WO2015042947A1 - 冷媒充注式旋转压缩机 - Google Patents

冷媒充注式旋转压缩机 Download PDF

Info

Publication number
WO2015042947A1
WO2015042947A1 PCT/CN2013/084704 CN2013084704W WO2015042947A1 WO 2015042947 A1 WO2015042947 A1 WO 2015042947A1 CN 2013084704 W CN2013084704 W CN 2013084704W WO 2015042947 A1 WO2015042947 A1 WO 2015042947A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
injection
valve
charging
refrigerant
Prior art date
Application number
PCT/CN2013/084704
Other languages
English (en)
French (fr)
Inventor
杨国用
向卫民
喻继江
郭宏
杨泾涛
张�诚
Original Assignee
广东美芝制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美芝制冷设备有限公司 filed Critical 广东美芝制冷设备有限公司
Priority to EP13881455.3A priority Critical patent/EP3059447B1/en
Priority to US14/394,324 priority patent/US9909587B2/en
Priority to PCT/CN2013/084704 priority patent/WO2015042947A1/zh
Priority to KR1020147028950A priority patent/KR101696211B1/ko
Priority to JP2015538266A priority patent/JP2015531846A/ja
Publication of WO2015042947A1 publication Critical patent/WO2015042947A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3568Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member with axially movable vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • F04C29/128Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • F04C2250/101Geometry of the inlet or outlet of the inlet

Definitions

  • the present invention relates to the field of compressors, and more particularly to a refrigerant charging rotary compressor. Background technique
  • the working process of the refrigerant charging rotary compressor is: when the compressor suction ends, the pressure in the compression chamber of the compressor is lower than the pressure of the refrigerant injection port, and the injection valve is opened unidirectionally to compress the gas injected in the chamber.
  • the volume of the compression chamber gradually decreases, wherein the gas pressure gradually rises, and when the pressure in the compression chamber is equal to the pressure of the refrigerant injection port, the injection valve is closed.
  • the piston moves further, the volume of the compression chamber is further reduced.
  • the compressor discharge valve opens and the compressor begins to vent.
  • the conventional refrigerant-filled rotary compressor has the following drawbacks: Due to the presence of the injection valve and the filling port, the high-pressure gas charged in the injection valve gap and the filling port will not be further moved when the piston moves to the filling port. Compressed discharge. It becomes the additional clearance volume of the compressor, called the clearance volume formed by the injection valve, which affects the performance of the compressor. At the same time, when the piston moves to the filling port, the gas that is being compressed and not discharged in the compression chamber may also leak to the suction chamber. Summary of the invention
  • the present invention aims to solve at least one of the technical problems existing in the prior art. Accordingly, it is an object of the present invention to provide a refrigerant charging rotary compressor which can reduce performance loss.
  • a refrigerant charging rotary compressor includes: a housing; a compression mechanism, the compression mechanism being disposed in the housing, the compression mechanism comprising: a cylinder, wherein the cylinder is provided a cylinder chamber, a vane slot and an exhaust port, wherein an inner wall of the cylinder chamber is provided with a filling port, the cylinder is provided with a charging passage having a charging hole; a main bearing, the main bearing is disposed at the a sub-bearing, the sub-bearing is disposed under the cylinder; a crankshaft, the crankshaft penetrating the main bearing, the cylinder chamber and the auxiliary bearing; a piston, the piston being rotatably disposed at The cylinder chamber is jacketed on the crankshaft; a sliding piece, the sliding piece is movably disposed in the sliding groove and one end of the sliding piece extends into the cylinder cavity to stop at the An outer peripheral surface of the piston; an injection pipe through which the injection pipe is
  • the ratio of the clearance volume formed by the injection valve to the cylinder suction volume is in the range of 0.3% to 1.5%, thereby ensuring the refrigerant charging type rotation
  • the performance of the compressor reduces the performance loss of the refrigerant-filled rotary compressor.
  • the injection valve includes: a limiting member, one end of the limiting member is fixed on the cylinder, and a gap is formed between the other end of the limiting member and the cylinder, The gap gradually becomes larger in a direction from the one end to the other end; a valve piece, one end of the valve piece is disposed between the limiting member and the cylinder, in the cylinder chamber
  • the other end of the valve piece is bent and deformed from the horizontal position away from the cylinder in the gap around the limiting member to open the charging hole so that the charging The injection hole is connected to the filling port. Therefore, the injection valve according to the embodiment of the present invention has the advantages of simple structure, reasonable design, good jet effect, and high efficiency of the refrigerant-filled rotary compressor.
  • the injection valve further includes a fixing member that sequentially passes through the limiting member and the valve plate to fix the limiting member and the valve plate to the cylinder. Thereby facilitating the assembly of the limiting member and the valve plate.
  • the shortest distance between the valve plate and the limiting member at a center position of the charging hole is the lift H of the valve piece
  • the bending starting point of the valve plate is
  • the length of the center position of the filling hole is the bending length of the valve sheet
  • the lift H of the valve piece and the bending length L of the valve sheet satisfy H/L ⁇ 0.15.
  • an angle formed by a line connecting a center point of the charging port and a center point of the cylinder to a center line of the sliding groove is A
  • the angle A and the angle B satisfy A B+10 °. Therefore, the position of the filling port is limited by the position of the exhaust port, and the filling port is prevented from being too far away from the exhaust port, thereby avoiding excessive return of the refrigerant in the compression chamber to the suction chamber when the exhausting is completed.
  • an installation space for mounting the injection valve is defined between a lower end surface of the cylinder and an upper end surface of the sub-bearing.
  • a refrigerant charging rotary compressor comprising: a housing; a compression mechanism, the compression mechanism being disposed in the housing, the compression mechanism comprising: a first cylinder and a second cylinder, a cylinder bore, a vane slot and an exhaust port are respectively disposed on the first cylinder and the second cylinder, and a charging port is disposed on an inner wall of each of the cylinder cavities, the first cylinder and the first cylinder a two-cylinder is respectively provided with a charging passage having a charging hole; an intermediate partition, the intermediate partition is disposed between the first cylinder and the second cylinder; a main bearing, the main bearing is disposed at the An upper bearing; a sub-bearing, the sub-bearing is disposed under the second cylinder; a crankshaft, the crankshaft penetrating the main bearing, the intermediate baffle and the sub-bearing, on the crankshaft
  • the sleeve is provided with two pistons, and the two pistons are
  • the ratio of the clearance volume formed by the injection valve to the sum of the first cylinder suction volume and the second cylinder suction volume is: 0.3% to 1.5% Therefore, the performance of the refrigerant-filled rotary compressor can be ensured, and the performance loss of the refrigerant-filled rotary compressor can be reduced.
  • each of the injection valves includes: a limiting member, one end of the limiting member is fixed on the corresponding first or second cylinder, and the other end of the limiting member Forming a gap with the corresponding first or second cylinder, the gap gradually becoming larger in a direction from the one end to the other end; a valve piece, one end of the valve piece is disposed at Between the limiting member and the corresponding first or second cylinder, when the pressure in the cylinder chamber is less than the pressure of the charging hole, the other end of the valve plate surrounds the limiting member A bending deformation from the horizontal position away from the corresponding first or second cylinder in the gap to open the filling hole causes the filling hole to communicate with the filling port. Therefore, the injection valve according to the embodiment of the present invention has the advantages of simple structure, reasonable design, good air jet effect, and high efficiency of the refrigerant-filled rotary compressor.
  • each of the injection valves further includes a fixing member, and the fixing member sequentially passes through the limiting member and the valve plate to fix the limiting member and the valve plate to the corresponding ones On a cylinder or a second cylinder. This facilitates the assembly of the stop and the valve plate.
  • a shortest distance between the valve plate and the stopper at a center position of the charging hole is a lift H of the valve piece
  • the length of the bending starting point of the valve piece to the center position of the charging hole is the bending length of the valve piece, and the lift H of the valve piece and the bending length L of the valve piece satisfy H/L ⁇ 0.15.
  • a line connecting a center point of the charging port of the first cylinder and a center point of the first cylinder and a center line of the slider groove of the first cylinder The angle formed is E, the line connecting the center point of the exhaust port of the first cylinder and the center point of the first cylinder and the center line of the slider groove of the first cylinder
  • the angle formed is F, and the angle E and the angle F satisfy E F+10 °. Therefore, the position of the charging port of the first cylinder is defined by the position of the exhaust port on the first cylinder, thereby avoiding the end of the exhaust, the first cylinder
  • the refrigerant in the compression chamber is excessively returned to the suction chamber of the first cylinder.
  • a line connecting a center point of the charging port of the second cylinder and a center point of the second cylinder and a center line of the sliding groove of the second cylinder Forming an angle G, a line connecting a center point of the exhaust port of the second cylinder and a center point of the second cylinder and a center line of the slider groove of the second cylinder
  • the angle is K
  • the angle G and the angle ⁇ satisfy G K+10 ° . Therefore, the position of the charging port of the second cylinder is defined by the position of the exhaust port on the second cylinder, thereby avoiding excessive return of the refrigerant in the compression chamber of the second cylinder to the suction chamber of the second cylinder when the exhausting is completed.
  • FIG. 1 is a schematic view of a refrigerant charging rotary compressor according to an embodiment of the present invention, including a cylinder;
  • Figure 2 is a graph showing the relationship between the clearance volume formed by the injection valve of the refrigerant charging rotary compressor and the performance of the compressor according to an embodiment of the present invention
  • Figure 3 is a schematic view of an injection valve provided on the cylinder according to an embodiment of the present invention.
  • FIG. 4 is a top cross-sectional view of a cylinder provided with a piston, a crankshaft and a slide according to an embodiment of the present invention
  • FIG. 5 is a view of the piston moving to the edge of the exhaust port and the piston moving to the edge of the filling port according to an embodiment of the present invention
  • Fig. 6 is a schematic view of a refrigerant charging rotary compressor according to another embodiment of the present invention, which includes a first cylinder and a second cylinder. Reference mark:
  • Compression mechanism 2 cylinder 20, cylinder chamber 201, filling port 201 1 , compression chamber 2012,
  • first and second are used for descriptive purposes only, and are not to be construed as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first”, “second” may explicitly or implicitly include one or more of the features. Further, in the description of the present invention, “multiple” means two or more unless otherwise stated.
  • the refrigerant charging rotary compressor 100 can be applied to a refrigeration system such as an air conditioner.
  • the refrigerant charging rotary compressor 100 is a single cylinder and is applied to an air conditioner as an example.
  • the air conditioner includes a gas-liquid separator 200.
  • the gas-liquid separator 200 separates the refrigerant entering the separator to separate the refrigerant into a liquid refrigerant and a gaseous refrigerant, and the gaseous refrigerant is injected into the cylinder chamber 201 of the cylinder 20 through the injection pipe 3.
  • the refrigerant charging rotary compressor 100 is provided with an injection valve 4, and the inner wall of the cylinder chamber 201 is provided with a charging port 2011.
  • the injection valve 4 When the injection valve 4 is opened, the gaseous refrigerant is injected into the cylinder 20 through the charging port 2011.
  • the gap between the injection valve 4 and the filling port 201 1 into which the compressed gas can enter is referred to as the clearance volume formed by the injection valve 4.
  • the structure and working principle of the air conditioner and the like are well known to those skilled in the art, and will not be described in detail herein.
  • the inventors of the present application found that the magnitude of the clearance volume formed by the injection valve 4 has a different influence on the performance (COP) of the compressor, as shown in Fig. 2, the inventors have surprisingly found out that the injection valve 4 is formed by a large number of experiments. In the case where the ratio between the clearance volume and the suction volume of the cylinder 20 is equal to 0.3%, the performance of the compressor is close to the mass production performance level, and the clearance volume formed by the injection valve 4 is further reduced, and the performance of the compressor is not The apparent rise, and the smaller the clearance volume formed by the injection valve 4, causes a sharp rise in the processing cost of the injection valve 4 and a sharp drop in the reliability of the injection valve 4, while the clearance volume formed by the injection valve 4 is sucked by the cylinder 20.
  • the ratio between the gas volumes is greater than 1.5%, and the performance of the compressor is drastically deteriorated.
  • the calculation method of the suction volume of the cylinder 20 is well known to those skilled in the art and will not be described in detail herein. This application is based on the above findings of the inventors.
  • a refrigerant charging type rotary compressor 100 according to an embodiment of the present invention will be described below with reference to Figs.
  • a refrigerant charging rotary compressor 100 includes: a casing 1, a compression mechanism 2, an injection pipe 3, and an injection valve 4.
  • the compression mechanism 2 is disposed in the housing 1.
  • the compression mechanism 2 includes: a cylinder 20, a main bearing 21, a sub-bearing 22, a crankshaft 23, a piston 24 and a slide 25, wherein the cylinder 20 is provided with a cylinder bore 201 and a vane slot.
  • the inner wall of the cylinder chamber 201 is provided with a filling port 201 1
  • the cylinder 20 is provided with a charging passage 204 having a charging hole 2041, that is, one end of the filling channel 204 is
  • the filling hole 2041, the injection pipe 3 is inserted into the charging passage 204 through the casing 1, and the external gaseous refrigerant enters the charging passage 204 through the injection pipe 3.
  • the main bearing 21 is provided above the cylinder 20.
  • the sub-bearing 22 is provided below the cylinder 20.
  • the crankshaft 23 extends through the main bearing 21, the cylinder bore 201 and the sub-bearing 22, and the upper end of the crankshaft 23 is connected to the motor to drive the crankshaft 23 to rotate by the motor.
  • the piston 24 is rotatably disposed within the cylinder bore 201 and is jacketed on the crankshaft 23.
  • the slider 25 is movably disposed in the slider groove 202 and one end of the slider 25 projects into the cylinder chamber 201 to stop against the outer peripheral surface of the piston 24.
  • the crankshaft 23 drives the piston 24 to rotate, one end of the sliding piece 25 abuts against the outer peripheral surface of the piston 24, and the rotating piston 24 and the sliding piece 25 divide the cylinder chamber 201 into a compression chamber 2012 and an suction chamber 2013.
  • the suction chamber 2013 communicates with the suction port 205, and the compression chamber 2012 communicates with the exhaust port 203 through the exhaust valve 8.
  • the main bearing 21 and the sub-bearing 22 may also be provided with a muffler, the working principle of the compression mechanism 2 and the compression mechanism in the existing compressor 2 The working principle is the same and will not be described in detail here.
  • the injection valve 4 is disposed on the cylinder 20, and the injection valve 4 is in a closed state when the pressure in the cylinder chamber 201 is greater than the pressure in the charging hole 2041 to isolate the charging hole 2041 and the filling port 2011, thereby avoiding the inside of the cylinder chamber 201.
  • the compressed gas flows back into the fill channel 204.
  • the injection valve 4 is opened, and the injection valve 4 is opened to open the charging hole 2041 and the filling port 201 1, and the gaseous refrigerant sequentially passes through the charging hole.
  • the 2041 and the filling port 201 1 enter the cylinder chamber 201.
  • the gap between the injection valve 4 and the charging port 2011 into the compressed gas is referred to as the clearance volume formed by the injection valve 4, and the clearance volume formed by the injection valve 4 is sucked by the cylinder 20.
  • the ratio between the gas volumes ranges from 0.3% to 1.5%.
  • the ratio of the clearance volume formed by the injection valve 4 to the suction volume of the cylinder 20 is in the range of 0.3% to 1.5%, thereby ensuring the refrigerant charging.
  • the performance of the rotary compressor 100 is reduced, and the performance loss of the refrigerant-filled rotary compressor 100 is reduced.
  • an installation space for mounting the injection valve 4 is defined between the lower end surface of the cylinder 20 and the upper end surface of the sub-bearing 22. That is, the charging hole 2041 of the charging passage 204 is located on the lower end surface of the cylinder 20, and the injection valve 4 is provided between the lower end surface of the cylinder 20 and the upper end surface of the sub-bearing 22 for opening or closing the charging hole 2041 .
  • the present invention is not limited thereto, and the injection valve 4 may be provided between the upper end surface of the cylinder 20 and the lower end surface of the main bearing 21, and the filling hole 2041 of the charging passage 204 is located on the upper end surface of the cylinder 20.
  • the injection valve 4 includes: a limiting member 40 and a valve plate 41, wherein one end of the limiting member 40 is fixed on the cylinder 20, and the limiting member 40 The other end is formed between the cylinder 20 There is a gap 43, and the gap 43 gradually becomes larger in the direction from one end to the other end.
  • One end of the valve piece 41 is disposed between the limiting member 40 and the cylinder 20.
  • the injection valve 4 according to the embodiment of the present invention has the advantages of simple structure, reasonable design, good jetting effect, and high efficiency of the refrigerant charging rotary compressor 100.
  • the injection valve 4 is provided on the lower end surface of the cylinder 20, at which time the valve piece 41 is a deformable plate-like body, and the left end of the valve piece 41 is fixed to the lower end surface of the cylinder 20. So that the valve piece 41 is located below the filling hole 2041, the left end of the limiting member 40 is fixed on the lower surface of the left end of the valve piece 41, and the gap 43 is defined between the right end of the limiting member 40 and the lower end surface of the cylinder 20. The gap 43 gradually increases in the direction from left to right.
  • the valve piece 41 is bent downward from the horizontal position in the gap 43 around the limiting member 40 to open the filling hole 2041, and the pressure in the cylinder chamber 201.
  • the valve piece 41 is returned to the horizontal position to close the filling hole 2041.
  • valve piece 41 is now provided on the upper end surface of the cylinder 20 and the valve plate
  • the injection valve 4 further includes a fixing member 42 that sequentially passes through the limiting member 40 and the valve plate 41 to fix the limiting member 40 and the valve plate 41 to the cylinder 20, that is, the limiting member 40
  • the valve piece 41 is fixed to the cylinder 20 by a fixing member 42, thereby facilitating assembly of the stopper 40 and the valve piece 41.
  • the fixing member 42 may be a screw, and the fixing member 42 may also be a rivet.
  • the shortest distance between the valve piece 41 and the stopper 40 at the center position of the filling hole 2041 is the lift H of the valve piece 41, and the bending of the valve piece 41
  • the length from the starting point to the center position of the filling hole 2041 is the bending length of the valve piece 41, and the lift H of the valve piece 41 and the bending length L of the valve piece 41 satisfy H/L ⁇ 0.15. Therefore, by limiting the ratio between the lift H of the valve piece 41 and the bending length L of the valve piece 41 to less than 0.15, the flexibility of the valve piece 41 can be ensured, and the valve piece 41 is not easily broken, improving the reliability of the injection valve 4. Sex.
  • the angle between the line connecting the center point of the charging port 201 1 and the center point of the cylinder 20 and the center line of the slider groove 202 is A
  • the line connecting the center point of 20 and the center line of the slider groove 202 form an angle B
  • the angle A and the angle B satisfy A B + 10 °. Therefore, the position of the charging port 201 1 is defined by the position of the exhaust port 203, and the filling port 201 1 is prevented from being too far from the exhaust port 203, thereby avoiding excessive return of the refrigerant in the compression chamber 2012 to the inhalation when the exhausting is completed. Cavity in 2013. In other embodiments of the present invention, as shown in FIG.
  • the position of the charging port 201 1 may be defined according to the position of the exhaust port 203 in the following manner, during the movement of the piston 24, when the piston 24 moves The outer peripheral wall of the piston 24 is in contact with the edge of the filling port 201 1 so that the filling port 201 1 and the suction chamber 2013 are in a state of being disconnected but about to be connected (as shown by the solid line in FIG. 5 ), That is, when the outer peripheral wall of the piston 24 comes into contact with the edge position of the filling port 201 1 , the filling port 201 1 communicates with the suction chamber 2013 as long as the piston 24 continues to move. At this time, the angle formed by the line connecting the center point of the piston 24 and the center point of the cylinder 20 and the moving direction of the slider 25 is C.
  • the piston 24 continues to move, when the piston 24 moves to the outer peripheral wall of the piston 24 to contact the edge position of the exhaust port 203 such that the exhaust port 203 and the suction chamber 2013 are in a state of being disconnected but about to communicate, that is, in the piston
  • the exhaust port 203 communicates with the suction chamber 2013 as long as the piston 24 continues to move.
  • the angle between the center point of the piston 24 and the center point of the cylinder 20 and the moving direction of the slider 25 is D, and the angle C and the angle D satisfy C D+10 ° .
  • a refrigerant charging type rotary compressor 100 includes: a housing 1, a compression mechanism 2, two injection pipes 3, and two injection valves 4, wherein the compression mechanism 2 is provided in the housing.
  • the compression mechanism 2 is provided in the housing.
  • one end of each of the injection pipes 3 is located outside the casing 1 to be connected to the gas-liquid separator 200, and the other end of each of the injection pipes 3 is located inside the casing 1.
  • the compression mechanism 2 includes: a first cylinder 5 and a second cylinder 6, an intermediate partition 7, a main bearing 21, a sub-bearing 22, a crankshaft 23, and two slides 25, wherein the first cylinder 5 is located above the second cylinder 6.
  • the first cylinder 5 and the second cylinder 6 are respectively provided with a cylinder chamber 201, a vane groove 202, an exhaust port 203 and an air inlet 205, that is, the first cylinder 5 is provided with a cylinder chamber 201 and a sliding piece.
  • the tank 202, the exhaust port 203 and the air inlet 205, the second cylinder 6 is provided with a cylinder chamber 201, a vane slot 202, an exhaust port 203 and an air inlet 205, and the inner wall of each cylinder chamber 201 is provided with a charge.
  • the injection port 201 1, the first cylinder 5 and the second cylinder 6 are respectively provided with filling passages 204 having filling holes 2041, and each of the injection pipes 3 is inserted into the corresponding charging passage 204 through the casing 1.
  • the intermediate partition 7 is provided between the first cylinder 5 and the second cylinder 6.
  • the main bearing 21 is provided above the first cylinder 5.
  • the sub-bearing 22 is provided below the second cylinder 6.
  • the crankshaft 23 extends through the main bearing 21, the intermediate partition 7 and the auxiliary bearing 22.
  • the crankshaft 23 is sleeved with two pistons 24, and the two pistons 24 are respectively disposed in the cylinder chambers 201 of the first cylinder 5 and the second cylinder 6, that is,
  • a rotatable piston 24 is disposed in the cylinder chamber 201 of the first cylinder 5, and a rotatable piston 24 is disposed in the cylinder chamber 201 of the second cylinder 6.
  • Each of the sliders 25 is movably disposed in the corresponding slider groove 202 and one end of the slider 25 projects into the corresponding cylinder chamber 201 to stop against the outer peripheral surface of the corresponding piston 24.
  • the crankshaft 23 drives the two pistons 24 to move in the respective cylinder chambers 201, one end of each of the sliding plates 25 abuts against the outer peripheral wall of the corresponding piston 24, and the moving piston 24 and the slider 25 on the first cylinder 5
  • the cylinder chamber 201 of the first cylinder 5 is divided into a compression chamber 2012 and an suction chamber 2013, and the moving piston 24 and the slide 25 on the second cylinder 6 divide the cylinder chamber 201 of the second cylinder 6 into a compression chamber 2012 and suck Air cavity 2013.
  • the working principle of the compression mechanism 2 of the present invention is the same as that of the compression mechanism 2 having a two-cylinder in the prior art, and will not be described in detail herein.
  • Two injection valves 4 are respectively disposed on the first cylinder 5 and the second cylinder 6, and each injection valve 4 is in a closed state to isolate the charge when the pressure in the corresponding cylinder chamber 201 is greater than the pressure in the corresponding charging hole 2041.
  • the injection hole 2041 and the filling port 201 1, each injection valve 4 is in an open state when the pressure in the corresponding cylinder chamber 201 is less than the pressure in the corresponding charging hole 2041 to open the filling hole 2041 and the filling port 201.
  • the clearance volume formed by the two injection valves 4 is in the range of 0.3% to 1.5%.
  • the ratio of the clearance volume formed by the injection valve 4 to the sum of the suction volume of the first cylinder 5 and the suction volume of the second cylinder 6 is: 0.3 % ⁇ 1.5%, thereby ensuring the performance of the refrigerant charging rotary compressor 100 and reducing the performance loss of the refrigerant charging rotary compressor 100.
  • the installation space that is, the injection valve 4 on the first cylinder 5 is disposed between the lower end surface of the first cylinder 5 and the upper end surface of the intermediate partition 7, and the injection valve 4 on the second cylinder 6 is disposed in the second cylinder.
  • the structural compactness of the refrigerant charging rotary compressor 100 can be improved.
  • the position member 40 is bent and deformed from the horizontal position away from the corresponding first cylinder 5 or the second cylinder 6 in the gap 43 to open the charging hole 2041 so that the filling hole 2041 and the filling port 201 1 communicate with each other, and the pressure in the cylinder chamber 201
  • the valve piece 41 is in the horizontal position to close the filling hole 2041. Therefore, the injection valve 4 according to the embodiment of the present invention has the advantages of simple structure, reasonable design, good jetting effect, and high efficiency of the refrigerant charging rotary compressor 100.
  • the positional relationship of the components in the injection valve 4 on the first cylinder 5 is as follows: The left end of the valve plate 41 is fixed to the lower end surface of the first cylinder 5, and the left end of the stopper 40 is fixed to the valve plate 41. On the lower surface, a gap 43 is defined between the right end of the stopper 40 and the lower end surface of the first cylinder 5, and the gap 43 gradually increases in the direction from left to right. At this time, the pressure in the cylinder chamber 201 of the first cylinder 5 is smaller than the pressure of the charging hole 2041 of the first cylinder 5.
  • the valve piece 41 When the valve piece 41 is bent downward from the horizontal position in the gap 43 around the limiting member 40 to open the charging hole 2041, the pressure in the cylinder chamber 201 of the first cylinder 5 is greater than the filling hole 2041 of the first cylinder 5. At the time of pressure, the valve piece 41 is returned to the horizontal position to close the filling hole 2041.
  • the positional relationship of the components in the injection valve 4 on the second cylinder 6 is as follows: The left end of the valve plate 41 is fixed on the upper end surface of the second cylinder 6, and the left end of the stopper 40 is fixed on the upper surface of the valve plate 41, A gap 43 is defined between the right end of the bit member 40 and the upper end surface of the second cylinder 6, and the gap 43 gradually increases in a direction from left to right.
  • the valve piece 41 is bent upward from the horizontal position in the gap 43 around the stopper 40 to open the filling hole.
  • the valve piece 41 is returned to the horizontal position to close the filling hole 2041.
  • each injection valve 4 further includes a fixing member 42 that sequentially passes through the limiting member 40 and the valve plate 41 to fix the limiting member 40 and the valve plate 41 to the corresponding first cylinder 5 or the second cylinder. 6 on. Thereby, the assembly of the stopper 40 and the valve piece 41 can be facilitated.
  • the fixing member 42 may be a screw, and the fixing member 42 may also be a rivet.
  • the shortest distance between the valve piece 41 and the stopper 40 at the center position of the charging hole 2041 is the lift of the valve piece 41.
  • H the length from the bending start point of the valve piece 41 to the center position of the charging hole 2041 is the bending length of the valve piece 41, and the lift H of the valve piece 41 and the bending length L of the valve piece 41 satisfy H/L ⁇ 0.15.
  • the lift H of the valve piece 41 in the injection valve 4 on the first cylinder 5 refers to the lower surface of the valve piece 41 and the stopper 40 at the center position of the filling hole 2041 of the first cylinder 5
  • the distance between the surfaces, the lift H of the valve piece 41 in the injection valve 4 on the second cylinder 6 refers to the upper surface of the valve plate 41 and the stopper at the center position of the filling hole 2041 of the second cylinder 6.
  • the distance between 40 Therefore, by limiting the ratio between the lift H of the valve piece 41 and the bending length L of the valve piece 41 to less than 0.15, the flexibility of the valve piece 41 can be ensured, and the valve piece 41 is not easily broken, and the reliability of the injection valve 4 is improved. Sex.
  • the line connecting the center point of the filling port 201 1 of the first cylinder 5 and the center point of the first cylinder 5 and the center line of the slider groove 202 of the first cylinder 5 is formed by a clip formed by the center line of the slider groove 202 of the first cylinder 5
  • the angle is E
  • the angle between the line connecting the center point of the exhaust port 203 of the first cylinder 5 and the center point of the first cylinder 5 and the center line of the slider groove 202 of the first cylinder 5 is F
  • the angle is E and angle F satisfy E F+10 °.
  • the position of the charging port 201 1 of the first cylinder 5 is defined by the position of the exhaust port 203 on the first cylinder 5, thereby avoiding excessive return of the refrigerant in the compression chamber 2012 of the first cylinder 5 to the end of the exhausting.
  • the suction chamber 2013 of the first cylinder 5 is inside.
  • the angle formed by the line connecting the center point of the charging port 201 1 of the second cylinder 6 and the center point of the second cylinder 6 and the center line of the slider groove 202 of the second cylinder 6 is G
  • the second The angle formed by the line connecting the center point of the exhaust port 203 of the cylinder 6 and the center point of the second cylinder 6 to the center line of the vane groove 202 of the second cylinder 6 is K, and the angle G and the angle ⁇ are satisfied.
  • the position of the charging port 201 1 of the two cylinders 6 further prevents the refrigerant in the compression chamber 2012 of the second cylinder 6 from flowing back into the suction chamber 2013 of the second cylinder 6 when the exhaust is completed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种冷媒充注式旋转压缩机,包括:壳体、压缩机构、喷射管和喷射阀。压缩机构包括:气缸、主轴承、副轴承、曲轴、活塞和滑片,气缸的气缸腔的内壁上设有充注口,气缸上设有具有充注孔的充注通道。喷射阀在气缸腔内的压力大于充注孔内的压力时处于关闭状态以隔离充注孔和充注口,喷射阀在气缸腔内的压力小于充注孔内的压力时处于打开状态以导通充注孔和充注口,在喷射阀处于关闭状态,喷射阀与充注口之间能进入压缩气体的空隙称为喷射阀形成的余隙容积,喷射阀形成的余隙容积与气缸吸气容积之间的比值的范围为:0.3%~1.5%。

Description

冷媒充注式旋转压缩机 技术领域
本发明涉及压缩机领域, 尤其是涉及一种冷媒充注式旋转压缩机。 背景技术
一般冷媒充注式旋转压缩机的工作过程为, 当压缩机吸气结束, 此时压缩机的压缩 腔中的压力低于冷媒喷射口的压力, 喷射阀单向打开以压缩腔内喷射气体, 随着活塞的 运动, 压缩腔的容积逐渐减小, 其中气体压力逐渐升高, 当压缩腔中的压力等于冷媒喷 射口的压力时, 喷射阀关闭。 随着活塞的进一步运动, 压缩腔的容积进一步减小, 当其 中气体压力稍高于排气压力时, 压缩机排气阀打开, 压缩机开始排气。
然而普通的冷媒充注式旋转压缩机存在如下缺陷: 由于喷射阀及充注口的存在, 充 注在喷射阀间隙及充注口内的高压气体将在活塞运动到充注口时不会被进一步压缩排 出。 就会成为压缩机的额外的余隙容积, 称之为喷射阀形成的余隙容积, 从而影响了压 缩机的性能。 同时在活塞运动到充注口时, 压缩腔内正压缩未排出的气体也有向吸气腔 泄露的可能。 发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。 为此, 本发明的一个目的在 于提出一种可减少性能损失的冷媒充注式旋转压缩机。
根据本发明第一方面实施例的冷媒充注式旋转压缩机, 包括: 壳体; 压缩机构, 所 述压缩机构设在所述壳体内, 所述压缩机构包括: 气缸, 所述气缸上设有气缸腔、 滑片 槽和排气口,所述气缸腔的内壁上设有充注口,所述气缸上设有具有充注孔的充注通道; 主轴承, 所述主轴承设在所述气缸的上面; 副轴承, 所述副轴承设在所述气缸的下面; 曲轴, 所述曲轴贯穿所述主轴承、 所述气缸腔和所述副轴承; 活塞, 所述活塞可转动地 设在所述气缸腔内且外套在所述曲轴上; 滑片, 所述滑片可移动地设在所述滑片槽内且 所述滑片的一端伸入所述气缸腔内以止抵在所述活塞的外周面上; 喷射管, 所述喷射管 穿过所述壳体插入到所述充注通道内; 喷射阀, 所述喷射阀设在所述气缸上, 所述喷射 阀在所述气缸腔内的压力大于所述充注孔内的压力时处于关闭状态以隔离所述充注孔 和所述充注口,所述喷射阀在所述气缸腔内的压力小于所述充注孔内的压力时处于打开 状态以导通所述充注孔和所述充注口, 其中, 在所述喷射阀处于关闭状态, 所述喷射阀 与所述充注口之间能进入压缩气体的空隙称为所述喷射阀形成的余隙容积,所述喷射阀 形成的余隙容积与所述气缸吸气容积之间的比值的范围为: 0.3%~1.5%。 根据本发明实施例的冷媒充注式旋转压缩机, 通过使得喷射阀形成的余隙容积与气 缸吸气容积之间的比值的范围为: 0.3%〜1.5%, 从而可保证冷媒充注式旋转压缩机的性 能, 减少冷媒充注式旋转压缩机的性能损失。
根据本发明的具体实施例, 所述喷射阀包括: 限位件, 所述限位件的一端固定在所 述气缸上, 所述限位件的另一端与所述气缸之间形成有间隙, 所述间隙在从所述一端到 所述另一端的方向上逐渐变大;阀片,所述阀片的一端设在所述限位件和所述气缸之间, 在所述气缸腔内的压力小于所述充注孔的压力时,所述阀片的另一端绕所述限位件在所 述间隙内从水平位置远离所述气缸弯曲变形、以打开所述充注孔使得所述充注孔和所述 充注口连通。 从而根据本发明实施例的喷射阀具有结构简单、 设计合理、 喷气效果好、 使得冷媒充注式旋转压缩机的效率高的优点。
进一步地, 所述喷射阀还包括固定件, 所述固定件依次穿过所述限位件和所述阀片 以将所述限位件和所述阀片固定在所述气缸上。 从而便于限位件和阀片的装配。
根据本发明的一些实施例, 在所述充注孔的中心位置所述阀片与所述限位件之间的 最短距离为所述阀片的升程 H,所述阀片的弯曲起点到所述充注孔的中心位置的长度为 所述阀片弯曲长度, 所述阀片的升程 H与阀片弯曲长度 L之间满足 H/L<0.15。从而可 保证阀片的弯曲性, 且使得阀片不易折断, 提高了喷射阀的可靠性。
在本发明的一些实施例中, 所述充注口的中心点和所述气缸的中心点的连线与所述 滑片槽的中心线所形成的夹角为 A,所述排气口的中心点和所述气缸的中心点的连线与 所述滑片槽的中心线所形成的夹角为 B, 所述夹角 A和所述夹角 B满足 A B+10 ° 。 从而通过排气口的位置限定充注口的位置, 避免充注口距离排气口太远, 进而避免排气 结束时, 压缩腔内的冷媒过多回流至吸气腔内。
具体地, 所述气缸的下端面和所述副轴承的上端面之间限定出用于安装所述喷射阀 的安装空间。
根据本发明第二方面实施例的冷媒充注式旋转压缩机, 包括: 壳体; 压缩机构, 所 述压缩机构设在所述壳体内, 所述压缩机构包括: 第一气缸和第二气缸, 所述第一气缸 和所述第二气缸上分别设有气缸腔、滑片槽和排气口, 每个所述气缸腔的内壁上设有充 注口, 所述第一气缸和所述第二气缸上分别设有具有充注孔的充注通道; 中间隔板, 所 述中间隔板设在所述第一气缸和所述第二气缸之间; 主轴承, 所述主轴承设在所述第一 气缸的上面; 副轴承, 所述副轴承设在所述第二气缸的下面; 曲轴, 所述曲轴贯穿所述 主轴承、 所述中间隔板和所述副轴承, 所述曲轴上套设有两个活塞, 所述两个活塞分别 设在所述第一气缸和所述第二气缸的气缸腔内; 两个滑片, 每个所述滑片可移动地设在 相应的所述滑片槽内且所述滑片的一端伸入相应的所述气缸腔内以止抵在相应的所述 活塞的外周面上; 两个喷射管, 每个所述喷射管穿过所述壳体插入到相应的所述充注通 道内; 两个喷射阀, 所述两个喷射阀分别设在所述第一气缸和所述第二气缸上, 每个所 述喷射阀在相应的所述气缸腔内的压力大于相应的所述充注孔内的压力时处于关闭状 态以隔离所述充注孔和所述充注口,每个所述喷射阀在相应的所述气缸腔内的压力小于 相应的所述充注孔内的压力时处于打开状态以导通所述充注孔和所述充注口, 其中, 在 所述两个喷射阀处于关闭状态,所述两个喷射阀与相应的所述充注口之间能进入压缩气 体的空隙之和称为所述两个喷射阀形成的余隙容积,所述两个喷射阀形成的余隙容积与 所述第一气缸吸气容积和所述第二气缸吸气容积之和的比值的范围为: 0.3%~1.5%。
根据本发明实施例的冷媒充注式旋转压缩机, 通过使得喷射阀形成的余隙容积与第 一气缸吸气容积和第二气缸吸气容积之和的比值的范围为: 0.3%~1.5%, 从而可保证冷 媒充注式旋转压缩机的性能, 减少冷媒充注式旋转压缩机的性能损失。
根据本发明的具体实施例, 每个所述喷射阀包括: 限位件, 所述限位件的一端固定 在相应的所述第一气缸或第二气缸上,所述限位件的另一端与相应的所述第一气缸或第 二气缸之间形成有间隙,所述间隙在从所述一端到所述另一端的方向上逐渐变大;阀片, 所述阀片的一端设在所述限位件和相应的所述第一气缸或第二气缸之间,在所述气缸腔 内的压力小于所述充注孔的压力时,所述阀片的另一端绕所述限位件在所述间隙内从水 平位置远离相应的所述第一气缸或第二气缸弯曲变形、以打开所述充注孔使得所述充注 孔和所述充注口连通。 从而根据本发明实施例的喷射阀具有结构简单、 设计合理、 喷气 效果好、 使得冷媒充注式旋转压缩机的效率高的优点。
进一步地, 每个所述喷射阀还包括固定件, 所述固定件依次穿过所述限位件和所述 阀片以将所述限位件和所述阀片固定在相应的所述第一气缸或第二气缸上。从而可便于 限位件和阀片的装配。
根据本发明的一些实施例, 在每个所述喷射阀中, 在所述充注孔的中心位置所述阀 片与所述限位件之间的最短距离为所述阀片的升程 H,所述阀片的弯曲起点到所述充注 孔的中心位置的长度为所述阀片弯曲长度, 所述阀片的升程 H与阀片弯曲长度 L之间 满足 H/L<0.15。 从而可保证阀片的弯曲性, 且使得阀片不易折断, 提高了喷射阀的可 靠性。
在本发明的一些实施例中, 所述第一气缸的所述充注口的中心点和所述第一气缸的 中心点的连线与所述第一气缸的所述滑片槽的中心线所形成的夹角为 E,所述第一气缸 的所述排气口的中心点和所述第一气缸的中心点的连线与所述第一气缸的所述滑片槽 的中心线所形成的夹角为 F, 所述夹角 E和所述夹角 F满足 E F+10 ° 。 从而通过第一 气缸上的排气口的位置限定第一气缸的充注口的位置, 进而避免排气结束时, 第一气缸 的压缩腔内的冷媒过多回流至第一气缸的吸气腔内。
根据本发明的一些实施例, 所述第二气缸的所述充注口的中心点和所述第二气缸的 中心点的连线与所述第二气缸的所述滑片槽的中心线所形成的夹角为 G,所述第二气缸 的所述排气口的中心点和所述第二气缸的中心点的连线与所述第二气缸的所述滑片槽 的中心线所形成的夹角为 K, 所述夹角 G和所述夹角 Κ满足 G K+10 ° 。 从而通过第 二气缸上的排气口的位置限定第二气缸的充注口的位置, 进而避免排气结束时, 第二气 缸的压缩腔内的冷媒过多回流至第二气缸的吸气腔内。
具体地, 所述第一气缸的下端面和所述中间隔板的上端面之间、 所述第二气缸的上 端面和所述中间隔板的下端面之间分别限定出用于安装所述两个喷射阀的安装空间。从 而可提高冷媒充注式旋转压缩机的结构紧凑性。
本发明的附加方面和优点将在下面的描述中部分给出, 部分将从下面的描述中变得 明显, 或通过本发明的实践了解到。 附图说明
本发明的上述和 /或附加的方面和优点从结合下面附图对实施例的描述中将变得明 显和容易理解, 其中:
图 1为根据本发明一个实施例的冷媒充注式旋转压缩机的示意图, 其中包括一个气 缸;
图 2为根据本发明实施例的冷媒充注式旋转压缩机的喷射阀形成的余隙容积与压缩 机性能之间的关系图;
图 3为根据本发明实施例的喷射阀设在所述气缸上时的示意图;
图 4为根据本发明实施例的设有活塞、 曲轴和滑片的气缸的俯视剖面图; 图 5为根据本发明实施例的活塞运动到排气口的边缘和活塞运动到充注口的边缘时 的示意图;
图 6为根据本发明另一个实施例的冷媒充注式旋转压缩机的示意图, 其中包括第一 气缸和第二气缸。 附图标记:
冷媒充注式旋转压缩机 100、 气液分离器 200、 壳体 1、
压缩机构 2、 气缸 20、 气缸腔 201、 充注口 201 1、 压缩腔 2012、
透气腔 2013、 滑片槽 202、 排气口 203、 充注通道 204、
充注孔 2041、 吸气口 205、 主轴承 21、 副轴承 22、 曲轴 23、
活塞 24、 滑片 25、 喷射管 3、 喷射阀 4、 限位件 40、 阀片 41、 固定件 42、 间隙 43、 第一气缸 5、 第二气缸 6、 中间隔板 7 具体实施方式
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其中自始至终相 同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附 图描述的实施例是示例性的, 仅用于解释本发明, 而不能理解为对本发明的限制。
在本发明的描述中, 需要理解的是, 术语"中心"、 "上"、 "下"、 "前"、 "后"、 "左" 、 "右" 、 "竖直" 、 "水平" 、 "顶" 、 "底" "内" 、 "外"等指示的方位 或位置关系为基于附图所示的方位或位置关系, 仅是为了便于描述本发明和简化描述, 而不是指示或暗示所指的装置或元件必须具有特定的方位、 以特定的方位构造和操作, 因此不能理解为对本发明的限制。
需要说明的是, 术语 "第一" 、 "第二 "仅用于描述目的, 而不能理解为指示或暗 示相对重要性或者隐含指明所指示的技术特征的数量。 由此, 限定有 "第一"、 "第二" 的特征可以明示或者隐含地包括一个或者更多个该特征。进一步地,在本发明的描述中, 除非另有说明, "多个" 的含义是两个或两个以上。
冷媒充注式旋转压缩机 100可应用在空调器等制冷系统中, 下面以冷媒充注式旋转压 缩机 100为单缸且应用在空调器中为例进行说明, 空调器包括气液分离器 200, 气液分 离器 200对进入其的冷媒进行分离以将冷媒分离为液态冷媒和气态冷媒,气态冷媒通过 喷射管 3喷入气缸 20的气缸腔 201 内。 冷媒充注式旋转压缩机 100中设有喷射阀 4, 气缸腔 201的内壁上设有充注口 201 1, 当喷射阀 4打开时, 气态冷媒通过充注口 201 1 喷入到气缸 20的气缸腔 201内, 当喷射阀 4关闭时, 喷射阀 4和充注口 201 1之间能进 入压缩气体的空隙称为喷射阀 4形成的余隙容积。其中, 空调器的结构和工作原理等已 为本领域的技术人员所熟知, 这里就不详细描述。
本申请的发明人发现喷射阀 4形成的余隙容积的大小对压缩机的性能(COP)具有不同 的影响, 如图 2中所示, 发明人通过大量的实验惊奇的发现在喷射阀 4形成的余隙容积与 气缸 20吸气容积之间的比值等于 0.3%的情况下,压缩机的性能已经接近量产性能水平, 再进一步减小喷射阀 4形成的余隙容积, 压缩机的性能无明显的上升, 反而更小的喷射 阀 4形成的余隙容积,带来喷射阀 4加工成本的急剧上升及喷射阀 4可靠性的急剧下降, 而喷射阀 4形成的余隙容积与气缸 20吸气容积之间的比值大于 1.5%,压缩机的性能则 急剧恶化。 其中, 气缸 20的吸气容积的计算方法已为本领域的技术人员所熟知, 这里 就不详细描述。 本申请正在是基于发明人上述的发现做出的。
下面参考图 1 -图 5描述根据本发明一个实施例的冷媒充注式旋转压缩机 100。
如图 1-图 5所示, 根据本发明实施例的冷媒充注式旋转压缩机 100包括: 壳体 1、 压缩机构 2、 喷射管 3和喷射阀 4。 压缩机构 2设在壳体 1 内, 压缩机构 2包括: 气缸 20、 主轴承 21、 副轴承 22、 曲 轴 23、 活塞 24和滑片 25, 其中, 气缸 20上设有气缸腔 201、 滑片槽 202、 排气口 203 和吸气口 205, 气缸腔 201的内壁上设有充注口 201 1, 气缸 20上设有具有充注孔 2041 的充注通道 204, 即充注通道 204的一端为充注孔 2041, 喷射管 3穿过壳体 1插入到充 注通道 204内, 外界的气态冷媒通过喷射管 3进入到充注通道 204内。 主轴承 21设在 气缸 20的上面。 副轴承 22设在气缸 20的下面。 曲轴 23贯穿主轴承 21、 气缸腔 201 和副轴承 22, 曲轴 23上的上端与电机相连以由电机带动曲轴 23转。 活塞 24可转动地 设在气缸腔 201 内且外套在曲轴 23上。 滑片 25可移动地设在滑片槽 202内且滑片 25 的一端伸入气缸腔 201内以止抵在活塞 24的外周面上。
如图 4所示, 曲轴 23带动活塞 24转动,滑片 25的一端止抵在活塞 24的外周面上, 转动的活塞 24和滑片 25将气缸腔 201分成压缩腔 2012和吸气腔 2013, 吸气腔 2013 与吸气口 205连通, 压缩腔 2012与排气口 203通过排气阀 8连通, 随着冷媒充注式旋 转压缩机 100的运行, 压缩腔 2012和吸气腔 2013的容积周期性变化, 以完成吸气及压 缩过程, 其中, 值得说明的是, 主轴承 21和副轴承 22上还可设有消音器, 压缩机构 2 的工作原理与现有的压缩机中的压缩机构 2的工作原理相同, 这里就不再详细描述。
喷射阀 4设在气缸 20上, 喷射阀 4在气缸腔 201内的压力大于充注孔 2041内的压 力时处于关闭状态以隔离充注孔 2041和充注口 201 1, 从而避免气缸腔 201 内的压缩气 体回流到充注通道 204内。 喷射阀 4在气缸腔 201 内的压力小于充注孔 2041 内的压力 时处于打开状态, 此时喷射阀 4打开以导通充注孔 2041和充注口 201 1, 气态冷媒依次 经过充注孔 2041和充注口 201 1进入到气缸腔 201内。其中,在喷射阀 4处于关闭状态, 喷射阀 4与充注口 201 1之间能进入压缩气体的空隙称为喷射阀 4形成的余隙容积, 喷 射阀 4形成的余隙容积与气缸 20吸气容积之间的比值的范围为: 0.3%~1.5%。
根据本发明实施例的冷媒充注式旋转压缩机 100, 通过使得喷射阀 4形成的余隙容 积与气缸 20 吸气容积之间的比值的范围为: 0.3%~1.5%, 从而可保证冷媒充注式旋转 压缩机 100的性能, 减少冷媒充注式旋转压缩机 100的性能损失。
具体地, 如图 1所示, 气缸 20的下端面和副轴承 22的上端面之间限定出用于安装 喷射阀 4的安装空间。也就是说,充注通道 204的充注孔 2041位于气缸 20的下端面上, 喷射阀 4 设在气缸 20 的下端面和副轴承 22 的上端面之间以用于打开或关闭充注孔 2041。 当然本发明不限于此, 喷射阀 4还可设在气缸 20的上端面和主轴承 21的下端面 之间, 此时充注通道 204的充注孔 2041位于气缸 20的上端面上。
如图 1和图 3所示, 在本发明的具体实施例中, 喷射阀 4包括: 限位件 40和阀片 41, 其中, 限位件 40的一端固定在气缸 20上, 限位件 40的另一端与气缸 20之间形成 有间隙 43, 间隙 43在从一端到另一端的方向上逐渐变大。 阀片 41 的一端设在限位件 40和气缸 20之间, 在气缸腔 201内的压力小于充注孔 2041的压力时, 阀片 41的另一 端绕限位件 40在间隙 43内从水平位置远离气缸 20弯曲变形、以打开充注孔 2041使得 充注孔 2041和充注口 201 1连通, 在气缸腔 201 内的压力大于充注孔 2041的压力时, 阀片 41处于水平位置的常态即未变形状态以关闭充注孔 2041。从而根据本发明实施例 的喷射阀 4 具有结构简单、 设计合理、 喷气效果好、 使得冷媒充注式旋转压缩机 100 的效率高的优点。
在本发明的示例中, 如图 3所示, 喷射阀 4设在气缸 20的下端面上, 此时阀片 41 为可变形的板状体, 阀片 41的左端固定在气缸 20的下端面上以使得阀片 41位于充注 孔 2041的下方, 限位件 40的左端固定在阀片 41的左端的下表面上, 限位件 40的右端 与气缸 20的下端面之间限定出间隙 43, 间隙 43在从左到右的方向上逐渐增大。 此时 在气缸腔 201内的压力小于充注孔 2041的压力时,阀片 41绕限位件 40在间隙 43内从 水平位置向下弯曲以打开充注孔 2041, 在气缸腔 201内的压力大于充注孔 2041的压力 时, 阀片 41恢复到水平位置以关闭充注孔 2041。
当喷射阀 4位于气缸 20的上端面时, 此时阀片 41设在气缸 20的上端面上且阀片
41位于充注孔 2041的上方, 限位件 40位于阀片 41的上方, 在气缸腔 201 内的压力小 于充注孔 2041的压力时,阀片 41绕限位件 40在间隙 43内从水平位置向上弯曲以打开 充注孔 2041。
进一步地, 喷射阀 4还包括固定件 42, 固定件 42依次穿过限位件 40和阀片 41 以 将限位件 40和阀片 41固定在气缸 20上, 也就是说, 限位件 40和阀片 41通过固定件 42固定在气缸 20上, 从而便于限位件 40和阀片 41的装配。 具体地, 固定件 42可以 为螺钉, 固定件 42还可以为铆钉。
如图 3所示, 在本发明的一些实施例中, 在充注孔 2041的中心位置阀片 41与限位 件 40之间的最短距离为阀片 41的升程 H,阀片 41的弯曲起点到充注孔 2041的中心位 置的长度为阀片 41弯曲长度, 阀片 41的升程 H与阀片 41弯曲长度 L之间满足 H/L< 0.15。 从而通过将阀片 41的升程 H和阀片 41弯曲长度 L之间的比值限定为小于 0.15, 可保证阀片 41的弯曲性, 且使得阀片 41不易折断, 提高了喷射阀 4的可靠性。
根据本发明的一些实施例, 充注口 201 1的中心点和气缸 20的中心点的连线与滑片 槽 202的中心线所形成的夹角为 A, 排气口 203的中心点和气缸 20的中心点的连线与 滑片槽 202的中心线所形成的夹角为 B, 夹角 A和夹角 B满足 A B+10 ° 。 从而通过 排气口 203的位置限定充注口 201 1的位置, 避免充注口 201 1距离排气口 203太远, 进 而避免排气结束时, 压缩腔 2012内的冷媒过多回流至吸气腔 2013内。 在本发明的另一些实施例中, 如图 5所示, 还可通过如下方式以根据排气口 203的 位置限定充注口 201 1的位置, 在活塞 24运动的过程中, 当活塞 24运动到活塞 24的外 周壁与充注口 201 1的边缘位置接触以使得充注口 201 1与吸气腔 2013处于未连通但即 将连通的状态时(如图 5中的实线所示),也就是说,在活塞 24的外周壁与充注口 201 1 的边缘位置接触时, 只要活塞 24继续运动则充注口 201 1与吸气腔 2013连通。 此时活 塞 24中心点与气缸 20的中心点的连线与滑片 25运动方向所形成的夹角为 C。
活塞 24继续运动, 当活塞 24运动到活塞 24的外周壁与排气口 203的边缘位置接 触以使得排气口 203与吸气腔 2013处于未连通但即将连通的状态, 也就是说, 在活塞 24的外周壁与排气口 203的边缘位置接触时 (如图 5中的虚线所示) , 只要活塞 24继 续运动则排气口 203与吸气腔 2013连通。 此时活塞 24中心点与气缸 20的中心点的连 线与滑片 25运动方向所形成的夹角为 D, 夹角 C和夹角 D满足 C D+10 ° 。
下面参考图 3-图 6描述根据本发明另一个实施例的冷媒充注式旋转压缩机 100。 如图 6所示, 根据本发明实施例的冷媒充注式旋转压缩机 100包括: 壳体 1、 压缩 机构 2、 两个喷射管 3和两个喷射阀 4, 其中压缩机构 2设在壳体 1 内, 每个喷射管 3 的一端位于壳体 1外以与气液分离器 200相连, 每个喷射管 3的另一端位于壳体 1内。
压缩机构 2包括: 第一气缸 5和第二气缸 6、 中间隔板 7、 主轴承 21、 副轴承 22、 曲轴 23和两个滑片 25, 其中, 第一气缸 5位于第二气缸 6的上方, 第一气缸 5和第二 气缸 6上分别设有气缸腔 201、 滑片槽 202、 排气口 203和吸气口 205, 也就是说, 第 一气缸 5上设有气缸腔 201、 滑片槽 202、 排气口 203和吸气口 205, 第二气缸 6上设 有气缸腔 201、 滑片槽 202、 排气口 203和吸气口 205, 每个气缸腔 201的内壁上设有 充注口 201 1, 第一气缸 5和第二气缸 6上分别设有具有充注孔 2041的充注通道 204, 每个喷射管 3穿过壳体 1插入到相应的充注通道 204内。
中间隔板 7设在第一气缸 5和第二气缸 6之间。 主轴承 21设在第一气缸 5的上面。 副轴承 22设在第二气缸 6的下面。 曲轴 23贯穿主轴承 21、 中间隔板 7和副轴承 22, 曲轴 23上套设有两个活塞 24, 两个活塞 24分别设在第一气缸 5和第二气缸 6的气缸 腔 201 内, 即第一气缸 5的气缸腔 201 内设有可转动的活塞 24, 第二气缸 6的气缸腔 201内设有可转动的活塞 24。每个滑片 25可移动地设在相应的滑片槽 202内且滑片 25 的一端伸入相应的气缸腔 201内以止抵在相应的活塞 24的外周面上。
曲轴 23带动两个活塞 24分别在相应的气缸腔 201 内运动, 每个滑片 25的一端止 抵在相应的活塞 24的外周壁上, 第一气缸 5上的运动的活塞 24和滑片 25将第一气缸 5的气缸腔 201分隔成压缩腔 2012和吸气腔 2013,第二气缸 6上的运动的活塞 24和滑 片 25将第二气缸 6的气缸腔 201分隔成压缩腔 2012和吸气腔 2013。 其中需要说明的 是,本发明的压缩机构 2的工作原理与现有技术中的具有双气缸的压缩机构 2的工作原 理相同, 这里就不详细描述。
两个喷射阀 4分别设在第一气缸 5和第二气缸 6上, 每个喷射阀 4在相应的气缸腔 201内的压力大于相应的充注孔 2041内的压力时处于关闭状态以隔离充注孔 2041和充 注口 201 1, 每个喷射阀 4在相应的气缸腔 201内的压力小于相应的充注孔 2041内的压 力时处于打开状态以导通充注孔 2041和充注口 201 1, 其中, 在两个喷射阀 4处于关闭 状态, 两个喷射阀 4与相应的充注口 201 1之间能进入压缩气体的空隙之和称为两个喷 射阀 4形成的余隙容积,两个喷射阀 4形成的余隙容积与第一气缸 5吸气容积和第二气 缸 6吸气容积之和的比值的范围为: 0.3%~1.5%。
根据本发明实施例的冷媒充注式旋转压缩机 100, 通过使得喷射阀 4形成的余隙容 积与第一气缸 5吸气容积和第二气缸 6吸气容积之和的比值的范围为: 0.3%~1.5%, 从 而可保证冷媒充注式旋转压缩机 100的性能,减少冷媒充注式旋转压缩机 100的性能损 失。
具体地, 第一气缸 5的下端面和中间隔板 7的上端面之间、 第二气缸 6的上端面和 中间隔板 7的下端面之间分别限定出用于安装两个喷射阀 4的安装空间, 也就是说, 第 一气缸 5上的喷射阀 4设在第一气缸 5的下端面和中间隔板 7的上端面之间,第二气缸 6上的喷射阀 4设在第二气缸 6的上端面和中间隔板 7的下端面之间。从而可提高冷媒 充注式旋转压缩机 100的结构紧凑性。
在本发明的一些实施例中, 如图 3和图 6所示, 每个喷射阀 4包括: 限位件 40和 阀片 41, 限位件 40的一端固定在相应的第一气缸 5或第二气缸 6上, 限位件 40的另 一端与相应的第一气缸 5或第二气缸 6之间形成有间隙 43, 间隙 43在从一端到另一端 的方向上逐渐变大。 阀片 41 的一端设在限位件 40和相应的第一气缸 5或第二气缸 6 之间, 在气缸腔 201 内的压力小于充注孔 2041 的压力时, 阀片 41 的另一端绕限位件 40在间隙 43内从水平位置远离相应的第一气缸 5或第二气缸 6弯曲变形、 以打开充注 孔 2041使得充注孔 2041和充注口 201 1连通, 在气缸腔 201 的压力大于充注孔 2041 的压力时, 阀片 41处于水平位置以关闭充注孔 2041。 从而根据本发明实施例的喷射阀 4具有结构简单、 设计合理、 喷气效果好、 使得冷媒充注式旋转压缩机 100的效率高的 优点。
如图 6所示, 第一气缸 5上的喷射阀 4中的部件的位置关系如下: 阀片 41的左端 固定在第一气缸 5 的下端面上, 限位件 40的左端固定在阀片 41 的下表面上, 限位件 40的右端与第一气缸 5的下端面之间限定出间隙 43,间隙 43在从左到右的方向上逐渐 增大。 此时在第一气缸 5的气缸腔 201 内的压力小于第一气缸 5的充注孔 2041的压力 时, 阀片 41绕限位件 40在间隙 43内从水平位置向下弯曲以打开充注孔 2041, 在第一 气缸 5的气缸腔 201内的压力大于第一气缸 5的充注孔 2041的压力时,阀片 41恢复到 水平位置以关闭充注孔 2041。
第二气缸 6上的喷射阀 4中的部件的位置关系如下: 阀片 41 的左端固定在第二气 缸 6的上端面上, 限位件 40的左端固定在阀片 41的上表面上, 限位件 40的右端与第 二气缸 6的上端面之间限定出间隙 43, 间隙 43在从左到右的方向上逐渐增大。 此时在 第二气缸 6的气缸腔 201 内的压力小于第二气缸 6的充注孔 2041 的压力时, 阀片 41 绕限位件 40在间隙 43 内从水平位置向上弯曲以打开充注孔 2041, 在第二气缸 6的气 缸腔 201内的压力大于第二气缸 6的充注孔 2041的压力时,阀片 41恢复到水平位置以 关闭充注孔 2041。
进一步地, 每个喷射阀 4还包括固定件 42, 固定件 42依次穿过限位件 40和阀片 41 以将限位件 40和阀片 41固定在相应的第一气缸 5或第二气缸 6上。 从而可便于限 位件 40和阀片 41的装配。 具体地, 固定件 42可以为螺钉, 固定件 42还可以为铆钉。
如图 3所示, 根据本发明的一些实施例, 在每个喷射阀 4中, 在充注孔 2041 的中 心位置阀片 41与限位件 40之间的最短距离为阀片 41的升程 H,阀片 41的弯曲起点到 充注孔 2041的中心位置的长度为阀片 41弯曲长度, 阀片 41的升程 H与阀片 41弯曲 长度 L之间满足 H/L< 0.15。 具体地, 第一气缸 5上的喷射阀 4中的阀片 41 的升程 H 指的是在第一气缸 5的充注孔 2041的中心位置阀片 41的下表面和限位件 40的上表面 之间的距离, 第二气缸 6上的喷射阀 4中的阀片 41的升程 H指的是在第二气缸 6的充 注孔 2041 的中心位置阀片 41 的上表面和限位件 40之间的距离。 从而通过将阀片 41 的升程 H和阀片 41弯曲长度 L之间的比值限定为小于 0.15,可保证阀片 41的弯曲性, 且使得阀片 41不易折断, 提高了喷射阀 4的可靠性。
在本发明的一些实施例中, 第一气缸 5的充注口 201 1 的中心点和第一气缸 5的中 心点的连线与第一气缸 5的滑片槽 202的中心线所形成的夹角为 E,第一气缸 5的排气 口 203的中心点和第一气缸 5的中心点的连线与第一气缸 5的滑片槽 202的中心线所形 成的夹角为 F, 夹角 E和夹角 F满足 E F+10 ° 。 从而通过第一气缸 5上的排气口 203 的位置限定第一气缸 5的充注口 201 1的位置, 进而避免排气结束时, 第一气缸 5的压 缩腔 2012内的冷媒过多回流至第一气缸 5的吸气腔 2013内。
进一步地, 第二气缸 6的充注口 201 1 的中心点和第二气缸 6的中心点的连线与第 二气缸 6的滑片槽 202的中心线所形成的夹角为 G,第二气缸 6的排气口 203的中心点 和第二气缸 6的中心点的连线与第二气缸 6的滑片槽 202的中心线所形成的夹角为 K, 夹角 G和夹角 Κ满足 G K+10 ° 。 从而通过第二气缸 6上的排气口 203的位置限定第 二气缸 6的充注口 201 1的位置, 进而避免排气结束时, 第二气缸 6的压缩腔 2012内的 冷媒过多回流至第二气缸 6的吸气腔 2013内。
根据本发明实施例的冷媒充注式旋转压缩机 100 的其他构成以及操作对于本领域普通 技术人员而言都是已知的, 这里不再详细描述。
在本说明书的描述中, 参考术语 "一个实施例"、 "一些实施例"、 "示意性实施例"、 "示 例"、 "具体示例"、 或 "一些示例"等的描述意指结合该实施例或示例描述的具体特征、 结 构、 材料或者特点包含于本发明的至少一个实施例或示例中。 在本说明书中, 对上述术语 的示意性表述不一定指的是相同的实施例或示例。 而且, 描述的具体特征、 结构、 材料或 者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例, 本领域的普通技术人员可以理解: 在不脱 离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、 修改、 替换和变型, 本发明的范围由权利要求及其等同物限定。

Claims

权利要求书
1、 一种冷媒充注式旋转压缩机, 其特征在于, 包括:
壳体;
压缩机构, 所述压缩机构设在所述壳体内, 所述压缩机构包括:
气缸, 所述气缸上设有气缸腔、 滑片槽和排气口, 所述气缸腔的内壁上设有充 注口, 所述气缸上设有具有充注孔的充注通道;
主轴承, 所述主轴承设在所述气缸的上面;
副轴承, 所述副轴承设在所述气缸的下面;
曲轴, 所述曲轴贯穿所述主轴承、 所述气缸腔和所述副轴承;
活塞, 所述活塞可转动地设在所述气缸腔内且外套在所述曲轴上;
滑片, 所述滑片可移动地设在所述滑片槽内且所述滑片的一端伸入所述气缸腔 内以止抵在所述活塞的外周面上;
喷射管, 所述喷射管穿过所述壳体插入到所述充注通道内;
喷射阀, 所述喷射阀设在所述气缸上, 所述喷射阀在所述气缸腔内的压力大于所述 充注孔内的压力时处于关闭状态以隔离所述充注孔和所述充注口,所述喷射阀在所述气 缸腔内的压力小于所述充注孔内的压力时处于打开状态以导通所述充注孔和所述充注 口, 其中, 在所述喷射阀处于关闭状态, 所述喷射阀与所述充注口之间能进入压缩气体 的空隙称为所述喷射阀形成的余隙容积,所述喷射阀形成的余隙容积与所述气缸吸气容 积之间的比值的范围为: 0.3%~1.5%。
2、 根据权利要求 1所述的冷媒充注式旋转压缩机, 其特征在于, 所述喷射阀包括: 限位件, 所述限位件的一端固定在所述气缸上, 所述限位件的另一端与所述气缸之 间形成有间隙, 所述间隙在从所述一端到所述另一端的方向上逐渐变大;
阀片, 所述阀片的一端设在所述限位件和所述气缸之间, 在所述气缸腔内的压力小 于所述充注孔的压力时,所述阀片的另一端绕所述限位件在所述间隙内从水平位置远离 所述气缸弯曲变形、 以打开所述充注孔使得所述充注孔和所述充注口连通。
3、 根据权利要求 2所述的冷媒充注式旋转压缩机, 其特征在于, 所述喷射阀还包 括固定件,所述固定件依次穿过所述限位件和所述阀片以将所述限位件和所述阀片固定 在所述气缸上。
4、 根据权利要求 2所述的冷媒充注式旋转压缩机, 其特征在于, 在所述充注孔的 中心位置所述阀片与所述限位件之间的最短距离为所述阀片的升程 H,所述阀片的弯曲 起点到所述充注孔的中心位置的长度为所述阀片弯曲长度, 所述阀片的升程 H与阀片 弯曲长度 L之间满足 H/L< 0.15。
5、 根据权利要求 1 所述的冷媒充注式旋转压缩机, 其特征在于, 所述充注口的中 心点和所述气缸的中心点的连线与所述滑片槽的中心线所形成的夹角为 A,所述排气口 的中心点和所述气缸的中心点的连线与所述滑片槽的中心线所形成的夹角为 B,所述夹 角 A和所述夹角 B满足 A B+10 ° 。
6、根据权利要求 1-5中任一项所述的冷媒充注式旋转压缩机, 其特征在于, 所述气 缸的下端面和所述副轴承的上端面之间限定出用于安装所述喷射阀的安装空间。
7、 一种冷媒充注式旋转压缩机, 其特征在于, 包括:
壳体;
压缩机构, 所述压缩机构设在所述壳体内, 所述压缩机构包括:
第一气缸和第二气缸, 所述第一气缸和所述第二气缸上分别设有气缸腔、 滑片 槽和排气口, 每个所述气缸腔的内壁上设有充注口, 所述第一气缸和所述第二气缸上分 别设有具有充注孔的充注通道;
中间隔板, 所述中间隔板设在所述第一气缸和所述第二气缸之间;
主轴承, 所述主轴承设在所述第一气缸的上面;
副轴承, 所述副轴承设在所述第二气缸的下面;
曲轴, 所述曲轴贯穿所述主轴承、 所述中间隔板和所述副轴承, 所述曲轴上套 设有两个活塞, 所述两个活塞分别设在所述第一气缸和所述第二气缸的气缸腔内; 两个滑片, 每个所述滑片可移动地设在相应的所述滑片槽内且所述滑片的一端 伸入相应的所述气缸腔内以止抵在相应的所述活塞的外周面上;
两个喷射管, 每个所述喷射管穿过所述壳体插入到相应的所述充注通道内; 两个喷射阀, 所述两个喷射阀分别设在所述第一气缸和所述第二气缸上, 每个所述 喷射阀在相应的所述气缸腔内的压力大于相应的所述充注孔内的压力时处于关闭状态 以隔离所述充注孔和所述充注口,每个所述喷射阀在相应的所述气缸腔内的压力小于相 应的所述充注孔内的压力时处于打开状态以导通所述充注孔和所述充注口, 其中, 在所 述两个喷射阀处于关闭状态,所述两个喷射阀与相应的所述充注口之间能进入压缩气体 的空隙之和称为所述两个喷射阀形成的余隙容积,所述两个喷射阀形成的余隙容积与所 述第一气缸吸气容积和所述第二气缸吸气容积之和的比值的范围为: 0.3%~1.5%。
8、 根据权利要求 7所述的冷媒充注式旋转压缩机, 其特征在于, 每个所述喷射阀 包括:
限位件, 所述限位件的一端固定在相应的所述第一气缸或第二气缸上, 所述限位件 的另一端与相应的所述第一气缸或第二气缸之间形成有间隙,所述间隙在从所述一端到 所述另一端的方向上逐渐变大;
阀片, 所述阀片的一端设在所述限位件和相应的所述第一气缸或第二气缸之间, 在 所述气缸腔内的压力小于所述充注孔的压力时,所述阀片的另一端绕所述限位件在所述 间隙内从水平位置远离相应的所述第一气缸或第二气缸弯曲变形、以打开所述充注孔使 得所述充注孔和所述充注口连通。
9、 根据权利要求 8所述的冷媒充注式旋转压缩机, 其特征在于, 每个所述喷射阀 还包括固定件,所述固定件依次穿过所述限位件和所述阀片以将所述限位件和所述阀片 固定在相应的所述第一气缸或第二气缸上。
10、 根据权利要求 8所述的冷媒充注式旋转压缩机, 其特征在于, 在每个所述喷射 阀中,在所述充注孔的中心位置所述阀片与所述限位件之间的最短距离为所述阀片的升 程 所述阀片的弯曲起点到所述充注孔的中心位置的长度为所述阀片弯曲长度, 所述 阀片的升程 H与阀片弯曲长度 L之间满足 H/L< 0.15。
11、 根据权利要求 7所述的冷媒充注式旋转压缩机, 其特征在于, 所述第一气缸的 所述充注口的中心点和所述第一气缸的中心点的连线与所述第一气缸的所述滑片槽的 中心线所形成的夹角为£,所述第一气缸的所述排气口的中心点和所述第一气缸的中心 点的连线与所述第一气缸的所述滑片槽的中心线所形成的夹角为?,所述夹角 E和所述 夹角 F满足 E F+10° 。
12、 根据权利要求 7所述的冷媒充注式旋转压缩机, 其特征在于, 所述第二气缸的 所述充注口的中心点和所述第二气缸的中心点的连线与所述第二气缸的所述滑片槽的 中心线所形成的夹角为 G,所述第二气缸的所述排气口的中心点和所述第二气缸的中心 点的连线与所述第二气缸的所述滑片槽的中心线所形成的夹角为 K, 所述夹角 G和所 述夹角 Η满足 G K+10° 。
13、 根据权利要求 7-12中任一项所述的冷媒充注式旋转压缩机, 其特征在于, 所 述第一气缸的下端面和所述中间隔板的上端面之间、所述第二气缸的上端面和所述中间 隔板的下端面之间分别限定出用于安装所述两个喷射阀的安装空间。
PCT/CN2013/084704 2013-09-30 2013-09-30 冷媒充注式旋转压缩机 WO2015042947A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13881455.3A EP3059447B1 (en) 2013-09-30 2013-09-30 Refrigerant filling type rotary compressor
US14/394,324 US9909587B2 (en) 2013-09-30 2013-09-30 Refrigerant filling rotary compressor
PCT/CN2013/084704 WO2015042947A1 (zh) 2013-09-30 2013-09-30 冷媒充注式旋转压缩机
KR1020147028950A KR101696211B1 (ko) 2013-09-30 2013-09-30 냉매 충전형 회전 압축기
JP2015538266A JP2015531846A (ja) 2013-09-30 2013-09-30 冷媒充填型回転式圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/084704 WO2015042947A1 (zh) 2013-09-30 2013-09-30 冷媒充注式旋转压缩机

Publications (1)

Publication Number Publication Date
WO2015042947A1 true WO2015042947A1 (zh) 2015-04-02

Family

ID=52741875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084704 WO2015042947A1 (zh) 2013-09-30 2013-09-30 冷媒充注式旋转压缩机

Country Status (5)

Country Link
US (1) US9909587B2 (zh)
EP (1) EP3059447B1 (zh)
JP (1) JP2015531846A (zh)
KR (1) KR101696211B1 (zh)
WO (1) WO2015042947A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107401511A (zh) * 2017-08-09 2017-11-28 珠海凌达压缩机有限公司 泵体结构及具有其的压缩机
JP7066495B2 (ja) * 2018-04-20 2022-05-13 東芝キヤリア株式会社 密閉型圧縮機及び冷凍サイクル装置
CN108999781A (zh) * 2018-08-24 2018-12-14 珠海凌达压缩机有限公司 泵体组件及压缩机
CN111720315B (zh) * 2020-06-29 2022-03-01 安徽美芝精密制造有限公司 旋转式压缩机和制冷装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337391A (ja) * 1989-07-04 1991-02-18 Hitachi Ltd ロータリ圧縮機
JP2004324652A (ja) * 2004-08-23 2004-11-18 Daikin Ind Ltd ロータリ圧縮機
CN101624985A (zh) * 2009-07-24 2010-01-13 广东美芝制冷设备有限公司 气体冷媒喷射式旋转压缩机
CN202132235U (zh) * 2011-06-21 2012-02-01 广东美芝制冷设备有限公司 气体冷媒喷射式旋转式压缩机
CN202301033U (zh) * 2011-09-30 2012-07-04 广东美芝制冷设备有限公司 冷媒喷射式旋转压缩机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012004992A1 (ja) * 2010-07-08 2012-01-12 パナソニック株式会社 ロータリ圧縮機及び冷凍サイクル装置
CN102575674B (zh) 2010-07-08 2015-09-02 松下电器产业株式会社 回转式压缩机及制冷循环装置
JP5760836B2 (ja) * 2011-08-10 2015-08-12 ダイキン工業株式会社 ロータリ圧縮機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337391A (ja) * 1989-07-04 1991-02-18 Hitachi Ltd ロータリ圧縮機
JP2004324652A (ja) * 2004-08-23 2004-11-18 Daikin Ind Ltd ロータリ圧縮機
CN101624985A (zh) * 2009-07-24 2010-01-13 广东美芝制冷设备有限公司 气体冷媒喷射式旋转压缩机
CN202132235U (zh) * 2011-06-21 2012-02-01 广东美芝制冷设备有限公司 气体冷媒喷射式旋转式压缩机
CN202301033U (zh) * 2011-09-30 2012-07-04 广东美芝制冷设备有限公司 冷媒喷射式旋转压缩机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3059447A4 *

Also Published As

Publication number Publication date
EP3059447A4 (en) 2017-10-04
JP2015531846A (ja) 2015-11-05
US9909587B2 (en) 2018-03-06
KR20150099685A (ko) 2015-09-01
US20160201677A1 (en) 2016-07-14
EP3059447B1 (en) 2019-11-20
KR101696211B1 (ko) 2017-01-13
EP3059447A1 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
WO2015042947A1 (zh) 冷媒充注式旋转压缩机
CN106837790B (zh) 一种旋转压缩机、制冷系统及调温设备
WO2009062366A1 (fr) Dispositif de soupape d&#39;évacuation d&#39;un compresseur rotatif
WO2019024562A1 (zh) 压缩机以及具有它的制冷设备
US9004888B2 (en) Rotary compressor having discharge groove to communicate compression chamber with discharge port near vane groove
WO2015081543A1 (zh) 旋转式压缩机及其压缩装置、空调器
CN102094821A (zh) 回转压缩机
CN109058106B (zh) 泵体组件、压缩机及双温度空调系统
CN102878082A (zh) 一种壳体内低压力结构的旋转式压缩机
CN101454568A (zh) 压缩机
CN109058107B (zh) 一种密封型旋转压缩机及其控制方法
CN110966196A (zh) 气缸、压缩机构、旋转式压缩机及热泵装置
WO2019137036A1 (zh) 压缩机及具有其的空调器
CN111075721B (zh) 泵体组件及变容压缩机
CN112444012B (zh) 储液器、压缩机组件和制冷系统
CN111255696B (zh) 回转式压缩机
CN107191380B (zh) 压缩机构及具有其的压缩机
CN109595171B (zh) 压缩机和具有其的制冷系统
CN111075720B (zh) 压缩机和具有其的制冷循环系统
CN220101539U (zh) 压缩机和制冷装置
JP5595324B2 (ja) 圧縮機
CN214837120U (zh) 多缸回转式压缩机和制冷循环装置
CN114198304B (zh) 一种双缸变容压缩机及空调系统
CN108591058A (zh) 卧式压缩机及具有其的换热设备
CN112360738B (zh) 变容压缩机及空调器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015538266

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013881455

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013881455

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14394324

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147028950

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE