WO2015041253A1 - 充電設備および充電設備のエネルギーマネジメント方法 - Google Patents

充電設備および充電設備のエネルギーマネジメント方法 Download PDF

Info

Publication number
WO2015041253A1
WO2015041253A1 PCT/JP2014/074572 JP2014074572W WO2015041253A1 WO 2015041253 A1 WO2015041253 A1 WO 2015041253A1 JP 2014074572 W JP2014074572 W JP 2014074572W WO 2015041253 A1 WO2015041253 A1 WO 2015041253A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
bus
voltage
charging
converter
Prior art date
Application number
PCT/JP2014/074572
Other languages
English (en)
French (fr)
Inventor
亮佑 横尾
真範 丸山
義典 武市
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=61568270&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015041253(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US14/917,948 priority Critical patent/US10081259B2/en
Priority to SG11201601643TA priority patent/SG11201601643TA/en
Priority to CN201480051278.XA priority patent/CN105556796A/zh
Priority to EP14845465.5A priority patent/EP3029804B1/en
Priority to EP19165645.3A priority patent/EP3528362B1/en
Publication of WO2015041253A1 publication Critical patent/WO2015041253A1/ja
Priority to US16/112,271 priority patent/US10464441B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/51Photovoltaic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/53Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/67Controlling two or more charging stations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K47/00Dynamo-electric converters
    • H02K47/12DC/DC converters
    • H02K47/14Motor/generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Definitions

  • the present invention relates to a rapid charging facility for an electric vehicle in which a power generation device such as a solar power generation module and a charging / discharging device such as a stationary storage battery are linked, and can be suitably used for an energy management method of each device linked to the charging facility.
  • a power generation device such as a solar power generation module
  • a charging / discharging device such as a stationary storage battery
  • a so-called system power source that is, a power facility for supplying commercial power, is subjected to a large load in inverse proportion to the short charging time of the electric vehicle.
  • a technique of using a combination of a plurality of devices such as a power generation device such as a solar power generation device and a power storage device such as a stationary storage battery is known.
  • Patent Document 1 discloses a technique related to a DC power distribution system.
  • the DC power distribution system described in Patent Literature 1 includes a DC power distribution system, a first power converter, a second power converter, and a third power converter.
  • the DC power distribution system supplies DC power to the load device.
  • the first power conversion device converts the generated power of the photovoltaic power generation device into a DC power distribution system after voltage conversion.
  • the second power conversion device converts the voltage between the first power storage device always connected to the DC power distribution system and the DC power distribution system, and supplies power from one side to the other side.
  • the third power conversion device performs power conversion between the AC system and the DC distribution system and supplies power from one side to the other side.
  • This DC power distribution system includes an operation mode setting unit and an operation control unit.
  • the operation mode setting unit determines the operation mode according to the operation mode determination information for setting the operation mode of the DC power distribution system.
  • the operation control unit sets the first control parameter in the second power conversion device and the second control parameter in the third power conversion device according to the operation mode set by the operation mode setting unit.
  • the second power conversion device controls the power supply direction, operation start, and operation stop according to the voltage of the DC distribution system and the first control parameter.
  • the third power conversion device controls the power supply direction, operation start, and operation stop according to the voltage of the DC distribution system and the second control parameter.
  • a quick charging facility for an electric vehicle that can be operated flexibly while combining a power generation device and a power storage device with a system power supply, and an energy management method for the charging facility.
  • the charging facility transforms the power supplied from the plurality of power supply devices, the battery, and the power storage device with the power converter, collects it on the DC bus, and uses it for charging the electric vehicle.
  • each power converter operates by independent automatic control according to the voltage change of the DC bus.
  • a high-level control unit that collectively controls a plurality of power supply sources is unnecessary, and a simple configuration in which a plurality of power supply devices are simply connected to a DC bus at their respective output terminals. And the entire charging facility can be operated flexibly.
  • FIG. 1 is a block circuit diagram showing a configuration example of a charging facility according to an embodiment of the present invention.
  • FIG. 2 is a graph illustrating an example of an energy management method for a charging facility according to an embodiment of the present invention.
  • FIG. 3 is a graph illustrating another example of the energy management method for the charging facility according to the embodiment of the present invention.
  • the power converter included in the first classification converts AC power supplied from the outside, such as a system power supply, into DC power and supplies it to the DC bus.
  • the power converter included in the second classification supplies power generated by a power generation device such as a solar power generation module to the DC bus.
  • the power converter included in the third category inputs power from the DC bus to charge the power storage device. Further, the power charged in the power storage device is discharged, and the power is supplied to the DC bus.
  • the charging facility described here is connected to a system power supply and has one power generation device and one power storage device.
  • these numbers are merely examples, and do not limit the present invention.
  • details will be described later, there is no particular limitation on the presence / absence of connection to the system power supply or the number of connected power generation devices and power storage devices, and depending on the case, any one of the system power supply, power generation device, and power storage device is linked. Even if not, it is possible to continue operation with the remaining combinations.
  • FIG. 1 is a block circuit diagram showing a configuration example of a charging facility according to an embodiment of the present invention. The components of the charging facility shown in FIG. 1 will be described.
  • the charging facility shown in FIG. 1 includes a DC bus 1, a system power supply AC (Alternative Current) / DC (Direct Current) conversion circuit 10 for receiving a system power supply 60, and a photovoltaic power generation module 21.
  • the system power supply AC / DC conversion circuit 10 for receiving the system power supply 60 and converting it to a DC voltage includes a system power supply AC / DC converter control circuit 13, a system power supply AC / DC converter power circuit 14, and Is included.
  • the power generator DC / DC conversion circuit 22 includes a power generator DC / DC converter control circuit 23 and a power generator DC / DC converter power circuit 24.
  • the power generator DC / DC conversion circuit 22 and the photovoltaic power generation module 21 may be collectively referred to as a power generation system.
  • the power storage device DC / DC conversion circuit 32 includes a power storage device DC / DC converter control circuit 33 and a power storage device DC / DC converter power circuit 34.
  • the stationary storage battery 31 includes a storage battery cell 35 and a storage battery state monitoring device 36.
  • the power storage device DC / DC conversion circuit 32 and the stationary storage battery 31 may be collectively referred to as a power storage system.
  • the charging device DC / DC conversion circuit 42 includes a charging device DC / DC converter control circuit 43 and a charging device DC / DC converter power circuit 44.
  • the charging device DC / DC conversion circuit 42 and the charger 41 may be collectively referred to as a charging system.
  • the power circuit of each conversion circuit functions as a DC power generation device that generates DC power.
  • FIG. 1 also shows an electric vehicle 50, an in-vehicle charging circuit 51, an in-vehicle rechargeable battery 52, and a system power source 60.
  • the in-vehicle charging circuit 51 and the in-vehicle rechargeable battery 52 are included in the electric vehicle 50.
  • the DC bus 1 includes a positive voltage bus to which a positive voltage is applied and a negative voltage bus to which a negative voltage is applied.
  • This configuration is merely an example, and for example, a ground may be used instead of the negative voltage bus.
  • the solar power generation module 21 is merely an example, and for example, a wind power generation module may be used instead.
  • the power received from the system power supply 60 is converted from an AC voltage to a DC voltage by the system power supply AC / DC conversion circuit 10 and supplied to the DC bus 1.
  • the power generation system transforms the power generated by the solar power generation module 21 by the DC / DC conversion circuit 22 for the power generation device (DC / DC conversion) and supplies it to the DC bus 1.
  • charging power is supplied from the DC bus 1 to the stationary storage battery 31 by the DC / DC conversion circuit 32 for the storage device, and discharging power is supplied from the stationary storage battery 31 to the DC bus 1.
  • the in-vehicle rechargeable battery 52 is charged by supplying the electric power requested by the in-vehicle charging circuit 51 from the DC bus 1 according to the remaining amount of the in-vehicle rechargeable battery 52 of the electric vehicle 50.
  • the charging facility and the energy management method thereof according to the embodiment of the present invention have the following three features.
  • the first is to enable peak cut of the received power from the system power supply 60 without limiting the charging power to the electric vehicle 50. By performing peak cut of the received power, the basic charge of electricity can be suppressed.
  • the second is to make maximum use of renewable energy such as photovoltaic power. Thirdly, it is possible to reduce power loss due to the power converter.
  • the in-vehicle rechargeable battery 52 is charged using the following priority order. That is, first, electric power supplied from the power generation system is used. If the power supplied from the power generation system is insufficient, the power supplied from the system power supply 60 is added and used. Here, an upper limit is set for the power received from the system power supply 60 in order to realize the peak cut of the system received power. For this reason, if the power supplied from the power generation system and the system power supply 60 is still insufficient, the power supplied by discharging the power storage system is further used.
  • charging of the power storage system is also performed using the following priority order. That is, when there is a certain amount of remaining charge in the stationary storage battery 31, the stationary storage battery 31 is charged using only the power supplied from the power generation system. When the remaining charge amount of the stationary storage battery 31 is lower than a predetermined reference value, the power supplied from the system power supply 60 is used together with the power supplied from the power generation system. Charge in a short time.
  • the above control is performed individually by the power converters of the system power source 60, the power generation system, the power storage system, and the charging system, that is, independently of other power converters. More specifically, for example, the system power supply AC / DC converter circuit 10 connected to the system power supply 60 is operated by the system power supply AC / DC converter control circuit 13 monitoring the voltage of the DC bus 1, and as a result. The system power supply AC / DC converter control circuit 13 controls the operation of the system power supply AC / DC converter power circuit 14 based on the above. At this time, the control performed by the system power supply AC / DC converter control circuit 13 is independent of the power generation system, the power storage system, and the charging system. The same applies to the operations of the power generation system, the power storage system, and the charging system.
  • the charging facility according to the present invention collects the power supplied from the AC / DC conversion circuit 10 for system power supply, the power generation system, and the power storage system in the DC bus 1 in the form of DC power and is collected in the DC bus 1.
  • the in-vehicle rechargeable battery 52 of the electric vehicle 50 is charged with DC power.
  • the control for fixing the DC voltage in the DC bus 1 is not performed, and fluctuations in the DC voltage in the DC bus 1 are detected by the AC / DC conversion circuit 10 for system power supply, the power generation system, the storage system, and the charging system. Used as a trigger for automatic control individually.
  • FIG. 2 is a graph illustrating an example of an energy management method for a charging facility according to an embodiment of the present invention.
  • FIG. 2 includes a total of four graphs, the first graph (A) to the fourth graph (D).
  • the vertical axis indicates the voltage of the DC bus 1
  • the vertical axis indicates the output power of the DC bus 1.
  • the first graph (A) shows the relationship between the power supplied to the DC bus 1 from the AC / DC conversion circuit 10 for system power supply and the voltage of the DC bus 1.
  • the second graph (B) shows the relationship between the power supplied from the DC / DC conversion circuit 22 for the power generator to the DC bus 1 and the voltage of the DC bus 1.
  • the third graph (C) shows the relationship between the power supplied from the DC / DC conversion circuit 32 for the power storage device to the DC bus 1 and the voltage of the DC bus 1.
  • the fourth graph (D) shows the relationship between the load applied to the DC bus 1 from the DC / DC conversion circuit 42 for the charging device and the voltage of the DC bus 1.
  • P1 is the maximum power that can be output, which is determined by the rating of the DC / DC conversion circuit 22 for power generator, and P2 receives power from the AC / DC conversion circuit 10 for system power supply. This is the upper limit setting value of power to be used.
  • VA is a system power supply setting voltage
  • VB1 is a power generator first setting voltage
  • VB2 is a power generator second setting voltage
  • VC is a power storage.
  • VA is a set voltage for the device.
  • the system power supply setting voltage VA is set in the system power supply AC / DC converter control circuit 13 of the system power supply AC / DC conversion circuit 10.
  • the first set voltage VB1 for power generator and the second set voltage VB2 for power generator are set in the DC / DC converter control circuit 23 for power generator of the power generation system.
  • the power storage device setting voltage VC is set in the power storage device DC / DC converter control circuit 33 of the power storage system.
  • the power storage device setting voltage VC is lower than the system power supply setting voltage VA
  • the system power supply setting voltage VA is lower than the power generation device second setting voltage VB2
  • the power generation device second setting voltage VB2 is generated. It is set lower than the first set voltage VB1 for the device.
  • the system power supply AC / DC converter control circuit 13 constantly monitors the voltage of the DC bus 1, and the voltage of the DC bus 1 is When the power supply set voltage VA is exceeded, the system power supply AC / DC converter control circuit 13 controls the system power supply AC / DC converter power circuit 14, and the system power supply AC / DC converter circuit 10 to the DC bus 1 is controlled. Stop power supply. On the other hand, when the voltage of the DC bus 1 falls below the system power supply setting voltage VA, the system power supply AC / DC converter control circuit 13 controls the system power supply AC / DC converter power circuit 14, and the system power supply 60 performs direct current. Power is supplied to the bus 1.
  • the DC / DC converter control circuit 23 for the power generator also constantly monitors the voltage of the DC bus 1, and if the voltage of the DC bus 1 exceeds the first set voltage VB1 for the power generator, power generation is performed.
  • the device DC / DC converter control circuit 23 performs control to stop the power supply to the DC bus 1 of the power generator DC / DC converter power circuit 24.
  • the DC / DC converter control circuit 23 for the power generator performs control to start the operation of the power circuit 24 for the DC / DC converter for the power generator. Do.
  • the DC / DC converter control circuit 33 for the power storage device also constantly monitors the voltage of the DC bus 1, and when the voltage of the DC bus 1 exceeds the set voltage VC for the power storage device, the DC / DC conversion for the power storage device is performed.
  • the capacitor control circuit 33 performs control to stop the power supply to the DC bus 1 of the power storage device DC / DC converter power circuit 34.
  • the DC / DC converter control circuit 33 for the power storage device performs control to start the discharge operation of the DC / DC converter power circuit 34 for the power storage device.
  • the charging facility is started from a state where the power of the DC bus 1 is zero. From this state, the system power supply AC / DC conversion circuit 10 starts to operate, and the voltage of the DC bus 1 is increased and stabilized at the system power supply setting voltage VA. Thereafter, the power generation system and the power storage system start to operate.
  • the charge amount of the stationary storage battery 31 has reached the upper limit, when the voltage of the DC bus 1 rises due to the generated power of the power generation system and exceeds the first set voltage VB1 for the power generator, the power generation system goes to the DC bus 1 Stop power supply.
  • the first set voltage VB1 for the power generator is set higher than the set voltage VC for the power storage device than the set voltage VA for the system power supply. Therefore, control is performed so that all power supply to the DC bus 1 is stopped.
  • the DC / DC converter control circuit 23 for the generator monitoring the voltage of the DC bus 1 detects this, and the generator The DC / DC converter power circuit 24 performs control to start operation.
  • the DC / DC converter power circuit 24 for the power generation apparatus starts its operation, the DC power generated by the solar power generation module 21 by the solar power generation is input, the DC voltage is converted and supplied to the DC bus 1. .
  • the presence / absence of supply of the generated power to the DC bus 1 is determined by the DC / DC conversion circuit 22 for the power generation device depending on the voltage of the DC bus 1, so the photovoltaic power generation module 21 is particularly controlled. You may always continue photovoltaic power generation without receiving.
  • the in-vehicle rechargeable battery 52 is charged by the power supplied from the power generation system to the DC bus 1.
  • the generated power supplied to the DC bus 1 by the power generation system increases as the voltage of the DC bus 1 decreases.
  • the generated power of the power generation system reaches the maximum generated power of the power generator when the voltage of the DC bus 1 drops and reaches the second power generator set voltage VB2.
  • the system power supply AC / DC converter control circuit 13 that monitors the voltage of the DC bus 1 detects this, and the system power supply The AC / DC converter power circuit 14 starts to supply power to the DC bus 1.
  • the system power supply AC / DC converter power circuit 14 receives system AC power from the system power supply 60.
  • the system power supply AC / DC converter power circuit 14 converts the input AC power into DC power and supplies it to the DC bus 1.
  • the in-vehicle rechargeable battery 52 is charged by the sum of the power supplied from the power generation system and the AC / DC conversion circuit 10 for system power supply to the DC bus 1. Done.
  • the power supplied to the DC bus 1 by the system power supply AC / DC conversion circuit 10 increases as the voltage of the DC bus 1 decreases.
  • the voltage that the voltage of the DC bus 1 reaches when the power output from the AC / DC conversion circuit 10 for system power supply reaches the maximum power P2 that is the upper limit set value of the received power is set as the set voltage VC for the power storage device.
  • the power storage device setting voltage VC is set so that the power storage system starts supplying power to the DC bus 1 at the same time when the output power from the system power supply AC / DC conversion circuit 10 reaches the maximum power P2. ing.
  • the DC / DC converter control circuit 33 for the power storage device that monitors the voltage of the DC bus 1 detects this and detects the voltage for the power storage device.
  • the DC / DC converter power circuit 34 performs control to start the discharge operation.
  • the DC / DC converter power circuit 34 for the power storage device When starting the discharging operation, the DC / DC converter power circuit 34 for the power storage device inputs DC power charged in advance to the stationary storage battery 31, changes the voltage, and supplies the DC power to the DC bus 1. That is, the DC power discharged from the stationary storage battery 31 is supplied to the DC bus 1 via the power storage device DC / DC converter power circuit 34.
  • the in-vehicle rechargeable battery 52 is charged by the sum of the discharge power supplied from the vehicle.
  • the slopes of the graphs representing the relationship between the power and voltage of the direct current bus 1 respectively set for the power source are the AC / DC converter control circuit 13 for system power supply, the DC / DC converter control circuit 23 for power generator, and the DC for power storage device.
  • the DC / DC converter control circuit 33 and the like can be adjusted within a predetermined range. By appropriately performing such adjustment, it is possible to freely determine the priority order of each power converter that supplies power to the load on the DC bus 1.
  • the charging operation of the stationary storage battery 31 in the power storage system will be described. While the voltage of the DC bus 1 is larger than the set voltage VC for the power storage device, that is, while the stationary storage battery 31 is not discharged, the stationary storage battery 31 is charged in parallel with the charging of the in-vehicle rechargeable battery 52. Is possible.
  • charging of the stationary storage battery 31 can be performed in two operation modes. First, when the remaining charge of the stationary storage battery 31 is not less than a predetermined reference charge amount set in advance, for example, 50% or more, without using the power of the AC / DC conversion circuit 10 for system power supply, Charging is performed only with the electric power supplied from the power generation system. This determination is performed by the storage battery state monitoring device 36 monitoring the remaining charge of the storage battery cell 35.
  • a predetermined reference charge amount set in advance for example, 50% or more
  • the remaining charge amount of the stationary storage battery 31 is less than the reference charge amount, for example, less than 50%
  • the power supplied from the system power supply 60 is equal to or lower than the upper limit set value of the received power.
  • the DC / DC converter control circuit 33 for the power storage device is Then, control is performed to stop power supply to both stationary storage battery 31 and DC bus 1 of DC / DC converter power circuit 34 for the power storage device.
  • FIG. 3 is a graph illustrating another example of the energy management method for the charging facility according to the embodiment of the present invention.
  • first graph (A) and a second graph (B) In each of the first graph (A) and the second graph (B), the horizontal axis indicates the passage of time, and the vertical axis indicates the power supply side power.
  • the first graph (A) shows an example of the passage of time of power supplied from the DC bus 1 to the in-vehicle rechargeable battery 52 of the electric vehicle 50.
  • the second graph (B) shows an example of the passage of time of power supplied from the DC bus 1 to the stationary storage battery 31.
  • the period from time t0 to time t2 is a period in which the voltage of the DC bus 1 is higher than the system power supply setting voltage VA and equal to or less than the first power generator setting voltage VB1.
  • a period from time t2 to time t3 indicates a period in which the voltage of the DC bus 1 is higher than the power storage device setting voltage VC and equal to or lower than the system power supply setting voltage VA.
  • a period from time t3 to time t5 indicates a period in which the voltage of the DC bus 1 is equal to or lower than the set voltage VC for the power storage device.
  • a period from time t5 to time t7 indicates a period in which the voltage of the DC bus 1 is equal to the storage device setting voltage VC.
  • a period from time t7 to time t8 indicates a period in which the voltage of the DC bus 1 is equal to the system power supply setting voltage VA.
  • a period from time t8 to time t9 indicates a period in which the voltage of the DC bus 1 is not less than the system power supply set voltage VA and not more than the first power generator set voltage VB1.
  • the system power supply setting voltage VA, the power generation device first setting voltage VB1, and the power storage device setting voltage VC are the same as those in the description of FIG.
  • electric power P1 indicates the maximum electric power that can be supplied by the power generation system.
  • the power P2 indicates the sum of the maximum power that can be supplied by the power generation system and the maximum power that can be supplied by the AC / DC conversion circuit 10 for system power supply.
  • the electric power P3 indicates the sum of the maximum power that can be supplied by the power generation system, the maximum power that can be supplied by the AC / DC conversion circuit 10 for system power supply, and the maximum power that can be supplied by the power storage system at the time of discharging.
  • the maximum power that can be supplied to each of the AC / DC conversion circuit 10 for system power supply, the power generation system, and the power storage system is the same as that in the description of FIG.
  • the electric vehicle 50 is not charged, and the storage battery cell 35 is charged to the upper limit of its capacity.
  • the voltage of the DC bus 1 is higher than the system power supply setting voltage VA and is equal to or lower than the first power generator setting voltage VB1.
  • charging of the electric vehicle 50 is started. Thereafter, until the supply-side power reaches the power P1 at time t2, the electric vehicle 50 is charged with the power supplied from the power generator DC / DC conversion circuit 22 to the DC bus 1 according to the voltage of the DC bus 1. Is called. From time t1 to time t2, the voltage of the DC bus 1 is higher than the system power supply set voltage VA and is equal to or lower than the first power generator set voltage VB1.
  • the supply-side power reaches the power P1. Charging of the electric vehicle 50 continues and is performed by the maximum generated power of the DC / DC conversion circuit 22 for the power generator and the received power from the system power supply 60. Supply-side power continues to rise and reaches power P2 at time t3. During the period from time t2 to time t3 when the supply-side power is equal to or higher than power P1 and lower than power P2, the voltage of the DC bus 1 is higher than the power storage device setting voltage VC and lower than the grid power supply setting voltage VA. is there.
  • the supply-side power reaches the power P2. Charging of the electric vehicle 50 continues, and the maximum generated power of the DC / DC conversion circuit 22 for the power generation device, the upper limit value of the received power from the system power supply 60, and the discharge power of the DC / DC conversion circuit 32 for the power storage device Done. At this time, the discharge power of the DC / DC conversion circuit 32 for the power storage device is determined according to the voltage of the DC bus 1. Supply-side power continues to rise and reaches power P3 at time t4. From time t3 to time t4 when the supply-side power is equal to or greater than power P2 and less than power P3, the voltage of the DC bus 1 is equal to or less than the set voltage VC for the power storage device.
  • the supply-side power reaches the power P3. Charging of the electric vehicle 50 continues, and the maximum generated power of the DC / DC conversion circuit 22 for the power generation device, the upper limit value of the received power from the system power supply 60, and the discharge power of the DC / DC conversion circuit 32 for the power storage device Although it is being carried out, the charge amount of the electric vehicle 50 is approaching full charge, and the charging power is being reduced. Thereafter, the supply-side power reaches the power P2 at time t5. From time t4 to time t5 when supply-side power is equal to or lower than power P3 and higher than power P2, the voltage of DC bus 1 is equal to or lower than power storage device setting voltage VC.
  • the supply-side power reaches the power P2.
  • the charge amount of the electric vehicle 50 is closer to full charge, and the charging power is reduced.
  • the power storage device DC / DC conversion circuit 32 is discharged and the amount of charge is reduced, the power generation device DC / DC conversion is performed.
  • the electric vehicle 50 and the storage battery cell 35 are charged by the maximum generated power of the circuit 22 and the received power from the system power supply 60. Thereafter, at time t6, charging of the electric vehicle 50 ends.
  • the voltage of the DC bus 1 is equal to the power storage device setting voltage VC.
  • the charging power of the storage battery cell 35 is controlled by the storage device DC / DC converter control circuit 33 that monitors the voltage of the direct current bus 1 so that the voltage of the direct current bus 1 does not fall below the set voltage VC for the storage device. ing.
  • charging of the electric vehicle 50 ends.
  • the storage battery cell 35 is discharged and the amount of charge is reduced, the storage battery cell 35 is charged by the maximum generated power of the DC / DC conversion circuit 22 for power generator and the received power from the system power supply 60.
  • the charging power of the storage battery cell 35 is controlled by the storage device DC / DC converter control circuit 33 that monitors the voltage of the direct current bus 1 so that the voltage of the direct current bus 1 does not fall below the storage device setting voltage VC. .
  • the charge amount of the storage battery cell 35 reaches a preset value. Thereafter, the storage battery cell 35 is charged only with the maximum generated power of the DC / DC conversion circuit 22 for the power generation device until time t8 when the charge amount of the storage battery cell 35 approaches full charge. From time t7 to time t8, the voltage of the DC bus 1 is equal to the system power supply setting voltage VA.
  • the power storage device DC / DC conversion circuit 32 starts to reduce the charging power. For this reason, the voltage of the DC bus 1 rises, and the power supply from the DC / DC conversion circuit 22 for the power generator is restricted. Thereafter, until the amount of charge of the storage battery cell 35 reaches full charge at time t9, the voltage of the DC bus 1 is higher than the system power supply setting voltage VA and is equal to or lower than the power generator first setting voltage VB1. .
  • the charging facility and the energy management method thereof according to the embodiment of the present invention described above have the following excellent features.
  • the AC / DC conversion circuit 10 for system power supply, the DC / DC conversion circuit 22 for power generation device, and the DC / DC conversion circuit 32 for power storage device are each based only on the voltage that fluctuates in the DC bus 1. Independent operation autonomously by automatic control. Therefore, a host control device that manages the entire charging facility is not required, and the configuration of the entire charging facility is simplified.
  • the charging facility according to the present invention can be operated very flexibly.
  • [Claim 1] Removably connecting the external rechargeable battery to the charging circuit; Supplying DC power to the DC bus; Charging the external rechargeable battery with the DC power supplied to the DC bus, Supplying the DC power includes: Generating the DC power in each of a plurality of power converters; Monitoring the DC voltage on the DC bus at each power converter; Controlling the operation of each power converter based on the DC voltage monitored by each power converter independently from the remaining power converters of the plurality of power converters, Charging the external rechargeable battery, Converting the DC power supplied to the DC bus into DC power for charging by a DC / DC converter power circuit for a charging device; Monitoring the DC voltage on the DC bus; Controlling the operation of the DC / DC converter power circuit for the charging device based on a comparison result between the monitored DC voltage and a predetermined set voltage.
  • An energy management method for a charging facility An energy management method for a charging facility.
  • the independent control is Starting the supply of the DC power to the DC bus of the power generation module if the monitored DC voltage is less than or equal to a predetermined power generator setting voltage;
  • An energy management method for a charging facility comprising: stopping supply of the DC power to the DC bus of the power generation module if the monitored DC voltage is equal to or higher than the set voltage for the power generator.
  • the independent control is Starting the supply of the DC power to the DC bus of the power storage device DC / DC converter power circuit if the monitored DC voltage is equal to or lower than a predetermined power storage device setting voltage; Starting the supply of the DC power to the storage battery of the power storage device DC / DC converter power circuit if the monitored DC voltage is equal to or higher than the set voltage for the system power supply; If the monitored DC voltage is not less than the set voltage for the power storage device and not more than the set voltage for the system power supply, and the monitored remaining charge is less than a predetermined reference charge amount, the DC / DC conversion for the power storage device Starting the supply of the DC power to the storage battery of the power circuit; If the monitored DC voltage is greater than or equal to the set voltage for the power storage device and less than or equal to the set voltage for the system power supply, and the monitored remaining charge is greater than a predetermined reference charge amount, the DC / DC for the power storage device An energy management method for a charging facility

Abstract

 充電設備は、複数の電源装置から供給される直流電力を直流バスに集めてから電気自動車用車載充電池の充電に利用し、この充電設備のエネルギーマネジメント方法では、各電源装置が直流バスの電圧変化に応じてそれぞれ独立した自動制御によって動作する。複数の電力供給源をまとめて制御する上位の制御部が不要で、かつ、複数の電源装置を、それぞれの出力端子を直流バスに接続するだけの簡便な構成によって組み合わせることが出来、また、充電設備全体をフレキシブルに運用することが出来る。こうして、系統電源に複数の電力変換器を組み合わせつつも簡便な構成で、かつ、フレキシブルな運用が可能となる。

Description

[規則37.2に基づきISAが決定した発明の名称] 充電設備および充電設備のエネルギーマネジメント方法
 本発明は、太陽光発電モジュール等の発電装置や定置型蓄電池等の充放電装置を連係した電気自動車用の急速充電設備に関し、充電設備に連携する各装置のエネルギーマネジメント方法に好適に利用できる。
 電気自動車の、急速充電時には、その走行時に消費される電力を、比較的短い充電時間で供給する必要がある。言い換えれば、いわゆる系統電源、すなわち商用の電力を供給する電力設備にとっては、電気自動車の充電時間の短さに反比例して大きな負荷がかかることになる。
 しかも、電気自動車の急速充電が必要となる時間帯は、ドライバーの生活パターンに依存するため、今後、電気自動車が普及すれば、季節や曜日、時間帯等によって急速充電が集中的に行われる可能性もある。そこで、急速充電により短時間の間だけ発生する電力需要を平滑化し、系統電源に対する電力需要のピークを抑える為の制御が必要となる。
 その方法として、系統電源の他に、太陽光発電装置等の発電装置や、定置型蓄電池等の蓄電装置など、複数の装置を組み合わせて使用する技術が知られている。
 上記に関連して、特許文献1(WO2011/162025号公報)には、直流配電システムに関わる技術が開示されている。特許文献1に記載の直流配電システムは、直流配電系統と、第1電力変換装置と、第2電力変換装置と、第3電力変換装置とを備える。直流配電系統は、負荷装置に直流電力を供給する。第1電力変換装置は、直流配電系統に太陽光発電装置の発電電力を電圧変換して供給する。第2電力変換装置は、直流配電系統に常時接続された第1電力貯蔵装置と直流配電系統との間で電圧変換して、一方側から他方側へ電力供給する。第3電力変換装置は、交流系統と直流配電系統の間で電力変換して、一方側から他方側へ電力供給する。この直流配電システムは、動作モード設定部と、動作制御部とを備える。動作モード設定部は、直流配電システムの動作モードを設定するための動作モード決定情報に応じて、動作モードを決定する。動作制御部は、動作モード設定部によって設定された動作モードに応じて、第2電力変換装置に第1制御パラメータを、第3電力変換装置に第2制御パラメータを夫々設定する。第2電力変換装置は、直流配電系統の電圧と第1制御パラメータに応じて、電力供給方向、運転開始及び運転停止の制御を行う。第3電力変換装置は、直流配電系統の電圧と第2制御パラメータに応じて、電力供給方向、運転開始及び運転停止の制御を行う。
 特許文献1に記載の直流配電システムでは、まず、複数の電源装置から供給される電力を充電設備の蓄電装置に充電し、次に、蓄電装置に充電された電力を放電することで電気自動車を充電する。そのためには、蓄電装置が充電または放電するタイミングや、系統電源や発電装置等の複数の電源装置が蓄電池に向けて電力を供給するタイミングなどを、適切に制御する必要がある。
WO2011/162025号公報
 系統電源に発電装置、蓄電装置を組み合わせつつも簡便な構成で、かつ、フレキシブルな運用が可能な電気自動車用急速充電設備と、この充電設備のエネルギーマネジメント方法を提供する。
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 一実施の形態によれば、充電設備は、複数の電源装置, 及び蓄電装置から供給される電力を電力変換器で変圧し、直流バスに集めてから電気自動車の充電に利用する。この充電設備のエネルギーマネジメント方法では、各電力変換器が直流バスの電圧変化に応じてそれぞれ独立した自動制御によって動作する。
 前記一実施の形態によれば、複数の電力供給源をまとめて制御する上位の制御部が不要で、かつ、複数の電源装置を、それぞれの出力端子を直流バスに接続するだけの簡便な構成によって組み合わせることが出来、また、充電設備全体をフレキシブルに運用することが出来る。
図1は、本発明の実施形態による充電設備の構成例を示すブロック回路図である。 図2は、本発明の実施形態による充電設備のエネルギーマネジメント方法の一例を示すグラフである。 図3は、本発明の実施形態による充電設備のエネルギーマネジメント方法の別の一例を示すグラフである。
 添付図面を参照して、本発明による充電設備および充電設備のエネルギーマネジメント方法を実施するための形態を以下に説明する。
[実施形態]
 本発明の実施形態では、同一の直流バスに複数の電力変換器を接続した充電設備の一構成例について説明する。
 複数の電力変換器は、大きく3種類に分類することが出来る。第1の分類に含まれる電力変換器は、系統電源等、外部から供給される交流電力を直流電力に変換して直流バスに供給する。第2の分類に含まれる電力変換器は、太陽光発電モジュール等の発電装置によって生成される電力を直流バスに供給する。第3の分類に含まれる電力変換器は、蓄電装置を充電する為に直流バスから電力を入力する。また、蓄電装置に充電された電力を放電し、電力を直流バスに供給する。
 ここで説明する充電設備は、系統電源と接続され、1台の発電装置と、1台の蓄電装置とを有している。しかし、これらの数はあくまでも一例であって、本発明を限定するものではない。詳しくは後述するが、系統電源との接続の有無や、発電装置、及び蓄電装置の接続台数には特に制限が無く、場合によっては系統電源、発電装置、蓄電装置のうち、いずれかが連係していなくても、残りの組合せによって運用を続けることが可能である。
 図1は、本発明の実施形態による充電設備の構成例を示すブロック回路図である。図1に示した充電設備の構成要素について説明する。
 図1に示した充電設備は、直流バス1と、系統電源60を受電するための系統電源用AC(Alternative Current:交流)/DC(Direct Current:直流)変換回路10と、太陽光発電モジュール21と、発電装置用DC/DC変換回路22と、定置型蓄電池31と、蓄電装置用DC/DC変換回路32と、充電器41と、電気自動車用の充電装置用DC/DC変換回路42とを含んでいる。
 系統電源60を受電し、直流電圧に変換する為の系統電源用AC/DC変換回路10は、系統電源用AC/DC変換器制御回路13と、系統電源用AC/DC変換器動力回路14とを含んでいる。発電装置用DC/DC変換回路22は、発電装置用DC/DC変換器制御回路23と、発電装置用DC/DC変換器動力回路24とを含んでいる。なお、発電装置用DC/DC変換回路22と、太陽光発電モジュール21とを合わせて、発電システムと呼称しても良い。蓄電装置用DC/DC変換回路32は、蓄電装置用DC/DC変換器制御回路33と、蓄電装置用DC/DC変換器動力回路34とを含んでいる。定置型蓄電池31は、蓄電池セル35と、蓄電池状態監視装置36とを含んでいる。なお、蓄電装置用DC/DC変換回路32と、定置型蓄電池31とを合わせて、蓄電システムと呼称しても良い。充電装置用DC/DC変換回路42は、充電装置用DC/DC変換器制御回路43と、充電装置用DC/DC変換器動力回路44とを含んでいる。なお、充電装置用DC/DC変換回路42と、充電器41とを合わせて、充電システムと呼称しても良い。また、各変換回路の動力回路は、直流電力を生成する直流電力生成装置として機能する。
 図1には、その他に、電気自動車50と、車載充電回路51と、車載充電池52と、系統電源60とが示されている。ここで、車載充電回路51と、車載充電池52とは、電気自動車50に含まれている。
 直流バス1は、図1には図示を省略するが、正電圧を印加される正電圧バスと、負電圧を印加される負電圧バスとを含んでいる。なお、この構成はあくまでも一例であって、例えば、負電圧バスの代わりにグランドを用いても良い。また、太陽光発電モジュール21は、あくまでも一例であって、例えば、代わりに風力発電モジュールを用いても良い。
 図1に示した充電設備の構成要素の機能について説明する。系統電源60から受電した電力は系統電源用AC/DC変換回路10によって交流電圧から直流電圧に変換され、直流バス1に供給される。
 発電システムは、太陽光発電モジュール21が発電した電力を発電装置用DC/DC変換回路22によって変圧(DC/DC変換)し、直流バス1に供給する。
 蓄電システムに関しては、蓄電装置用DC/DC変換回路32によって直流バス1から定置型蓄電池31に充電電力が供給され、また直流バス1に定置型蓄電池31から放電電力を供給する。
 充電システムに関して、電気自動車50の車載充電池52の残量に応じて、車載充電回路51が要求した電力を直流バス1から供給し、車載充電池52の充電をおこなう。
 本発明の実施形態による充電設備の動作について、すなわち本発明の実施形態による充電設備のエネルギーマネジメント方法について、より詳細に説明する。
 本発明の実施形態による充電設備およびそのエネルギーマネジメント方法は、以下の三つの特徴がある。一つ目は、電気自動車50への充電電力を制限せずに、系統電源60からの受電電力のピークカットを可能とすることである。受電電力のピークカットを行うことにより、電気料金の基本料金を抑えることができる。二つ目は、太陽光発電電力等の再生可能エネルギーを最大限に利用可能とすることである。三つ目は、電力変換器による電力損失を減らすことを可能とすることである。
 そこで、本発明の実施形態では、次のような優先順位を用いて車載充電池52の充電を行う。すなわち、まず、発電システムから供給される電力を用いる。発電システムから供給される電力が不十分であれば、系統電源60から供給される電力を加えて用いる。ここで、系統受電電力のピークカットを実現する為、系統電源60から受電する電力には上限値を設定している。この為、発電システムおよび系統電源60から供給される電力がまだ不十分であれば、蓄電システムの放電によって供給される電力をさらに加えて用いる。
 また、本発明の実施形態では、蓄電システムの充電も、次のような優先順位を用いて行う。すなわち、定置型蓄電池31の充電残量にある程度の余裕がある場合には、発電システムから供給される電力だけを用いて、定置型蓄電池31の充電を行う。定置型蓄電池31の充電残量が所定の基準値よりも減少している場合には、発電システムから供給される電力に系統電源60から供給される電力も合わせて用いて、定置型蓄電池31の充電を短時間で行う。
 以上の制御は、系統電源60と、発電システムと、蓄電システムと、充電システムとの各電力変換器によって、それぞれ個別に、すなわち他の電力変換器とは独立して行われる。より具体的には、例えば系統電源60に接続された系統電源用AC/DC変換回路10の動作は、系統電源用AC/DC変換器制御回路13が直流バス1の電圧を監視し、その結果に基づいて系統電源用AC/DC変換器制御回路13が系統電源用AC/DC変換器動力回路14の動作を制御することによって行なわれる。このとき、系統電源用AC/DC変換器制御回路13が行う制御は、発電システム、蓄電システムおよび充電システムとは無関係である。発電システム、蓄電システムおよび充電システムの動作についても同様である。
 言い換えれば、本発明による充電設備は、系統電源用AC/DC変換回路10、発電システムおよび蓄電システムから供給される電力を、直流電力の形で直流バス1に集め、直流バス1に集められた直流電力で電気自動車50の車載充電池52を充電する。また、本発明による充電設備では直流バス1における直流電圧を固定する制御を行わず、直流バス1における直流電圧の変動を、系統電源用AC/DC変換回路10、発電システム、蓄電システムおよび充電システムが個別に自動制御を行うトリガーとして用いる。
 図2を用いて、図1に示した充電設備の全体的な動作の一例について説明する。図2は、本発明の実施形態による充電設備のエネルギーマネジメント方法の一例を示すグラフである。
 図2は、第1グラフ(A)~第4グラフ(D)の合計4つのグラフを含んでいる。これら第1グラフ(A)~第4グラフ(D)のそれぞれにおいて、縦軸は直流バス1の電圧を示しており、縦軸は直流バス1の出力電力を示している。
 第1グラフ(A)は、系統電源用AC/DC変換回路10から直流バス1に供給される電力と、直流バス1の電圧との関係を示している。第2グラフ(B)は、発電装置用DC/DC変換回路22から直流バス1に供給される電力と、直流バス1の電圧との関係を示している。第3グラフ(C)は、蓄電装置用DC/DC変換回路32から直流バス1に供給される電力と、直流バス1の電圧との関係を示している。第4のグラフ(D)は、充電装置用DC/DC変換回路42から直流バス1にかけられる負荷と、直流バス1の電圧との関係を示している。
 なお、図2に示したグラフの縦軸において、P1は発電装置用DC/DC変換回路22の定格等によって決まる出力可能な最大電力であり、P2は系統電源用AC/DC変換回路10から受電する電力の上限設定値である。
 また、図2に示したグラフの横軸において、VAは系統電源用設定電圧であり、VB1は発電装置用第1設定電圧であり、VB2は発電装置用第2設定電圧であり、VCは蓄電装置用設定電圧である。ここで、系統電源用設定電圧VAは、系統電源用AC/DC変換回路10の系統電源用AC/DC変換器制御回路13に設定されている。発電装置用第1設定電圧VB1および発電装置用第2設定電圧VB2は、発電システムの発電装置用DC/DC変換器制御回路23に設定されている。蓄電装置用設定電圧VCは、蓄電システムの蓄電装置用DC/DC変換器制御回路33に設定されている。図2の例では、蓄電装置用設定電圧VCは系統電源用設定電圧VAより低く、系統電源用設定電圧VAは発電装置用第2設定電圧VB2より低く、発電装置用第2設定電圧VB2は発電装置用第1設定電圧VB1より低く設定されている。
 より具体的には、例えば、系統電源用AC/DC変換回路10において、系統電源用AC/DC変換器制御回路13は直流バス1の電圧を常時監視しており、直流バス1の電圧が系統電源用設定電圧VAを上回ると系統電源用AC/DC変換器制御回路13は系統電源用AC/DC変換器動力回路14を制御し、系統電源用AC/DC変換回路10から直流バス1への電力供給を停止する。反対に、直流バス1の電圧が系統電源用設定電圧VAを下回ると系統電源用AC/DC変換器制御回路13は系統電源用AC/DC変換器動力回路14を制御し、系統電源60から直流バス1に電力を供給する。
 同様に、発電システムにおいて、発電装置用DC/DC変換器制御回路23も直流バス1の電圧を常時監視しており、直流バス1の電圧が発電装置用第1設定電圧VB1を上回ると、発電装置用DC/DC変換器制御回路23は発電装置用DC/DC変換器動力回路24の直流バス1への電力供給を停止する制御を行う。反対に、直流バス1の電圧が発電装置用第1設定電圧VB1を下回ると発電装置用DC/DC変換器制御回路23は発電装置用DC/DC変換器動力回路24の動作を開始する制御を行う。VB1から直流バス1の電圧が小さくなるのに従って発電システムから直流バス1への供給電力が大きくなり、VB2以下の電圧では最大発電電力を供給する。蓄電システムにおいて、蓄電装置用DC/DC変換器制御回路33も直流バス1の電圧を常時監視しており、直流バス1の電圧が蓄電装置用設定電圧VCを上回ると蓄電装置用DC/DC変換器制御回路33は蓄電装置用DC/DC変換器動力回路34の直流バス1への電力供給を停止する制御を行う。反対に、直流バス1の電圧が蓄電装置用設定電圧VCを下回ると蓄電装置用DC/DC変換器制御回路33は蓄電装置用DC/DC変換器動力回路34の放電動作を開始する制御を行う。
 図2の例では、まず、初期条件として、直流バス1の電力がゼロである状態から、充電設備を起動する。この状態から、系統電源用AC/DC変換回路10が動作開始し、直流バス1の電圧を上昇させ系統電源用設定電圧VAで安定させる。この後、発電システム、蓄電システムが動作を開始する。定置型蓄電池31の充電量が上限に達している場合は、発電システムの発電電力によって直流バス1の電圧が上昇し、発電装置用第1設定電圧VB1を上回ると、発電システムは直流バス1への電力供給を停止する。すなわち、直流バス1の電圧が発電装置用第1設定電圧VB1を上回っている状態では、発電装置用第1設定電圧VB1が系統電源用設定電圧VAよりも蓄電装置用設定電圧VCよりも高く設定されているので、直流バス1への全ての電力供給が停止する制御が行われている。
 次に、電気自動車50の車載充電池52が車載充電回路51を介して充電器41に接続されたり、定置型蓄電池31の充電が始まったりすると、直流バス1にかかる負荷が増加し、負荷の増加にしたがって直流バス1の電圧が下降する。
 直流バス1の電圧が、発電装置用第1設定電圧VB1を下回ると、直流バス1の電圧を監視している発電装置用DC/DC変換器制御回路23がこれを検知して、発電装置用DC/DC変換器動力回路24が動作を開始する制御を行う。
 発電装置用DC/DC変換器動力回路24は、その動作を開始すると、太陽光発電モジュール21が太陽光発電によって生成した直流電力を入力し、その直流電圧を変換して直流バス1に供給する。なお、発電電力の直流バス1への供給の有無・供給量については、直流バス1の電圧により、発電装置用DC/DC変換回路22が決定する為、太陽光発電モジュール21は、特に制御を受けることなく、太陽光発電を常時継続していても良い。
 以降、直流バス1の電圧が系統電源用設定電圧VAに達するまでは、発電システムから直流バス1に供給される電力によって車載充電池52の充電が行われる。
 発電システムが直流バス1に供給する発電電力は、直流バス1の電圧が下降するにしたがって上昇する。発電システムの発電電力は、直流バス1の電圧が下降して発電装置用第2設定電圧VB2に達するときに、発電装置の最大発電電力に達する。
 直流バス1の電圧がさらに下降して系統電源用設定電圧VAに達すると、直流バス1の電圧を監視している系統電源用AC/DC変換器制御回路13がこれを検知して、系統電源用AC/DC変換器動力回路14が直流バス1に電力供給を開始する。
 系統電源用AC/DC変換器動力回路14は、系統電源60から、系統の交流電力を入力する。系統電源用AC/DC変換器動力回路14は、入力した交流電力を直流電力に変換して直流バス1に供給する。
 以降、直流バス1の電圧が蓄電装置用設定電圧VCに達するまでは、発電システムおよび系統電源用AC/DC変換回路10から直流バス1に供給される電力の総和によって車載充電池52の充電が行われる。
 系統電源用AC/DC変換回路10が直流バス1に供給する電力は、直流バス1の電圧が下降するにしたがって上昇する。この例では、系統電源用AC/DC変換回路10から出力される電力が受電電力の上限設定値である最大電力P2に達するときに直流バス1の電圧が達する電圧を、蓄電装置用設定電圧VCとして蓄電装置用DC/DC変換器制御回路33に設定している。言い換えれば、系統電源用AC/DC変換回路10からの出力電力が最大電力P2に達すると同時に、蓄電システムが直流バス1への電力供給を開始するように、蓄電装置用設定電圧VCが設定されている。
 直流バス1の電圧が下降して蓄電装置用設定電圧VCに達すると、直流バス1の電圧を監視している蓄電装置用DC/DC変換器制御回路33がこれを検知して、蓄電装置用DC/DC変換器動力回路34が放電動作を開始する制御を行う。
 蓄電装置用DC/DC変換器動力回路34は、その放電動作を開始すると、定置型蓄電池31に予め充電された直流電力を入力し、その電圧を変更して直流バス1に供給する。すなわち、定置型蓄電池31が放電する直流電力が蓄電装置用DC/DC変換器動力回路34を介して直流バス1に供給される。
 以降、直流バス1の電圧が蓄電装置用設定電圧VCより低い間は、発電システムが供給可能な最大電力P1と、系統電源用AC/DC変換回路10が供給可能な最大電力P2と、蓄電システムから供給される放電電力との総和によって、車載充電池52の充電が行われる。
 なお、系統電源用設定電圧VA、発電装置用第1設定電圧VB1、発電装置用第2設定電圧VB2および蓄電装置用設定電圧VCや、系統電源用AC/DC変換回路10、発電システムおよび蓄電システムにそれぞれ設定された直流バス1の電力および電圧の関係を表すグラフの傾きなどは、系統電源用AC/DC変換器制御回路13、発電装置用DC/DC変換器制御回路23および蓄電装置用DC/DC変換器制御回路33などに、所定の範囲内で調整可能である。このような調整を適宜に行うことによって、直流バス1にかかる負荷に対して電力を供給する各電力変換器の優先順位を自由に決定することが可能である。
 蓄電システムにおける定置型蓄電池31の充電動作について説明する。直流バス1の電圧が、蓄電装置用設定電圧VCより大きい値である間は、すなわち定置型蓄電池31が放電しない間は、車載充電池52の充電と並行して、定置型蓄電池31の充電を行うことが可能である。
 ここで、定置型蓄電池31の充電は、2つの動作モードに分けて行うことが可能である。まず、定置型蓄電池31の充電残量が、予め設定されている所定の基準充電量以上、例えば50%以上、である場合は、系統電源用AC/DC変換回路10の電力を用いずに、発電システムから供給される電力だけで、充電を行う。この判定は、蓄電池状態監視装置36が蓄電池セル35の充電残量を監視することで行う。
 次に、定置型蓄電池31の充電残量が基準充電量より少なく、例えば50%未満であると判定される場合には、発電システムから供給される電力のみならず、系統電源用AC/DC変換回路10から供給される電力も合わせて用いることで、充電を短時間で行う。この時も、系統電源60から供給される電力は、受電電力の上限設定値以下となる。
 なお、定置型蓄電池31の充電量が上限値に達した場合、かつ、直流バス1の電圧が蓄電装置用設定電圧VC以上である場合には、蓄電装置用DC/DC変換器制御回路33は、蓄電装置用DC/DC変換器動力回路34の定置型蓄電池31および直流バス1の両方に対する電力供給を停止する制御を行う。
 図3を用いて、図1に示した充電設備の全体的な動作の別の一例について説明する。図3は、本発明の実施形態による充電設備のエネルギーマネジメント方法の別の一例を示すグラフである。
 図3に示したグラフは、第1のグラフ(A)および第2のグラフ(B)を含んでいる。第1のグラフ(A)および第2のグラフ(B)のそれぞれにおいて、横軸は時間の経過を示しており、縦軸は給電側電力を示している。
 第1のグラフ(A)は、直流バス1から電気自動車50の車載充電池52に供給される電力の時間経過の一例を示している。第2のグラフ(B)は、直流バス1から定置型蓄電池31に供給される電力の時間経過の一例を示している。
 図3に示したグラフの横軸において、時刻t0から時刻t2までの期間は、直流バス1の電圧が系統電源用設定電圧VAより高く、かつ、発電装置用第1設定電圧VB1以下である期間を示している。時刻t2から時刻t3までの期間は、直流バス1の電圧が蓄電装置用設定電圧VCより高く、かつ、系統電源用設定電圧VA以下である期間を示している。時刻t3から時刻t5までの期間は、直流バス1の電圧が蓄電装置用設定電圧VC以下である期間を示している。時刻t5から時刻t7までの期間は、直流バス1の電圧が蓄電装置用設定電圧VCに等しい期間を示している。時刻t7から時刻t8までの期間は、直流バス1の電圧が系統電源用設定電圧VAに等しい期間を示している。時刻t8から時刻t9までの期間は、直流バス1の電圧が系統電源用設定電圧VA以上かつ発電装置用第1設定電圧VB1以下である期間を示している。ここで、系統電源用設定電圧VAと、発電装置用第1設定電圧VB1と、蓄電装置用設定電圧VCとは、図2に係る説明の場合と同じものである。
 図3に示したグラフの縦軸において、電力P1は、発電システムが供給可能な最大電力を示している。電力P2は、発電システムが供給可能な最大電力と、系統電源用AC/DC変換回路10が供給可能な最大電力との総和を示している。電力P3は、発電システムが供給可能な最大電力と、系統電源用AC/DC変換回路10が供給可能な最大電力と、蓄電システムがその放電時に供給可能な最大電力との総和を示している。ここで、系統電源用AC/DC変換回路10と、発電システムと、蓄電システムとのそれぞれが供給可能な最大電力は、図2に係る説明の場合と同じものである。
 図3の例では、本発明の実施形態による充電設備において、時間の経過による各装置の電力の需給状況を説明する。
 まず、時刻t0から時刻t1にかけて、電気自動車50の充電は行われておらず、蓄電池セル35はその容量の上限まで充電されている。この間、直流バス1の電圧は、系統電源用設定電圧VAよりも高く、かつ、発電装置用第1設定電圧VB1以下である。
 次に、時刻t1において、電気自動車50の充電が開始される。その後、時刻t2において供給側電力が電力P1に達するまでは、直流バス1の電圧に応じて、発電装置用DC/DC変換回路22が直流バス1に供給する電力で電気自動車50の充電が行われる。時刻t1から時刻t2にかけて、直流バス1の電圧は、系統電源用設定電圧VAよりも高く、かつ、発電装置用第1設定電圧VB1以下である。
 次に、時刻t2において、前述のとおり、供給側電力が電力P1に達する。電気自動車50の充電は続いており、発電装置用DC/DC変換回路22の最大発電電力と、系統電源60からの受電電力とによって行われる。供給側電力は上昇を続けて、時刻t3において電力P2に達する。供給側電力が電力P1以上、かつ、電力P2未満である、時刻t2から時刻t3までの間、直流バス1の電圧は蓄電装置用設定電圧VCより高く、かつ、系統電源用設定電圧VA以下である。
 次に、時刻t3において、前述のとおり、供給側電力が電力P2に達する。電気自動車50の充電は続いており、発電装置用DC/DC変換回路22の最大発電電力と、系統電源60からの受電電力上限値と、蓄電装置用DC/DC変換回路32の放電電力とによって行われる。このとき、蓄電装置用DC/DC変換回路32の放電電力は、直流バス1の電圧に応じて決まる。供給側電力は上昇を続けて、時刻t4において電力P3に達する。供給側電力が電力P2以上で、かつ、電力P3未満である、時刻t3から時刻t4までの間、直流バス1の電圧は、蓄電装置用設定電圧VC以下である。
 次に、時刻t4において、前述のとおり、供給側電力が電力P3に達する。電気自動車50の充電は続いており、発電装置用DC/DC変換回路22の最大発電電力と、系統電源60からの受電電力上限値と、蓄電装置用DC/DC変換回路32の放電電力とによって行われているが、電気自動車50の充電量が満充電に近づいており、充電電力を絞り始めている。その後、時刻t5において供給側電力が電力P2に達する。供給側電力が電力P3以下で、かつ、電力P2より高い、時刻t4から時刻t5までの間、直流バス1の電圧は、蓄電装置用設定電圧VC以下である。
 次に、時刻t5において、前述のとおり、供給側電力が電力P2に達する。電気自動車50の充電は続いているが、電気自動車50の充電量は満充電にさらに近づいており、充電電力が絞られている。供給側電力が電力P2より低く、かつ、電力P1以上であり、かつ、蓄電装置用DC/DC変換回路32が放電しておりその充電量が低下しているときには、発電装置用DC/DC変換回路22の最大発電電力と、系統電源60からの受電電力によって、電気自動車50と、蓄電池セル35とが充電される。その後、時刻t6において、電気自動車50の充電が終了する。供給側電力が電力P2より低い時刻t5から時刻t6までの間、直流バス1の電圧は、蓄電装置用設定電圧VCに等しい。蓄電池セル35の充電電力は、直流バス1の電圧を監視している蓄電装置用DC/DC変換器制御回路33によって、直流バス1の電圧が蓄電装置用設定電圧VCを下回らないように制御されている。
 次に、時刻t6において、前述のとおり、電気自動車50の充電が終了する。蓄電池セル35が放電してその充電量が低下しているときには、発電装置用DC/DC変換回路22の最大発電電力と、系統電源60からの受電電力とによって、蓄電池セル35が充電される。蓄電池セル35の充電電力は、直流バス1の電圧を監視する蓄電装置用DC/DC変換器制御回路33によって、直流バス1の電圧が蓄電装置用設定電圧VCを下回らないように制御されている。
 次に、時刻t7において、蓄電池セル35の充電量が予め設定された値に達する。その後、蓄電池セル35の充電量が満充電に近付く時刻t8まで、発電装置用DC/DC変換回路22の最大発電電力のみで蓄電池セル35の充電が行われる。時刻t7から時刻t8までの間、直流バス1の電圧は、系統電源用設定電圧VAに等しい。
 次に、時刻t8において、蓄電池セル35の充電量が満充電に近付くと、蓄電装置用DC/DC変換回路32は充電電力を絞り始める。そのため、直流バス1の電圧は上昇し、発電装置用DC/DC変換回路22からの電力供給が絞られる。その後、時刻t9において蓄電池セル35の充電量が満充電に達するまでの間、直流バス1の電圧は、系統電源用設定電圧VAよりも高く、かつ、発電装置用第1設定電圧VB1以下である。
 以上に説明した本発明の実施形態による充電設備およびそのエネルギーマネジメント方法は、以下のような優れた特徴を有する。
 まず、系統電源用AC/DC変換回路10と、発電装置用DC/DC変換回路22と、蓄電装置用DC/DC変換回路32とは、それぞれ、直流バス1において変動する電圧だけに基づいてそれぞれ独立した動作を、自動制御により自律的に行う。したがって、充電設備全体を管理する上位の制御装置が不要となり、充電設備全体としての構成が簡易化される。
 また、一部の電力変換器が故障したとしても、正常に動作する残りの電力変換器による運用は継続可能であり、故障した電力変換器を直流バス1から取り外したり、別の電力変換器を直流バス1に追加接続したりすることも容易である。すなわち、本発明による充電設備は、非常にフレキシブルな運用が可能となっている。
 以上、発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。また、前記実施の形態に説明したそれぞれの特徴は、技術的に矛盾しない範囲で自由に組み合わせることが可能である。
 なお、本願は、日本国特許出願(特願2013-194491号)に基づいて優先権を主張する。その開示は、引用により、ここに取り込む。
 なお、上記と関連して以下の事項を開示する。
 [項1]
 外部充電池を充電回路に着脱可能に接続することと、
 直流電力を直流バスに供給することと、
 前記直流バスに供給された前記直流電力で前記外部充電池を充電することと
を具備し、
 前記直流電力を前記供給することは、
 複数の電力変換器の各々で前記直流電力を生成することと、
 前記各電力変換器において前記直流バスにおける前記直流電圧を監視することと、
 前記各電力変換器により監視された前記直流電圧に基づいて前記各電力変換器の動作を、前記複数の電力変換器の残りの電力変換機から独立して制御することと
を具備し、
 前記外部充電池を前記充電することは、
 充電装置用DC/DC変換器動力回路により、前記直流バスに供給される前記直流電力を充電用直流電力に変換することと、
 前記直流バスにおける前記直流電圧を監視することと、
 前記監視された直流電圧および所定の設定電圧との比較結果に基づいて前記充電装置用DC/DC変換器動力回路の動作を制御することと
を具備する
 充電設備のエネルギーマネジメント方法。
 [項2] 項1に記載の充電設備のエネルギーマネジメント方法において、
 前記直流電力を前記生成することは、
 発電モジュールで直流電力を発電することと、
 前記発電された直流電力を、発電装置用DC/DC変換器動力回路により前記直流電力に変換することと
を具備し、
 前記独立して制御することは、
 前記監視の結果に応じて前記発電装置用DC/DC変換器動力回路の動作を制御すること
を具備する
 充電設備のエネルギーマネジメント方法。
 [項3] 項1又は項2に記載の充電設備のエネルギーマネジメント方法において、
 前記直流バスから直流電力を入力して前記直流電力に変換して蓄電池を充電すること
をさらに具備し、
 前記直流電力を前記生成することは、
 前記蓄電池に予め充電された直流電力を放電することと、
 前記放電された直流電力を蓄電装置用DC/DC変換器動力回路により前記直流電力に変換して前記直流バスに供給することと
を具備し、
 前記独立して制御することは、
 前記監視の結果に応じて前記蓄電装置用DC/DC変換器動力回路の前記直流バスまたは前記蓄電池への電力供給を制御すること
を具備する
 充電設備のエネルギーマネジメント方法。
 [項4] 項2に記載の充電設備のエネルギーマネジメント方法において、
 前記独立して制御することは、
 前記監視された直流電圧が所定の発電装置用設定電圧以下であれば前記発電モジュールの前記直流バスへの前記直流電力の供給を開始することと、
 前記監視された直流電圧が前記発電装置用設定電圧以上であれば前記発電モジュールの前記直流バスへの前記直流電力の供給を停止することと
を具備する
 充電設備のエネルギーマネジメント方法。
 [項5] 項3に記載の充電設備のエネルギーマネジメント方法において、
 前記独立して制御することは、
 前記監視された直流電圧が所定の蓄電装置用設定電圧以下であれば前記蓄電装置用DC/DC変換器動力回路の前記直流バスへの前記直流電力の供給を開始することと、
 前記監視された直流電圧が前記系統電源用設定電圧以上であれば前記蓄電装置用DC/DC変換器動力回路の前記蓄電池への前記直流電力の供給を開始することと、
 前記監視された直流電圧が前記蓄電装置用設定電圧以上かつ前記系統電源用設定電圧以下で、さらに前記監視された充電残量が所定の基準充電量より少なければ、前記蓄電装置用DC/DC変換器動力回路の前記蓄電池への前記直流電力の供給を開始することと、
 前記監視された前記直流電圧が前記蓄電装置用設定電圧以上かつ前記系統電源用設定電圧以下で、さらに前記監視された充電残量が所定の基準充電量より多ければ、前記蓄電装置用DC/DC変換器動力回路の前記蓄電池および前記直流バスの両方に対する電力供給を停止することと
を具備する
 充電設備のエネルギーマネジメント方法。
 [項6] 項5に記載の充電設備のエネルギーマネジメント方法において、
 前記蓄電装置用設定電圧は、前記系統電源用設定電圧より低く、
 前記系統電源用設定電圧は、前記発電装置用設定電圧より低い
 充電設備のエネルギーマネジメント方法。
 [項7] 項2または4に記載の充電設備のエネルギーマネジメント方法において、
 前記発電することは、
 太陽光発電を行うこと、又は、風力発電を行うこと
を具備する
 充電設備のエネルギーマネジメント方法。
 

Claims (15)

  1.  直流バスと、
     前記直流バスに直流電力を供給する複数の電力変換器と、
     着脱可能に接続された外部充電池を、前記直流バスに供給される前記直流電力で充電する充電装置と
    を具備し、
     前記複数の電力変換器の各々は、
     前記直流電力を生成する直流電力生成部と、
     前記直流バスにおける直流電圧を監視し、前記監視された直流電圧に基づいて前記直流電力生成部の動作を他の電力変換器とは独立して制御する電力制御部と
    を具備し、
     前記充電装置は、
     前記直流バスに供給される前記直流電力を充電用直流電力に変換するDC(Direct Current:直流)/DC変換器動力回路と、
     前記直流バスにおける直流電圧を監視し、前記監視された直流電圧および所定の設定電圧との比較結果に基づいて前記DC/DC変換器動力回路の動作を制御する充電制御部と
    を具備する
     充電設備。
  2.  請求項1に記載の充電設備において、
     前記複数の電力変換器は、
     系統から受電する交流電力を直流電力に変換して前記直流バスに供給する系統電源変換回路を含み、
     前記系統電源変換回路は、
     前記交流電力を前記直流電力に変換して前記直流バスに供給する前記直流電力生成部としての系統電源用AC(Alternative Current:交流)/DC変換器動力回路と、
     前記直流バスにおける直流電圧を監視し、前記監視された直流電圧に応じて前記系統電源用AC/DC変換器動力回路の動作を制御する前記電力制御部としての系統電源制御部と
    を具備する
     充電設備。
  3.  請求項1又は2に記載の充電設備において、
     前記複数の電力変換器は、
     発電によって生成した直流電力を前記直流バスに供給する発電システムを含み、
     前記発電システムは、
     発電によって直流電力を生成する発電モジュールと、
     前記生成される直流電力を前記直流電力に変換して前記直流バスに供給する前記直流電力生成部としての発電装置用DC/DC変換器動力回路と、
     前記直流バスにおける直流電圧を監視し、前記監視された直流電圧に応じて前記発電装置用DC/DC変換器動力回路の動作を制御する前記電力制御部としての発電装置制御部と
    を具備する
     充電設備。
  4.  請求項1乃至3のいずれか一項に記載の充電設備において、
     前記複数の電力変換器は、
     予め充電した蓄電池から放電する直流電力を前記直流バスに供給する蓄電システムを含み、
     前記蓄電システムは、
     前記蓄電池と、
     前記蓄電池の放電時には前記蓄電池から放電される直流電力を別の直流電力に変換して前記直流バスに供給し、前記蓄電池の充電時には前記直流バスから直流電力を入力して別の直流電力に変換して前記蓄電池を充電する前記直流電力生成装置としての蓄電装置用DC/DC変換器動力回路と、
     前記直流バスにおける直流電圧および前記蓄電池の充電残量を監視し、前記監視の結果に応じて前記蓄電装置用DC/DC変換器動力回路の動作を制御する前記制御部としての蓄電装置制御部と
    を具備する
     充電設備。
  5.  請求項2に記載の充電設備において、
     前記系統電源制御部は、前記系統電源制御部により監視された直流電圧が所定の系統電源用設定電圧以下であれば、前記系統電源用AC/DC変換器動力回路による前記直流バスへの前記直流電力の供給を開始し、前記監視された直流電圧が前記系統電源用設定電圧以上であれば、前記系統電源用AC/DC変換器動力回路による前記直流バスへの前記直流電力の供給を停止する制御を行う
     充電設備。
  6.  請求項3に記載の充電設備において、
     前記発電装置制御部は、前記監視された直流電圧が所定の発電装置用設定電圧以下であれば前記発電装置用DC/DC変換器動力回路の前記直流バスへの電力供給を開始し、前記監視された直流電圧が前記発電装置用設定電圧以上であれば前記発電装置用DC/DC変換器動力回路の前記直流バスへの電力供給を停止する制御を行う
     充電設備。
  7.  請求項4に記載の充電設備において、
     前記蓄電装置制御部は、
     前記監視された直流電圧が所定の蓄電装置用設定電圧以下であれば前記蓄電装置用DC/DC変換器動力回路の前記直流バスへの電力供給を開始し、
     前記監視された直流電圧が前記系統電源用設定電圧以上であれば前記蓄電装置用DC/DC変換器動力回路の前記蓄電池への電力供給を開始し、
     前記監視された直流電圧が前記蓄電装置用設定電圧以上かつ前記系統電源用設定電圧以下で、さらに前記監視された充電残量が所定の基準充電量より少なければ、前記蓄電装置用DC/DC変換器動力回路の前記蓄電池への前記直流電力の供給を開始し、
     前記蓄電装置制御部により監視された直流電圧が前記蓄電装置用設定電圧以上かつ前記系統電源用設定電圧以下で、さらに前記監視された充電残量が所定の基準充電量より多ければ、前記蓄電装置用DC/DC変換器動力回路の前記蓄電池および前記直流バスの両方に対する前記潮流電力の供給を停止する制御を行う
     充電設備。
  8.  請求項7に記載の充電設備において、
     前記蓄電装置用設定電圧は、前記系統電源用設定電圧より低く、
     前記系統電源用設定電圧は、前記発電装置用設定電圧より低い
     充電設備。
  9.  請求項3又は6に記載の充電設備において、
     前記発電モジュールは、
     太陽光発電モジュール又は風力発電モジュールを具備する
     充電設備。
  10.  外部充電池を充電回路に着脱可能に接続することと、
     直流電力を直流バスに供給することと、
     前記直流バスに供給された前記直流電力で前記外部充電池を充電することと
    を具備し、
     前記直流電力を前記供給することは、
     複数の電力変換器の各々で前記直流電力を生成することと、
     前記各電力変換器において前記直流バスにおける前記直流電圧を監視することと、
     前記各電力変換器により監視された前記直流電圧に基づいて前記各電力変換器の動作を、前記複数の電力変換器の残りの電力変換機から独立して制御することと
    を具備し、
     前記外部充電池を前記充電することは、
     充電装置用DC/DC変換器動力回路により、前記直流バスに供給される前記直流電力を充電用直流電力に変換することと、
     前記直流バスにおける前記直流電圧を監視することと、
     前記監視された直流電圧および所定の設定電圧との比較結果に基づいて前記充電装置用DC/DC変換器動力回路の動作を制御することと
    を具備する
     充電設備のエネルギーマネジメント方法。
  11.  請求項10に記載の充電設備のエネルギーマネジメント方法において、
     前記直流電力を前記生成することは、
     外部から交流電力を入力することと、
     系統電源用AC/DC変換器動力回路で前記交流電力を前記直流電力に変換することと
    を具備し、
     前記独立して制御することは、
     前記監視された直流電圧に応じて前記系統電源用AC/DC変換器動力回路の動作を制御すること
    を具備する
     充電設備のエネルギーマネジメント方法。
  12.  請求項10又は11に記載の充電設備のエネルギーマネジメント方法において、
     前記直流電力を前記生成することは、
     発電モジュールで直流電力を発電することと、
     前記発電された直流電力を、発電装置用DC/DC変換器動力回路により前記直流電力に変換することと
    を具備し、
     前記独立して制御することは、
     前記監視の結果に応じて前記発電装置用DC/DC変換器動力回路の動作を制御すること
    を具備する
     充電設備のエネルギーマネジメント方法。
  13.  請求項10乃至12に記載の充電設備のエネルギーマネジメント方法において、
     前記直流バスから直流電力を入力して前記直流電力に変換して蓄電池を充電すること
    をさらに具備し、
     前記直流電力を前記生成することは、
     前記蓄電池に予め充電された直流電力を放電することと、
     前記放電された直流電力を蓄電装置用DC/DC変換器動力回路により前記直流電力に変換して前記直流バスに供給することと
    を具備し、
     前記独立して制御することは、
     前記監視の結果に応じて前記蓄電装置用DC/DC変換器動力回路の前記直流バスまたは前記蓄電池への電力供給を制御すること
    を具備する
     充電設備のエネルギーマネジメント方法。
  14.  請求項11に記載の充電設備のエネルギーマネジメント方法において、
     前記独立して制御することは、
     前記監視された直流電圧が所定の系統電源用設定電圧以下であれば前記系統電源用AC/DC変換器動力回路の前記直流バスへの電力供給を開始する制御を行うことと、
     前記監視された直流電圧が前記系統電源用設定電圧以上であれば前記系統電源用AC/DC変換器動力回路の前記直流バスへの電力供給を停止する制御を行うことと
    を具備する
     充電設備のエネルギーマネジメント方法。
  15.  請求項12に記載の充電設備のエネルギーマネジメント方法において、
     前記独立して制御することは、
     前記監視された直流電圧が所定の発電装置用設定電圧以下であれば前記発電モジュールの前記直流バスへの前記直流電力の供給を開始することと、
     前記監視された直流電圧が前記発電装置用設定電圧以上であれば前記発電モジュールの前記直流バスへの前記直流電力の供給を停止することと
    を具備する
     充電設備のエネルギーマネジメント方法。
PCT/JP2014/074572 2013-09-19 2014-09-17 充電設備および充電設備のエネルギーマネジメント方法 WO2015041253A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/917,948 US10081259B2 (en) 2013-09-19 2014-09-17 Charging facility and energy management method for charging facility
SG11201601643TA SG11201601643TA (en) 2013-09-19 2014-09-17 Charging facility and energy management method for charging facility
CN201480051278.XA CN105556796A (zh) 2013-09-19 2014-09-17 充电设备和充电设备的能量管理方法
EP14845465.5A EP3029804B1 (en) 2013-09-19 2014-09-17 Charging facility and energy management method for charging facility
EP19165645.3A EP3528362B1 (en) 2013-09-19 2014-09-17 Charging facility and energy management method for charging facility
US16/112,271 US10464441B2 (en) 2013-09-19 2018-08-24 Charging facility and energy management method for charging facility

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013194491A JP6085544B2 (ja) 2013-09-19 2013-09-19 電気自動車用急速充電設備、充電設備のエネルギーマネジメント方法および充電設備システム
JP2013-194491 2013-09-19
JP2017012999A JP6459085B2 (ja) 2013-09-19 2017-01-27 充電設備及びエネルギーマネジメント方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/917,948 A-371-Of-International US10081259B2 (en) 2013-09-19 2014-09-17 Charging facility and energy management method for charging facility
US16/112,271 Continuation US10464441B2 (en) 2013-09-19 2018-08-24 Charging facility and energy management method for charging facility

Publications (1)

Publication Number Publication Date
WO2015041253A1 true WO2015041253A1 (ja) 2015-03-26

Family

ID=61568270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074572 WO2015041253A1 (ja) 2013-09-19 2014-09-17 充電設備および充電設備のエネルギーマネジメント方法

Country Status (6)

Country Link
US (2) US10081259B2 (ja)
EP (2) EP3528362B1 (ja)
JP (2) JP6085544B2 (ja)
CN (1) CN105556796A (ja)
SG (1) SG11201601643TA (ja)
WO (1) WO2015041253A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2521924A (en) * 2013-11-19 2015-07-08 Christopher Shelton Charging bus

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8981727B2 (en) * 2012-05-21 2015-03-17 General Electric Company Method and apparatus for charging multiple energy storage devices
JP6085544B2 (ja) * 2013-09-19 2017-02-22 三菱重工業株式会社 電気自動車用急速充電設備、充電設備のエネルギーマネジメント方法および充電設備システム
DE102015111553A1 (de) * 2015-07-16 2017-01-19 Ipt Technology Gmbh Vorrichtung und Verfahren zur induktiven Übertragung elektrischer Energie
JP6172868B2 (ja) * 2015-08-31 2017-08-02 興和株式会社 電源装置
CN106114266A (zh) * 2016-07-29 2016-11-16 国家电网公司 一种电动汽车充电系统
US10277035B2 (en) * 2016-09-13 2019-04-30 MidNite Solar, Inc. System and method for controlling and monitoring scalable modular electric devices
US10211636B2 (en) 2016-09-13 2019-02-19 MidNite Solar, Inc. Modular inverter system and charging system for off-grid power generation
US10270252B2 (en) 2016-09-13 2019-04-23 MidNite Solar, Inc. System and method for scalable modular electric devices with hot-swap capability
CN106487086B (zh) * 2016-11-25 2019-03-22 国网江苏省电力公司扬州供电公司 一种含电动汽车充放电管理的直流微网协调控制方法
JP6489102B2 (ja) * 2016-12-01 2019-03-27 トヨタ自動車株式会社 車両
CN106696734B (zh) * 2016-12-17 2019-05-17 广州益充新能源有限公司 电动汽车充电桩、电动汽车以及电动汽车充电方法
CN106740202A (zh) * 2016-12-21 2017-05-31 国网冀北电力有限公司电力科学研究院 充电、馈电一体化的v2g电动汽车充电系统
JP6583294B2 (ja) * 2017-01-17 2019-10-02 トヨタ自動車株式会社 電動車両
CN106985677A (zh) * 2017-03-01 2017-07-28 上海蔚来汽车有限公司 车辆太阳能充电装置、系统、控制方法以及车辆
KR101972778B1 (ko) * 2017-07-24 2019-04-26 김성두 Ess 모듈이 구비된 충전 장치
CN107221944B (zh) * 2017-08-01 2023-07-21 北京艾科迈新能源科技有限公司 光储充并一体化系统
DE102017130497B4 (de) * 2017-12-19 2024-02-29 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Modulares Heimenergiesystem mit BUS-System und AC-Fahrzeugladeeinrichtung
KR101915075B1 (ko) 2017-12-26 2018-11-05 김성두 전력 모듈이 구비된 충전 장치
KR102039703B1 (ko) * 2017-12-26 2019-11-01 김성두 충전 장치
JP2019122141A (ja) * 2018-01-05 2019-07-22 Ntn株式会社 負荷装置、負荷装置の制御方法、負荷装置の制御プログラムおよび直流給電システム
CN108382221A (zh) * 2018-01-25 2018-08-10 深圳新恒业电气有限公司 智能的充电站能效管理方法
JP6458891B1 (ja) * 2018-02-19 2019-01-30 サンケン電気株式会社 蓄電システム及び蓄電装置
CN108656999A (zh) * 2018-06-05 2018-10-16 江苏景源旭新能源科技有限公司 一种双向充电桩
CN109927586A (zh) * 2018-09-13 2019-06-25 哈尔滨理工大学 一种适合光照充足地区的电动汽车移动储能无线充电装置及控制方法
CN109624748A (zh) * 2018-09-13 2019-04-16 哈尔滨理工大学 一种使用梯次利用电池的电动汽车充电装置及控制方法
JP7203325B2 (ja) * 2019-05-20 2023-01-13 パナソニックIpマネジメント株式会社 電力システム
DE102019115916A1 (de) * 2019-06-12 2020-12-17 Wobben Properties Gmbh Elektroenergiesystem
WO2021044955A1 (ja) * 2019-09-02 2021-03-11 パナソニックIpマネジメント株式会社 電力変換システム、及び電力変換システムの施工方法
JP7308400B2 (ja) * 2019-09-02 2023-07-14 パナソニックIpマネジメント株式会社 電力変換システム、電力変換器、ケーブル支持器、推定方法、及びプログラム
JP7217431B2 (ja) * 2019-09-02 2023-02-03 パナソニックIpマネジメント株式会社 電力変換システム、及びケーブル支持器
JP7369998B2 (ja) * 2019-09-02 2023-10-27 パナソニックIpマネジメント株式会社 ケーブル支持器
JP2021040401A (ja) * 2019-09-02 2021-03-11 パナソニックIpマネジメント株式会社 電力変換システム、ケーブル支持器、及び電力変換器
EP3793052A1 (de) * 2019-09-12 2021-03-17 Siemens Aktiengesellschaft Verfahren zum betreiben eines dezentralen versorgungsnetzes in abhängigkeit einer kennlinie, netzsteuerungssystem, computerprogramm sowie elektronisch lesbarer datenträger
JP7189861B2 (ja) * 2019-12-06 2022-12-14 古河電気工業株式会社 充電装置及び充電方法
CN112918291B (zh) * 2019-12-06 2023-01-03 睿能创意公司 电池充电站以及电池管理方法
JP2021097463A (ja) * 2019-12-16 2021-06-24 古河電気工業株式会社 充電装置及び充電方法
JP7264181B2 (ja) 2021-01-29 2023-04-25 株式会社豊田中央研究所 電力供給システム
CN215580399U (zh) 2021-06-18 2022-01-18 国创移动能源创新中心(江苏)有限公司 一种利用储能倍增的充电系统
WO2023243072A1 (ja) * 2022-06-17 2023-12-21 三菱電機株式会社 直流配電システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339118A (ja) * 2002-05-22 2003-11-28 My Way Giken Kk 分散電源システム
JP2011101523A (ja) * 2009-11-06 2011-05-19 Panasonic Electric Works Co Ltd 電力供給装置
JP2011103740A (ja) * 2009-11-11 2011-05-26 Panasonic Electric Works Co Ltd 配電システム
WO2011162025A1 (ja) 2010-06-22 2011-12-29 シャープ株式会社 直流配電システム
JP2012228027A (ja) * 2011-04-18 2012-11-15 Sharp Corp 直流給電システムおよびその制御方法
JP2013194491A (ja) 2012-03-23 2013-09-30 Mitsui Home Co Ltd 学校建築物

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005076444A1 (en) * 2004-01-09 2005-08-18 Philips Intellectual Property & Standards Gmbh Dc/dc converter and decentralized power generation system comprising a dc/dc converter
US9093862B2 (en) 2009-01-16 2015-07-28 Zbb Energy Corporation Method and apparatus for controlling a hybrid power system
JP2010220411A (ja) 2009-03-17 2010-09-30 Sadao Iguchi 電動自動車駆動エネルギー供給用太陽光発電システム
JP2011078237A (ja) 2009-09-30 2011-04-14 Panasonic Electric Works Co Ltd 電力供給システム
JP5546832B2 (ja) 2009-11-16 2014-07-09 パナソニック株式会社 配電システム
SG186432A1 (en) 2010-06-21 2013-01-30 Univ Singapore Energy storage system
JP2012065516A (ja) 2010-09-17 2012-03-29 Tsuneishi Holdings Corp 電力送給方法、電力送給システム及び移動体
CN102005817B (zh) 2010-09-25 2014-05-07 中国农业大学 基于微电网的不间断电源装置及其调度控制方法
WO2012162570A1 (en) 2011-05-24 2012-11-29 Cameron D Kevin System and method for integrating and managing demand/response between alternative energy sources, grid power, and loads
US20120326516A1 (en) 2011-06-27 2012-12-27 Bloom Energy Corporation Fuel Cell Power Generation System with Isolated and Non-Isolated Buses
JP2013081289A (ja) 2011-10-03 2013-05-02 Panasonic Corp 電力制御装置
CN102354974B (zh) * 2011-10-13 2014-12-10 山东大学 微电网多目标优化运行控制方法
CN102437566A (zh) 2011-10-17 2012-05-02 中国电力科学研究院 基于直流母线电压的分布式电源自适应协调控制方法
JP2013169083A (ja) 2012-02-15 2013-08-29 Osaka Gas Co Ltd 電力供給システム
CN202488178U (zh) * 2012-02-22 2012-10-10 广东电网公司深圳供电局 基于直流母线的光伏储能电动汽车充电站系统
CN102664429B (zh) 2012-05-29 2014-05-14 国电联合动力技术有限公司 一种并网不上网微网系统及其控制保护方法
CN103269117B (zh) * 2013-06-03 2015-05-13 河海大学常州校区 多能源汇流协调控制系统的控制方法
JP6085544B2 (ja) * 2013-09-19 2017-02-22 三菱重工業株式会社 電気自動車用急速充電設備、充電設備のエネルギーマネジメント方法および充電設備システム
JP6338703B2 (ja) * 2014-03-06 2018-06-06 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 直流小配電網のための直流電力サーバ
US9889752B2 (en) * 2014-08-19 2018-02-13 General Electric Company Vehicle propulsion system having an energy storage system and optimized method of controlling operation thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339118A (ja) * 2002-05-22 2003-11-28 My Way Giken Kk 分散電源システム
JP2011101523A (ja) * 2009-11-06 2011-05-19 Panasonic Electric Works Co Ltd 電力供給装置
JP2011103740A (ja) * 2009-11-11 2011-05-26 Panasonic Electric Works Co Ltd 配電システム
WO2011162025A1 (ja) 2010-06-22 2011-12-29 シャープ株式会社 直流配電システム
JP2012228027A (ja) * 2011-04-18 2012-11-15 Sharp Corp 直流給電システムおよびその制御方法
JP2013194491A (ja) 2012-03-23 2013-09-30 Mitsui Home Co Ltd 学校建築物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3029804A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2521924A (en) * 2013-11-19 2015-07-08 Christopher Shelton Charging bus

Also Published As

Publication number Publication date
EP3029804A1 (en) 2016-06-08
US10464441B2 (en) 2019-11-05
EP3528362A1 (en) 2019-08-21
CN105556796A (zh) 2016-05-04
US20160214491A1 (en) 2016-07-28
EP3029804B1 (en) 2019-06-05
EP3029804A4 (en) 2016-08-03
EP3528362B1 (en) 2020-10-28
JP6459085B2 (ja) 2019-01-30
SG11201601643TA (en) 2016-04-28
US20180361859A1 (en) 2018-12-20
JP2017085888A (ja) 2017-05-18
US10081259B2 (en) 2018-09-25
JP6085544B2 (ja) 2017-02-22
JP2015061439A (ja) 2015-03-30

Similar Documents

Publication Publication Date Title
JP6459085B2 (ja) 充電設備及びエネルギーマネジメント方法
NZ732362A (en) Electric vehicle power distribution system
US10084314B2 (en) Storage battery equipment
JP6026713B1 (ja) 電力管理システム
CN104836247B (zh) 实现储能容量动态优化的光储微网系统
KR20200048913A (ko) 폐배터리 기반의 독립형 가정용 에너지 저장 시스템
JP2016528868A (ja) パワーバッテリーの素子の充電平衡化装置
JP7242563B2 (ja) エネルギー貯蔵システム
CN106159980B (zh) 发电系统和能量管理方法
JP7406933B2 (ja) 蓄電システム
WO2015111144A1 (ja) 電力供給システム及びこれに用いるエネルギーマネジメントシステム
CN106058899B (zh) 储能系统的监控系统
JP2014230366A (ja) 発電装置
US9917473B2 (en) Power system, power management method, and program
CN109787340B (zh) 太阳能发电系统
AU2016241607B2 (en) Storage battery unit and electricity storage system
JP7414122B2 (ja) 給電システム、及び電力管理装置
CN111406352B (zh) 储能系统
KR20150119536A (ko) 에너지 저장 시스템
WO2014097409A1 (ja) 急速充電器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480051278.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845465

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014845465

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14917948

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE