WO2015041322A1 - 環状分子が重合鎖を有するポリロタキサン及びその製造方法 - Google Patents

環状分子が重合鎖を有するポリロタキサン及びその製造方法 Download PDF

Info

Publication number
WO2015041322A1
WO2015041322A1 PCT/JP2014/074847 JP2014074847W WO2015041322A1 WO 2015041322 A1 WO2015041322 A1 WO 2015041322A1 JP 2014074847 W JP2014074847 W JP 2014074847W WO 2015041322 A1 WO2015041322 A1 WO 2015041322A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyrotaxane
cyclic
cyclodextrin
group
active hydrogen
Prior art date
Application number
PCT/JP2014/074847
Other languages
English (en)
French (fr)
Inventor
伊藤 耕三
勝成 井上
成史 工藤
Original Assignee
国立大学法人 東京大学
アドバンスト・ソフトマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学, アドバンスト・ソフトマテリアルズ株式会社 filed Critical 国立大学法人 東京大学
Priority to JP2015537978A priority Critical patent/JP6286439B2/ja
Publication of WO2015041322A1 publication Critical patent/WO2015041322A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • C08B37/0015Inclusion compounds, i.e. host-guest compounds, e.g. polyrotaxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/007Polyrotaxanes; Polycatenanes

Definitions

  • the present invention relates to a polyrotaxane in which a cyclic molecule has a polymer chain, a method for producing the same, a crosslinked product having the polyrotaxane, and a method for producing the same.
  • Polyrotaxane has properties such as viscoelasticity and low compression set due to the cross-linked products of polyrotaxanes, cross-linked products of polymers other than polyrotaxanes and polyrotaxanes, etc., as the cyclic molecules constituting the polyrotaxane move on linear molecules. Occurs. Since such characteristics can be imparted, the polyrotaxane is expected to have various applications, and its research and development is actively performed.
  • Patent Document 1 discloses a polyrotaxane in which part or all of the hydroxyl groups of cyclodextrin, which is a cyclic molecule constituting the polyrotaxane, is modified to have a caprolactone-modified group via a hydroxypropyl group.
  • Patent Document 1 provides a modified polyrotaxane soluble in an organic solvent by modifying the hydroxyl group of cyclodextrin with ⁇ -caprolactone or the like.
  • the modified polyrotaxane having a modifying group by caprolactone disclosed in Patent Document 1 has many steps in the production method, and has a problem that it takes a lot of time to obtain a modified polyrotaxane as a product.
  • the process disclosed in Patent Document 1 is not only a process for imparting a modifying group with caprolactone, but also a process for imparting a hydroxypropyl group to the preceding stage, so that a very large number of processes are required to obtain a final product.
  • a process is necessary and a great amount of time is consumed.
  • manufacturing cost increased with the manufacturing process and manufacturing time.
  • an object of the present invention is to solve the above problems. Specifically, the object of the present invention is to reduce the number of production steps and / or reduce the production time even if the cyclic molecule is a polyrotaxane having a polymer chain. It is providing the polyrotaxane and its manufacturing method. Moreover, the objective of this invention is providing the crosslinked body which has the polyrotaxane in which a cyclic molecule has a polymer chain in addition to the said objective other than the said objective, and its manufacturing method.
  • the polymer chain represented by the formula I may be a chain obtained by ring-opening polymerization of a cyclic lactone.
  • the weight average molecular weight of the linear molecule is 3,000 to 500,000, preferably 5,000 to 100,000, more preferably 10,000 to 50,000. It is good to be.
  • a pseudo-polyrotaxane comprising an opening of a cyclic molecule having active hydrogen selected from the group consisting of ⁇ -cyclodextrin, ⁇ -cyclodextrin, and ⁇ -cyclodextrin, which is skewered by linear molecules.
  • a polyrotaxane in which blocking groups are arranged so that cyclic molecules are not eliminated at both ends, and at least a part of the active hydrogen is represented by the above formula I (wherein n and m have the same definitions as above).
  • a method for producing a polyrotaxane substituted with a polymerized chain comprising: A) a step of preparing a polyrotaxane in which blocking groups are arranged so that the cyclic molecules are not detached at both ends of the pseudopolyrotaxane in which the openings of the cyclic molecules are included in a skewered manner by the linear molecules; B) a step of mixing a cyclic lactone and a polyrotaxane; and C) a step of adding an organic base to the mixture obtained in the step B) and reacting the cyclic lactone with the polyrotaxane; To obtain a polyrotaxane in which at least a part of the active hydrogen is substituted with a polymer chain represented by the above formula I.
  • the organic base may be a tertiary amine compound having no active hydrogen in the molecule.
  • the organic base is 1,8-diazabicyclo (5.4.0) undecene-7 (DBU), 1,5-diazabicyclo (4.3.0) nonene-5 (DBN) 1,4-diazabicyclo [2.2.2] octane (DABCO), phosphazene base, 1,5,7-triazabicyclo [4.4.0] dec-5-ene (TBD), 7-methyl-1,5, 1 selected from the group consisting of 7-triazabicyclo [4.4.0] dec-5-ene (MTBD), 1,1,3,3-tetramethylguanidine (TMG), 1-azabicyclo [2.2.2] octane Species, preferably 1,8-diazabicyclo (5.4.0) undecene-7 (DBU), 1,5-diaza
  • deca-5-ene TBD
  • MTBD 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene
  • DBU 1,8-Diazabicyclo (5.4.0) undecene- 7
  • DBN 1,5-diazabicyclo
  • the weight average molecular weight of the linear molecule is 3,000 to 500,000, preferably 5,000 to 100,000, more preferably 10,000 to It should be 50,000.
  • the cyclic lactone is one selected from the group consisting of cyclic lactones having 4 to 10 ring members, preferably a group consisting of cyclic lactones having 4 to 7 ring members. And ⁇ -valerolactone having 6 ring members or ⁇ -caprolactone having 7 ring members is preferable.
  • the cyclic molecule having active hydrogen may be ⁇ -cyclodextrin or ⁇ -cyclodextrin, preferably ⁇ -cyclodextrin.
  • the linear molecule is polyvinyl alcohol, polyvinyl pyrrolidone, poly (meth) acrylic acid, cellulose resin, polyacrylamide, polyethylene oxide, polyethylene glycol, polypropylene glycol.
  • Polyolefin such as polyvinyl acetal resin, polyvinyl methyl ether, polyamine, polyethyleneimine, casein, gelatin, starch, etc.
  • polyethylene, polypropylene, and copolymer resins with other olefin monomers Resin, polyester resin, polyvinyl chloride resin, polystyrene resin, acrylic resin, polycarbonate resin, polyurethane resin, vinyl chloride-vinyl acetate copolymer resin, polyvinyl butyral resin, etc.
  • polysiloxanes, polysulfones, polyimines, polyacetic anhydrides, polyureas, polysulfides, polyphosphazenes, polyketones, polyphenylenes, polyhaloolefins, conjugated polymers such as polyacetylene, polythiophene It may be selected from the group consisting of polylactic acid and derivatives thereof, preferably polyethylene glycol, polyethylene oxide, polypropylene glycol, polyolefin resin, polydie S, and the group consisting of polysiloxanes, more preferably polyethylene glycol, polybutadiene, and may be selected from the group
  • the blocking group is dinitrophenyl group, cyclodextrin, adamantane group, trityl group, fluorescein, silsesquioxane, pyrene, substituted Benzenes (Substituents include, but are not limited to, alkyl, alkyloxy, hydroxy, halogen, cyano, sulfonyl, carboxyl, amino, phenyl, etc. One or more substituents may be present. ), Optionally substituted polynuclear aromatics (substituents include, but are not limited to, the same as those described above.
  • steroids Preferably selected from the group consisting of It is preferably selected from the group consisting of dinitrophenyl groups, cyclodextrins, adamantane groups, trityl groups, fluoresceins, silsesquioxanes, and pyrenes, more preferably adamantane groups or cyclodextrins. It should be similar.
  • the present invention provides a polyrotaxane having a cyclic molecule having a polymer chain and a method for producing the same, wherein the production steps are reduced and / or the production time is reduced even if the cyclic molecule is a polyrotaxane having a polymer chain. can do.
  • the present invention can provide a crosslinked product having a polyrotaxane in which a cyclic molecule has a polymer chain, and a method for producing the same.
  • the present application relates to a pseudopolyrotaxane in which an opening of a cyclic molecule having an active hydrogen selected from the group consisting of ⁇ -cyclodextrin, ⁇ -cyclodextrin and ⁇ -cyclodextrin is included in a skewered manner by linear molecules.
  • this application discloses the manufacturing method of this polyrotaxane.
  • the polyrotaxane of this application and its manufacturing method are demonstrated.
  • the cyclic molecule of the polyrotaxane of the present application has active hydrogen, and has a structure in which at least a part of the active hydrogen is substituted with a polymer chain represented by the above formula I.
  • the cyclic molecule is selected from the group consisting of ⁇ -cyclodextrin, ⁇ -cyclodextrin and ⁇ -cyclodextrin, preferably ⁇ -cyclodextrin or ⁇ -cyclodextrin, more preferably ⁇ -cyclodextrin. It is good to be.
  • the “active hydrogen” refers to “H” of 18 OH groups present in the ⁇ -cyclodextrin molecule, taking ⁇ -cyclodextrin as an example. In the case of ⁇ -cyclodextrin and ⁇ -cyclodextrin, the term “H” of the OH group present in these molecules is also used.
  • the polyrotaxane has one or more cyclic molecules in one molecule of the polyrotaxane, and at least a part of the active hydrogen of the one or more cyclic molecules is substituted with the polymer chain represented by the above formula I.
  • the polyrotaxane of the present application has a structure in which “H” of at least one OH group among 18 OH groups contained in one molecule of a cyclic molecule is substituted with a polymer chain represented by the above formula I. do it.
  • the polyrotaxane described in Patent Document 1 is a part or all of the hydroxyl groups of cyclodextrin which is a cyclic molecule. Is a hydroxypropyl group, and the hydroxypropyl group is further modified with caprolactone, whereas the polyrotaxane of the present application is different in that the cyclic molecule directly has a polymer chain without the hydroxypropyl group being interposed.
  • the polyrotaxane of the present application can be obtained without providing a step of substituting part or all of the hydroxyl groups of the cyclodextrin, which is a cyclic molecule, with a hydroxypropyl group.
  • n represents a number of 1 to 7, preferably 2 to 6, more preferably 3 to 5, and m is an average value of 1 to 12, preferably 3 to 10, and more. A number of 5 to 9 is preferable.
  • the value of n or m can be identified by 1 H-NMR.
  • the polymer chain represented by Formula I may be a chain obtained by ring-opening polymerization of a cyclic lactone.
  • the cyclic lactone is one selected from the group consisting of cyclic lactones having 4 to 10 ring members, preferably one selected from the group consisting of cyclic lactones having 4 to 7 ring members, more preferably ⁇ having 6 ring members. -Valerolactone or ⁇ -caprolactone having 7 ring members is preferred.
  • the polyrotaxane cyclic molecule of the present application has the above polymer chain, but may have other groups.
  • Other groups include acetyl group, propionyl group, hexanoyl group, methyl group, ethyl group, propyl group, 2-hydroxypropyl group, 1,2-dihydroxypropyl group, cyclohexyl group, butylcarbamoyl group, hexylcarbamoyl group, phenyl group , A polycaprolactone group, an alkoxysilane group, an acryloyl group, a methacryloyl group, a cinnamoyl group, or a derivative thereof, but is not limited thereto.
  • linear molecule of the polyrotaxane of the present invention is not particularly limited as long as it can be included in a skewered manner in the opening of the cyclic molecule to be used.
  • linear molecules polyvinyl alcohol, polyvinyl pyrrolidone, poly (meth) acrylic acid, cellulosic resins (carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, etc.), polyacrylamide, polyethylene oxide, polyethylene glycol, polypropylene glycol, polyvinyl Polyolefin resins such as acetal resins, polyvinyl methyl ether, polyamines, polyethyleneimine, casein, gelatin, starch, and / or copolymers thereof, polyethylene, polypropylene, and copolymers of other olefin monomers; Polyester resins, polyvinyl chloride resins, polystyrene resins such as polystyrene and acrylon
  • polyethylene glycol polyisoprene, polyisobutylene, polybutadiene, polypropylene glycol, polytetrahydrofuran, polydimethylsiloxane, polyethylene, polypropylene, polyvinyl alcohol and polyvinyl methyl ether.
  • polyethylene glycol Particularly preferred is polyethylene glycol.
  • the linear molecule may have a weight average molecular weight of 3,000 to 500,000, preferably 5,000 to 100,000, more preferably 10,000 to 50,000.
  • numerator can be measured by a gel permeation chromatography (Gel Permeation Chromatography, GPC). GPC measurement conditions depend on the type of linear molecule, but the type of eluent, column, temperature, and standard substance should be appropriately selected.
  • the combination of (cyclic molecule, linear molecule) is preferably (derived from ⁇ -cyclodextrin, derived from polyethylene glycol).
  • the blocking group of the polyrotaxane of the present application is not particularly limited as long as it is a group that is arranged at both ends of the pseudopolyrotaxane and acts so that the cyclic molecule to be used does not leave.
  • a blocking group dinitrophenyl groups, cyclodextrins, adamantane groups, trityl groups, fluoresceins, silsesquioxanes, pyrenes, substituted benzenes (substituents are alkyl, alkyloxy, hydroxy, Examples include, but are not limited to, halogen, cyano, sulfonyl, carboxyl, amino, phenyl, etc.
  • substituents may be present), optionally substituted polynuclear aromatics (substituted) Examples of the group include, but are not limited to, the same as described above, and one or more substituents may be present.) And a group consisting of steroids. It is preferably selected from the group consisting of dinitrophenyl groups, cyclodextrins, adamantane groups, trityl groups, fluoresceins, silsesquioxanes, and pyrenes, more preferably adamantane groups or cyclodextrins. It should be similar.
  • the polyrotaxane of the present application is, for example, A) Both ends of a pseudopolyrotaxane in which openings of cyclic molecules having active hydrogen selected from the group consisting of ⁇ -cyclodextrin, ⁇ -cyclodextrin and ⁇ -cyclodextrin are clasped by linear molecules.
  • active hydrogen has the same definition as the above-mentioned.
  • the cyclic molecule, the linear molecule, the blocking group, and the cyclic lactone are as described above.
  • Step is a step of preparing a polyrotaxane. This step can be obtained by WO2005 / 052026 (the entirety of which is included in the present specification as a reference).
  • Step B) is a step of mixing the polyrotaxane obtained in step A) and the cyclic lactone.
  • Mixing can be performed by a conventionally known method.
  • the cyclic lactone can also act as a solvent, “other solvents” may be used in addition to the cyclic lactone as the solvent. However, when “other solvents” are used, it is preferable to use those which do not adversely affect the reaction in the step C) described later.
  • DMSO dimethyl sulfoxide
  • DMF dimethylformamide
  • DMAc dimethylacetamide
  • xylene toluene
  • THF tetrahydrofuran
  • methyl acetate ethyl acetate
  • butyl acetate dichloromethane
  • chloroform acrylonitrile
  • step C an organic base is added to the mixture obtained in step B), and the cyclic lactone and polyrotaxane are reacted.
  • the organic base is not particularly limited as long as it reacts a cyclic lactone with a polyrotaxane, and particularly reacts a cyclic lactone with an active hydrogen in the cyclic molecule of the polyrotaxane, but a tertiary amine having no active hydrogen in the molecule.
  • it is a compound.
  • organic bases are 1,8-diazabicyclo (5.4.0) undecene-7 (DBU), 1,5-diazabicyclo (4.3.0) nonene-5 (DBN), 1,4-diazabicyclo [2.2.2].
  • DBU 1,8-diazabicyclo
  • DBU undecene-7
  • DBN 1,5-diazabicyclo
  • DVBCO phosphazene base
  • TBD 7-methyl-1,5,7-triazabicyclo [4.4.0] deca
  • octane preferably 1,8-diazabicyclo (5.4 .0)
  • Undecene-7 (DBU) 1,5-diazabicyclo (4.3.0) nonene-5 (DBN), 1,5,7-triazabicyclo [4.4.0] dec-5-ene (TBD), One selected from the group consisting of 7-methyl-1,5,
  • reaction conditions in step C) depend on the cyclic lactone used, the polyrotaxane used, the organic base used, etc., but pressure: normal pressure, temperature: 30-150 ° C. under dehydrating conditions such as nitrogen atmosphere, time: 0.5- For example, 24 hours.
  • the polyrotaxane of the present application can be obtained by the above steps A) to C), but may have steps other than the above steps A) to C).
  • a step of drying the polyrotaxane and / or cyclic lactone and / or a mixture thereof is provided before step C), specifically after step A), before step B) and / or after step B).
  • the step C) if there is unnecessary active hydrogen, specifically, active hydrogen derived from moisture, the above-mentioned drying step is preferably provided in order to inhibit a desired reaction.
  • a step of purifying the obtained polyrotaxane after the step is preferable to provide a treatment step for reducing the activity of the organic base used in step C) or a treatment step for removing the organic base.
  • a treatment step for reducing the activity of the organic base a step for neutralizing the organic base with an organic acid such as acetic acid; a treatment step for removing the organic base; a precipitation purification step using a poor solvent; Examples thereof include, but are not limited to, a removal step, an organic base adsorption / removal step using an adsorbent, and the like.
  • the polyrotaxane of the present application may be used as a starting material.
  • the present application can provide a crosslinked product obtained by crosslinking the polyrotaxane of the present application with the polyrotaxane of the present application as a starting material.
  • crosslinked polyrotaxane of this application and polyrotaxanes other than the polyrotaxane of this application can also be provided.
  • crosslinked the polyrotaxane of this application and polymers other than a polyrotaxane can also be provided.
  • crosslinking bodies can be prepared by the method described in WO2001 / 083566, WO2005 / 052026, WO2005 / 095493, etc., for example.
  • PEG-carboxylic acid that is, one in which both ends of PEG were replaced with carboxylic acid (—COOH) was precipitated overnight in a freezer at ⁇ 4 ° C.
  • the precipitated PEG-carboxylic acid was collected by centrifugation. This warm ethanol dissolution-precipitation-centrifugation cycle was repeated several times, and finally dried by vacuum drying to obtain PEG-carboxylic acid. Yield 95% or more. Carboxylation rate is 95% or more.
  • APR35K (1 g) and ⁇ -caprolactone (10 g) were placed in a two-necked eggplant flask and dried for 2 hours under a nitrogen stream condition while heating and stirring at 110 ° C. in an oil bath. After drying, DBU (1 ml) was added, and the reaction was carried out for 30 minutes under a nitrogen stream while stirring and heating to 130 ° C. in an oil bath. After the reaction, the reaction mixture was neutralized by adding acetic acid (1 ml) and purified by precipitation with methanol.
  • the obtained precipitate was dried under reduced pressure to obtain a graft product (7.75 g) in which polycaprolactone was grafted to ⁇ -cyclodextrin, which is a cyclic molecule of APR35K. It was confirmed by 1 H-NMR that the average degree of polymerization of the obtained polycaprolactone chain, that is, the average value of m of the polymer chain represented by Formula I was 7. n was 5 from the ⁇ -caprolactone used.
  • ⁇ Grafting to APR35K> A graft obtained by grafting polycaprolactone to ⁇ -cyclodextrin, which is a cyclic molecule of APR35K, in the same manner as in Example 1 except that DBN (1 ml) was used instead of DBU (1 ml) used in Example 1. A body (7.45 g) was obtained. It was confirmed by 1 H-NMR that the average degree of polymerization of the obtained polycaprolactone chain, that is, the average value of m of the polymer chain represented by Formula I was 9. Note that n was 5.
  • Example 3 Except that the amount of DBU used in Example 3 was 0.2 ml instead of 1 ml, the reaction time was 5 hours instead of 30 minutes, and the amount of acetic acid after the reaction was 0.2 ml instead of 1 ml.
  • a graft product (5.4 g) in which polycaprolactone was grafted to ⁇ -cyclodextrin, which is a cyclic molecule of APR35K, was obtained. It was confirmed by 1 H-NMR that the average degree of polymerization of the obtained polycaprolactone chain, that is, the average value of m of the polymer chain represented by Formula I was 8. Note that n was 5.
  • Example 1 The amount of ⁇ -caprolactone used in Example 1 was 4.5 g instead of 10 g, the amount of DBU was 0.4 ml instead of 1 ml, the reaction time was 2 hours instead of 30 minutes, and the acetic acid after the reaction A graft body (4.15 g) in which polycaprolactone was grafted to ⁇ -cyclodextrin, which is a cyclic molecule of APR35K, was obtained in the same manner as in Example 1 except that the amount was 0.4 ml instead of 1 ml. . It was confirmed by 1 H-NMR that the average degree of polymerization of the obtained polycaprolactone chain, that is, the average value of m of the polymer chain represented by formula I was 6.5. Note that n was 5.
  • APR20K (1 g) and ⁇ -caprolactone (6 g) were placed in a two-necked eggplant flask and dried for 2 hours under a nitrogen stream condition while heating and stirring at 110 ° C. in an oil bath. After drying, DBU (0.4 ml) was added and the reaction was carried out for 2 hours under a nitrogen stream condition while heating and stirring at 130 ° C. in an oil bath. After the reaction, the reaction mixture was neutralized by adding acetic acid (0.4 ml) and purified by precipitation with methanol.
  • the obtained precipitate was dried under reduced pressure to obtain a graft product (5.15 g) in which polycaprolactone was grafted to ⁇ -cyclodextrin, which is a cyclic molecule of APR20K. It was confirmed by 1 H-NMR that the average degree of polymerization of the obtained polycaprolactone chain, that is, the average value of m of the polymer chain represented by formula I was 5.6. Note that n was 5.
  • APR10K (1 g) and ⁇ -caprolactone (6 g) were placed in a two-necked eggplant flask and dried for 2 hours under a nitrogen stream condition while heating and stirring at 110 ° C. in an oil bath. After drying, DBU (0.4 ml) was added and the reaction was carried out for 2 hours under a nitrogen stream condition while heating and stirring at 130 ° C. in an oil bath. After the reaction, the reaction mixture was neutralized by adding acetic acid (0.4 ml) and purified by precipitation with methanol.
  • the obtained precipitate was dried under reduced pressure to obtain a graft product (5.04 g) in which polycaprolactone was grafted to ⁇ -cyclodextrin, which is a cyclic molecule of APR10K. It was confirmed by 1 H-NMR that the average degree of polymerization of the obtained polycaprolactone chain, that is, the average value of m of the polymer chain represented by Formula I was 8. Note that n was 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Polyethers (AREA)

Abstract

本発明は、環状分子が重合鎖を有するポリロタキサンであっても、製造工程を従来よりも少なくするか、及び/又は製造時間を少なくした、環状分子が重合鎖を有するポリロタキサン及びその製造方法を提供する。本発明は、α-シクロデキストリン、β-シクロデキストリン及びγ-シクロデキストリンからなる群から選ばれる、活性水素を有する環状分子の開口部が直鎖状分子によって串刺し状に包接されてなる擬ポリロタキサンの両端に環状分子が脱離しないように封鎖基を配置してなるポリロタキサンであって、前記活性水素の少なくとも一部が下記式I(式中、nは1~7の数を示し、mは平均値として1~12の数を示す)で表される重合鎖で置換される、上記ポリロタキサンを提供する。 

Description

環状分子が重合鎖を有するポリロタキサン及びその製造方法
 本発明は、環状分子が重合鎖を有するポリロタキサン及びその製造方法、並びに該ポリロタキサンを有する架橋体及びその製造方法に関する。
 ポリロタキサンは、該ポリロタキサンを構成する環状分子が直鎖状分子上を移動することにより、ポリロタキサン同士の架橋体、ポリロタキサン以外のポリマーとポリロタキサンとの架橋体などに粘弾性、低い圧縮永久歪みなどの特性が生じる。このような特性を付与できることから、ポリロタキサンは、種々の応用が期待され、その研究開発が盛んに行われている。
 例えば、特許文献1は、ポリロタキサンを構成する環状分子であるシクロデキストリンの水酸基の一部又は全部を、ヒドロキシプロピル基を介したカプロラクトンによる修飾基を有するように修飾されるポリロタキサンを開示する。なお、特許文献1は、シクロデキストリンの水酸基をε-カプロラクトンなどで修飾することにより、有機溶剤に可溶な修飾ポリロタキサンを提供する。
特許第4521875号。
 しかしながら、特許文献1開示のカプロラクトンによる修飾基を有する修飾ポリロタキサンは、その製法において工程が多く、製品である修飾ポリロタキサンを得るまでに多くの時間を費やすという問題があった。特に、特許文献1開示の工程は、単にカプロラクトンによる修飾基を付与する工程だけでなく、その前段階にヒドロキシプロピル基を付与する工程を設けるため、最終生成物を得るのに、非常に多くの工程が必要であり、非常に多くの時間を費やすという問題があった。また、製造工程、製造時間と共に、製造コストが嵩むという問題があった。
 そこで、本発明の目的は、上記課題を解決することにある。
 具体的には、本発明の目的は、環状分子が重合鎖を有するポリロタキサンであっても、製造工程を従来よりも少なくするか、及び/又は製造時間を少なくした、環状分子が重合鎖を有するポリロタキサン及びその製造方法を提供することにある。
 また、本発明の目的は、上記目的以外に、上記目的に加えて、環状分子が重合鎖を有するポリロタキサンを有する架橋体及びその製造方法を提供することにある。
 本発明者らは、次の発明を見出した。
 <1> α-シクロデキストリン、β-シクロデキストリン及びγ-シクロデキストリンからなる群から選ばれる、活性水素を有する環状分子の開口部が直鎖状分子によって串刺し状に包接されてなる擬ポリロタキサンの両端に環状分子が脱離しないように封鎖基を配置してなるポリロタキサンであって、活性水素の少なくとも一部が下記式I(式中、nは1~7、好ましくは2~6、より好ましくは3~5の数を示し、mは平均値として1~12、好ましくは3~10、より好ましくは5~9の数を示す)で表される重合鎖で置換される、上記ポリロタキサン。
Figure JPOXMLDOC01-appb-C000003
 <2> 上記<1>において、上記式Iで表される重合鎖が、環状ラクトンを開環重合して得られる鎖であるのがよい。
 <3> 上記<1>又は<2>において、直鎖状分子の重量平均分子量が3,000~500,000、好ましくは5,000~100,000、より好ましくは10,000~50,000であるのがよい。
 <4> α-シクロデキストリン、β-シクロデキストリン及びγ-シクロデキストリンからなる群から選ばれる、活性水素を有する環状分子の開口部が直鎖状分子によって串刺し状に包接されてなる擬ポリロタキサンの両端に環状分子が脱離しないように封鎖基を配置してなるポリロタキサンであって、活性水素の少なくとも一部が上記式I(式中、n及びmは、上記と同じ定義を有する)で表される重合鎖で置換されるポリロタキサンの製造方法であって、
 A)環状分子の開口部が直鎖状分子によって串刺し状に包接されてなる擬ポリロタキサンの両端に環状分子が脱離しないように封鎖基を配置してなるポリロタキサンを準備する工程;
 B)環状ラクトンとポリロタキサンとを混合する工程;及び
 C) B)工程で得られた混合体に有機塩基を加え、環状ラクトンとポリロタキサンとを反応させる工程;
により、活性水素の少なくとも一部が上記式Iで表される重合鎖で置換されたポリロタキサンを得る、上記方法。
 <5> 上記<4>において、有機塩基が、分子内に活性水素を有しない第3級アミン化合物であるのがよい。
 <6> 上記<4>又は<5>において、有機塩基が、1,8-ジアザビシクロ(5.4.0)ウンデセン-7(DBU)、1,5-ジアザビシクロ(4.3.0)ノネン-5(DBN)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、フォスファゼン塩基、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(TBD)、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(MTBD)、1,1,3,3-テトラメチルグアニジン(TMG)、1-アザビシクロ[2.2.2]オクタンからなる群から選ばれる1種、好ましくは1,8-ジアザビシクロ(5.4.0)ウンデセン-7(DBU)、1,5-ジアザビシクロ(4.3.0)ノネン-5(DBN)、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(TBD)、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(MTBD)からなる群から選ばれる1種、より好ましくは1,8-ジアザビシクロ(5.4.0)ウンデセン-7(DBU)又は1,5-ジアザビシクロ(4.3.0)ノネン-5(DBN)であるのがよい。
 <7> 上記<4>~<6>のいずれかにおいて、直鎖状分子の重量平均分子量が3,000~500,000、好ましくは5,000~100,000、より好ましくは10,000~50,000であるのがよい。
 <8> 上記<2>~<7>のいずれかにおいて、環状ラクトンは、環員数4~10の環状ラクトンからなる群から選ばれる1種、好ましくは環員数4~7の環状ラクトンからなる群から選ばれる1種、より好ましくは環員数が6であるγ-バレロラクトン又は環員数が7であるε-カプロラクトンであるのがよい。
 <9> 上記<1>~<8>のいずれかにおいて、活性水素を有する環状分子は、α-シクロデキストリン又はγ-シクロデキストリン、好ましくはα-シクロデキストリンであるのがよい。
 <10> 上記<1>~<9>のいずれかにおいて、直鎖状分子は、ポリビニルアルコール、ポリビニルピロリドン、ポリ(メタ)アクリル酸、セルロース系樹脂、ポリアクリルアミド、ポリエチレンオキサイド、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルアセタール系樹脂、ポリビニルメチルエーテル、ポリアミン、ポリエチレンイミン、カゼイン、ゼラチン、でんぷん等及び/またはこれらの共重合体、ポリエチレン、ポリプロピレン、およびその他オレフィン系単量体との共重合樹脂などのポリオレフィン系樹脂、ポリエステル樹脂、ポリ塩化ビニル樹脂、ポリスチレン系樹脂、アクリル系樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、塩化ビニル-酢酸ビニル共重合樹脂、ポリビニルブチラール樹脂等;及びこれらの誘導体又は変性体、ポリイソブチレン、ポリテトラヒドロフラン、ポリアニリン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ナイロンなどのポリアミド類、ポリイミド類、ポリイソプレン、ポリブタジエンなどのポリジエン類、ポリジメチルシロキサンなどのポリシロキサン類、ポリスルホン類、ポリイミン類、ポリ無水酢酸類、ポリ尿素類、ポリスルフィド類、ポリフォスファゼン類、ポリケトン類、ポリフェニレン類、ポリハロオレフィン類、ポリアセチレン、ポリチオフェンなどの共役高分子類、ポリ乳酸、並びにこれらの誘導体からなる群から選ばれるのがよく、好ましくはポリエチレングリコール、ポリエチレンオキサイド、ポリプロピレングリコール、ポリオレフィン系樹脂、ポリジエン類、及びポリシロキサン類からなる群、より好ましくはポリエチレングリコール、ポリブタジエン、及びポリジメチルシロキサンからなる群から選ばれるのがよい。
 <11> 上記<1>~<10>のいずれかにおいて、封鎖基は、ジニトロフェニル基類、シクロデキストリン類、アダマンタン基類、トリチル基類、フルオレセイン類、シルセスキオキサン類、ピレン類、置換ベンゼン類(置換基として、アルキル、アルキルオキシ、ヒドロキシ、ハロゲン、シアノ、スルホニル、カルボキシル、アミノ、フェニルなどを挙げることができるがこれらに限定されない。置換基は1つ又は複数存在してもよい。)、置換されていてもよい多核芳香族類(置換基として、上記と同じものを挙げることができるがこれらに限定されない。置換基は1つ又は複数存在してもよい。)、及びステロイド類からなる群から選ばれるのがよい。なお、ジニトロフェニル基類、シクロデキストリン類、アダマンタン基類、トリチル基類、フルオレセイン類、シルセスキオキサン類、及びピレン類からなる群から選ばれるのが好ましく、より好ましくはアダマンタン基類又はシクロデキストリン類であるのがよい。
 本発明により、環状分子が重合鎖を有するポリロタキサンであっても、製造工程を従来よりも少なくするか、及び/又は製造時間を少なくした、環状分子が重合鎖を有するポリロタキサン及びその製造方法を提供することができる。
 また、本発明により、上記効果以外に、又は、上記効果に加えて、環状分子が重合鎖を有するポリロタキサンを有する架橋体及びその製造方法を提供することができる。
 以下、本願に記載する発明を詳細に説明する。
 本願は、α-シクロデキストリン、β-シクロデキストリン及びγ-シクロデキストリンからなる群から選ばれる、活性水素を有する環状分子の開口部が直鎖状分子によって串刺し状に包接されてなる擬ポリロタキサンの両端に環状分子が脱離しないように封鎖基を配置してなるポリロタキサンであって、活性水素の少なくとも一部が下記式I(式中、nは1~7、好ましくは2~6、より好ましくは3~5の数を示し、mは平均値として1~12、好ましくは3~10、より好ましくは5~9の数を示す)で表される重合鎖で置換されるポリロタキサンを開示する。また、本願は、該ポリロタキサンの製造方法を開示する。以降、本願のポリロタキサン、及びその製造方法について説明する。
Figure JPOXMLDOC01-appb-C000004
<環状分子が重合鎖を有するポリロタキサン> 
 本願のポリロタキサンの環状分子は、活性水素を有し、該活性水素の少なくとも一部が上記式Iで表される重合鎖で置換される構造を有する。
 該環状分子は、α-シクロデキストリン、β-シクロデキストリン及びγ-シクロデキストリンからなる群から選ばれ、好ましくはα-シクロデキストリン又はγ-シクロデキストリンであるのがよく、より好ましくはα-シクロデキストリンであるのがよい。
 「活性水素」とは、α-シクロデキストリンを例にとって説明すると、α-シクロデキストリン分子内に存在する18個のOH基の「H」をいう。なお、β-シクロデキストリン及びγ-シクロデキストリンの場合も同様に、それらの分子内に存在するOH基の「H」をいう。
 ポリロタキサンは、ポリロタキサン1分子中、1個又は複数の環状分子を有し、該1個又は複数の環状分子の活性水素の少なくとも一部が、上記式Iで表される重合鎖で置換される。また、本願のポリロタキサンは、環状分子の一分子に含まれる18個のOH基のうち、少なくとも1個のOH基の「H」が上記式Iで表される重合鎖で置換される構造を有すればよい。
 本願のポリロタキサンと、特許文献1として上述の特許第4521875号に記載されるポリロタキサンとを簡潔に比較すると、特許文献1に記載されるポリロタキサンは、環状分子であるシクロデキストリンの水酸基の一部又は全部をヒドロキシプロピル基とし、該ヒドロキシプロピル基をさらにカプロラクトンで修飾する一方、本願のポリロタキサンは、その環状分子がヒドロキシプロピル基を介することなく、環状分子が直接、重合鎖を有する点で相違する。
 この相違により、本願のポリロタキサンは、環状分子であるシクロデキストリンの水酸基の一部又は全部をヒドロキシプロピル基で置換する工程を設けることなく、得ることができるため、低コストで提供できるなどの利点を有する。
<<重合鎖>>
 上記式Iで表される重合鎖は、nが1~7、好ましくは2~6、より好ましくは3~5の数を示し、mが平均値として1~12、好ましくは3~10、より好ましくは5~9の数を示すのがよい。
 なお、n又はmの値は、H-NMRにより同定することができる。
 式Iで表される重合鎖は、環状ラクトンを開環重合して得られる鎖であるのがよい。
 環状ラクトンとして、環員数4~10の環状ラクトンからなる群から選ばれる1種、好ましくは環員数4~7の環状ラクトンからなる群から選ばれる1種、より好ましくは環員数が6であるγ-バレロラクトン又は環員数が7であるε-カプロラクトンであるのがよい。
 本願のポリロタキサンの環状分子は、上記重合鎖を有するが、その他の基を有してもよい。
 その他の基として、アセチル基、プロピオニル基、ヘキサノイル基、メチル基、エチル基、プロピル基、2-ヒドロキシプロピル基、1,2-ジヒドロキシプロピル基、シクロヘキシル基、ブチルカルバモイル基、ヘキシルカルバモイル基、フェニル基、ポリカプロラクトン基、アルコキシシラン基、アクリロイル基、メタクリロイル基又はシンナモイル基、もしくはこれらの誘導体を挙げることができるが、これらに限定されない。
<<直鎖状分子>>
 本発明のポリロタキサンの直鎖状分子は、用いる環状分子の開口部に串刺し状に包接され得るものであれば、特に限定されない。
 例えば、直鎖状分子として、ポリビニルアルコール、ポリビニルピロリドン、ポリ(メタ)アクリル酸、セルロース系樹脂(カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等)、ポリアクリルアミド、ポリエチレンオキサイド、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルアセタール系樹脂、ポリビニルメチルエーテル、ポリアミン、ポリエチレンイミン、カゼイン、ゼラチン、でんぷん等及び/またはこれらの共重合体、ポリエチレン、ポリプロピレン、およびその他オレフィン系単量体との共重合樹脂などのポリオレフィン系樹脂、ポリエステル樹脂、ポリ塩化ビニル樹脂、ポリスチレンやアクリロニトリル-スチレン共重合樹脂等のポリスチレン系樹脂、ポリメチルメタクリレートや(メタ)アクリル酸エステル共重合体、アクリロニトリル-メチルアクリレート共重合樹脂などのアクリル系樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、塩化ビニル-酢酸ビニル共重合樹脂、ポリビニルブチラール樹脂等;及びこれらの誘導体又は変性体、ポリイソブチレン、ポリテトラヒドロフラン、ポリアニリン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ナイロンなどのポリアミド類、ポリイミド類、ポリイソプレン、ポリブタジエンなどのポリジエン類、ポリジメチルシロキサンなどのポリシロキサン類、ポリスルホン類、ポリイミン類、ポリ無水酢酸類、ポリ尿素類、ポリスルフィド類、ポリフォスファゼン類、ポリケトン類、ポリフェニレン類、ポリハロオレフィン類、並びにこれらの誘導体からなる群から選ばれるのがよい。例えばポリエチレングリコール、ポリイソプレン、ポリイソブチレン、ポリブタジエン、ポリプロピレングリコール、ポリテトラヒドロフラン、ポリジメチルシロキサン、ポリエチレン、ポリプロピレン、ポリビニルアルコール及びポリビニルメチルエーテルからなる群から選ばれるのがよい。特にポリエチレングリコールであるのがよい。
 直鎖状分子は、その重量平均分子量が3,000~500,000、好ましくは5,000~100,000、より好ましくは10,000~50,000であるのがよい。
 なお、直鎖状分子の重量平均分子量は、ゲル浸透クロマトグラフィー(Gel Permeation Chromatography、GPC)で測定することができる。GPCの測定条件は、直鎖状分子の種類にも依るが、溶離液やカラムの種類、温度、標準物質を適切に選択するのがよい。
 本願の、ポリロタキサンにおいて、(環状分子、直鎖状分子)の組合せが、(α-シクロデキストリン由来、ポリエチレングリコール由来)であるのがよい。
<<封鎖基>>
 本願の、ポリロタキサンの封鎖基は、擬ポリロタキサンの両端に配置され、用いる環状分子が脱離しないように作用する基であれば、特に限定されない。
 例えば、封鎖基として、ジニトロフェニル基類、シクロデキストリン類、アダマンタン基類、トリチル基類、フルオレセイン類、シルセスキオキサン類、ピレン類、置換ベンゼン類(置換基として、アルキル、アルキルオキシ、ヒドロキシ、ハロゲン、シアノ、スルホニル、カルボキシル、アミノ、フェニルなどを挙げることができるがこれらに限定されない。置換基は1つ又は複数存在してもよい。)、置換されていてもよい多核芳香族類(置換基として、上記と同じものを挙げることができるがこれらに限定されない。置換基は1つ又は複数存在してもよい。)、及びステロイド類からなる群から選ばれるのがよい。なお、ジニトロフェニル基類、シクロデキストリン類、アダマンタン基類、トリチル基類、フルオレセイン類、シルセスキオキサン類、及びピレン類からなる群から選ばれるのが好ましく、より好ましくはアダマンタン基類又はシクロデキストリン類であるのがよい。
<本願のポリロタキサンの製造方法>
 本願は、上述のポリロタキサンの製造方法を提供する。
 本願のポリロタキサンは、例えば、
 A)α-シクロデキストリン、β-シクロデキストリン及びγ-シクロデキストリンからなる群から選ばれる、活性水素を有する環状分子の開口部が直鎖状分子によって串刺し状に包接されてなる擬ポリロタキサンの両端に、環状分子が脱離しないように封鎖基を配置してなるポリロタキサンを準備する工程;
 B)環状ラクトンとポリロタキサンとを混合する工程;及び
 C) B)工程で得られた混合体に有機塩基を加え、環状ラクトンとポリロタキサンとを反応させる工程;
により、得ることができる。
 以下、各工程について説明するが、「活性水素」の語は上述と同じ定義を有する。また、環状分子、直鎖状分子、封鎖基、及び環状ラクトンは、上述した通りである。
 A)工程は、ポリロタキサンを準備する工程である。この工程は、WO2005/052026号公報(これらはその全体が、参照として本明細書に含まれる)などにより得ることができる。
 B)工程は、A)工程で得られたポリロタキサンと環状ラクトンとを混合する工程である。
 混合は、従来公知の方法で行うことができる。
 環状ラクトンを溶媒としても作用させることができるが、溶媒としての環状ラクトンの他に、「その他の溶媒」を用いてもよい。ただし、「その他の溶媒」を用いる場合、後述のC)工程での反応に悪影響を及ぼさないものを用いるのがよい。例えば、「その他の溶媒」として、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、キシレン、トルエン、テトラヒドロフラン(THF)、酢酸メチル、酢酸エチル、酢酸ブチル、ジクロロメタン、クロロホルム、アクリロニトリルなどを挙げることができるがこれらに限定されない。
 C)工程は、B)工程で得られた混合体に有機塩基を加え、環状ラクトンとポリロタキサンとを反応させる工程である。
 有機塩基は、環状ラクトンとポリロタキサンとを反応、特に環状ラクトンとポリロタキサンの環状分子中の活性水素とを反応させるものであれば、特に限定されないが、分子内に活性水素を有しない第3級アミン化合物であるのがよい。
 特に、有機塩基は、1,8-ジアザビシクロ(5.4.0)ウンデセン-7(DBU)、1,5-ジアザビシクロ(4.3.0)ノネン-5(DBN)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、フォスファゼン塩基、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(TBD)、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(MTBD)、1,1,3,3-テトラメチルグアニジン(TMG)、1-アザビシクロ[2.2.2]オクタンからなる群から選ばれる1種、好ましくは1,8-ジアザビシクロ(5.4.0)ウンデセン-7(DBU)、1,5-ジアザビシクロ(4.3.0)ノネン-5(DBN)、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(TBD)、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(MTBD)からなる群から選ばれる1種、より好ましくは1,8-ジアザビシクロ(5.4.0)ウンデセン-7(DBU)又は1,5-ジアザビシクロ(4.3.0)ノネン-5(DBN)であるのがよい。
 C)工程の反応条件は、用いる環状ラクトン、用いるポリロタキサン、用いる有機塩基などに依存するが、圧力:常圧、温度:窒素雰囲気等の脱水条件下で30~150℃、時間:0.5~24時間、などであるのがよい。
 上記A)~C)工程により、本願のポリロタキサンを得ることができるが、上記A)~C)工程以外の工程を有してもよい。
 例えば、C)工程前に、具体的にはA)工程後、B)工程前、及び/又はB)工程後に、ポリロタキサン及び/又は環状ラクトン及び/又はその混合体を乾燥する工程を設けるのがよい。C)工程において、不要な活性水素、具体的には水分由来の活性水素を有すると、所望の反応を阻害するため、上記乾燥工程を設けるのがよい。
 C)工程後に、得られたポリロタキサンを精製する工程を設けるのがよい。特に、C)工程で用いた有機塩基の活性を減少化させる処理工程、又は有機塩基を除く処理工程を設けるのがよい。例えば、有機塩基の活性を減少化させる処理工程として、酢酸等の有機酸により有機塩基を中和する工程;有機塩基を除く処理工程として、貧溶媒を用いた沈殿精製工程、減圧による有機塩基の除去工程、吸着剤による有機塩基の吸着除去工程;などを挙げることができるが、これらに限定されない。
 本願のポリロタキサンは、それを出発原料として用いてもよい。例えば、本願は、本願のポリロタキサンを出発原料とし、本願のポリロタキサン同士を架橋させた架橋体を提供することができる。また、本願のポリロタキサンと本願のポリロタキサン以外のポリロタキサンとを架橋させた架橋体も提供することもできる。さらに、本願のポリロタキサンとポリロタキサン以外のポリマーとを架橋させた架橋体を提供することもできる。なお、これらの架橋体は、例えば、WO2001/083566号公報、WO2005/052026号公報、WO2005/095493公報などに記載される方法により調製することができる。
 以下、実施例に基づいて、本発明をさらに詳細に説明するが、本発明は本実施例に限定されるものではない。
<合成例1 APR35Kの調製>
<<PEGのTEMPO酸化によるPEG-カルボン酸の調製>>
 PEG(分子量3.5万)10g、TEMPO(2,2,6,6-テトラメチル-1-ピペリジニルオキシラジカル)100mg、及び臭化ナトリウム1gを水100mlに溶解した。得られた溶液に市販の次亜塩素酸ナトリウム水溶液(有効塩素濃度約5%)5mlを添加し、室温で攪拌しながら反応させた。反応が進行すると添加直後から系のpHは急激に減少するが、なるべくpH:10~11を保つように1N NaOHを添加して調製した。pHの低下は概ね3分以内に見られなくなったが、さらに10分間攪拌した。エタノールを最大5mlまでの範囲で添加して反応を終了させた。塩化メチレン50mlでの抽出を3回繰返して無機塩以外の成分を抽出した後、エバポレータで塩化メチレンを留去した。温エタノール250mlに溶解させた後、-4℃の冷凍庫に一晩おいてPEG-カルボン酸、即ちPEGの両末端をカルボン酸(-COOH)に置換したもの、を析出させた。析出したPEG-カルボン酸を遠心分離で回収した。この温エタノール溶解-析出-遠心分離のサイクルを数回繰り返し、最後に真空乾燥で乾燥させてPEG-カルボン酸を得た。収率95%以上。カルボキシル化率95%以上。
<<PEG-カルボン酸とα-CDとを用いた包接錯体の調製>>
 上記で調製したPEG-カルボン酸3g及びα-CD9gをそれぞれ別々に用意した70℃の温水50mlに溶解させた後、両者を混合し、その後、冷蔵庫(4℃)中で一晩静置した。クリーム状に析出した包接錯体を凍結乾燥し回収した。
<<アダマンタンアミンとBOP試薬反応系を用いた包接錯体の封鎖>>
 上記包接錯体にアダマンタンアミン0.13g、BOP試薬(ベンゾトリアゾール-1-イル-オキシ-トリス(ジメチルアミノ)ホスホニウム・ヘキサフルオロフォスフェート)0.38g、ジイソプロピルエチルアミン0.14mlを脱水ジメチルホルムアミド(DMF)50mlに溶解した溶液を加え、よく振り混ぜた後、冷蔵庫中で一晩静置した。その後、メタノール50mlを加え、攪拌、遠心分離、上澄みの除去、を行った。次いで、DMF/メタノール=1:1混合溶液100mlを加え、同様の操作を2回行った。さらにメタノール100mlを用いて同様の操作を2回行い、得られた沈澱を真空乾燥した後、ジメチルスルホキシド(DMSO)50mlに溶解した。この溶液を純水700ml中に滴下してポリロタキサンを析出させた。析出したポリロタキサンを遠心分離で回収し、真空乾燥した。さらに同様の再沈澱操作を行い、ポリロタキサン(主鎖分子量3.5万)(以下、「APR35K」と略記する)を得た。
 得られたAPR35Kの重量平均分子量を、GPCで測定したところ、100,000であることがわかった。なお、GPCの測定条件は、TOSOH HLC-8220 GPC装置を用い、カラム:TSKガードカラム Super AW-HとTSKgel Super AWM-H(2本連結)、溶離液:ジメチルスルホキシド/0.01M LiBr、カラムオーブン:50℃、流速:0.5ml/min、試料濃度:約0.2wt/vol%、注 入量:20μl、前処理:0.2μmフィルターでろ過、スタンダード分子量:PEO(ポリエチレンオキシド)、であった。
<合成例2 APR20Kの調製>
 上記<合成例1>のPEG(分子量3.5万)の代わりにPEG(分子量2万)を用いた以外、<合成例1>と同様の方法により、APR20Kを得た。得られたAPR20Kの重量平均分子量を、<合成例1>と同様にGPCで測定したところ、60,000であることがわかった。
<合成例3 APR10Kの調製>
 上記<合成例1>のPEG(分子量3.5万)の代わりにPEG(分子量1万)を用いた以外、<合成例1>と同様の方法により、APR10Kを得た。得られたAPR10Kの重量平均分子量を、<合成例1>と同様にGPCで測定したところ、37,000であることがわかった。
<APR35Kへのグラフト化>
 二口ナスフラスコにAPR35K(1g)及びε-カプロラクトン(10g)を入れ、オイルバスで110℃に加熱撹拌しながら窒素気流条件下で2時間乾燥した。乾燥後、DBU(1ml)を添加してオイルバスで130℃に加熱撹拌しながら窒素気流条件下で、30分間、反応を行った。反応後、酢酸(1ml)を添加して中和した後、メタノールで沈殿精製を行った。得られた沈殿を減圧乾燥してAPR35Kの環状分子であるα-シクロデキストリンにポリカプロラクトンがグラフト化されたグラフト体(7.75g)を得た。
 なお、得られたポリカプロラクトン鎖の平均重合度、即ち式Iで表される重合鎖のmの平均値が7であることを、H-NMRにより確認した。nは、用いたε-カプロラクトンから、5であった。
<APR35Kへのグラフト化>
 実施例1で用いたDBU(1ml)の代わりにDBN(1ml)を用いた以外、実施例1と同様の方法により、APR35Kの環状分子であるα-シクロデキストリンにポリカプロラクトンがグラフト化されたグラフト体(7.45g)を得た。
 なお、得られたポリカプロラクトン鎖の平均重合度、即ち式Iで表される重合鎖のmの平均値が9であることを、H-NMRにより確認した。なお、nは、5であった。
<APR35Kへのグラフト化>
 実施例1で用いたε-カプロラクトン(10g)の代わりにε-カプロラクトン(6g)を用いた以外、実施例1と同様の方法により、APR35Kの環状分子であるα-シクロデキストリンにポリカプロラクトンがグラフト化されたグラフト体(5g)を得た。
 なお、得られたポリカプロラクトン鎖の平均重合度、即ち式Iで表される重合鎖のmの平均値が5.5であることを、H-NMRにより確認した。なお、nは、5であった。
<APR35Kへのグラフト化>
 実施例3で用いたDBUの量を1mlの代わりに0.2mlとし、反応時間を30分間の代わりに5時間とし、且つ反応後の酢酸量を1mlの代わりに0.2mlとした以外、実施例1と同様の方法により、APR35Kの環状分子であるα-シクロデキストリンにポリカプロラクトンがグラフト化されたグラフト体(5.4g)を得た。
 なお、得られたポリカプロラクトン鎖の平均重合度、即ち式Iで表される重合鎖のmの平均値が8であることを、H-NMRにより確認した。なお、nは、5であった。
<APR35Kへのグラフト化>
 実施例1で用いたε-カプロラクトン量を10gの代わりに4.5gとし、DBUの量を1mlの代わりに0.4mlとし、反応時間を30分間の代わりに2時間とし、且つ反応後の酢酸量を1mlの代わりに0.4mlとした以外、実施例1と同様の方法により、APR35Kの環状分子であるα-シクロデキストリンにポリカプロラクトンがグラフト化されたグラフト体(4.15g)を得た。
 なお、得られたポリカプロラクトン鎖の平均重合度、即ち式Iで表される重合鎖のmの平均値が6.5であることを、H-NMRにより確認した。なお、nは、5であった。
<APR20Kへのグラフト化>
 二口ナスフラスコにAPR20K(1g)及びε-カプロラクトン(6g)を入れ、オイルバスで110℃に加熱撹拌しながら窒素気流条件下で2時間乾燥した。乾燥後、DBU(0.4ml)を添加してオイルバスで130℃に加熱撹拌しながら窒素気流条件下で、2時間、反応を行った。反応後、酢酸(0.4ml)を添加して中和した後、メタノールで沈殿精製を行った。得られた沈殿を減圧乾燥してAPR20Kの環状分子であるα-シクロデキストリンにポリカプロラクトンがグラフト化されたグラフト体(5.15g)を得た。
 なお、得られたポリカプロラクトン鎖の平均重合度、即ち式Iで表される重合鎖のmの平均値が5.6であることを、H-NMRにより確認した。なお、nは、5であった。
<APR10Kへのグラフト化>
 二口ナスフラスコにAPR10K(1g)及びε-カプロラクトン(6g)を入れ、オイルバスで110℃に加熱撹拌しながら窒素気流条件下で2時間乾燥した。乾燥後、DBU(0.4ml)を添加してオイルバスで130℃に加熱撹拌しながら窒素気流条件下で、2時間、反応を行った。反応後、酢酸(0.4ml)を添加して中和した後、メタノールで沈殿精製を行った。得られた沈殿を減圧乾燥してAPR10Kの環状分子であるα-シクロデキストリンにポリカプロラクトンがグラフト化されたグラフト体(5.04g)を得た。
 なお、得られたポリカプロラクトン鎖の平均重合度、即ち式Iで表される重合鎖のmの平均値が8であることを、H-NMRにより確認した。なお、nは、5であった。

Claims (7)

  1.  α-シクロデキストリン、β-シクロデキストリン及びγ-シクロデキストリンからなる群から選ばれる、活性水素を有する環状分子の開口部が直鎖状分子によって串刺し状に包接されてなる擬ポリロタキサンの両端に環状分子が脱離しないように封鎖基を配置してなるポリロタキサンであって、前記活性水素の少なくとも一部が下記式I(式中、nは1~7の数を示し、mは平均値として1~12の数を示す)で表される重合鎖で置換される、上記ポリロタキサン。
    Figure JPOXMLDOC01-appb-C000001
  2.  前記式Iで表される重合鎖が、環状ラクトンを開環重合して得られる鎖である請求項1記載のポリロタキサン。
  3.  前記直鎖状分子の重量平均分子量が3,000~500,000である請求項1又は2記載のポリロタキサン。
  4.  α-シクロデキストリン、β-シクロデキストリン及びγ-シクロデキストリンからなる群から選ばれる、活性水素を有する環状分子の開口部が直鎖状分子によって串刺し状に包接されてなる擬ポリロタキサンの両端に環状分子が脱離しないように封鎖基を配置してなるポリロタキサンであって、前記活性水素の少なくとも一部が下記式I(式中、nは1~7の数を示し、mは平均値として1~12の数を示す)で表される重合鎖で置換されるポリロタキサンの製造方法であって、
     A)前記環状分子の開口部が直鎖状分子によって串刺し状に包接されてなる擬ポリロタキサンの両端に前記環状分子が脱離しないように封鎖基を配置してなるポリロタキサンを準備する工程;
     B)環状ラクトンと前記ポリロタキサンとを混合する工程;及び
     C)前記B)工程で得られた混合体に有機塩基を加え、前記環状ラクトンと前記ポリロタキサンとを反応させる工程;
    により、前記活性水素の少なくとも一部が前記式Iで表される重合鎖で置換されたポリロタキサンを得る、上記方法。
    Figure JPOXMLDOC01-appb-C000002
  5.  前記有機塩基が、分子内に活性水素を有しない第3級アミン化合物である請求項4記載の方法。
  6.  前記有機塩基が、1,8-ジアザビシクロ(5.4.0)ウンデセン-7(DBU)、1,5-ジアザビシクロ(4.3.0)ノネン-5(DBN)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、フォスファゼン塩基、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(TBD)、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(MTBD)、1,1,3,3-テトラメチルグアニジン(TMG)、1-アザビシクロ[2.2.2]オクタンからなる群から選ばれる1種である請求項4又は5記載の方法。
  7.  前記直鎖状分子の重量平均分子量が3,000~500,000である請求項4~6のいずれか1項記載のポリロタキサン。
PCT/JP2014/074847 2013-09-19 2014-09-19 環状分子が重合鎖を有するポリロタキサン及びその製造方法 WO2015041322A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015537978A JP6286439B2 (ja) 2013-09-19 2014-09-19 環状分子が重合鎖を有するポリロタキサン及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-193673 2013-09-19
JP2013193673 2013-09-19

Publications (1)

Publication Number Publication Date
WO2015041322A1 true WO2015041322A1 (ja) 2015-03-26

Family

ID=52688969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074847 WO2015041322A1 (ja) 2013-09-19 2014-09-19 環状分子が重合鎖を有するポリロタキサン及びその製造方法

Country Status (2)

Country Link
JP (1) JP6286439B2 (ja)
WO (1) WO2015041322A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167247A1 (ja) * 2015-04-14 2016-10-20 東レ株式会社 樹脂組成物およびその成形品
WO2017086402A1 (ja) * 2015-11-20 2017-05-26 日油株式会社 末端カルボキシ基を有するポリエチレングリコールの製造方法
WO2017188376A1 (ja) * 2016-04-27 2017-11-02 国立大学法人大阪大学 ポリロタキサンの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040872A (ja) * 2007-08-08 2009-02-26 Lintec Corp アシル化ロタキサンおよびその製造方法
JP2009040873A (ja) * 2007-08-08 2009-02-26 Lintec Corp 部分アシル化シクロデキストリンの製造方法および部分アシル化ロタキサンの製造方法
WO2009031686A1 (ja) * 2007-09-07 2009-03-12 Bridgestone Corporation ゴム組成物及びそれを用いたタイヤ
WO2013099842A1 (ja) * 2011-12-26 2013-07-04 アドバンスト・ソフトマテリアルズ株式会社 修飾化ポリロタキサン及びその製造方法、並びに修飾化ポリロタキサンを有して形成される材料
WO2014080981A1 (ja) * 2012-11-22 2014-05-30 国立大学法人 東京大学 新規ポリロタキサン及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031620A (ja) * 2005-07-28 2007-02-08 Osaka Univ 有機化合物およびその製造方法
JP4521875B2 (ja) * 2005-08-31 2010-08-11 日産自動車株式会社 疎水性修飾ポリロタキサン
FR2924721B1 (fr) * 2007-12-10 2010-02-26 Cytomics Systems Procede de criblage d'agents modulant l'activite de l'ubiquitine ligase mdm2 et moyens destines a la mise en oeuvre dudit procede
JP5817087B2 (ja) * 2010-03-02 2015-11-18 日産自動車株式会社 修飾ポリロタキサンおよびその製造方法ならびにこれを用いた溶液、溶剤系塗料、溶剤系塗膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040872A (ja) * 2007-08-08 2009-02-26 Lintec Corp アシル化ロタキサンおよびその製造方法
JP2009040873A (ja) * 2007-08-08 2009-02-26 Lintec Corp 部分アシル化シクロデキストリンの製造方法および部分アシル化ロタキサンの製造方法
WO2009031686A1 (ja) * 2007-09-07 2009-03-12 Bridgestone Corporation ゴム組成物及びそれを用いたタイヤ
WO2013099842A1 (ja) * 2011-12-26 2013-07-04 アドバンスト・ソフトマテリアルズ株式会社 修飾化ポリロタキサン及びその製造方法、並びに修飾化ポリロタキサンを有して形成される材料
WO2014080981A1 (ja) * 2012-11-22 2014-05-30 国立大学法人 東京大学 新規ポリロタキサン及びその製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167247A1 (ja) * 2015-04-14 2016-10-20 東レ株式会社 樹脂組成物およびその成形品
JPWO2016167247A1 (ja) * 2015-04-14 2017-08-10 東レ株式会社 樹脂組成物およびその成形品
KR20170137776A (ko) * 2015-04-14 2017-12-13 도레이 카부시키가이샤 수지 조성물 및 그의 성형품
US10119024B2 (en) 2015-04-14 2018-11-06 Toray Industries, Inc. Resin composition and molded article thereof
KR102512768B1 (ko) 2015-04-14 2023-03-23 도레이 카부시키가이샤 수지 조성물 및 그의 성형품
WO2017086402A1 (ja) * 2015-11-20 2017-05-26 日油株式会社 末端カルボキシ基を有するポリエチレングリコールの製造方法
JP2017095565A (ja) * 2015-11-20 2017-06-01 日油株式会社 末端カルボキシ基を有するポリエチレングリコールの製造方法
CN108350167A (zh) * 2015-11-20 2018-07-31 日油株式会社 具有末端羧基的聚乙二醇的生产方法
US10407543B2 (en) 2015-11-20 2019-09-10 Nof Corporation Method for producing polyethylene glycol having terminal carboxyl group
CN108350167B (zh) * 2015-11-20 2020-06-12 日油株式会社 具有末端羧基的聚乙二醇的生产方法
WO2017188376A1 (ja) * 2016-04-27 2017-11-02 国立大学法人大阪大学 ポリロタキサンの製造方法
JPWO2017188376A1 (ja) * 2016-04-27 2018-12-20 国立大学法人大阪大学 ポリロタキサンの製造方法

Also Published As

Publication number Publication date
JPWO2015041322A1 (ja) 2017-03-02
JP6286439B2 (ja) 2018-02-28

Similar Documents

Publication Publication Date Title
US7943718B2 (en) Hydrophobic modified polyrotaxane and crosslinked polyrotaxane
KR100962771B1 (ko) 소수성 폴리로탁산 및 가교 폴리로탁산
EP1693399B1 (en) Polyrotaxane and process for producing the same
EP1734066B1 (en) Polymeric material having polyrotaxane and process for producing the same
JP5388197B2 (ja) 疎水性修飾ポリロタキサン含有溶液
Jiang et al. Preparation and characterization of water-soluble chitosan derivative by Michael addition reaction
Volokhova et al. Polysaccharide-containing block copolymers: Synthesis and applications
JP2007063412A (ja) 親水性修飾ポリロタキサン及び架橋ポリロタキサン
JP6286439B2 (ja) 環状分子が重合鎖を有するポリロタキサン及びその製造方法
WO2014080981A1 (ja) 新規ポリロタキサン及びその製造方法
Liu et al. Synthesis, characterization and bioactivities of N, O-carbonylated chitosan
Tanaka et al. Synthesis and gel formation of hyperbranched supramolecular polymer by vine-twining polymerization using branched primer–guest conjugate
WO2012147069A1 (en) Method for preparing dextrin nanosponges
CN108929433B (zh) 一种末端为环糊精的星形聚合物的制备方法
JP5204409B2 (ja) 擬ポリロタキサンおよびポリロタキサン
CN107880254B (zh) 一种聚l-乳酸环糊精共聚物材料及其制备方法
JP2012025923A (ja) ポリロタキサンの合成方法及び新規ポリロタキサン
JP2007063411A (ja) 環状分子減量ポリロタキサン
JP5167460B2 (ja) ポリロタキサン溶液及びその製造方法
CN113881240B (zh) 聚乳酸复合材料及其制备方法和用途
JP5007058B2 (ja) 擬ポリロタキサンおよびポリロタキサンの製造方法
JPH0248012B2 (ja)
Wang et al. Modulating drug loading and release profile of β-cyclodextrin polymers by means of cross-linked degree
EP3702393A1 (en) Production method for low inclusion rate polyrotaxane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846205

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015537978

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14846205

Country of ref document: EP

Kind code of ref document: A1