WO2015043263A1 - 有机电致发光器件的封装结构及封装方法、显示装置 - Google Patents

有机电致发光器件的封装结构及封装方法、显示装置 Download PDF

Info

Publication number
WO2015043263A1
WO2015043263A1 PCT/CN2014/080902 CN2014080902W WO2015043263A1 WO 2015043263 A1 WO2015043263 A1 WO 2015043263A1 CN 2014080902 W CN2014080902 W CN 2014080902W WO 2015043263 A1 WO2015043263 A1 WO 2015043263A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film
organic
electroluminescent device
fluorocarbon
Prior art date
Application number
PCT/CN2014/080902
Other languages
English (en)
French (fr)
Inventor
尤娟娟
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/424,170 priority Critical patent/US9728746B2/en
Publication of WO2015043263A1 publication Critical patent/WO2015043263A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene

Definitions

  • At least one embodiment of the present invention is directed to a package structure and package method of an organic electroluminescence device, and a display device. Background technique
  • OLEDs organic electroluminescent diodes
  • TFT-LCDs thin film transistor liquid crystal displays
  • OLED devices are generally formed by using a rigid glass substrate or a flexible polymer substrate as a carrier by depositing a transparent anode, a metal cathode, and two or more organic light-emitting layers sandwiched therebetween. These organic light-emitting layers generally include a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, an electron injection layer, and the like. OLED devices are very sensitive to oxygen and moisture. If oxygen and moisture penetrate into the OLED device, it can cause undesirable phenomena such as black spots, pinholes, electrode oxidation, and organic material chemical reactions, which affects the lifetime of OLED devices. Therefore, packaging technology is one of the main technologies for realizing OLED industrialization.
  • packaging technology mainly includes three types of metal cover packaging, glass cover packaging and thin film packaging technology. Both of the first packages require the application of a sealant around the organic light-emitting region and the placement of a moisture absorbent therein.
  • the thin film encapsulation technique uses an alternating multilayer film structure of an organic polymer film and an inorganic film prepared by a vacuum coating process.
  • the inorganic film has high density, is a main water-oxygen barrier layer, and the organic polymer film serves as a buffer layer, and the organic polymer film can effectively suppress the inorganic film because of high elasticity. Cracking. Summary of the invention
  • the package structure and packaging method and the display device of the organic electroluminescent device provided by at least one embodiment of the present invention can effectively improve the water and oxygen barrier capability of the thin film encapsulation layer, thereby effectively extending The lifetime of OLED devices.
  • At least one embodiment of the present invention provides a package structure of an organic electroluminescent device, comprising: a substrate; an organic electroluminescent device on the substrate; and at least one thin film encapsulation layer covering the organic electroluminescent device
  • the thin film encapsulation layer includes an inorganic thin film and a fluorocarbon polymer film.
  • At least one embodiment of the present invention also provides a display device comprising the package structure of the organic electroluminescent device as described above.
  • At least one embodiment of the present invention also provides a method of packaging an organic electroluminescent device, comprising: providing a substrate; preparing an organic electroluminescent device on the substrate; and forming on the organic electroluminescent device At least one thin film encapsulation layer comprising an inorganic thin film and a fluorocarbon polymer film.
  • FIG. 1 is a schematic diagram of a package structure of an organic electroluminescent device according to at least one embodiment of the present invention
  • Fig. 2 is a schematic view showing the structure of a thin film encapsulation layer comprising an inorganic thin film, an organic polymer thin film and a fluorocarbon polymer thin film.
  • both the metal cover package and the glass cover package have both types of packaging methods. It has better water and oxygen barrier ability, but the metal cover is opaque and is not suitable for many applications.
  • the glass cover has the disadvantage of low mechanical strength, which makes the display device relatively thick and can not meet the people's flexibility and thinness for OLED devices. Demand.
  • the inorganic film has low elasticity and large internal stress, and thus is relatively susceptible to cracking by external force or peeling off from the OLED device;
  • Organic polymer films have poor barrier properties to water and oxygen, and even some organic polymers have strong water absorption properties, so water vapor has the opportunity to pass through defects of inorganic thin films adjacent to these organic polymer films into OLED devices. Internally, the lifetime of the OLED device is reduced.
  • the package structure, the encapsulation method and the display device of the organic electroluminescent device provided by at least one embodiment of the present invention can effectively improve the water and oxygen barrier capability of the thin film encapsulation layer, thereby effectively extending
  • the package structure includes: a substrate 3 for supporting the OLED device 2; an OLED device 2 on the substrate 3; and an OLED covering At least one thin film encapsulation layer 1 of device 2.
  • the film encapsulation layer 1 comprises an inorganic film 11 and a fluorocarbon polymer film 13.
  • the package structure further includes an organic polymer film 12 between the inorganic film 11 and the fluorocarbon polymer film 13.
  • a dense fluorocarbon polymer film is added to the film encapsulation layer, and the fluorocarbon polymer has an extremely low surface energy and a strong hydrophobic ability, thereby being effective. Improve the ability of the film encapsulation layer to block water oxygen.
  • the fluorocarbon polymer film is easy to form a relatively smooth topography, the inorganic film prepared thereon is also easy to obtain smooth, less pinhole. The morphological application of the thin film encapsulation layer in the package of the OLED device can effectively extend the lifetime of the OLED device and improve the reliability of the OLED device during storage and use.
  • one or more thin film encapsulation layers may be covered on the OLED device as needed.
  • the OLED device may be covered with 1 to 20 thin film encapsulation layers.
  • n thin film encapsulation layers are superposed on each other over the OLED device.
  • the fluorocarbon polymer film is a polymer film formed, for example, by fluorocarbon gas plasma polymerization, and the fluorocarbon gas includes CHF 3 , C 3 F 8 , C 4 F 10 , C 2 F 4 . And ⁇ 4 ? 8 One or several combinations. It should be noted that the fluorocarbon polymer film may also be formed by using other fluorocarbon compounds than the above-mentioned fluorocarbon gas, which is not limited herein.
  • the inorganic thin film has a thickness of 5 nm to 200 nm
  • the fluorocarbon polymer film has a thickness of 5 nm to 200 nm
  • the organic polymer film has a thickness of 5 nm to 200 nm.
  • the material of the inorganic thin film is selected from the group consisting of A1 2 0 3 , Ti0 2 , Zr0 2 , MgO, Hf0 2 , Ta 2 0 5 , Si 3 N 4 , A1N, SiN, SiNO, SiO, Si0 2 , SiO x . , a combination of one or more of SiC and ITO.
  • the material of the organic polymer is selected from the group consisting of PET (polyethylene terephthalate), PEN (ethylene naphthalate), PC (polycarbonate), PI (polyamide) Amine), PVC (polyvinyl chloride), PS (polystyrene), PMMA (polyalkyl methacrylate), PBT (polybutylene terephthalate), PSO (polysulfone), PES (poly) P-Diethyl sulfone), PE (polyethylene), PP (polypropylene), silicone (polysiloxane), PA (polyamide), PVDF (polyvinylidene fluoride), EVA (ethylene-vinyl acetate copolymerization ), EVAL (ethylene-vinyl alcohol copolymer), PAN (polypropylene cyanide), PVAc (polyvinyl acetate), Parylene (poly(p-phenylene) phenyl), Polyurethane
  • the package structure of the OLED device is the same as the above embodiment, and will not be described herein. In addition, the structure of other parts of the display device will not be described in detail herein.
  • the display device can be: a product or a component having any display function such as electronic paper, television, display, digital photo frame, mobile phone, tablet, and the like.
  • At least one embodiment of the present invention also provides a method of packaging an organic electroluminescent device, comprising: providing a substrate; preparing the OLED device on the substrate; and forming at least one thin film package on the OLED device
  • the layer, the thin film encapsulation layer comprises an inorganic thin film and a fluorocarbon polymer film.
  • the thin film encapsulation layer may further include an organic polymer film between the inorganic thin film and the fluorocarbon polymer film.
  • a dense fluorocarbon polymer film is added to the film encapsulation layer, and the fluorocarbon polymer is effective because of its extremely low surface energy and strong hydrophobic ability. Improve the ability of the film encapsulation layer to block water oxygen.
  • the fluorocarbon polymer film is easy to form a relatively smooth topography, the inorganic film prepared thereon is also easy to obtain smooth, less pinhole. Morphology, the thin film encapsulation layer is applied to the package of the OLED device, which can effectively extend the OLED The lifetime of the device is beneficial to improve the reliability of the OLED device during storage and use.
  • forming a thin film encapsulation layer on the OLED device includes depositing, for example, a layer of an inorganic material on the OLED device to form the inorganic thin film; and forming the fluorocarbon polymerization, for example, by fluorocarbon gas plasma polymerization. Film.
  • forming the thin film encapsulation layer on the OLED device further comprises: depositing, for example, a layer of an organic polymer on the inorganic film to form the organic polymer film.
  • depositing, for example, a layer of inorganic material on the OLED device to form the inorganic thin film comprises: depositing on the OLED device by ion beam sputtering or magnetron sputtering deposition or atomic layer deposition, for example A layer of inorganic material forms the inorganic film.
  • Depositing, for example, a layer of an organic polymer on the inorganic film to form the organic polymer film comprises: depositing, for example, a layer of an organic polymer on the inorganic film by a solution film forming method or a chemical vapor deposition method.
  • An organic polymer film For example, the organic polymer film is formed on the inorganic film by chemical vapor deposition.
  • the forming the fluorocarbon polymer film on the organic polymer film comprises: performing radio frequency discharge on a fluorocarbon gas to generate a fluorocarbon gas plasma.
  • the RF source frequency is 13.56 MHz
  • the RF source power is 50-200 W
  • the ambient pressure is 300-400 mTorr
  • the fluorocarbon gas flow rate is 20-80 sccm.
  • the fluorocarbon gas comprises a combination of one or more of CHF 3 , C 3 F 8 , C 4 F 10 , C 2 F 4 , and ⁇ 4 8 .
  • radio frequency source frequency and the like in the embodiments of the present invention are merely used to exemplarily describe conditions for radio frequency discharge of a fluorocarbon gas to generate a fluorocarbon gas plasma, but embodiments of the present invention are not limited thereto.
  • the fluorocarbon polymer film may be formed by using a fluorocarbon compound other than the above fluorocarbon gas, which is not limited herein.
  • the organic polymer film has poor barrier property against water and oxygen, and even some organic polymers themselves have strong water absorption, so water vapor has a chance to pass through the phase.
  • the defects of the adjacent inorganic thin film enter the inside of the OLED device, so that the lifetime of the OLED device is lowered.
  • the fluorine atom has a smaller atomic size and Larger electronegativity can form stable chemical bonds with other atoms (such as carbon atoms), so the fluorine atoms can effectively reduce the surface energy of the material.
  • Materials for example, inorganic materials, organic polymers
  • CHF 3 gas is polymerized after surface plasma treatment to form a CFx layer on the ITO surface, which makes the ITO hydrophobic and can improve the flatness of the ITO surface.
  • the plasma generated by CF 4 gas and The chemical bond changes after the surface of the silicone rubber acts, and a fluorocarbon functional group and a fluorosilicon functional group are formed on the surface of the silicone rubber, which can improve the hydrophobicity of the silicone rubber.
  • At least one embodiment of the present invention provides a method of adding a dense fluorocarbon polymer film to a thin film encapsulation layer, since the fluorocarbon has both extremely low surface energy and strong The hydrophobic ability, therefore, the thin film encapsulation method is applied to the packaging of the OLED, and the water blocking ability of the thin film encapsulation layer can be greatly improved.
  • Example 1 Al 2 O 3 (50 nm) / polychlorinated p-nonylbenzene (50 nm) / CFx (10 nm)
  • Step a providing a substrate, the substrate may be a quartz substrate, a glass substrate or a polymer substrate; etc.; Step b: preparing the OLED device onto the substrate;
  • Step c ⁇ depositing a layer of A1 2 0 3 film on the substrate subjected to step b by ion beam sputtering deposition, the vacuum degree in the deposition chamber is l (T 6 Pa, deposition time is 10 min, A1 2 0 3 film) The thickness is 50 ⁇ ;
  • Step d depositing a layer of polychlorinated p-terphenylbenzene on the A1 2 0 3 film by chemical vapor deposition, for example, first sublimating solid C-type polychlorinated p-benzoquinone at 100 Q C , the C-type polychlorinated p-terphenylbenzene cleaves two side chain carbon-carbon bonds at 630 ° C to form a stable active monomer, and then the active monomer is introduced into the deposition chamber through a catheter and deposited in A1 2 0 3 On the film, the vacuum in the deposition chamber is 1 (T 6 Pa, deposition time is 5 min, and the deposited C-type polychlorinated p-benzoquinone is 50 nm thick;
  • Step e Application on polychlorinated p-phenylene layer deposition thickness manner
  • CHF 3 gas plasma polymerized polymer film is 10nm CFx example, may be a radio frequency discharge of CHF 3 gas, CHF 3
  • a plurality of thin film encapsulation layers can be formed on the OLED device to obtain a package structure of the OLED device. If it is necessary to form M thin film encapsulation layers on the OLED device, then The above steps are repeated M times. For example, this embodiment can repeat the above steps ce three times to form a thin film encapsulation layer having a three-layer fluorocarbon polymer film.
  • Step a providing a substrate, the substrate may be a quartz substrate, a glass substrate or a polymer substrate; etc.; Step b: preparing the OLED device onto the substrate;
  • Step c depositing a SiO film on the substrate subjected to step b by magnetron sputtering, the vacuum in the deposition chamber is 10 -5 Pa, the deposition time is 10 min, and the thickness of the SiO film is 100 nm;
  • the solid C-type polychloro-p-quinone is sublimed at 100 ° C to make the C-type polychlorinated
  • the two side chain carbon-carbon bonds at 630 ° C are broken to form a stable active monomer, and the active monomer is introduced into the deposition chamber through a catheter and deposited on the SiO film.
  • the vacuum in the deposition chamber is l (T 6 Pa, deposition time is 20 min, deposited C-type polychlorinated p-quinone benzene thickness is 200 nm;
  • Step e deposition on the polychlorinated p-phenylene layer by CHF 3 gas plasma polymerization CFx polymer film having a thickness of 20nm to form a package structure of the OLED device.
  • radio frequency discharge CHF 3 gas, CHF 3 gas plasma is generated, in one example, the RF source frequency 13.56MHz, the RF power source 50 -200W, for example 200W, ambient pressure is 300-400m Torr, for example, 350 mTorr, CHF 3 gas flow rate is 20-80 sccm, for example 20 sccm.
  • Step a providing a substrate, the substrate may be a quartz substrate, a glass substrate or a polymer substrate; etc.; Step b: preparing the OLED device onto the substrate;
  • Step c depositing a layer of SiON film on the substrate subjected to step b by magnetron sputtering, the vacuum in the deposition chamber is 10 -5 Pa, the deposition time is 10 min, and the thickness of the SiON film is 100 nm; ⁇
  • a method of chemical vapor deposition is used to deposit a layer of polychlorinated p-terphenylbenzene on the SiON film.
  • the solid C-type polychloro-p-quinone is sublimed at 100 ° C to make C-type polychlorinated
  • the two side chain carbon-carbon bonds at 630 ° C are broken to form a stable active monomer, and the active monomer is introduced into the deposition chamber through a catheter and deposited on the SiON film.
  • the vacuum in the deposition chamber is l (T 6 Pa, deposition time is 20 min, deposited C-type polychlorinated p-quinone benzene thickness is 200 nm;
  • Step e deposition on the polychlorinated p-phenylene layer by CHF 3 gas plasma polymerization
  • a CFx polymer film having a thickness of 20 nm forms a package structure of the OLED device.
  • the CHF 3 gas can be subjected to radio frequency discharge to generate a CHF 3 gas plasma.
  • the RF source frequency is 13.56 MHz
  • the RF source power is 50-200 W, for example, 100 W
  • the ambient pressure is 300-400 mTorr, for example
  • the 400 mTorr, CHF 3 gas flow rate is 20-80 sccm, for example 50 sccm.
  • Step a providing a substrate, the substrate may be a quartz substrate, a glass substrate or a polymer substrate; etc.; Step b: preparing the OLED device onto the substrate;
  • Step c depositing a SiN film on the substrate subjected to step b by magnetron sputtering, the vacuum in the deposition chamber is 10 -6 Pa, the deposition time is 10 min, and the thickness of the SiN film is 30 nm;
  • the solid C-type polychloro-p-quinone is sublimed at 100 ° C to make C-type polychlorinated
  • the two side chain carbon-carbon bonds at 630 ° C are broken to form a stable active monomer, and the active monomer is introduced into the deposition chamber through a catheter and deposited on the SiN film.
  • the vacuum in the deposition chamber is 10 _6 Pa, deposition time is 5 min, deposited C-type polychlorinated p-quinone benzene thickness is 50 nm;
  • Step e A CFx polymer film having a thickness of 10 nm was deposited by a plasma polymerization of CHF 3 gas on a polychlorinated p-benzoquinone layer.
  • RF gas discharge can be performed on CHF 3 gas to generate 0 ⁇ 3 gas plasma.
  • the RF source frequency is 13.56 MHz
  • the RF source power is 50-200 W, for example 150 W
  • the ambient pressure is 300-400 mTorr, for example.
  • the CHF 3 gas flow rate is 20-80 sccm, for example 40 sccm.
  • a plurality of thin film encapsulation layers can be formed on the OLED device to obtain a package structure of the OLED device. If it is desired to form M thin film encapsulation layers on the OLED device, the above steps are repeated M times. For example, this embodiment can repeat the above steps c-e three times to form a thin film encapsulation layer having a three-layer fluorocarbon polymer film.
  • Step a providing a substrate, the substrate may be a quartz substrate, a glass substrate or a polymer substrate; etc.; Step b: preparing the OLED device onto the substrate;
  • Step c depositing a SiN film on the substrate subjected to step b by magnetron sputtering, the vacuum in the deposition chamber is 10 -5 Pa, the deposition time is 10 min, and the thickness of the SiN film is 30 nm;
  • Step d pouring a mixture of an acrylic epoxy resin and a photoinitiator onto the SiN film, casting into a film (a solution film forming method), and polymerizing by ultraviolet light irradiation to form a ring having a thickness of 200 nm.
  • Oxygen resin film
  • Step e depositing a CFx polymer film having a thickness of 20 nm on a film of epoxy resin by C 2 F 4 gas plasma polymerization to form a package structure of the OLED device.
  • a C 2 F 4 gas can be radio-discharged to generate a C 2 F 4 gas plasma.
  • the RF source frequency is 13.56 MHz
  • the RF source power is 50-200 W, for example 150 W
  • the ambient pressure is 300- 400 mTorr, for example 300 mTorr
  • C 2 F 4 gas flow rate is 20-80 sccm, for example 50 sccm.
  • Example 6 Al 2 0 3 (5 bandit) / polychlorotrifluoroethylene (50nm) / CFx (10 bandit) p-phenylene Yue
  • Step a providing a substrate, the substrate may be a quartz substrate, a glass substrate or a polymer substrate; etc.; Step b: preparing the OLED device onto the substrate;
  • Step c ⁇ depositing a layer of A1 2 0 3 film on the substrate subjected to step b by ion beam sputtering deposition, the vacuum degree in the deposition chamber is l (T 6 Pa, deposition time is lmin, A1 2 0 3 film The thickness is 5 nm;
  • Step d depositing a layer of polychlorinated p-terphenylbenzene on the A1 2 0 3 film by chemical vapor deposition, for example, first sublimating solid C-type polychlorinated p-benzoquinone at 100 Q C , the C-type polychlorinated p-terphenylbenzene cleaves two side chain carbon-carbon bonds at 630 ° C to form a stable active monomer, and then the active monomer is introduced into the deposition chamber through a catheter and deposited in A1 2 0 3 On the film, the vacuum in the deposition chamber is 1 (T 6 Pa, deposition time is 5 min, and the deposited C-type polychlorinated p-benzoquinone is 50 nm thick;
  • Step e Application on polychlorinated p-phenylene layer deposition thickness manner
  • CHF 3 gas plasma polymerized polymer film is 10nm CFx example, may be a radio frequency discharge of CHF 3 gas, CHF 3
  • a plurality of thin film encapsulation layers can be formed on the OLED device to obtain a package structure of the OLED device. If it is desired to form M thin film encapsulation layers on the OLED device, the above steps are repeated M times. For example, in the present embodiment, the above steps ce may be repeated twenty times to form a thin film encapsulation layer having twenty layers of fluorocarbon polymer film.
  • Example 7 Al 2 O 3 (200 nm) / polychloro-p-diphenylene (100 nm) / CFx (5 nm)
  • the packaging method of the OLED device of the present embodiment includes the following steps:
  • Step a providing a substrate, the substrate may be a quartz substrate, a glass substrate or a polymer substrate; etc.; Step b: preparing the OLED device onto the substrate;
  • Step c depositing a layer on the substrate subjected to step b by ion beam sputtering deposition
  • the vacuum degree in the deposition chamber is l (T 6 Pa, deposition time is 40 min, thickness of A1 2 0 3 film is 200 ⁇ ;
  • Step d depositing a layer of polychlorinated p-terphenylbenzene on the A1 2 0 3 film by chemical vapor deposition, for example, first sublimating solid C-type polychlorinated p-benzoquinone at 100 Q C , the C-type polychlorinated p-terphenylbenzene cleaves two side chain carbon-carbon bonds at 630 ° C to form a stable active monomer, and then the active monomer is introduced into the deposition chamber through a catheter and deposited in A1 2 0 3 On the film, the vacuum in the deposition chamber is 1 (T 6 Pa, deposition time is 10 min, and the deposited C-type polychlorinated p-benzoquinone has a thickness of 100 nm; Step e: on the polychlorinated p-phenylene layer deposition thickness manner CHF 3 gas plasma polymerized polymer film is 5nm CFx example, may be a radio frequency discharge of CHF 3 gas, CHF 3
  • a plurality of thin film encapsulation layers can be formed on the OLED device to obtain a package structure of the OLED device. If it is desired to form M thin film encapsulation layers on the OLED device, the above steps are repeated M times. For example, this embodiment can perform only the above steps c-e-times to form a thin film encapsulation layer having a fluorocarbon polymer film.
  • Example 8 Al 2 O 3 (50 nm) / polychlorinated p-nonylbenzene (5 nm) / CFx (200 nm)
  • Step a providing a substrate, the substrate may be a quartz substrate, a glass substrate or a polymer substrate; etc.; Step b: preparing the OLED device onto the substrate;
  • Step c ⁇ depositing a layer of A1 2 0 3 film on the substrate subjected to step b by ion beam sputtering deposition, the vacuum degree in the deposition chamber is l (T 6 Pa, deposition time is 10 min, A1 2 0 3 film) The thickness is 50 ⁇ ;
  • Step d depositing a layer of polychlorinated p-terphenylbenzene on the A1 2 0 3 film by chemical vapor deposition, for example, first sublimating solid C-type polychlorinated p-benzoquinone at 100 Q C , making C
  • the type of polychlorinated p-terphenylbenzene cleaves two side chain carbon-carbon bonds at 630 ° C to form a stable active monomer, and then the active monomer is introduced into the deposition chamber through a catheter and deposited on the A1 2 0 3 film.
  • the vacuum in the deposition chamber is 1 (T 6 Pa, the deposition time is 0.5 min, and the deposited C-type polychlorinated p-benzoquinone has a thickness of 5 nm;
  • Step e A CFx polymer film having a thickness of 200 nm was deposited on the polychlorinated p-benzoquinone layer by means of CHF 3 gas plasma polymerization.
  • RF gas discharge can be performed on CHF 3 gas to generate 0 ⁇ 3 gas plasma.
  • the RF source frequency is 13.56 MHz
  • the RF source power is 50-200 W, for example 150 W
  • the ambient pressure is 300-400 mTorr, for example.
  • the CHF 3 gas flow rate is 20-80 sccm, for example 50 sccm.
  • a plurality of thin film encapsulation layers can be formed on the OLED device to obtain a package structure of the OLED device. If it is desired to form M thin film encapsulation layers on the OLED device, the above steps are repeated M times. For example, this embodiment can repeat the above steps c-e three times to form a thin film encapsulation layer having a three-layer fluorocarbon polymer film.
  • Example 9 Al 2 O 3 (50 nm) / polychlorinated p-nonylbenzene (5 nm) / CFx (200 nm)
  • Step a providing a substrate, the substrate may be a quartz substrate, a glass substrate or a polymer substrate; etc.; Step b: preparing the OLED device onto the substrate;
  • Step c ⁇ depositing a layer of A1 2 0 3 film on the substrate subjected to step b by atomic layer deposition, the thickness of the A1 2 0 3 film is 50 nm, according to the atomic layer deposition method, the A1 2 0 3 film is less than 100 Generated at a temperature of Celsius to avoid damage to the OLED device;
  • Step d depositing a layer of polychlorinated p-terphenylbenzene on the A1 2 0 3 film by chemical vapor deposition, for example, first sublimating solid C-type polychlorinated p-benzoquinone at 100 Q C , the C-type polychlorinated p-terphenylbenzene cleaves two side chain carbon-carbon bonds at 630 ° C to form a stable active monomer, and then the active monomer is introduced into the deposition chamber through a catheter and deposited in A1 2 0 3 On the film, the vacuum in the deposition chamber is 1 (T 6 Pa, the deposition time is 0.5 min, and the deposited C-type polychlorinated p-benzoquinone has a thickness of 5 nm;
  • Step e A CFx polymer film having a thickness of 200 nm was deposited on the polychlorinated p-benzoquinone layer by means of CHF 3 gas plasma polymerization.
  • the CHF 3 gas can be subjected to radio frequency discharge to generate a CHF 3 gas plasma.
  • the RF source frequency is 13.56 MHz
  • the RF source power is 50-200 W, for example, 150 W
  • the ambient pressure is 300-400 mTorr, for example.
  • the 300 mTorr, CHF 3 gas flow rate is 20-80 sccm, for example 50 sccm.
  • a plurality of thin film encapsulation layers can be formed on the OLED device, The package structure of the OLED device. If it is desired to form M thin film encapsulation layers on the OLED device, the above steps are repeated M times. For example, in the present embodiment, the above steps ce may be repeated three times to form a thin film encapsulation layer having a three-layer fluorocarbon polymer film.
  • the above embodiment is described by taking a thin film encapsulation layer including an inorganic thin film, an organic polymer thin film, and a fluorocarbon polymer thin film as an example.
  • the thin film encapsulation layer comprises an inorganic thin film and a fluorocarbon polymer film
  • the thin film encapsulation layer includes, for example, an ITO thin film and a fluorocarbon polymer film formed by plasma polymerization of CHF 3 , see the above related description, of course, the embodiment of the present invention does not Limited to this.
  • the fluorocarbon polymer film in the above embodiment may be formed by a fluorocarbon plasma polymerization method, or may be formed by a fluorocarbon plasma modification method, for example, the above-mentioned CF 4 gas-generated plasma-enhanced silicon.
  • a fluorocarbon plasma polymerization method or may be formed by a fluorocarbon plasma modification method, for example, the above-mentioned CF 4 gas-generated plasma-enhanced silicon.
  • An example of rubber hydrophobicity is not limited herein.
  • the fluorocarbon compound may be a fluorocarbon gas or other fluorocarbon material, and will not be described herein.
  • one or more layers of dense fluorocarbon polymer film are added to the film encapsulation layer, and the fluorocarbon polymer has extremely low surface energy and strong hydrophobic ability, Therefore, the ability of the thin film encapsulation layer to block water oxygen can be effectively improved, and the thin film encapsulation layer is applied to the packaging of the OLED device, which can effectively extend the life of the OLED device and improve the reliability of the OLED device during storage and use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光器件的封装结构及封装方法、显示装置,该封装结构包括:基板(3);位于所述基板(3)上的有机电致发光器件(2);覆盖所述有机电致发光器件(2)的至少一个薄膜封装层(1),所述薄膜封装层(1)包括无机薄膜(11)和氟碳聚合物薄膜(13)。该封装结构能够有效提高薄膜封装层(1)的水氧阻隔能力,从而有效延长OLED器件的寿命。

Description

有机电致发光器件的封装结构及封装方法、 显示装置 技术领域
本发明的至少一个实施例涉及一种有机电致发光器件的封装结构及封装 方法、 显示装置。 背景技术
有机电致发光器件, 又称有机电致发光二极管 (OLED ) 器件, 是一种 全新的显示技术, 其显示质量可与薄膜晶体管液晶显示器 (TFT-LCD)相比 拟, 而价格远比其低廉。 OLED 因其发光亮度高、 色彩丰富、低压直流驱动、 制备工艺简单等在平板显示中的显著优点, 日益成为国际研究的热点。 在不 到 20年的时间内, OLED 已经由研究阶段进入产业化阶段。
OLED器件一般釆用刚性的玻璃基板或者柔性的聚合物基板作为载体, 通过沉积透明阳极、金属阴极以及夹在二者之间的两层以上有机发光层形成。 这些有机发光层一般包括空穴注入层、 空穴传输层、 发光层、 电子传输层和 电子注入层等。 OLED器件对氧和水汽非常敏感, 如果氧和水汽渗入 OLED 器件内部会引起诸如黑点、针孔、 电极氧化、有机材料化学反应等不良现象, 这影响了 OLED器件的寿命。 因此,封装技术是实现 OLED产业化的主要技 术之一。
目前,封装技术主要包括金属盖封装、玻璃盖封装和薄膜封装技术三类。 前两种封装方式均需要在有机发光区域周围施加密封剂, 并且将潮气吸收剂 放置在其中。 薄膜封装技术釆用基于真空镀膜工艺制备的有机聚合物薄膜和 无机薄膜交替的多层膜结构。 在该多层膜结构中, 无机薄膜具有较高的致密 性, 是主要的水氧阻隔层, 有机聚合物薄膜作为緩冲层, 有机聚合物薄膜因 具有较高的弹性可以有效地抑制无机薄膜开裂。 发明内容
本发明的至少一个实施例提供的一种有机电致发光器件的封装结构及封 装方法、 显示装置能够有效提高薄膜封装层的水氧阻隔能力, 从而有效延长 OLED器件的寿命。
本发明的至少一个实施例提供一种有机电致发光器件的封装结构,包括: 基板; 位于所述基板上的有机电致发光器件; 以及覆盖所述有机电致发光器 件的至少一个薄膜封装层,所述薄膜封装层包括无机薄膜和氟碳聚合物薄膜。
本发明的至少一个实施例还提供了一种显示装置, 包括如上所述的有机 电致发光器件的封装结构。
本发明的至少一个实施例还提供了一种有机电致发光器件的封装方法, 包括: 提供一基板; 在所述基板上制备有机电致发光器件; 以及在所述有机 电致发光器件上形成至少一个薄膜封装层, 所述薄膜封装层包括无机薄膜和 氟碳聚合物薄膜。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1 为本发明至少一个实施例提供的有机电致发光器件的封装结构的 示意图;
图 2为包括无机薄膜、有机聚合物薄膜和氟碳聚合物薄膜的薄膜封装层 的结构示意图。
附图标记
1 薄膜封装层 2 0LED器件 3基板
11 无机薄膜 12有机聚合物薄膜 13氟碳聚合物薄膜 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图, 对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本申请的发明人注意到: 金属盖封装和玻璃盖封装这两类封装方式都具 有较优良的水氧阻隔能力, 但是金属盖不透明, 不适于很多应用场合; 而玻 璃盖具有机械强度较低的缺点, 这使得显示器件的尺寸比较厚, 不能满足人 们对于 OLED器件柔性化和轻薄化的需求。在包括有机聚合物薄膜和无机薄 膜交替的多层膜结构的薄膜封装技术中, 无机薄膜的弹性较低、 内应力大, 因而比较容易受外力作用产生裂缝或者从 OLED器件上剥离下来; 常见的有 机聚合物薄膜对水氧的阻隔能力较差, 甚至某些有机聚合物本身具有较强的 吸水性, 所以水汽有机会穿过与这些有机聚合物薄膜相邻的无机薄膜的缺陷 进入 OLED器件的内部, 使得 OLED器件的寿命降低。
本发明的至少一个实施例提供的一种有机电致发光器件的封装结构及封 装方法、 显示装置能够有效提高薄膜封装层的水氧阻隔能力, 从而有效延长
OLED器件的寿命。
图 1为本发明实施例的 OLED器件的封装结构的示意图, 如图 1所示, 该封装结构包括: 用于承托 OLED器件 2的基板 3; 位于基板 3上的 OLED 器件 2; 以及覆盖 OLED器件 2的至少一个薄膜封装层 1。 如图 2所示, 薄 膜封装层 1包括无机薄膜 11和氟碳聚合物薄膜 13。 在本发明的至少一个实 施例中, 该封装结构还包括位于无机薄膜 11和氟碳聚合物薄膜 13之间的有 机聚合物薄膜 12。
本发明至少一个实施例提供的 OLED器件的封装结构中, 在薄膜封装层 中加入致密的氟碳聚合物薄膜, 由于氟碳聚合物具有极低的表面能和较强的 疏水能力, 因此能有效提高薄膜封装层阻隔水氧的能力。 另外, 本发明至少 一个实施例提供的 OLED器件的封装结构中, 由于氟碳聚合物薄膜易于形成 比较平滑的形貌, 因此在其之上制备的无机薄膜也容易获得平滑、 较少针孔 的形貌, 将该薄膜封装层应用于 OLED器件的封装中, 能够有效延长 OLED 器件的寿命, 并有利于提高 OLED器件在保存和使用过程中的可靠性。
在不同示例中, OLED器件上可以根据需要覆盖一个或者多个薄膜封装 层, 例如, 在兼顾阻水阻氧能力和轻薄化的情况下, OLED器件上可以覆盖 有 1~20个薄膜封装层。 在 OLED器件上覆盖多个薄膜封装层时, 如图 2所 示, n个薄膜封装层互相叠加覆盖在 OLED器件上。
在不同示例中, 所述氟碳聚合物薄膜为例如通过氟碳气体等离子体聚合 形成的聚合物薄膜, 所述氟碳气体包括 CHF3、 C3F8、 C4F10, C2F4和〇4?8中 的一种或几种的组合。 需要注意的是, 氟碳聚合物薄膜也可以釆用除上述氟 碳气体之外的其他氟碳化合物形成, 在此不做限定。
在不同示例中, 所述无机薄膜的厚度为 5nm-200nm, 所述氟碳聚合物薄 膜的厚度为 5nm-200nm, 所述有机聚合物薄膜的厚度为 5nm-200nm。 在不同 示例中,无机薄膜的材料选自 A1203、 Ti02、 Zr02、 MgO、 Hf02、 Ta205、 Si3N4、 A1N、 SiN、 SiNO、 SiO、 Si02、 SiOx、 SiC和 ITO中的一种或几种的组合。 在不同示例中, 有机聚合物的材料选自 PET (聚对苯二曱酸乙二酯)、 PEN (聚萘二曱酸乙二醇酯)、 PC (聚碳酸酯)、 PI (聚酰亚胺)、 PVC (聚氯乙 烯)、 PS (聚苯乙烯)、 PMMA (聚曱基丙烯酸曱酯)、 PBT (聚对苯二曱酸 丁二醇酯)、 PSO (聚砜)、 PES (聚对苯二乙基砜)、 PE (聚乙烯)、 PP (聚丙 烯)、 silicone (聚硅氧烷)、 PA (聚酰胺)、 PVDF (聚偏二氟乙烯)、 EVA (乙 烯-醋酸乙烯共聚物)、 EVAL (乙烯 -乙烯醇共聚物)、 PAN (聚丙烯氰)、 PVAc (聚乙酸乙烯酯)、 Parylene (聚对二曱苯基)、 Polyurea (聚脲)、 PTFE (聚 四氟乙烯)和 epoxy resin (环氧树脂) 中的一种或几种的组合。
本发明的至少一个实施例还提供了一种显示装置, 包括如上所述的
OLED器件的封装结构。 OLED器件的封装结构同上述实施例, 在此不再赘 述。 另外, 显示装置其他部分的结构在此也不再详细描述。 该显示装置可以 为: 电子纸、 电视、 显示器、 数码相框、 手机、 平板电脑等具有任何显示功 能的产品或部件。
本发明的至少一个实施例还提供了一种有机电致发光器件的封装方法, 包括: 提供一基板; 在所述基板上制备所述 OLED器件; 以及在所述 OLED 器件上形成至少一个薄膜封装层, 所述薄膜封装层包括无机薄膜和氟碳聚合 物薄膜。 在本发明的至少一个实施例提供的封装方法中, 所述薄膜封装层还 可以包括位于所述无机薄膜和氟碳聚合物薄膜之间的有机聚合物薄膜。
本发明至少一个实施例提供的 OLED器件的封装方法中, 在薄膜封装层 中加入致密的氟碳聚合物薄膜, 由于氟碳聚合物具有极低的表面能和较强的 疏水能力, 因此能有效提高薄膜封装层阻隔水氧的能力。 另外, 本发明至少 一个实施例提供的 OLED器件的封装方法中, 由于氟碳聚合物薄膜易于形成 比较平滑的形貌, 因此在其之上制备的无机薄膜也容易获得平滑、 较少针孔 的形貌, 将该薄膜封装层应用于 OLED器件的封装中, 能够有效延长 OLED 器件的寿命, 并有利于提高 OLED器件在保存和使用过程中的可靠性。
在一个示例中,在所述 OLED器件上形成薄膜封装层包括:在所述 OLED 器件上沉积例如一层无机材料形成所述无机薄膜; 以及例如通过氟碳气体等 离子体聚合形成所述氟碳聚合物薄膜。
在一个示例中, 在所述 OLED器件上形成薄膜封装层还包括: 在所述无 机薄膜上沉积例如一层有机聚合物形成所述有机聚合物薄膜。
在一个示例中, 所述在所述 OLED器件上沉积例如一层无机材料形成所 述无机薄膜包括: 釆用离子束溅射或磁控溅射沉积或原子层沉积在所述 OLED器件上沉积例如一层无机材料形成所述无机薄膜。
所述在所述无机薄膜上沉积例如一层有机聚合物形成所述有机聚合物薄 膜包括: 釆用溶液成膜法或化学气相沉积法在所述无机薄膜上沉积例如一层 有机聚合物形成所述有机聚合物薄膜。 例如, 釆用化学气相沉积法在所述无 机薄膜上形成所述有机聚合物薄膜。
在一个示例中, 所述在所述有机聚合物薄膜上例如通过氟碳气体等离子 体聚合形成所述氟碳聚合物薄膜包括: 对氟碳气体进行射频放电产生氟碳气 体等离子体。 在不同示例中, 射频源频率为 13.56MHz, 射频源功率为 50-200W, 环境压力为 300-400mTorr, 氟碳气体流速为 20-80sccm。 在不同示 例中, 所述氟碳气体包括 CHF3、 C3F8、 C4F10, C2F4和〇4?8中的一种或几种 的组合。 需要注意的是, 本发明实施例中的射频源频率等仅用于示例性地说 明对氟碳气体进行射频放电产生氟碳气体等离子体的条件, 但本发明的实施 例并不局限于此。 此外, 氟碳聚合物薄膜也可以釆用除上述氟碳气体之外的 其他氟碳化合物形成, 在此不做限定。
下面结合具体的实施例对 OLED器件的封装结构及封装方法进行详细介 绍:
薄膜封装层如果由有机聚合物薄膜和无机薄膜交替叠加形成, 有机聚合 物薄膜对水氧的阻隔能力较差,甚至某些有机聚合物本身具有较强的吸水性, 所以水汽有机会穿过相邻无机薄膜的缺陷进入 OLED 器件的内部, 使得 OLED器件的寿命降低。 改变有机聚合物材料表面的疏水性有两种方式, 一 是通过改变有机聚合物材料表面的化学特性降低表面能, 二是增大有机聚合 物材料表面的粗糙度。 就第一种方式来说, 氟原子因具有较小的原子粒径和 较大的电负性, 可以与其他原子 (如碳原子)形成稳定的化学键, 因此氟原 子能有效地降低材料的表面能。 通过氟碳化合物等离子体聚合或等离子体改 性方法可以使材料(例如,无机材料、有机聚合物)获得疏水性。例如, CHF3 气体经表面等离子体处理后发生聚合,可以在 ITO表面生成一层 CFx层,使 ITO具有疏水性, 并且能够提高 ITO表面的平整度; 再例如, CF4气体生成 的等离子体与硅橡胶表面作用后发生化学键的改变, 在硅橡胶表面生成了氟 碳官能团和氟硅官能团, 能够提高硅橡胶的疏水性。
根据氟碳化合物的这一特性, 本发明的至少一个实施例提供了一种在薄 膜封装层加入致密的氟碳聚合物薄膜的方法, 由于氟碳化合物同时具有极低 的表面能和较强的疏水能力, 因此将该薄膜封装方法用于 OLED的封装, 能 够使薄膜封装层的阻水阻氧能力有很大提高。
实施例 1 Al2O3(50nm)/聚氯代对二曱苯 (50nm)/CFx(10nm)
本实施例的 OLED器件的封装方法包括以下步骤:
步骤 a: 提供一基板, 该基板可为石英基板、 玻璃基板或聚合物基板等; 步骤 b: 将 OLED器件制备到基板上;
步骤 c: 釆用离子束溅射沉积的方法在经过步骤 b 的基板上沉积一层 A1203薄膜, 沉积腔内真空度为 l(T6Pa, 沉积时间为 10min, A1203薄膜的厚 度为 50匪;
步骤 d: 釆用化学气相沉积的方法在 A1203薄膜上沉积一层聚氯代对二 曱苯, 例如, 首先在 100QC下对固态的 C型聚氯代对二曱苯进行升华, 使 C 型聚氯代对二曱苯在 630°C时 2个侧链碳碳键断裂, 生成稳定的活性单体, 再将该活性单体通过导管引入沉积腔内沉积在 A1203薄膜上, 沉积腔内真空 度为 l(T6Pa, 沉积时间为 5min, 沉积的 C型聚氯代对二曱苯厚度为 50nm; 步骤 e:在聚氯代对二曱苯层上釆用 CHF3气体等离子体聚合的方式沉积 厚度为 10nm的 CFx聚合物薄膜。 例如, 可以对 CHF3气体进行射频放电产 生 CHF3气体等离子体, 在一个示例中, 射频源频率为 13.56MHz, 射频源功 率为 50-200W, 例如为 50W, 环境压力为 300-400mTorr, 例如为 350mTorr, CHF3气体流速为 20-80sccm, 例如为 80sccm。
重复以上步骤 c-e, 即可在 OLED 器件上形成多个薄膜封装层, 得到 OLED器件的封装结构。如果需要在 OLED器件上形成 M个薄膜封装层,则 重复循环以上步骤 M次, 例如, 本实施例可以重复以上步骤 c-e三次, 形成 具有三层氟碳聚合物薄膜的薄膜封装层。
实施例 2 SiO (lOOnm)/聚氯代对二曱苯 (200nm)/CFx(20nm)
本实施例的 OLED器件的封装方法包括以下步骤:
步骤 a: 提供一基板, 该基板可为石英基板、 玻璃基板或聚合物基板等; 步骤 b: 将 OLED器件制备到基板上;
步骤 c:釆用磁控溅射的方法在经过步骤 b的基板上沉积一层 SiO薄膜, 沉积腔内真空度为 10-5Pa, 沉积时间为 10min, SiO薄膜的厚度为 lOOnm; 步骤 d: 釆用化学气相沉积的方法在 SiO薄膜上面沉积一层聚氯代对二 曱苯, 例如, 首先在 100°C下对固态的 C型聚氯代对二曱苯进行升华, 使 C 型聚氯代对二曱苯在 630°C时 2个侧链碳碳键断裂, 生成稳定的活性单体, 再将该活性单体通过导管引入沉积腔内沉积在 SiO薄膜上, 沉积腔内真空度 为 l(T6Pa, 沉积时间为 20min, 沉积的 C型聚氯代对二曱苯厚度为 200nm; 步骤 e:在聚氯代对二曱苯层上釆用 CHF3气体等离子体聚合的方式沉积 厚度为 20nm的 CFx聚合物薄膜, 形成 OLED器件的封装结构。 例如, 可以 对 CHF3气体进行射频放电产生 CHF3气体等离子体,在一个示例中,射频源 频率为 13.56MHz, 射频源功率为 50-200W, 例如为 200W, 环境压力为 300-400mTorr,例如为 350mTorr, CHF3气体流速为 20-80sccm,例如为 20sccm。
实施例 3 SiON (lOOnm)/聚氯代对二曱苯 (200nm)/CFx(20nm)
本实施例的 OLED器件的封装方法包括以下步骤:
步骤 a: 提供一基板, 该基板可为石英基板、 玻璃基板或聚合物基板等; 步骤 b: 将 OLED器件制备到基板上;
步骤 c:釆用磁控溅射的方法在经过步骤 b的基板上沉积一层 SiON薄膜, 沉积腔内真空度为 10-5Pa, 沉积时间为 10min, SiON薄膜的厚度为 lOOnm; 步骤 d: 釆用化学气相沉积的方法在 SiON薄膜上面沉积一层聚氯代对 二曱苯, 例如, 首先在 100°C下对固态的 C型聚氯代对二曱苯进行升华, 使 C型聚氯代对二曱苯在 630°C时 2个侧链碳碳键断裂,生成稳定的活性单体, 再将该活性单体通过导管引入沉积腔内沉积在 SiON薄膜上, 沉积腔内真空 度为 l(T6Pa, 沉积时间为 20min, 沉积的 C型聚氯代对二曱苯厚度为 200nm; 步骤 e:在聚氯代对二曱苯层上釆用 CHF3气体等离子体聚合的方式沉积 厚度为 20nm的 CFx聚合物薄膜, 形成 OLED器件的封装结构。 例如, 可以 对 CHF3气体进行射频放电产生 CHF3气体等离子体,在一个示例中,射频源 频率为 13.56MHz, 射频源功率为 50-200W, 例如为 100W, 环境压力为 300-400mTorr,例如为 400mTorr, CHF3气体流速为 20-80sccm,例如为 50sccm。
实施例 4 SiN (30nm)/聚氯代对二曱苯 (50匪) /CFx(lOnm)
本实施例的 OLED器件的封装方法包括以下步骤:
步骤 a: 提供一基板, 该基板可为石英基板、 玻璃基板或聚合物基板等; 步骤 b: 将 OLED器件制备到基板上;
步骤 c:釆用磁控溅射的方法在经过步骤 b的基板上沉积一层 SiN薄膜, 沉积腔内真空度为 10-6Pa, 沉积时间为 10min, SiN薄膜的厚度为 30nm; 步骤 d: 釆用化学气相沉积的方法在 SiN薄膜上沉积一层聚氯代对二曱 苯, 例如, 首先在 100°C下对固态的 C型聚氯代对二曱苯进行升华, 使 C型 聚氯代对二曱苯在 630°C时 2个侧链碳碳键断裂, 生成稳定的活性单体, 再 将该活性单体通过导管引入沉积腔内沉积在 SiN薄膜上, 沉积腔内真空度为 10_6Pa, 沉积时间为 5min, 沉积的 C型聚氯代对二曱苯厚度为 50nm;
步骤 e:在聚氯代对二曱苯层上釆用 CHF3气体等离子体聚合的方式沉积 厚度为 10nm的 CFx聚合物薄膜。 例如, 可以对 CHF3气体进行射频放电产 生 0^3气体等离子体, 在一个示例中, 射频源频率为 13.56MHz, 射频源功 率为 50-200W, 例如为 150W, 环境压力为 300-400mTorr, 例如为 300mTorr, CHF3气体流速为 20-80sccm, 例如为 40sccm。
重复以上步骤 c-e, 即可在 OLED 器件上形成多个薄膜封装层, 得到 OLED器件的封装结构。如果需要在 OLED器件上形成 M个薄膜封装层,则 重复循环以上步骤 M次, 例如, 本实施例可以重复以上步骤 c-e三次, 形成 具有三层氟碳聚合物薄膜的薄膜封装层。
实施例 5 SiN (30nm)/环氧树脂 (200nm)/CFx(20匪)
本实施例的 OLED器件的封装方法包括以下步骤:
步骤 a: 提供一基板, 该基板可为石英基板、 玻璃基板或聚合物基板等; 步骤 b: 将 OLED器件制备到基板上;
步骤 c:釆用磁控溅射的方法在经过步骤 b的基板上沉积一层 SiN薄膜, 沉积腔内真空度为 10-5Pa, 沉积时间为 10min, SiN薄膜的厚度为 30nm; 步骤 d: 将丙烯酸类环氧树脂与光引发剂的混合物倒于 SiN薄膜之上, 流延成膜(一种溶液成膜法), 通过紫外光照射引发使之聚合, 形成厚度为 200nm的环氧树脂薄膜;
步骤 e: 在环氧树脂薄膜上釆用 C2F4气体等离子体聚合的方式沉积厚度 为 20nm的 CFx聚合物薄膜, 形成 OLED器件的封装结构。 例如, 可以对 C2F4气体进行射频放电产生 C2F4气体等离子体, 在一个示例中, 射频源频率 为 13.56MHz, 射频源功率为 50-200W , 例如为 150W, 环境压力为 300-400mTorr, 例如为 300mTorr, C2F4气体流速为 20-80sccm, 例如为 50sccm。
实施例 6 Al203(5匪) /聚氯代对二曱苯 (50nm)/CFx(10匪)
本实施例的 OLED器件的封装方法包括以下步骤:
步骤 a: 提供一基板, 该基板可为石英基板、 玻璃基板或聚合物基板等; 步骤 b: 将 OLED器件制备到基板上;
步骤 c: 釆用离子束溅射沉积的方法在经过步骤 b 的基板上沉积一层 A1203薄膜, 沉积腔内真空度为 l(T6Pa, 沉积时间为 lmin, A1203薄膜的厚度 为 5nm;
步骤 d: 釆用化学气相沉积的方法在 A1203薄膜上沉积一层聚氯代对二 曱苯, 例如, 首先在 100QC下对固态的 C型聚氯代对二曱苯进行升华, 使 C 型聚氯代对二曱苯在 630°C时 2个侧链碳碳键断裂, 生成稳定的活性单体, 再将该活性单体通过导管引入沉积腔内沉积在 A1203薄膜上, 沉积腔内真空 度为 l(T6Pa, 沉积时间为 5min, 沉积的 C型聚氯代对二曱苯厚度为 50nm; 步骤 e:在聚氯代对二曱苯层上釆用 CHF3气体等离子体聚合的方式沉积 厚度为 10nm的 CFx聚合物薄膜。 例如, 可以对 CHF3气体进行射频放电产 生 CHF3气体等离子体, 在一个示例中, 射频源频率为 13.56MHz, 射频源功 率为 50-200W,例如为 150W,环境压力为 300-400mTorr, 例如为 300mTorr, CHF3气体流速为 20-80sccm, 例如为 50sccm。
重复以上步骤 c-e, 即可在 OLED 器件上形成多个薄膜封装层, 得到 OLED器件的封装结构。如果需要在 OLED器件上形成 M个薄膜封装层,则 重复循环以上步骤 M次, 例如, 本实施例可以重复以上步骤 c-e二十次, 形 成具有二十层氟碳聚合物薄膜的薄膜封装层。 实施例 7 Al2O3(200nm)/聚氯代对二曱苯 (100nm)/CFx(5nm) 本实施例的 OLED器件的封装方法包括以下步骤:
步骤 a: 提供一基板, 该基板可为石英基板、 玻璃基板或聚合物基板等; 步骤 b: 将 OLED器件制备到基板上;
步骤 c: 釆用离子束溅射沉积的方法在经过步骤 b 的基板上沉积一层
A1203薄膜, 沉积腔内真空度为 l(T6Pa, 沉积时间为 40min, A1203薄膜的厚 度为 200匪;
步骤 d: 釆用化学气相沉积的方法在 A1203薄膜上沉积一层聚氯代对二 曱苯, 例如, 首先在 100QC下对固态的 C型聚氯代对二曱苯进行升华, 使 C 型聚氯代对二曱苯在 630°C时 2个侧链碳碳键断裂, 生成稳定的活性单体, 再将该活性单体通过导管引入沉积腔内沉积在 A1203薄膜上, 沉积腔内真空 度为 l(T6Pa, 沉积时间为 10min, 沉积的 C型聚氯代对二曱苯厚度为 lOOnm; 步骤 e:在聚氯代对二曱苯层上釆用 CHF3气体等离子体聚合的方式沉积 厚度为 5nm的 CFx聚合物薄膜。 例如, 可以对 CHF3气体进行射频放电产生 CHF3气体等离子体, 在一个示例中, 射频源频率为 13.56MHz, 射频源功率 为 50-200W, 例如为 150W, 环境压力为 300-400mTorr, 例如为 300mTorr, CHF3气体流速为 20-80sccm, 例如为 50sccm。
重复以上步骤 c-e, 即可在 OLED 器件上形成多个薄膜封装层, 得到 OLED器件的封装结构。如果需要在 OLED器件上形成 M个薄膜封装层,则 重复循环以上步骤 M次, 例如, 本实施例可以只执行上述步骤 c-e—次, 形 成具有一层氟碳聚合物薄膜的薄膜封装层。
实施例 8 Al2O3(50nm)/聚氯代对二曱苯 (5nm)/CFx(200nm)
本实施例的 OLED器件的封装方法包括以下步骤:
步骤 a: 提供一基板, 该基板可为石英基板、 玻璃基板或聚合物基板等; 步骤 b: 将 OLED器件制备到基板上;
步骤 c: 釆用离子束溅射沉积的方法在经过步骤 b 的基板上沉积一层 A1203薄膜, 沉积腔内真空度为 l(T6Pa, 沉积时间为 10min, A1203薄膜的厚 度为 50匪;
步骤 d: 釆用化学气相沉积的方法在 A1203薄膜上沉积一层聚氯代对二 曱苯, 例如, 首先在 100QC下对固态的 C型聚氯代对二曱苯进行升华, 使 C 型聚氯代对二曱苯在 630°C时 2个侧链碳碳键断裂, 生成稳定的活性单体, 再将该活性单体通过导管引入沉积腔内沉积在 A1203薄膜上, 沉积腔内真空 度为 l(T6Pa, 沉积时间为 0.5min, 沉积的 C型聚氯代对二曱苯厚度为 5nm;
步骤 e:在聚氯代对二曱苯层上釆用 CHF3气体等离子体聚合的方式沉积 厚度为 200nm的 CFx聚合物薄膜。 例如, 可以对 CHF3气体进行射频放电产 生 0^3气体等离子体, 在一个示例中, 射频源频率为 13.56MHz, 射频源功 率为 50-200W,例如为 150W,环境压力为 300-400mTorr, 例如为 300mTorr, CHF3气体流速为 20-80sccm, 例如为 50sccm。
重复以上步骤 c-e, 即可在 OLED 器件上形成多个薄膜封装层, 得到 OLED器件的封装结构。如果需要在 OLED器件上形成 M个薄膜封装层,则 重复循环以上步骤 M次, 例如, 本实施例可以重复以上步骤 c-e三次, 形成 具有三层氟碳聚合物薄膜的薄膜封装层。
实施例 9 Al2O3(50nm)/聚氯代对二曱苯 (5nm)/CFx(200nm)
本实施例的 OLED器件的封装方法包括以下步骤:
步骤 a: 提供一基板, 该基板可为石英基板、 玻璃基板或聚合物基板等; 步骤 b: 将 OLED器件制备到基板上;
步骤 c: 釆用原子层沉积的方法在经过步骤 b的基板上沉积一层 A1203 薄膜, A1203薄膜的厚度为 50nm, 根据原子层沉积方法, A1203薄膜在小于 100摄氏度的温度下生成, 以免损坏 OLED器件;
步骤 d: 釆用化学气相沉积的方法在 A1203薄膜上沉积一层聚氯代对二 曱苯, 例如, 首先在 100QC下对固态的 C型聚氯代对二曱苯进行升华, 使 C 型聚氯代对二曱苯在 630°C时 2个侧链碳碳键断裂, 生成稳定的活性单体, 再将该活性单体通过导管引入沉积腔内沉积在 A1203薄膜上, 沉积腔内真空 度为 l(T6Pa, 沉积时间为 0.5min, 沉积的 C型聚氯代对二曱苯厚度为 5nm;
步骤 e:在聚氯代对二曱苯层上釆用 CHF3气体等离子体聚合的方式沉积 厚度为 200nm的 CFx聚合物薄膜。 例如, 可以对 CHF3气体进行射频放电产 生 CHF3气体等离子体, 在一个示例中, 射频源频率为 13.56MHz, 射频源功 率为 50-200W, 例如为 150W, 环境压力为 300-400mTorr, 例如为 300mTorr, CHF3气体流速为 20-80sccm, 例如为 50sccm。
重复以上步骤 c-e, 即可在 OLED 器件上形成多个薄膜封装层, 得到 OLED器件的封装结构。如果需要在 OLED器件上形成 M个薄膜封装层,则 重复循环以上步骤 M次, 例如, 本实施例可以重复以上步骤 c-e三次, 形成 具有三层氟碳聚合物薄膜的薄膜封装层。
需要注意的是, 上述实施例是以薄膜封装层包括无机薄膜、 有机聚合物 薄膜和氟碳聚合物薄膜为例进行的说明。 当薄膜封装层包括无机薄膜和氟碳 聚合物薄膜时, 薄膜封装层例如包括 ITO薄膜和通过 CHF3等离子体聚合形 成的氟碳聚合物薄膜, 参见上述相关描述, 当然, 本发明的实施例不限于此。 此外, 上述实施例中的氟碳聚合物薄膜除了可以通过氟碳化合物等离子体聚 合方式形成之外, 还可以通过氟碳化合物等离子体改性方式形成, 例如上述 CF4气体生成的等离子体提高硅橡胶疏水性的示例, 在此不做限定。 所述氟 碳化合物可以为氟碳气体, 也可以为其他氟碳化合物材料, 在此不做赘述。
通过以上实施例形成的 OLED器件的封装结构中,在薄膜封装层中加入 一层或多层致密的氟碳聚合物薄膜, 由于氟碳聚合物具有极低的表面能和较 强的疏水能力, 因此能有效提高薄膜封装层阻隔水氧的能力, 将该薄膜封装 层应用于 OLED器件的封装中, 能够有效延长 OLED器件的寿命, 并有利于 提高 OLED器件在保存和使用过程中的可靠性。
以上所述是本发明的优选实施方式, 应当指出, 对于本技术领域的普通 技术人员来说, 在不脱离本发明所述原理的前提下, 还可以作出若干改进和 润饰, 这些改进和润饰也应视为本发明的保护范围。
本申请要求于 2013 年 9 月 29 日递交的中国专利申请第
201310454581.1 号的优先权, 在此全文引用上述中国专利申请公开的 内容以作为本申请的一部分。

Claims

权利要求书
1. 一种有机电致发光器件的封装结构, 包括:
基板;
位于所述基板上的有机电致发光器件; 以及
覆盖所述有机电致发光器件的至少一个薄膜封装层, 其中所述薄膜封装 层包括无机薄膜和氟碳聚合物薄膜。
2. 根据权利要求 1所述的有机电致发光器件的封装结构, 其中, 所述薄 膜封装层还包括有机聚合物薄膜, 所述有机聚合物薄膜位于所述无机薄膜和 所述氟碳聚合物薄膜之间。
3. 根据权利要求 1或 2所述的有机电致发光器件的封装结构, 其中, 所 述有机电致发光器件上覆盖有 1~20个所述薄膜封装层。
4. 根据权利要求 1-3任一所述的有机电致发光器件的封装结构, 其中, 所述氟碳聚合物薄膜为将氟碳气体等离子体处理形成的聚合物薄膜, 所述氟 碳气体包括 CHF3、 C3F8、 C4F10, C2F4和 C4F8中的一种或几种的组合。
5. 根据权利要求 1-4任一所述的有机电致发光器件的封装结构, 其中, 所述无机薄膜的厚度为 5nm-200nm, 所述氟碳聚合物薄膜的厚度为 5nm-200nm。
6. 根据权利要求 2-5任一所述的有机电致发光器件的封装结构, 其中, 所述有机聚合物薄膜的厚度为 5nm-200nm。
7. 根据权利要求 1-6中任一项所述的有机电致发光器件的封装结构, 其 中,所述无机薄膜的材料选自 A1203、 Ti02、 Zr02、 MgO、 Hf02、 Ta205、 Si3N4、 A1N、 SiN、 SiNO、 SiO、 Si02、 SiOx、 SiC和 ITO中的一种或几种的组合。
8. 一种显示装置, 包括如权利要求 1-7中任一项所述的有机电致发光器 件的封装结构。
9. 一种有机电致发光器件的封装方法, 包括:
提供一基板;
在所述基板上制备有机电致发光器件; 以及
在所述有机电致发光器件上形成至少一个薄膜封装层, 其中, 所述薄膜 封装层包括无机薄膜和氟碳聚合物薄膜。
10.根据权利要求 9所述的有机电致发光器件的封装方法, 其中, 所述 薄膜封装层还包括位于所述无机薄膜和所述氟碳聚合物薄膜之间的有机聚合 物薄膜。
11. 根据权利要求 9或 10所述的有机电致发光器件的封装方法, 其中, 在所述有机电致发光器件上形成至少一个薄膜封装层包括:
在所述有机电致发光器件上沉积无机材料形成所述无机薄膜; 以及 通过氟碳气体等离子体处理形成所述氟碳聚合物薄膜。
12.根据权利要求 11所述的有机电致发光器件的封装方法, 还包括: 在 所述无机薄膜上沉积有机聚合物形成所述有机聚合物薄膜。
13.根据权利要求 11或 12所述的有机电致发光器件的封装方法,其中, 所述氟碳气体等离子体处理包括氟碳气体等离子体聚合或氟碳气体等离子体 改性。
14. 根据权利要求 11-13任一所述的有机电致发光器件的封装方法, 其 中, 所述通过氟碳气体等离子体处理形成所述氟碳聚合物薄膜包括:
对所述氟碳气体进行射频放电产生氟碳气体等离子体, 其中, 射频源频 率为 13.56MHz, 射频源功率为 50-200W, 环境压力为 300-400mTorr, 氟碳 气体流速为 20-80sccm。
15. 根据权利要求 11-14任一所述的有机电致发光器件的封装方法, 其 中, 所述在所述有机电致发光器件上沉积无机材料形成所述无机薄膜包括: 釆用离子束溅射或磁控溅射沉积或原子层沉积在所述有机电致发光器件 上沉积无机材料形成所述无机薄膜。
16. 根据权利要求 12-15任一所述的有机电致发光器件的封装方法, 其 中, 所述在所述无机薄膜上沉积有机聚合物形成所述有机聚合物薄膜包括: 釆用溶液成膜法或化学气相沉积法在所述无机薄膜上沉积有机聚合物形 成所述有机聚合物薄膜。
PCT/CN2014/080902 2013-09-29 2014-06-27 有机电致发光器件的封装结构及封装方法、显示装置 WO2015043263A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/424,170 US9728746B2 (en) 2013-09-29 2014-06-27 Encapsulation structures, encapsulation methods, and display devices of organic electroluminescent devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310454581.1 2013-09-29
CN201310454581.1A CN103490019B (zh) 2013-09-29 2013-09-29 有机电致发光器件的封装结构及封装方法、显示装置

Publications (1)

Publication Number Publication Date
WO2015043263A1 true WO2015043263A1 (zh) 2015-04-02

Family

ID=49830098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080902 WO2015043263A1 (zh) 2013-09-29 2014-06-27 有机电致发光器件的封装结构及封装方法、显示装置

Country Status (3)

Country Link
US (1) US9728746B2 (zh)
CN (1) CN103490019B (zh)
WO (1) WO2015043263A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711354A (zh) * 2016-12-02 2017-05-24 武汉华星光电技术有限公司 有机半导体器件的封装方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103490019B (zh) 2013-09-29 2016-02-17 京东方科技集团股份有限公司 有机电致发光器件的封装结构及封装方法、显示装置
CN104051494A (zh) * 2014-05-28 2014-09-17 中国电子科技集团公司第五十五研究所 微型有源矩阵式有机发光显示器及其制作方法
CN103985821A (zh) * 2014-05-30 2014-08-13 云南北方奥雷德光电科技股份有限公司 顶部发光oled显示器薄膜密封工艺
CN107845732A (zh) * 2016-09-19 2018-03-27 上海和辉光电有限公司 一种薄膜封装结构和oled显示面板
KR101818480B1 (ko) * 2016-10-31 2018-01-15 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN106784365A (zh) * 2016-11-28 2017-05-31 武汉华星光电技术有限公司 Oled显示装置及其制作方法
CN206685388U (zh) * 2017-03-14 2017-11-28 京东方科技集团股份有限公司 一种封装结构、显示面板及显示装置
CN107104199A (zh) * 2017-04-19 2017-08-29 武汉华星光电技术有限公司 显示面板及其制造方法
CN107452891A (zh) * 2017-05-22 2017-12-08 茆胜 兼具柔性和耐磨性能的oled封装结构及封装方法
CN107275515B (zh) * 2017-06-20 2019-12-03 深圳市华星光电技术有限公司 Oled器件封装方法、结构、oled器件及显示屏
CN109509766A (zh) * 2017-09-14 2019-03-22 上海和辉光电有限公司 一种有机发光显示面板及其制造方法、有机发光显示装置
CN109585669B (zh) * 2017-09-29 2024-05-17 京东方科技集团股份有限公司 薄膜封装结构及其制备方法
CN107994131A (zh) * 2017-11-28 2018-05-04 武汉华星光电半导体显示技术有限公司 用于封装oled器件的封装结构、显示装置
CN109962150B (zh) * 2017-12-14 2022-01-18 Tcl科技集团股份有限公司 一种封装薄膜及其制备方法、光电器件
CN108539044B (zh) * 2018-04-25 2020-04-03 武汉华星光电半导体显示技术有限公司 一种oled器件的封装结构及封装方法
CN109888128A (zh) * 2019-03-25 2019-06-14 京东方科技集团股份有限公司 Oled显示面板的封装方法及显示面板的制作方法
CN110061149B (zh) * 2019-04-28 2020-11-10 福州大学 一种柔性oled器件薄膜封装方法
CN110444568A (zh) * 2019-07-31 2019-11-12 武汉华星光电半导体显示技术有限公司 有机发光二极管显示面板及其制作方法、显示装置
CN110444692B (zh) 2019-08-30 2023-07-14 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN110752312A (zh) 2019-10-30 2020-02-04 京东方科技集团股份有限公司 一种显示面板、其制作方法及显示装置
CN110943180A (zh) * 2019-11-18 2020-03-31 武汉华星光电半导体显示技术有限公司 一种柔性oled器件封装结构及其封装方法
CN113611810B (zh) * 2021-07-20 2022-07-12 Tcl华星光电技术有限公司 Oled的封装方法及oled封装结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6537688B2 (en) * 2000-12-01 2003-03-25 Universal Display Corporation Adhesive sealed organic optoelectronic structures
CN101097942A (zh) * 2006-06-30 2008-01-02 Lg.菲利浦Lcd株式会社 有机电致发光显示器件及其制造方法
CN101106178A (zh) * 2006-06-13 2008-01-16 应用材料合资有限公司 用于有机器件的封装
CN103490019A (zh) * 2013-09-29 2014-01-01 京东方科技集团股份有限公司 有机电致发光器件的封装结构及封装方法、显示装置
CN203466226U (zh) * 2013-09-29 2014-03-05 京东方科技集团股份有限公司 有机电致发光器件的封装结构、显示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942446A (en) * 1997-09-12 1999-08-24 Taiwan Semiconductor Manufacturing Company, Ltd. Fluorocarbon polymer layer deposition predominant pre-etch plasma etch method for forming patterned silicon containing dielectric layer
JP3817081B2 (ja) * 1999-01-29 2006-08-30 パイオニア株式会社 有機el素子の製造方法
US6624568B2 (en) * 2001-03-28 2003-09-23 Universal Display Corporation Multilayer barrier region containing moisture- and oxygen-absorbing material for optoelectronic devices
US8900366B2 (en) * 2002-04-15 2014-12-02 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US6914007B2 (en) * 2003-02-13 2005-07-05 Taiwan Semiconductor Manufacturing Company, Ltd. In-situ discharge to avoid arcing during plasma etch processes
US7018713B2 (en) * 2003-04-02 2006-03-28 3M Innovative Properties Company Flexible high-temperature ultrabarrier
US6972480B2 (en) * 2003-06-16 2005-12-06 Shellcase Ltd. Methods and apparatus for packaging integrated circuit devices
US8405193B2 (en) * 2004-04-02 2013-03-26 General Electric Company Organic electronic packages having hermetically sealed edges and methods of manufacturing such packages
CN101045610B (zh) * 2007-03-29 2010-10-13 刘东平 自清洁薄膜材料及制备方法
JP5890177B2 (ja) * 2008-06-02 2016-03-22 スリーエム イノベイティブ プロパティズ カンパニー 接着剤封入組成物及びそれを用いて作製される電子デバイス
JP5479003B2 (ja) * 2008-12-10 2014-04-23 キヤノン株式会社 有機発光素子
CN102859711A (zh) * 2009-11-18 2013-01-02 3M创新有限公司 柔性组件及其制备和使用方法
CN102610762A (zh) * 2011-01-21 2012-07-25 彩虹显示器件股份有限公司 一种有机发光器件的薄膜封装方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6537688B2 (en) * 2000-12-01 2003-03-25 Universal Display Corporation Adhesive sealed organic optoelectronic structures
CN101106178A (zh) * 2006-06-13 2008-01-16 应用材料合资有限公司 用于有机器件的封装
CN101097942A (zh) * 2006-06-30 2008-01-02 Lg.菲利浦Lcd株式会社 有机电致发光显示器件及其制造方法
CN103490019A (zh) * 2013-09-29 2014-01-01 京东方科技集团股份有限公司 有机电致发光器件的封装结构及封装方法、显示装置
CN203466226U (zh) * 2013-09-29 2014-03-05 京东方科技集团股份有限公司 有机电致发光器件的封装结构、显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711354A (zh) * 2016-12-02 2017-05-24 武汉华星光电技术有限公司 有机半导体器件的封装方法
US10205123B2 (en) 2016-12-02 2019-02-12 Wuhan China Star Optoelectronics Technology Co., Ltd. Packaging method for organic semiconductor device

Also Published As

Publication number Publication date
CN103490019A (zh) 2014-01-01
CN103490019B (zh) 2016-02-17
US20150380683A1 (en) 2015-12-31
US9728746B2 (en) 2017-08-08

Similar Documents

Publication Publication Date Title
WO2015043263A1 (zh) 有机电致发光器件的封装结构及封装方法、显示装置
US7621794B2 (en) Method of encapsulating an organic light-emitting device
TWI449230B (zh) 阻隔膜合成物、包括該阻隔膜合成物的顯示裝置以及製造包括該阻隔膜合成物的顯示裝置的方法
TWI552881B (zh) 用於有機電子裝置之基板及其製造方法
TW515223B (en) Light emitting device
WO2018157449A1 (zh) 有机电致发光显示装置及其制作方法
KR20100048035A (ko) 다층 박막, 이의 제조방법 및 이를 포함하는 봉지구조체
TW200810587A (en) Moisture barrier coatings for organic light emitting diode devices
TWI637542B (zh) 有機el積層體
US7549905B2 (en) Method of encapsulating an organic light emitting device
TW202101806A (zh) 有機發光二極體裝置
TW200818345A (en) Encapsulation for organic device
WO2004014644A1 (ja) 密着層を備える積層体及び保護膜を備える積層体
KR102057176B1 (ko) 박막 캡슐화를 위한 n2o 희석 프로세스에 의한 배리어 막 성능의 개선
JP2003282241A (ja) 有機エレクトロルミネッセンス表示パネル及び製造方法
TW201136439A (en) Barrier film composite, display apparatus including the barrier film composite, method of manufacturing barrier film composite, and method of manufacturing display apparatus including the barrier film composite
KR20110054841A (ko) 유기 발광 표시 장치 및 그 제조 방법
US7259513B2 (en) Electroluminescent display device having surface treated organic layer and method of fabricating the same
KR20060084743A (ko) 박막형 봉지구조를 갖는 유기전기발광장치의 제조방법
TWI597877B (zh) 有機電子元件、其製造方法及其應用
CN203466226U (zh) 有机电致发光器件的封装结构、显示装置
JP2005235743A (ja) 拡散障壁を有する複合材物品及び該物品を組み込んだ素子
KR20110096755A (ko) 유기 발광 표시 장치 및 이의 제조 방법
WO2017033823A1 (ja) 電子装置
WO2020228491A1 (zh) Oled显示屏、显示面板及其制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14424170

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (26.08.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14848295

Country of ref document: EP

Kind code of ref document: A1