パターンからLiMn1-x-yFexyPO4(式中、0<x≦0.3及び0≦y≦0.1であり、Aは、Mg、Ca、Al、Ti、Zn及びZrからなる群より選択される少なくとも1種である)に起因するピーク以外のピークから3.3V(vs. Li/Li+)以下の電位でリチウムを吸蔵することができる物質の同定を行う。
 次に、第1の実施形態に係る非水電解質二次電池をより詳細に説明する。
 第1の実施形態に係る非水電解質電池は、負極、非水電解質及び正極を含む。第1の実施形態に係る非水電解質電池は、セパレータ、外装材、正極端子及び負極端子を更に含むことができる。
 負極及び正極は、間にセパレータを介在させて、電極群を構成することができる。非水電解質は、電極群に保持されることができる。外装材は、電極群及び非水電解質を収容することができる。正極端子は、正極に電気的に接続することができる。負極端子は、負極に電気的に接続することができる。
 以下、負極、非水電解質、正極、セパレータ、外装材、正極端子、負極端子について詳細に説明する。
 (負極)
 負極は、負極集電体及び負極活物質層を含むことができる。先に説明した負極活物質は、負極活物質層に含まれ得る。負極活物質層は、導電剤及び結着剤を更に含むことができる。負極活物質層は、負極集電体の片面若しくは両面に形成され得る。
 負極集電体は、0.8V(vs. Li/Li+)よりも貴である電位範囲において電気化学的に安定であるもの、例えば、アルミニウム箔又は、Mg、Ti、Zn、Mn、Fe、Cu、及びSiのような元素を含むアルミニウム合金箔から形成されることが好ましい。
 導電剤は、集電性能を高め、且つ負極活物質と集電体との接触抵抗を抑えることができる。導電剤の例には、アセチレンブラック、カーボンブラック、黒鉛、カーボンナノファイバー、及びカーボンナノチューブのような炭素質物が含まれる。これらの炭素質物を単独で用いてもよいし、或いは複数の炭素質物を用いてもよい。
 結着剤は、活物質及び導電剤を集電体に結着させることができる。結着剤の例には、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、及びフッ素系ゴム、アクリル樹脂、カルボキシメチルセルロースなどのセルロースなどが含まれる。
 負極活物質、導電剤及び結着剤の配合比は、負極活物質は70質量%以上96質量%以下、導電剤は2質量%以上28質量%以下、結着剤は2質量%以上28質量%以下の範囲であることが好ましい。導電剤が2質量%未満であると、負極活物質層の集電性能が低下し、非水電解質電池の大電流特性が低下するおそれがある。また、結着剤が2質量%未満であると、負極活物質層と負極集電体の結着性が低下し、サイクル特性が低下する恐れがある。一方、高容量化の観点から、導電剤及び結着剤は各々28質量%以下であることが好ましい。
 負極は、例えば次の方法により作製することができる。まず、負極活物質、導電剤及び結着剤を溶媒に懸濁してスラリーを調製する。このスラリーを、負極集電体の片面又は両面に塗布し、乾燥して、負極活物質層を形成する。その後、プレスを施す。或いは、負極活物質、導電剤及び結着剤をペレット状に形成し、負極活物質層として用いることもできる。
 (正極)
 正極は、正極集電体及び正極活物質層を含むことができる。先に説明した正極活物質及び3.3V(vs. Li/Li+)以下の電位でリチウムを吸蔵することができる物質は、正極層に含まれ得る。正極活物質層は、更なる正極活物質、導電剤及び結着剤を更に含むことができる。正極活物質層は、正極集電体の片面又は両面に形成され得る。
 正極集電体は、アルミニウム箔、又は、Mg、Ti、Zn、Mn、Fe、Cu、及びSiから選択される一以上の元素を含むアルミニウム合金箔であることが好ましい。
 正極が含むことができる更なる正極活物質としては、例えば、種々のリチウム含有酸化物が挙げられる。
 リチウム含有酸化物の例には、リチウムマンガン複合酸化物(例えば、LixMn24又はLixMnO2)、リチウムニッケル複合酸化物(例えば、LixNiO2)、リチウムコバルト複合酸化物(例えば、LixCoO2)、リチウムニッケルコバルト複合酸化物(例えば、LiNi1-yCoy2)、リチウムマンガンコバルト複合酸化物(例えば、LixMnyCo1-y2)、リチウムニッケルコバルトマンガン複合酸化物(例えば、LiNi1-y-zCoyMnz2)、リチウムニッケルコバルトアルミ複合酸化物(例えば、LiNi1-y-zCoyAlz2)、スピネル構造を有するリチウムマンガンニッケル複合酸化物(例えば、LixMn2-yNiy4)が含まれる。上記において、0<x≦1であり、0≦y≦1であり、0≦z≦1であることが好ましい。
 中でもリチウムマンガン複合酸化物(LixMn24)、リチウムコバルト複合酸化物(LixCoO2)、リチウムニッケルコバルト複合酸化物(LixNi1-yCoy2)、リチウムマンガンコバルト複合酸化物(LixMnyCo1-y2)、リチウムニッケルコバルトマンガン複合酸化物(例えばLiNi1-y-zCoyMnz2)が好ましい。上記において、0<x≦1であり、0≦y≦1であり、0≦z≦1であることが好ましい。
 正極層が含むことができる導電剤及び結着剤としては、負極で用いることができるものを同様に用いることができる。
 正極層中の、LiMn1-x-yFexyPO4で表される正極活物質と3.3V(vs. Li/Li+)以下の電位でリチウムを吸蔵することができる物質と任意の更なる正極活物質との総量、導電剤及び結着剤は、それぞれ、80質量%以上95質量%以下、3質量%以上18質量%以下、及び2質量%以上17質量%以下の割合で配合することが好ましい。導電剤は、3質量%以上の量にすることにより先に説明した効果を発揮することができる。導電剤は、18質量%以下の量にすることにより高温保存下での導電剤表面での非水電解質の分解を低減することができる。結着剤は、2質量%以上の量にすることにより十分な電極強度が得られる。結着剤は、17質量%以下の量にすることにより、正極中の絶縁材料である結着剤の配合量を減少させ、内部抵抗を減少できる。
 正極は、例えば次の方法により作製することができる。まず、LiMn1-x-yFexyPO4で表される正極活物質を含む正極活物質、3.3V(vs. Li/Li+)以下の電位でリチウムを吸蔵することができる物質、導電剤及び結着剤を溶媒に懸濁してスラリーを調製する。このスラリーを集電体の片面又は両面に塗布し、乾燥して、正極活物質層を形成する。その後、プレスを施す。或いは、正極活物質、3.3V(vs. Li/Li+)以下の電位でリチウムを吸蔵することができる物質、導電剤及び結着剤をペレット状に形成し、正極活物質層として用いることもできる。
 (非水電解質)
 非水電解質としては、液状非水電解質又はゲル状非水電解質を用いることができる。液状非水電解質は、電解質を有機溶媒に溶解することにより調製される。電解質の濃度は、0.5~2.5 mol/lの範囲であることが好ましい。ゲル状非水電解質は、液状電解質と高分子材料を複合化することにより調製される。
 電解質の例には、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)、及び、ビストリフルオロメチルスルホニルイミトリチウム[LiN(CF3SO22]のようなリチウム塩が含まれる。これらの電解質は、単独で又は2種類以上を組合せて用いることができる。電解質は、LiPF6を含むことが好ましい。
 有機溶媒の例には、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ビニレンカーボネートのような環状カーボネート;ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)のような鎖状カーボネート;テトラヒドロフラン(THF)、2メチルテトラヒドロフラン(2MeTHF)、ジオキソラン(DOX)のような環状エーテル;ジメトキシエタン(DME)、ジエトエタン(DEE)のような鎖状エーテル;γ-ブチロラクトン(GBL)、アセトニトリル(AN)、及び、スルホラン(SL)が含まれる。これらの有機溶媒は、単独で又は2種類以上を組合せて用いることができる。
 より好ましい有機溶媒の例には、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、及びメチルエチルカーボネート(MEC)よりなる群から選択される2種以上を混合した混合溶媒、及び、γ-ブチロラクトン(GBL)を含む混合溶媒が含まれる。このような混合溶媒を用いることによって、低温特性の優れた非水電解質電池を得ることができる。
 高分子材料の例には、ポリフッ化ビニリデン(PVdF)、ポリアクリロニトリル(PAN)、及びポリエチレンオキサイド(PEO)が含まれる。
 (セパレータ)
 セパレータとしては、例えば、ポリエチレン、ポリプロピレン、セルロース及びポリフッ化ビニリデン(PVdF)のような材料から形成された多孔質フィルム、合成樹脂製不織布等を用いることができる。中でも、ポリエチレン又はポリプロピレンからなる多孔質フィルムは、一定温度において溶融し、電流を遮断することが可能であり、安全性向上の観点から好ましい。
 (外装部材)
 外装部材としては、ラミネートフィルム製の袋状容器又は金属製容器が用いられる。
 形状としては、扁平型、角型、円筒型、コイン型、ボタン型、シート型、積層型等が挙げられる。なお、無論、携帯用電子機器等に積載される小型電池の他、二輪乃至四輪の自動車等に積載される大型電池でも良い。
 ラミネートフィルムとしては、例えば、樹脂フィルム間に金属層を介在した多層フィルムが用いることができる。金属層は、軽量化のためにアルミニウム箔もしくはアルミニウム合金箔が好ましい。樹脂フィルムには、例えばポリプロピレン(PP)、ポリエチレン(PE)、ナイロン、及びポリエチレンテレフタレート(PET)のような高分子材料を用いることができる。ラミネートフィルムは、熱融着によりシールを行って外装部材の形状に成形することができる。ラミネートフィルムは、肉厚が0.2mm以下であることが好ましい。
 金属製容器は、アルミニウム又はアルミニウム合金から形成されることができる。アルミニウム合金は、マグネシウム、亜鉛及びケイ素のような元素を含むことが好ましい。一方、鉄、銅、ニッケル、クロム等の遷移金属の含有量は100ppm以下にすることが好ましい。これにより、高温環境下での長期信頼性、放熱性を飛躍的に向上させることが可能となる。金属製容器は、肉厚が0.5mm以下であることが好ましく、肉厚が0.2mm以下であることがより好ましい。
 (正極端子)
 正極端子は、リチウムイオン金属に対する電位が3.0V以上4.5V以下の範囲において電気的に安定であり、且つ導電性を有する材料から形成されることが好ましい。Al、或いは、Mg、Ti、Zn、Mn、Fe、Cu及びSiのような元素を含むアルミニウム合金から形成されることが好ましい。正極端子は、正極集電体との接触抵抗を低減するために、正極集電体と同様の材料から形成されることが好ましい。
 (負極端子)
 負極端子は、リチウムイオン金属に対する電位が1.0V以上3.0V以下の範囲において電気的に安定であり、かつ導電性を有する材料から形成されることが好ましい。Al、又は、Mg、Ti、Zn、Mn、Fe、Cu、Siのような元素を含むアルミニウム合金から形成されることが好ましい。負極端子は、負極集電体との接触抵抗を低減するために、負極集電体と同様の材料から形成されることが好ましい。
 次に、図面を参照しながら、第1の実施形態に係る非水電解質電池の例を説明する。
 まず、図1及び図2を参照しながら、第1の実施形態に係る非水電解質電池の一例である、扁平型非水電解質電池について説明する。
 図1は、第1の実施形態に係る一例の扁平型非水電解質二次電池の断面模式図である。図2は、図1のA部の拡大断面図である。
 図1及び図2に示す非水電解質電池10は、扁平状の捲回電極群1を具備する。
 扁平状の捲回電極群1は、図2に示すように、負極3、セパレータ4及び正極5を備える。負極3、セパレータ4及び正極5は、負極3と正極5とに間にセパレータ4が介在している。このような扁平状の捲回電極群1は、負極3と正極5とに間にセパレータ4が介在するように負極3、セパレータ4及び正極5を積層して形成した積層物を、図2に示すように、負極3を外側にして渦巻状に捲回し、プレス成型することにより形成できる。
 負極3は、負極集電体3aと負極層3bとを含む。最外殻の負極3は、図2に示すように負極集電体3aの内面側の片面のみに負極層3bを形成した構成を有する。その他の負極3は、負極集電体3aの両面に負極層3bが形成されている。
 正極5は、正極集電体5aの両面に正極層5bが形成されている。
 図1に示すように、捲回電極群1の外周端近傍において、負極端子6が最外殻の負極3の負極集電体3aに接続され、正極端子7が内側の正極5の正極集電体5aに接続されている。
 捲回型電極群1は、2枚の樹脂層の間に金属層が介在したラミネートフィルムからなる袋状容器2内に収納されている。
 負極端子6及び正極端子7は、袋状容器2の開口部から外部に延出されている。例えば液状非水電解質は、袋状容器2の開口部から注入されて、袋状容器2内に収納されている。
 袋状容器2は、開口部を負極端子6及び正極端子7を挟んでヒートシールすることにより、捲回電極群1及び液状非水電解質が完全密封されている。
 次に、図3及び図4を参照しながら、第1の実施形態に係る非水電解質電池のもう一つの例である、非水電解質電池について説明する。
 図3は、第1実施形態に係る他の例の扁平型非水電解質電池を模式的に示す部分切欠斜視図である。図4は、図3のB部の断面模式図である。
 図3及び図4に示す電池10’は、積層型電極群11を具備する。 
 積層型電極群11は、2枚の樹脂フィルムの間に金属層を介在したラミネートフィルムからなる容器12内に収納されている。積層型電極群11は、図4に示すように正極13と負極15とをその間にセパレータ14を介在させながら交互に積層した構造を有する。正極13は複数枚存在し、それぞれが正極集電体13aと、正極集電体13aの両面に担持された正極層13bとを備える。負極15は複数枚存在し、それぞれが負極集電体15aと、負極集電体15aの両面に担持された負極層15bとを備える。各負極15の負極集電体15aは、一辺が負極15から突出している。突出した負極集電体15aは、帯状の負極端子16に電気的に接続されている。帯状の負極端子16の先端は、容器12から外部に引き出されている。また、図示しないが、正極13の正極集電体13aは、負極集電体15aの突出辺と反対側に位置する辺が正極13から突出している。正極13から突出した正極集電体13aは、帯状の正極端子17に電気的に接続されている。帯状の正極端子17の先端は、負極端子16とは反対側に位置し、容器12の辺から外部に引き出されている。
 第1の実施形態によると、非水電解質電池が提供される。この非水電解質電池は、LiMn1-x-yFexyPO4で表される正極活物質と、3.3V(vs. Li/Li+)以下の電位でリチウムを吸蔵することができる物質とを含むので、高いエネルギー密度を示すと共に、放電末期の正極電位の急激な低下を防ぐことができ、ひいては優れた寿命特性を示すことができる。
 (第2の実施形態)
 第2の実施形態によれば、電池パックが提供される。この電池パックは、第1の実施形態に係る非水電解質電池を含む。
 第2の実施形態に係る電池パックは、1個の非水電解質電池を備えてもよいし、複数個の非水電解質電池を備えてもよい。また、第2の実施形態に係る電池パックが複数の非水電解質電池を備える場合、各単電池は、電気的に直列若しくは並列に接続して配置することができるし、直列接続及び並列接続を組み合わせて配置することもできる。
 次に、第2の実施形態に係る電池パックの一例を、図面を参照して説明する。
 図5は、第2の実施形態に係る一例の電池パックの分解斜視図である。図6は、図5に示す電池パックの電気回路を示すブロック図である。
 図5及び図6に示す電池パック20は、図1及び図2に示した構造を有する複数個の扁平型電池10を含む。
 複数個の単電池10は、外部に延出した負極端子6及び正極端子7が同じ向きに揃えられるように積層され、粘着テープ22で締結されており、それにより組電池23を構成している。これらの単電池10は、図6に示すように互いに電気的に直列に接続されている。
 プリント配線基板24が、複数の単電池10の負極端子6及び正極端子7が延出している側面に対向して配置されている。プリント配線基板24には、図6に示すように、サーミスタ25、保護回路26及び外部機器への通電用端子27が搭載されている。なお、プリント配線基板24の組電池23と対向する面には、組電池23の配線と不要な接続を回避するために絶縁板(図示せず)が取り付けられている。
 組電池23の最下層に位置する単電池10の正極端子7に正極側リード28が接続されており、その先端はプリント配線基板24の正極側コネクタ29に挿入されて電気的に接続されている。組電池23の最上層に位置する単電池10の負極端子6に負極側リード30が接続されており、その先端はプリント配線基板24の負極側コネクタ31に挿入されて電気的に接続されている。これらのコネクタ29及び31は、プリント配線基板24に形成された配線32及び33をそれぞれ通して保護回路26に接続されている。
 サーミスタ25は、単電池10の各々の温度を検出し、その検出信号を保護回路26に送信する。保護回路26は、所定の条件で保護回路26と外部機器への通電用端子27との間のプラス側配線34a及びマイナス側配線34bを遮断することができる。所定の条件の例は、例えばサーミスタ25から、単電池10の温度が所定温度以上であるとの信号を受信したときである。また、所定の条件の他の例は、単電池10の過充電、過放電、過電流等を検出したときである。この過充電等の検出は、個々の単電池10又は単電池10全体について行われる。個々の単電池10を検出する場合、電池電圧を検出してもよいし、正極電位もしくは負極電位を検出してもよい。後者の場合、参照極として用いるリチウム電極を個々の単電池10に挿入する。図5及び図6の電池パックでは、単電池10それぞれに電圧検出のための配線35が接続されており、これら配線35を通して検出信号が保護回路26に送信される。
 正極端子7及び負極端子6が突出する側面を除く組電池23の三側面には、ゴムもしくは樹脂からなる保護シート36がそれぞれ配置されている。
 組電池23は、各保護シート36及びプリント配線基板24と共に収納容器37内に収納されている。すなわち、収納容器37の長辺方向の両方の内側面と短辺方向の内側面それぞれに保護シート36が配置されており、短辺方向の反対側の内側面にプリント配線基板24が配置されている。組電池23は、保護シート36及びプリント配線基板24で囲まれた空間内に位置する。蓋38は、収納容器37の上面に取り付けられている。
 なお、組電池23の固定には粘着テープ22に代えて、熱収縮テープを用いてもよい。この場合、組電池の両側面に保護シートを配置し、熱収縮チューブを周回させた後、熱収縮チューブを熱収縮させて組電池を結束させる。
 図5及び図6に示した電池パック20は複数の単電池10を直列接続した形態を有するが、第2の実施形態に係る電池パックは、電池容量を増大させるために、複数の単電池10を並列に接続してもよい。或いは、第2の実施形態に係る電池パックは、直列接続と並列接続とを組合せて接続された複数の単電池10を備えてもよい。組み上がった電池パック20をさらに直列又は並列に接続することもできる。
 また、図5及び図6に示した電池パック20は複数の単電池10を備えているが、第2の実施形態に係る電池パックは1つの単電池10を備えるものでもよい。
 また、電池パックの実施形態は用途により適宜変更される。本実施形態に係る電池パックは、大電流を取り出したときにサイクル特性が優れていることが要求される用途に好適に用いられる。具体的には、デジタルカメラの電源として、又は、例えば二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、及び、アシスト自転車の車載用電池として用いられる。特に、車載用電池として好適に用いられる。
 第2の実施形態に係る電池パックは、第1の実施形態の非水電解質電池を含むので、高いエネルギー密度を示しながら、優れた充放電特性を示すことができる。
 (実施例)
 以下に実施例を説明するが、本発明の主旨を超えない限り、本発明は以下に掲載される実施例に限定されるものでない。
 (実施例1)
 実施例1では、以下手順により、評価用セルを作製した。
 <正極の作製>
 正極活物質としての、鉄を含むリン酸マンガンリチウムLiMn0.8Fe0.2PO4を用意した。また、二酸化マンガンMnO2を用意した。二酸化マンガンは、3.0V(vs. Li/Li+)程度の電位でリチウムを吸蔵することができる物質である。用意したリン酸マンガンリチウムと二酸化マンガンとを、10:1の重量比で混合して混合物を得た。90重量%の上記混合物、5重量%のアセチレンブラック、及び5重量%のポリフッ化ビニリデン(PVdF)を、N-メチルピロリドン(NMP)に加えて混合して正極スラリーを作製した。作製した正極スラリーを、厚さ15μmのアルミニウム箔集電体の両面に塗布した後、塗布したスラリーを乾燥し、プレスを施して、正極集電体とその両面に形成された正極層とを含む正極を作製した。
 <負極の作製>
 負極活物質としての92重量%のスピネル型チタン酸リチウムLi4Ti512と、3重量%のアセチレンブラックと、3重量%のコークスと、2重量%のPVdFとをNMP中に溶解して、負極スラリーを得た。作製した負極スラリーを、厚さ15μmのアルミニウム箔集電体の両面に塗布した後、塗布したスラリー乾燥し、プレスを施して、負極集電体とその両面に形成された負極層とを含む負極を作製した。
 <非水電解質の調製>
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比率1:2で混合して、非水溶媒を調製した。この非水溶媒に、電解質としてのLiPF6を1.0mol/Lの濃度で溶解させた。かくして、非水電解質を調製した。
 <評価用セルの作製>
 乾燥アルゴン中で、先に作製した正極と負極とをセパレータであるグラスフィルターを介して対向させ、これらの部材を二極式ガラスセルに入れ、正極及び負極のそれぞれをガラスセルの正極端子及び負極端子に接続した。続いて、ガラスセル内に先の如く調製した非水電解質を注いで、正極、負極及びセパレータに充分に非水電解質を含浸させた。この状態で、ガラス容器を密閉して、実施例1の評価用セルを作製した。
 (実施例2)
 鉄を含むリン酸マンガンリチウムと二酸化マンガンとを20:1の重量比で混合して混合物を得たこと以外は実施例1と同様にして、実施例2の評価用セルを作製した。
 (実施例3)
 鉄を含むリン酸マンガンリチウムと二酸化マンガンとを40:1の重量比で混合して混合物を得たこと以外は実施例1と同様にして、実施例3の評価用セルを作製した。
 (実施例4)
 鉄を含むリン酸マンガンリチウムと二酸化マンガンとを100:1の重量比で混合して混合物を得たこと以外は実施例1と同様にして、実施例4の評価用セルを作製した。
 (実施例5)
 二酸化マンガンの代わりに酸化バナジウムV25を用いたこと以外は実施例1と同様にして、実施例5の評価用セルを作製した。
 酸化バナジウムは、3.0V(vs. Li/Li+)程度の電位でリチウムを吸蔵することができる物質である。
 (実施例6)
 二酸化マンガンの代わりに酸化モリブデンMoO3を用いたこと以外は実施例1と同様にして、実施例6の評価用セルを作製した。
 酸化モリブデンは、2.5V(vs. Li/Li+)程度の電位でリチウムを吸蔵することができる物質である。
 (実施例7)
 二酸化マンガンの代わりにフッ化鉄FeF3を用いたこと以外は実施例1と同様にして、実施例7の評価用セルを作製した。
 フッ化鉄は、3.0V(vs. Li/Li+)程度の電位でリチウムを吸蔵することができる物質である。
 (実施例8)
 二酸化マンガンの代わりに硫化チタンTiS2を用いたこと以外は実施例1と同様にして、実施例8の評価用セルを作製した。
 硫化チタンは、2.4V(vs. Li/Li+)程度の電位でリチウムを吸蔵することができる物質である。
 (実施例9)
 正極活物質として、鉄を含むリン酸マンガンリチウムLiMn0.8Fe0.2PO4の代わりに、鉄及びマグネシウムを含むリン酸マンガンリチウムLiMn0.8Fe0.1Mg0.1PO4を用いたこと以外は実施例1と同様にして、実施例9の評価用セルを作製した。
 (実施例10)
 正極活物質として、鉄を含むリン酸マンガンリチウムLiMn0.8Fe0.2PO4の代わりに、鉄及びマグネシウムを含むリン酸マンガンリチウムLiMn0.9Fe0.05Mg0.05PO4を用いたこと以外は実施例1と同様にして、実施例10の評価用セルを作製した。
 (実施例11)
 正極活物質として、鉄を含むリン酸マンガンリチウムLiMn0.8Fe0.2PO4の代わりに、鉄及びマグネシウムを含むリン酸マンガンリチウムLiMn0.7Fe0.2Mg0.1PO4を用いたこと以外は実施例1と同様にして、実施例11の評価用セルを作製した。
 (実施例12)
 正極活物質として、鉄を含むリン酸マンガンリチウムLiMn0.8Fe0.2PO4の代わりに、鉄及びカルシウムを含むリン酸マンガンリチウムLiMn0.85Fe0.1Ca0.05PO4を用いたこと以外は実施例1と同様にして、実施例12の評価用セルを作製した。
 (実施例13)
 正極活物質として、鉄を含むリン酸マンガンリチウムLiMn0.8Fe0.2PO4の代わりに、鉄及びアルミニウムを含むリン酸マンガンリチウムLiMn0.85Fe0.1Al0.05PO4を用いたこと以外は実施例1と同様にして、実施例13の評価用セルを作製した。
 (実施例14)
 正極活物質として、鉄を含むリン酸マンガンリチウムLiMn0.8Fe0.2PO4の代わりに、鉄及びチタンを含むリン酸マンガンリチウムLiMn0.85Fe0.1Ti0.05PO4を用いたこと以外は実施例1と同様にして、実施例14の評価用セルを作製した。
 (実施例15)
 正極活物質として、鉄を含むリン酸マンガンリチウムLiMn0.8Fe0.2PO4の代わりに、鉄及び亜鉛を含むリン酸マンガンリチウムLiMn0.85Fe0.1Zn0.05PO4を用いたこと以外は実施例1と同様にして、実施例15の評価用セルを作製した。
 (実施例16)
 正極活物質として、鉄を含むリン酸マンガンリチウムLiMn0.8Fe0.2PO4の代わりに、鉄及びジルコニウムを含むリン酸マンガンリチウムLiMn0.85Fe0.1Zr0.05PO4を用いたこと以外は実施例1と同様にして、実施例16の評価用セルを作製した。
 (実施例17)
 スピネル型チタン酸リチウムの代わりに単斜晶系β型チタン複合酸化物TiO2(B)を用いたこと以外は実施例1と同様にして、実施例17の評価用セルを作製した。
 (比較例1)
 正極スラリー調製の際に二酸化マンガンを用いなかったこと以外は実施例1と同様にして、比較例1の評価用セルを作製した。
 (比較例2)
 鉄を含むリン酸マンガンリチウムと二酸化マンガンとを5:1の重量比で混合して混合物を得たこと以外は実施例1と同様にして、比較例2の評価用セルを作製した。
 (比較例3)
 鉄を含むリン酸マンガンリチウムと二酸化マンガンとを120:1の重量比で混合して混合物を得たこと以外は実施例1と同様にして、比較例3の評価用セルを作製した。
 (比較例4)
 スピネル型チタン酸リチウムの代わりに単斜晶系β型チタン複合酸化物を用いたこと以外は比較例1と同様にして、比較例4の評価用セルを作製した。
 [評価]
 <ガラスセルの充放電試験>
 実施例1~17及び比較例1~4の評価用セルに対し、25℃環境において充放電サイクル試験を行った。充放電レートは0.1Cとし、電圧範囲は1.0-2.7Vとした。以下の表1に、実施例1~17及び比較例1~4の評価用セルについての100サイクル後の容量維持率を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示した結果から、負極層がスピネル型チタン酸リチウムを含んでおり、正極層が鉄を含むリン酸マンガンリチウム及び3.3V(vs. Li/Li+)以下の電位でリチウムを吸蔵することができる物質を含んでいる実施例1~16の評価用セルは、負極層がスピネル型チタン酸リチウムを含んでおり、正極層が鉄を含むリン酸マンガンリチウムを含んでいるが、正極層が3.3V(vs. Li/Li+)以下の電位でリチウムを吸蔵することができる物質を含んでいない比較例1に比べて良好な容量維持率が得られたことが分かる。また、表1に示した結果から、二酸化マンガン以外の3.3V(vs. Li/Li+)以下の電位でリチウムを吸蔵することができる物質を用いた実施例5~8でも、実施例1と同様に良好な容量維持率が得られたことが分かる。更に、表1に示した結果から、正極活物質として、Mg、Ca、Al、Ti、Zn及びZrの何れかを含む点で実施例1のものとは異なるリン酸マンガンリチウムを用いた実施例9~16も、実施例1と同様に良好な容量維持率が得られたことが分かる。
 また、表1に示した実施例17及び比較例4の結果から、負極層が単斜晶系β型チタン複合酸化物を含んでいる場合でも、負極層がスピネル型チタン酸リチウムを含んでいる場合と同様に、正極層が、鉄を含むリン酸マンガンリチウム及び3.3V(vs. Li/Li+)以下の電位でリチウムを吸蔵することができる物質を含んでいるおかげによる容量維持率の向上を達成できたことが分かる。
 また、表1に示した結果から、鉄を含むリン酸マンガンリチウムの重量の二酸化マンガンに対する重量比が10~100である実施例1~4は、鉄を含むリン酸マンガンリチウムの重量の二酸化マンガンに対する重量比が120である比較例3よりも良好な容量維持率が得られたことが分かる。更に、表1に示した結果から、鉄を含むリン酸マンガンリチウムの重量の二酸化マンガンに対する重量比が10~40である実施例1~3は、鉄を含むリン酸マンガンリチウムの重量の二酸化マンガンに対する重量比が100である実施例4よりも更に良好な容量維持率が得られたことが分かる。
 なお、比較例2は、85%という容量維持率を示したが、鉄を含むリン酸マンガンリチウムの重量の二酸化マンガンに対する重量比が5であり、正極層に含まれるリン酸マンガンリチウムが少なかったために、正極のエネルギー密度が実施例1~4に比べて著しく低かった。
 <実施例1及び比較例1の放電曲線の評価>
 実施例1の評価用セルの正極及び比較例1の評価用セルの正極について、先に説明したように単極評価を行い、放電曲線を得た。図7に実施例1の正極についての放電曲線を示す。また、図8に、比較例1の正極についての放電曲線を示す。
 図7に示した放電曲線では、3V(vs. Li/Li+)付近にプラトーを有し、二酸化マンガンへのリチウム吸蔵による変曲点が確認された。一方、図8に示した放電曲線では、3.3V(vs. Li/Li+)以下にプラトーが見られなかった。この放電曲線から、実施例1の評価用セルでは、正極層に含まれていた二酸化マンガンが3V(vs. Li/Li+)付近でリチウムを吸蔵することができたことが分かる。
 以上に説明した少なくとも一つの実施形態及び実施例によれば、非水電解質電池が提供される。この非水電解質電池は、LiMn1-x-yFexyPO4で表される正極活物質と、3.3V(vs. Li/Li+)以下の電位でリチウムを吸蔵することができる物質とを含むので、高いエネルギー密度を示すと共に、放電末期の正極電位の急激な低下を防ぐことができ、ひいては優れた寿命特性を示すことができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 10及び10’…電池(単電池)、1及び11…電極群、2及び12…容器、3及び13…負極、3a及び13a…負極集電体、3b及び13b…負極層、4及び14…セパレータ、5及び15…正極、5a及び15a…正極集電体、5b及び15b…正極層、6及び16…負極端子、7及び17…正極端子、20…電池パック、23…組電池、24…プリント配線基板、25…サーミスタ、26…保護回路、27…通電用端子、28…正極側リード、29…正極側コネクタ、30…負極側リード、31…負極側コネクタ、32、33…配線、34a…プラス側配線、34b…マイナス側配線、35…電圧検出のための配線、36…保護シート、37…収納容器、38…蓋。

Claims (8)

  1.  リチウム吸蔵放出電位が0.8V(vs. Li/Li+)以上である負極活物質を含む負極と、
     LiMn1-x-yFexyPO4(式中、0<x≦0.3及び0≦y≦0.1であり、Aは、Mg、Ca、Al、Ti、Zn及びZrからなる群より選択される少なくとも1種である)で表される正極活物質と、3.3V(vs. Li/Li+)以下の電位でリチウムを吸蔵することができる物質とを含む正極と、
     非水電解質と
    を含む非水電解質電池。
  2. 前記正極活物質の重量の前記物質の重量に対する比が、10以上100以下である請求項1記載の非水電解質電池。
  3.  前記物質が、酸化物、フッ化物、硫化物又はポリマーである請求項1記載の非水電解質電池。
  4.  前記物質が、マンガン酸化物である請求項1記載の非水電解質電池。
  5.  前記物質が、鉄含有フッ化物である請求項1記載の非水電解質電池。
  6.  前記負極活物質が、スピネル型チタン酸リチウムを含む請求項1~5の何れか1項記載の非水電解質電池。
  7.  前記負極活物質が、単斜晶系β型チタン複合酸化物を含む請求項1~6の何れか1項記載の非水電解質電池。
  8.  請求項1~7の何れか1項記載の非水電解質電池を含む電池パック。
PCT/JP2013/075742 2013-09-24 2013-09-24 非水電解質電池及び電池パック WO2015045009A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2013/075742 WO2015045009A1 (ja) 2013-09-24 2013-09-24 非水電解質電池及び電池パック
JP2015538662A JP6113852B2 (ja) 2013-09-24 2013-09-24 非水電解質電池、電池パック及び車
US15/066,145 US10305106B2 (en) 2013-09-24 2016-03-10 Nonaqueous electrolyte battery and battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/075742 WO2015045009A1 (ja) 2013-09-24 2013-09-24 非水電解質電池及び電池パック

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/066,145 Continuation US10305106B2 (en) 2013-09-24 2016-03-10 Nonaqueous electrolyte battery and battery pack

Publications (1)

Publication Number Publication Date
WO2015045009A1 true WO2015045009A1 (ja) 2015-04-02

Family

ID=52742223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075742 WO2015045009A1 (ja) 2013-09-24 2013-09-24 非水電解質電池及び電池パック

Country Status (3)

Country Link
US (1) US10305106B2 (ja)
JP (1) JP6113852B2 (ja)
WO (1) WO2015045009A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5928648B1 (ja) * 2015-09-30 2016-06-01 住友大阪セメント株式会社 リチウムイオン二次電池用電極材料
JP2021534566A (ja) * 2018-08-08 2021-12-09 ブライトボルト, インク.Brightvolt, Inc. 充電式リチウムバッテリ向けの固体ポリマーマトリックス電解質(pme)及びこれで作られたバッテリ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11121408B2 (en) 2019-03-14 2021-09-14 Medtronic, Inc. Lithium-ion battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034306A (ja) * 2006-07-31 2008-02-14 Furukawa Battery Co Ltd:The リチウム二次電池正極活物質の製造方法
JP2010225486A (ja) * 2009-03-25 2010-10-07 Toshiba Corp 非水電解質電池
JP2013110134A (ja) * 2008-12-25 2013-06-06 Toshiba Corp 非水電解質電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100822013B1 (ko) 2005-04-15 2008-04-14 주식회사 에너세라믹 불소화합물코팅 리튬이차전지 양극 활물질 및 그 제조방법
KR20060111393A (ko) 2005-04-22 2006-10-27 주식회사 엘지화학 대용량 비가역 물질을 포함하는 새로운 시스템의 리튬 이온전지
US7892676B2 (en) 2006-05-11 2011-02-22 Advanced Lithium Electrochemistry Co., Ltd. Cathode material for manufacturing a rechargeable battery
JP4213688B2 (ja) 2005-07-07 2009-01-21 株式会社東芝 非水電解質電池及び電池パック
JP2007123251A (ja) 2005-09-28 2007-05-17 Sanyo Electric Co Ltd 非水電解質二次電池
JP4625744B2 (ja) 2005-09-29 2011-02-02 株式会社東芝 非水電解質電池および電池パック
KR101430615B1 (ko) 2007-09-19 2014-08-14 삼성에스디아이 주식회사 캐소드 및 이를 채용한 리튬 전지
US10056644B2 (en) * 2009-07-24 2018-08-21 Zenlabs Energy, Inc. Lithium ion batteries with long cycling performance
DE102010031543A1 (de) * 2010-07-20 2012-01-26 Evonik Litarion Gmbh Batterie, ein Bimetall enthaltend
JP5766761B2 (ja) * 2011-11-14 2015-08-19 株式会社東芝 非水電解質電池
JP5734813B2 (ja) * 2011-11-16 2015-06-17 株式会社東芝 電池用電極、非水電解質電池及び電池パック
US9705124B2 (en) * 2012-02-27 2017-07-11 The Johns Hopkins University High energy density Li-ion battery electrode materials and cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034306A (ja) * 2006-07-31 2008-02-14 Furukawa Battery Co Ltd:The リチウム二次電池正極活物質の製造方法
JP2013110134A (ja) * 2008-12-25 2013-06-06 Toshiba Corp 非水電解質電池
JP2010225486A (ja) * 2009-03-25 2010-10-07 Toshiba Corp 非水電解質電池
JP2012033507A (ja) * 2009-03-25 2012-02-16 Toshiba Corp 非水電解質電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5928648B1 (ja) * 2015-09-30 2016-06-01 住友大阪セメント株式会社 リチウムイオン二次電池用電極材料
US9780372B2 (en) 2015-09-30 2017-10-03 Sumitomo Osaka Cement Co., Ltd. Electrode material for lithium-ion rechargeable battery
JP2021534566A (ja) * 2018-08-08 2021-12-09 ブライトボルト, インク.Brightvolt, Inc. 充電式リチウムバッテリ向けの固体ポリマーマトリックス電解質(pme)及びこれで作られたバッテリ

Also Published As

Publication number Publication date
US10305106B2 (en) 2019-05-28
JPWO2015045009A1 (ja) 2017-03-02
US20160190587A1 (en) 2016-06-30
JP6113852B2 (ja) 2017-04-12

Similar Documents

Publication Publication Date Title
US10673103B2 (en) Battery module, battery pack and vehicle
JP5586532B2 (ja) 非水電解質電池及び電池パック
JP4625744B2 (ja) 非水電解質電池および電池パック
JP6100385B2 (ja) 非水電解質電池用正極、非水電解質電池、電池パック及び車
JP5694221B2 (ja) 非水電解質電池及び電池パック
JP2013080714A (ja) 非水電解液電池、電池パックおよび自動車
JP5734813B2 (ja) 電池用電極、非水電解質電池及び電池パック
JP6334308B2 (ja) 非水電解質電池、電池パック、及び車
JP6113521B2 (ja) 非水電解質電池および電池パック
JP2014154317A (ja) 電極、非水電解質電池及び電池パック
JP2016033898A (ja) 非水電解質電池及び電池パック
JP6058444B2 (ja) 負極、非水電解質電池、電池パック及び自動車
JP5535160B2 (ja) 非水電解質電池及び電池パック
CN109417193B (zh) 非水电解质电池及电池包
JP6933771B2 (ja) 電極群、電池及び電池パック
JP5865951B2 (ja) 非水電解質電池及び電池パック
US10305106B2 (en) Nonaqueous electrolyte battery and battery pack
JP6878447B2 (ja) 非水電解質電池及び電池パック
JP6054540B2 (ja) 正極活物質、非水電解質電池及び電池パック
WO2017046891A1 (ja) 充電システム及び非水電解質電池の充電方法
JP5851547B2 (ja) 非水電解質電池及び電池パック
JP5361940B2 (ja) 非水電解質電池および電池パック
JP2012164667A (ja) 負極活物質、非水電解質電池及び電池パック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894632

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015538662

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13894632

Country of ref document: EP

Kind code of ref document: A1