JP7264181B2 - 電力供給システム - Google Patents

電力供給システム Download PDF

Info

Publication number
JP7264181B2
JP7264181B2 JP2021012704A JP2021012704A JP7264181B2 JP 7264181 B2 JP7264181 B2 JP 7264181B2 JP 2021012704 A JP2021012704 A JP 2021012704A JP 2021012704 A JP2021012704 A JP 2021012704A JP 7264181 B2 JP7264181 B2 JP 7264181B2
Authority
JP
Japan
Prior art keywords
power
voltage
demand
supply
main line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021012704A
Other languages
English (en)
Other versions
JP2022116512A (ja
Inventor
達雄 深野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2021012704A priority Critical patent/JP7264181B2/ja
Priority to US17/554,905 priority patent/US11894717B2/en
Publication of JP2022116512A publication Critical patent/JP2022116512A/ja
Application granted granted Critical
Publication of JP7264181B2 publication Critical patent/JP7264181B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/082Plural DC voltage, e.g. DC supply voltage with at least two different DC voltage levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/106Parallel operation of dc sources for load balancing, symmetrisation, or sharing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/14Balancing the load in a network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade

Description

本発明は、電力供給システムに関する。
昨今、環境負荷の削減が可能な再生可能エネルギーが注目されており、再生可能エネルギーを利用した発電システム(例えば、太陽光発電システム、風力発電システム、太陽光エネルギーから生成された水素を用いた燃料電池システム等)の導入が進んでいる。また、このような発電システムにおけるエネルギーの調整のための、蓄電池システムや、水素製造システム等も、併せて導入が進んでいる。一方、エネルギーを使用する(需要側の)機器としては、従来使用されてきた交流利用の誘導モータ機器等が減少する一方で、インバータ利用の交流モータ機器や、LED照明といった直流を直接利用する機器が増加している。また、直流を利用する理由として、海底ケーブルに用いられる送電線では、同じ断面積の場合に直流の方が交流よりも送電抵抗損が小さいため、ジュール熱が小さいことが挙げられる。さらに、交流を利用する場合には大電力を送る際の高電圧化に限界があり、電圧を抑えて大電流による大電力を送るには抵抗損の小さい直流が交流よりも適していることが挙げられる。このような社会的変化や技術的変化に伴い、従来用いられてきた交流利用の送配電システムと比較して、直流利用の送配電システムの利点が増大し、直流利用の送配電システムが注目されている。
この点、特許文献1には、直流電流が流れる直流バスに接続する電源ユニットと負荷ユニットとを備える電源システムが開示されている。特許文献1に記載された電源システムは複数の電源ユニットを備えている。各電源ユニットの発電状態は、それぞれに設定された電圧に関連する条件によって変化し、複数の電源ユニット相互間での発電状態の情報を交換せずに決定する。
特許文献2には、直流バスを介した電気自動車の充電システムが開示されている。特許文献2に記載された充電システムは、充電時に、直流バスを介して接続された系統電源と、発電システムと、蓄電システムとから電力が給電される。充電システムに電力を給電するいずれのシステムもDC/DC変換機動力回路を介して直流バスに接続されており、各DC/DC変換機動力回路に流れる電流が制御されることにより、充電システムへの充電が制御されている。
特開2003-339118号公報 特開2015-61439号公報
ここで、特許文献1には、各電源ユニットに設定された条件に応じて電源ユニットが発電するシステムについて開示されているが、直流バスを介したシステム全体の運用については何ら考慮されていない。特許文献2には、時間と共に変化する電力供給側のシステムの電圧に応じて、充電システムへの電力供給を制御することについて開示されているが、特許文献1と同様に、システム全体の運用については何ら考慮されていない。電力供給システムにおいては、電力の相互利用や売買などの電力融通に必要なシステムの簡素化や、運用コストの低減などを図ることが望まれていた。
本発明は、上述した課題を解決するためになされたものであり、電力融通に必要なシステムの簡素化および運用コストの抑制を目的とする。
本発明は、上述の課題を解決するためになされたものであり、以下の形態として実現できる。直流電力幹線に繋がる直流出力可能な機器である供給側機器が、前記直流電力幹線に繋がる直流入力可能な機器である需要側機器に、電力を供給できる電力供給システムにおいて、前記供給側機器の給電電圧を供給側で設定でき、前記需要側機器の受電電圧を需要側で設定でき、前記供給側機器から前記直流電力幹線に供給された電荷量または電流値の時間積分値、及び前記直流電力幹線から前記需要側機器に供給された電荷量または電流値の時間積分値をもって電力融通量とみなし、前記需要側機器、及び前記供給側機器に、前記電力融通量を算出する電力融通量算出部を設けたことを特徴とする、電力供給システム。そのほか、本発明は、以下の形態としても実現可能である。
(1)直流電力幹線に繋がる直流出力可能な機器である供給側機器が、前記直流電力幹線に繋がる直流入力可能な機器である需要側機器に、電力を供給できる電力供給システムが提供される。この電力供給システムにおいて、前記供給側機器の給電電圧を供給側で設定でき、前記需要側機器の受電電圧を需要側で設定でき、前記供給側機器から前記直流電力幹線に供給された電荷量または電流値の時間積分値、及び前記直流電力幹線から前記需要側機器に供給された電荷量または電流値の時間積分値をもって電力融通量とみなす。
この構成において、供給側機器が直流電力幹線へ直流電力を給電する給電電圧が供給側で個別に設定され、需要側機器が直流電力幹線から直流電力を受電する受電電圧が需要側で個別に設定される。すなわち、本構成の電力供給システムは、交流電力が幹線を流れる従来の電力供給システムのように全体を供給側から需要側に向かって系統的に管理するシステムとは異なり、直流電力幹線に接続している各供給側機器、各需要側機器に応じて自由に給電電圧や受電電圧が設定される。本構成によれば、直流電力を使用するため、周波数や無効電力などを管理する必要は無い。
この構成によれば、供給側機器から直流電力幹線へと供給される直流電流の時間積分または供給された電荷量が、電力量の代わりである電力融通量として算出される。また、直流電力幹線から需要側機器へと供給される直流電流の時間積分または供給された電荷量が、電力量の代わりである電力融通量として算出される。すなわち、直流電力幹線の電圧の変化が許容される場合において、特に直流電力幹線の電圧が時々刻々変化する場合などは、電力よりも簡単に算出可能な電力融通量が電力量に代わる指標として用いられる。
本構成の電力供給システムでは、少なくとも、各供給側機器または各需要側機器が各々その給電点または受電点の局所的な直流電力幹線の電圧情報を得ていれば良く、必ずしも、他の供給側機器や需要側機器の情報を得る必要は無い。そのため、本構成の電力供給システムは、従来の電力供給システムに比べ、情報を得るためのシステムや電力特性を調整するシステムを簡素化することができる。
また、電力が融通される量としての指標が今までの電力量から新たに定めた電力融通量にされることにより、直流電力幹線の電圧、あるいは、各需要側機器または各供給側機器が各々その給電点または受電点の局所的な直流電力幹線の電圧が変化しても、電力の融通量の算出方法を簡素化することが出来る。
さらに、電力融通に係る単位供給量の価値が電力の授受状態で経済的有意性をもって調整されるため、本構成の電力供給システムを用いることにより、電力の相互利用や売買などの電力融通に必要な運用コストも抑制できる。直流電力幹線の電圧が特定の電圧幅を持って運用される場合、直流電力線の特性として、電力の需給関係がバランスしている場合の直流電力線電圧に比べ、要求される電力より供給電力が多くなると直流電力線電圧は低くなる傾向がある。特に直流/直流変換器等を供給側機器または需要側機器と直流電圧幹線との間の入出力機器に用いると、この傾向は顕著になる。言い換えると、電力の需給関係がバランスしている場合の直流電力幹線の電圧に比べ、電力供給過多(買い手市場)の場合は直流電力幹線の電圧が高くなり、電力需要過多(売り手市場)の場合は直流電力幹線の電圧が低くなる。
ここで、電力供給側から見たときの状況を考えると、電力供給過多の場合は供給電圧を高くしなければならず、一方、電力需要過多の場合は供給電力を低くすることができる。この場合に、電力の相互利用量や売買量などの電力融通量を電荷量または電流値の時間積分値から求める場合、電力供給過多の場合は供給電圧を高くしなければならない。そのため、供給側が必要とする電力量(電圧値×電流値の時間積分値)は、電力の需給関係がバランスしている場合に比べて、同じ相互利用量や売買量などの電力融通量であっても必要とする実質電力量は多くなる。一方、電力需給過多の場合は供給電圧を低くすることができるので、供給側が必要とする電力量(電圧値×電流値の時間積分値)は少なくなる。すなわち、同じ相互利用量や売買量などの電力融通量であっても、電力供給過多の場合は供給実質電力量が高くなるので供給コストが高くなり(単位供給量価値が低くなる)、電力需要過多の場合は供給実質電力量が低くなるので供給コストが低くなる(単位供給量価値が高くなる)。一方で、電力需要側から見る場合も逆から見た同様な状況が起こる。
このように、本構成の電力供給システムを用いることにより、相互利用や売買などの電力融通に係る単位供給量価値が経済的有意性もって自動的に調整される。そのため、例えば、供給電力が需要電力より多い場合は、同じ電力融通量を給電するにも、供給電圧を上げて給電機会を得て電力をより多く消費して供給しなければならない。一方で、供給電力より需要電力が多い場合は、同じ電力融通量を受電するにも、受電電圧を下げて受電機会を得て少ない電力しか受電できないという状況が自動的に誘起される。これにより、電力の相互利用や売買などの電力融通に必要な運用コストが下がる。加えて、本構成の電力供給システムを採用することにより、従来のシステムのような全体を供給側から需要側に向かって系統的に管理するシステムとは異なり、電力供給システムの拡張や縮減が容易となり、電力の売買に新規事業者や個人が参加しやすくなる。
(2)上記形態の電力供給システムにおいて、前記直流電力幹線の電圧を時間平均電圧の5%以上高い上限電圧と、5%以上低い下限電圧とを設定してもよい。
この構成によれば、直流電力幹線の電圧変化が生じても、従来のシステムのような全体を供給側から需要側に向かって系統的に管理するシステムとは異なり、直流電力幹線を介した電力の供給と需要が可能である。
(3)上記形態の電力供給システムにおいて、複数の前記供給側機器と、複数の前記需要側機器と、を備え、一部の前記供給側機器または一部の前記需要側機器が前記直流電力幹線に接続する地点を変更、あるいは電力融通中に移動してもよい。
この構成によれば、従来のシステムのような全体を供給側から要求する側に向かって系統的に管理するシステムとは異なり、直流電力幹線の電圧の変化が許容される。そのため、少なくとも、各供給側機器または各需要側機器が、各々その給電点または受電点の局所的な直流電力幹線の電圧をもって、給電の電圧や受電の電圧を各々決めて、給電や受電ができる。これにより、直流電力幹線に対して、供給側機器あるいは需要側機器が、着脱したり、位置を変えたり、移動したりすることが可能である。換言すると、各供給側機器または各需要側機器が、必ずしも、特定の時間かつ特定の直流電力幹線における特定の場所に接続する必要はない。
(4)上記形態の電力供給システムにおいて、複数の前記供給側機器と、複数の前記需要側機器と、を備え、前記供給側機器は、他の前記供給側機器や他の前記需要側機器の状態に関係無く、前記直流電力幹線への直流電力の供給の開始、停止、または変更をでき、前記需要側機器は、他の前記供給側機器や他の前記需要側機器の状態に関係無く、前記直流電力幹線からの直流電力の需要(供給要求)の開始、停止、または変更をできてもよい。
この構成によれば、従来のシステムのような全体を供給側から需要側に向かって系統的に管理するシステムとは異なり、直流電力幹線の電圧の変化が許容される。そのため、少なくとも、各供給側機器が給電点周りの局所的な直流電力幹線の電圧をもって給電の電圧を決めて給電できる。また、各供給側機器は、事前に予定していた開始時刻から終了時刻内であっても、給電の中止、給電時の直流電流の変更、給電電圧の変更を、事前に予定していた開始時刻から終了時刻以外であっても給電の開始をすることができる。また、需要側機器が、受電点周りの局所的な直流電力幹線の電圧を持って、受電の電圧を決めて受電できる。また、各需要側機器は、事前に予定していた開始時刻から終了時刻内であっても、受電の中止、受電時の直流電流の変更、受電電圧の変更、事前に予定していた開始時刻から終了時刻以外であっても受電の開始を、行うことが可能である。
(5)上記形態の電力供給システムにおいて、さらに、前記供給側機器が前記直流電力幹線へと給電可能な前記電力融通量と、前記供給側機器が前記直流電力幹線へと直流電力を供給可能な時刻や時間と、前記供給側機器が実際に給電した前記電力融通量と、前記需要側機器が前記直流電力幹線から受電可能な前記電力融通量と、前記需要側機器が前記直流電力幹線から直流電力を要求可能な時刻や時間と、前記需要側機器が実際に供給された前記電力融通量と、を管理する電力管理部を備えていてもよい。
(6)上記形態の電力供給システムにおいて、さらに、前記電力供給システム内の電力損失を算出する損失算出部と、前記直流電力幹線に接続された複数の前記供給側機器と、前記直流電力幹線に接続された複数の前記需要側機器と、を備え、前記損失算出部は、前記直流電力幹線に接続している全ての前記供給側機器から給電された電力の合計と、前記直流電力幹線に接続している全ての前記需要側機器が受電した電力の合計との差を、前記電力供給システム内の電力損失として算出してもよい。
電力供給システムにおいて、任意の時間での各供給側機器から電力幹線へと給電された合計の電力と、電力幹線から各需要側機器が受電した合計の電力とは、電力の送電損失や接続損失が影響するため、必ずしも一致しない。これらの影響による電力損失が、本構成の電力供給システムの電力損失とみなされることにより、各供給側機器の給電電力および各需要側機器の受電電力から簡単に算出されるため、本構成の電力供給システムの運用コストが低減される。
(7)上記形態の電力供給システムにおいて、さらに、前記直流電力幹線に接続された複数の前記需要側機器と、各前記需要側機器が前記直流電力幹線から直流電力を受電する際の設定電圧を設定する受電側電圧設定部と、を備え、前記受電側電圧設定部は、前記設定電圧を予め設定された上限の電圧から下限の電圧までの範囲に設定し、前記直流電力幹線に接続された前記複数の前記需要側機器のうち、少なくとも1つの特定の前記需要側機器の前記受電側電圧設定部は、予め設定された条件が満たされた場合に、前記特定の需要側機器の前記設定電圧を、他の前記需要側機器における前記設定電圧の下限の電圧よりも低い電圧に設定してもよい。
この構成によれば、予め設定された条件が満たされた場合に、特定の需要側機器の受電電圧が他の需要側機器の設定電圧の下限よりも低く設定されるため、特定の需要側機器は、他の需要側機器よりも優先的に、あるいは専有的に電力を受電できる。本構成の電力供給システムにより、この状態を実現するために、電力供給システム全体を管理する必要は無く、特定の需要側機器のみが制御されれば良いため、運用コストを抑制できる。これにより、例えば緊急時に優先的に電力を受電したい施設である病院、官公庁、放送局、および通信機器などが特定の需要側機器として予め設定されることにより、優先的に電力を必要とする特定の需要側機器に電力を供給できる。
(8)上記形態の電力供給システムにおいて、さらに、前記直流電力幹線に接続された複数の前記需要側機器と、各前記需要側機器が前記直流電力幹線から直流電力を受電する際の設定電圧を設定する受電側電圧設定部と、を備え、前記直流電力幹線の電圧は、所定の下限の電圧よりも高く設定され、前記受電側電圧設定部は、前記設定電圧を予め設定された上限の電圧から下限の電圧までの範囲に設定し、前記直流電力幹線に接続された前記複数の前記需要側機器のうち、少なくとも1つの特定の前記需要側機器の前記受電側電圧設定部は、予め設定された条件が満たされた場合に、前記特定の需要側機器の前記設定電圧を、接続している前記直流電力幹線に設定された下限の電圧よりも低い電圧に設定してもよい。
この構成によれば、予め設定された条件が満たされた場合に、特定の需要側機器の受電電圧が直流電力幹線に設定されている下限の電圧よりも低く設定されるため、特定の需要側機器は、他の需要側機器よりも優先的に、あるいは専有的に電力を受電できる。本構成の電力供給システムにより、この状態を実現するために、電力供給システム全体を管理する必要は無く、特定の需要側機器のみが制御されれば良いため、運用コストを抑制できる。これにより、例えば緊急時に優先的に電力を受電したい施設である病院、官公庁、放送局、および通信機器などが特定の需要側機器として予め設定されることにより、優先的に電力を必要とする特定の需要側機器に電力を供給できる。
(9)上記形態の電力供給システムにおいて、さらに、前記直流電力幹線に接続された複数の前記供給側機器と、各前記供給側機器が前記直流電力幹線に直流電力を供給する際の設定電圧を設定する給電側電圧設定部と、前記直流電力幹線に接続された複数の前記需要側機器と、各前記需要側機器が前記直流電力幹線に直流電力を要求する際の設定電圧を設定する受電側電圧設定部と、を備え、前記給電側電圧設定部は、前記供給側機器に設定される設定電圧を予め設定された上限の電圧から下限の電圧までの範囲に設定し、前記受電側電圧設定部は、前記需要側機器に設定される設定電圧を予め設定された上限の電圧から下限の電圧までの範囲に設定し、前記直流電力幹線に接続された前記複数の前記需要側機器のうち、少なくとも1つの特定の前記供給側機器の前記給電側電圧設定部と、前記直流電力幹線に接続された前記複数の前記需要側機器のうち、少なくとも1つの特定の前記需要側機器の前記受電側電圧設定部は、予め設定された条件が満たされた場合に、前記特定の供給側機器に設定される設定電圧と、前記特定の需給側機器に設定される前記設定電圧を、他の前記供給側機器に設定された設定電圧の下限の電圧よりも低い電圧に設定してもよい。
この構成によれば、予め設定された条件が満たされた場合に、特定の需要側機器の受電電圧と特定の供給側機器の給電電圧が直流電力幹線の下限の電圧よりも低く設定されるため、特定の需要側機器は、専有的に特定の供給側機器からの電力を受電できる。本構成の電力供給システムにより、この状態を実現するために、電力供給システム全体を管理する必要は無く、特定の供給側機器と特定の需要側機器のみの設定電圧が制御されれば良いため、運用コストを抑制できる。これにより、例えば緊急時に優先的に電力を受電したい施設である病院、官公庁、放送局、および通信機器などが特定の需要側機器として予め設定されることにより、優先的に電力を必要とする特定の需要側機器に電力を供給できる。
例えば、直流電力幹線の利用規約として、一般施設と緊急時対応施設を区別する。一般施設の利用規約の需要側機器の電圧範囲の下限設定値より、緊急時対応施設の需要側機器の電圧範囲の下限設定値を低くする。これにより、大規模災害または広域災害が発生した場合などの緊急時に、本構成では直流電力幹線の電圧が、一般施設の利用規約の需要側機器の電圧範囲の下限設定値より低く、緊急時対応施設の需要側機器の電圧範囲の下限設定値より高く設定される。この結果、本構成の電力供給システムは、各施設の個々の制御をすることなく、緊急時対応施設に選択的且つ速やかに電力を供給できる。また、直流電力幹線の電圧が下げられることにより、特定の需要側機器は、少ない発電電力の供給側機器からも電力供給を受けることができるようになる。なお、緊急時対応施設とは、例えば、病院、官公庁、放送局、通信基地などが挙げられる。各下限設定値は各機器または施設における入出力機器、開閉器などで設定する。
(10)上記形態の電力供給システムにおいて、さらに、前記直流電力幹線に接続された複数の前記供給側機器と、各前記供給側機器が前記直流電力幹線に直流電力を供給する際の設定電圧を設定する給電側電圧設定部と、前記直流電力幹線に接続された複数の前記需要側機器と、各前記需要側機器が前記直流電力幹線に直流電力を要求する際の設定電圧を設定する受電側電圧設定部と、を備え、前記給電側電圧設定部は、前記供給側機器に設定される設定電圧を予め設定された上限の電圧から下限の電圧までの範囲に設定し、前記受電側電圧設定部は、前記需要側機器に設定される設定電圧を予め設定された上限の電圧から下限の電圧までの範囲に設定し、前記直流電力幹線に接続された前記複数の前記供給側機器のうち、少なくとも1つの特定の前記供給側機器の前記給電側電圧設定部と、前記直流電力幹線に接続された前記複数の前記需要側機器のうち、少なくとも1つの特定の前記需要側機器の前記受電側電圧設定部は、予め設定された条件が満たされた場合に、前記特定の供給側機器に設定される前記設定電圧と、前記特定の需給側機器に設定される前記設定電圧を、前記直流電力幹線に設定された下限の電圧より低い電圧に設定してもよい。
この構成によれば、予め設定された条件が満たされた場合に、特定の需要側機器の受電電圧と特定の供給側機器の給電電圧が直流電力幹線の下限の電圧よりも低く設定されるため、特定の需要側機器は、専有的に特定の供給側機器からの電力を受電できる。本構成の電力供給システムにより、この状態を実現するために電力供給システム全体が管理される必要は無く、特定の供給側機器と特定の需要側機器のみの設定電圧が制御されれば良いため、運用コストを抑制できる。これにより、例えば緊急時に優先的に電力を受電したい施設である病院、官公庁、放送局、および通信機器などが特定の需要側機器として予め設定されることにより、優先的に電力を必要とする特定の需要側機器に電力を供給できる。
例えば、直流電力幹線の利用規約として、一般施設と緊急時対応施設を区別する。一般施設の利用規約の需要側機器の電圧範囲の下限設定値より、緊急時対応施設の需要側機器の電圧範囲の下限設定値を低くする。これにより、大規模災害または広域災害が発生した場合などの緊急時に、本構成では直流電力幹線の電圧が、一般施設の利用規約の需要側機器の電圧範囲の下限設定値より低く、緊急時対応施設の需要側機器の電圧範囲の下限設定値より高く設定される。この結果、各施設の個々の制御をすることなく、緊急時対応施設に選択的且つ速やかに電力を供給できる。また、直流電力幹線の電圧が下げられることにより、特定の需要側機器は、少ない発電電力の供給側機器からも電力供給を受けることができるようになる。なお、緊急時対応施設とは、例えば、病院、官公庁、放送局、通信基地などが挙げられる。各下限設定値は各機器または施設における入出力機器、開閉器などで設定する。
なお、本発明は、種々の態様で実現することが可能であり、例えば、電力を供給できるシステム、電力供給システム、配電システム、電力供給方法および電力供給の制御方法、これら装置や方法を実行するためのコンピュータプログラム、このコンピュータプログラムを配布するためのサーバ装置、コンピュータプログラムを記憶した一時的でない記憶媒体等の形態で実現することができる。
本発明の第1実施形態としての電力供給システムの概略ブロック図である。 電力供給システムにおいて直流電力が幹線を介して供給される状況の一例の説明図である。 図2に示される状況から一部の設定電圧を変えた場合の電力供給システムの説明図である。 比較例の電力供給システムの概略ブロック図である。 第2実施形態としての電力供給システムの概略ブロック図である。 図5に示される状況から一部の設定電圧を変えた場合の電力供給システムの説明図である。 図6に示される状況から直流電流の供給状況が変化した際に一部の設定電圧を変化させた場合の電力供給システムの説明図である。 図6に示される状況から直流電流の供給状況が変化した際に一部の設定電圧を変化させた場合の電力供給システムの説明図である。 第3実施形態としての電力供給システムの概略ブロック図である。 第4実施形態としての電力供給システムの概略ブロック図である。 第5実施形態としての電力供給システムの概略ブロック図である。
<第1実施形態>
図1は、本発明の第1実施形態としての電力供給システム1001の概略ブロック図である。電力供給システム1001は、直流電力が流れる幹線を介して、電力を供給する複数の供給側機器と、電力を要求する複数の需要側機器とが接続されている。
図1に示されるように、電力供給システム1001は、複数の太陽電池パネルで構成された第1太陽電池パネル群(供給側機器)111および第2太陽電池パネル群(供給側機器)112と、第1太陽電池パネル群111が供給する直流電力を変換するDC/DCコンバータ(給電側電圧設定部、供給側算出部)211と、DC/DCコンバータ211と幹線(直流電力幹線)711との接続を開閉する開閉器311と、第2太陽電池パネル群112が供給する直流電力を変換するDC/DCコンバータ(給電側電圧設定部、供給側算出部)212と、DC/DCコンバータ212と幹線711との接続を開閉する開閉器312と、電気自動車に搭載された車載蓄電池(需要側機器)113と、車載蓄電池113が要求する直流電力を変換するDC/DCコンバータ(受電側電圧設定部、需要側算出部)213と、DC/DCコンバータ213と幹線711との接続を開閉する開閉器313と、住居に電力を供給するために住居に併設された住居用蓄電池(需要側機器)114と、住居用蓄電池114に供給される直流電力を変換するDC/DCコンバータ(受電側電圧設定部、需要側算出部)214と、DC/DCコンバータ214と幹線711との接続を開閉する開閉器314と、交流電力を発生させるガスタービン発電機(供給側機器)115と、ガスタービン発電機115により発生した交流電力を直流電力に変換するAC/DCコンバータ(給電側電圧設定部、供給側算出部)215と、AC/DCコンバータ215と幹線711との接続を開閉する開閉器315と、を備えている。
第1太陽電池パネル群111および第2太陽電池パネル群112は、DC/DCコンバータ211,212および開閉器311、312を介して幹線711に接続され、幹線711へと直流電力を供給している。車載蓄電池113および住居用蓄電池114は、DC/DCコンバータ231,214を介して幹線711に接続され、幹線から直流電力を要求する。
DC/DCコンバータ211は、第1太陽電池パネル群111が幹線711へと供給する直流電力の電圧を設定する。同じように、DC/DCコンバータ212は、第2太陽電池パネル群112が幹線711へと供給する直流電力の電圧を設定する。AC/DCコンバータ215は、ガスタービン発電機115が幹線711へと供給する直流電力の電圧を設定する。これらのコンバータにより設定された設定電圧は、DC/DCコンバータ211,212およびAC/DCコンバータ215のそれぞれに取り付けられた操作部が操作されることにより、設定される。また、DC/DCコンバータ211,212およびAC/DCコンバータ215のそれぞれは、幹線711へと供給される直流電力の電流の値と、幹線711へと直流電力を供給した給電時間とを検出する。
DC/DCコンバータ211は、検出した直流電力の電流と、第1太陽電池パネル群111から幹線711へと直流電力が供給された時間とを用いた直流電流の時間積分を、第1太陽電池パネル群111からの電力融通量として算出する。本実施形態における電力融通量とは、新たに定義した指標である。
DC/DCコンバータ212は、検出した直流電力の電流と、第2太陽電池パネル群112から幹線711へと直流電力が供給された時間とを用いた直流電流の時間積分を、第2太陽電池パネル群112からの電力融通量として算出する。同じように、AC/DCコンバータ215は、検出した直流電力の電流と、ガスタービン発電機115から幹線711へと直流電力が供給された時間とを用いた直流電流の時間積分を、ガスタービン発電機115からの電力融通量として算出する。
DC/DCコンバータ213は、車載蓄電池113が幹線711から直流電力を要求する際の電圧を設定する。同じように、DC/DCコンバータ214は、住居用蓄電池114が幹線711から直流電力を要求する際の電圧を設定する。これらのDC/DCコンバータ213,214により設定された設定電圧は、本実施形態では、DC/DCコンバータ213,214のそれぞれに取り付けられた操作部が操作されることにより、設定される。また、DC/DCコンバータ213,214のそれぞれは、幹線711から取得する直流電力の電流の値と、幹線711から直流電力が供給された受電時間とを検出する。
DC/DCコンバータ213は、検出した直流電力の電流と、車載蓄電池113が幹線711から直流電力が供給された時間とを用いた直流電流の時間積分を、車載蓄電池113に対する電力融通量として算出する。同じように、DC/DCコンバータ214は、検出した直流電力の電流と、住居用蓄電池114が幹線711から直流電力が供給された時間とを用いた直流電流の時間積分を、住居用蓄電池114に対する電力融通量として算出する。
図2は、電力供給システム1001において直流電力が幹線711を介して供給される状況の一例の説明図である。図2に示される状態では、各供給側機器において、DC/DCコンバータ212およびAC/DCコンバータ215の直流側設定電圧が380V(ボルト)であり、DC/DCコンバータ211の設定電圧が400Vである。また、各需要側機器において、DC/DCコンバータ213の設定電圧は380Vであり、DC/DCコンバータ214の設定電圧は360Vである。
また、図2に示されるように、第1太陽電池パネル群111から幹線711へと供給される直流電力の電流40A(アンペア)、第2太陽電池パネル群112から幹線711へと供給される直流電力の電流40A、ガスタービン発電機115から幹線711へと供給される直流電力の電流100A、で給電しようとし、幹線711から車載蓄電池113へ直流電力の電流60A、幹線711から住居用蓄電池114へ直流電流60Aで、受電しようとする。
図2に示される状況では、幹線711に直流電力を供給する第1太陽電池パネル群111と、第2太陽電池パネル群112と、ガスタービン発電機115とのうち、設定電圧が最も高い第1太陽電池パネル群111が給電時に優位になる。一方、幹線711から直流電力を要求する車載蓄電池113と住居用蓄電池114とのうち、設定電圧が低い住居用蓄電池114が受電時に優位になる。
この場合に、需要側の総受電電流量が供給側の総給電電流量よりも少ない状況になるので、次のようなことがおこる。受電側では、住居用蓄電池114が幹線711から60Aの直流電力を受電し、車載蓄電池113が幹線711から60Aの直流電力を受電する。一方、給電側では、設定電圧が最も高い第1太陽電池パネル群111が、給電時に優位になるので、第1太陽電池パネル群111から幹線711へと40Aの直流電力が優先的に給電される。一方、設定電圧が同じで優先順位が劣る第2太陽電池パネル群112とガスタービン発電機115とから幹線711へと合わせて80Aの直流電力が給電されることになる。
ここで、第2太陽電池パネル群112が幹線711へと40Aを給電できたと仮定すると、第1太陽電池パネル群111が電力換算として16.0kW(=400V×40A)の電力を給電する。また、第2太陽電池パネル群112が15.2kW(=380V×40A)の電力を給電し、ガスタービン発電機115が15.2kW(=380V×40A)の電力を給電する。すなわち、第1太陽電池パネル群111は、電力の供給機会を失うことは無い。しかし、第2太陽電池パネル群112が幹線711へ第1太陽電池パネル群111と同じ給電直流電流40Aを給電できると仮定した場合に比べ、幹線711へ40A給電するために0.8kW(=16.0kW―15.2kW)余分に電力が必要となる。もちろん、第2太陽電池パネル群112は、ガスタービン発電機115と電力の供給機会が競合しているので、仮定のように一方的に40Aを給電することはできない。第2太陽電池パネル群112の電力の供給機会を失わないようにするためには、第2太陽電池パネル群112のDC/DCコンバータ212の設定電圧が、ガスタービン発電機115のAC/DCコンバータ215の直流側設定電圧よりも高く設定される必要がある。
図3は、図2に示される状況から一部の設定電圧を変えた場合の電力供給システム1001の説明図である。図3に示される状況では、第2太陽電池パネル群112に接続されているDC/DCコンバータ212の設定電圧は、380Vから390Vへと高くなっている。この結果、第2太陽電池パネル群112の設定電圧(390V)は、ガスタービン発電機115に接続されているAC/DCコンバータ215の直流側設定電圧(380V)よりも高くなる。これにより、第2太陽電池パネル群112は、ガスタービン発電機115と競合せずに優先的に直流電力を供給できるようになる。ただし、第2太陽電池パネル群112に接続されているDC/DCコンバータ212の設定電圧が380Vから390Vに上がったため、第2太陽電池パネル群112が給電する電力は、15.6kW(=390V×40A)となる。この結果、図2に示される状況よりも、第2太陽電池パネル群112は、幹線711へ40A給電するために0.4kW(=15.6kW-15.2kW)余分に供給電力が必要となる。第2太陽電池パネル群112は、電力供給機会を確実に得るために、同じ直流電流を供給するに当たり、0.4kWの電力を余計に使用したことになる。ここで、電力融通量単価の一つの指標として(電力融通量)/(その電力融通量のために必要な電力量)を用いると、電力供給機会を確実に得るために余計に電力を使用したことは、電力供給機会を確実にするために電力融通量単価、つまり電力価値を低くしなければならなかったことと換言できる。結果的に、本実施形態の電力供給システム1001では、電力供給機会と電力価値が有意な経済性を持って自動的に調整されたことになる。
<比較例>
図4は、比較例の電力供給システム1006の概略ブロック図である。比較例では、第1実施形態と異なる構成および制御等について説明し、第1実施形態と同じ構成および制御等についての説明は省略する。電力供給システム1006は、各送電系統を流れる交流電流を用いて電力を供給している。
図4に示されるように、電力供給システム1006は、電力供給システム1006の電力供給制御等の全体を管理・制御する電力管理部961と、火力発電所161と、水力発電所162と、電圧を変化させる超高圧変電所661、一次変電所662、配電用変電所663と、火力発電所161および水力発電所162により発電された交流電力を超高圧変電所661へと供給するための超高圧送電系統761と、超高圧送電系統761により電圧が変化した交流電力を一次変電所662へと供給するための一次送電系統762と、一次変電所662により電圧が変化した交流電力を配電用変電所663へと供給するための二次送電系統763と、配電用変電所663から供給された交流電力が流れる配電系統764と、太陽電池発電所163と、太陽電池発電所163の発電により発生した直流電力を交流電力へと変換するDC/ACインバータ262と、太陽電池発電所163と配電系統764との接続を開閉する開閉器364と、燃料電池発電所164と、燃料電池発電所164の発電により発生した直流電力を交流電力へと変換するDC/ACインバータ263と、燃料電池発電所164と配電系統764との接続を開閉する開閉器365と、誘電モータ機器561,562と、誘電モータ機器561と配電系統764との接続を開閉する開閉器361と、誘電モータ機器562と配電系統764との接続を開閉する開閉器362と、交流モータ機器563と、交流モータ機器563と配電系統764との接続を開閉する開閉器363と、配電系統764から供給される交流電力を直流電力に変換するAC/DCコンバータ261と、AC/DCコンバータ261により変換された直流電力を交流モータ機器563へと供給するインバータ461と、を備えている。
比較例では、火力発電所161および水力発電所162から供給される交流電力は、変電所である超高圧変電所661と、一次変電所662と、配電用変電所663とを通過する度に、電圧が低くなる。さらに、配電系統764から各機器(例えば誘電モータ機器561,562)までの間に、図示されていない変圧器を介して電圧が低くなることもある。
一般配電事業者(例えば電力会社)である電力管理部961は、超高圧送電系統761と、一次送電系統762と、二次送電系統763と、配電系統764とを制御する。具体的には、電力管理部961は、各系統761~764の電圧および各系統761~764を流れる交流電力の皮相電力や周波数を制御している。例えば、配電系統764の標準電圧が100Vと国などの管理者によって定められている場合には、電力管理部961は、配電系統764の設定電圧を101V±6Vの範囲で制御する必要がある。また、配電系統764の標準電圧が200Vに定められている場合に、電力管理部961は、配電系統764の設定電圧を202V±20Vの範囲で制御する必要がある。電力管理部961は、各系統761~764から各需要側機器へと供給される交流電力の皮相電力を定められた電圧範囲内に、周波数を定められている標準周波数(50Hzまたは60Hz)と等しくなるように努める必要がある。すなわち、比較例では、電力管理部961は、各系統761~764を制御することにより、電力供給システム1006における発電、変電、送電、および配電等を一括管理する必要がある。その上で、電力管理部961は、電力供給システム1006の高い安全性、高いエネルギー効率、電力の安定供給、電力の低コスト化を目指しつつ、電力品質を維持する必要があった。
比較例の電力供給システム1006に対して、第1実施形態の電力供給システム1001では、第2太陽電池パネル群112は、直流電流が流れる幹線711に接続されて、幹線711へと直流電力を供給する。第2太陽電池パネル群112が幹線711へと直流電力を供給する際の電圧がDC/DCコンバータ212により設定され、車載蓄電池113は、直流電力が流れる幹線711に接続されて、幹線711から電力を受電する。車載蓄電池113が幹線711から直流電力を要求する際の設定電圧がDC/DCコンバータ213により設定される。すなわち、第1実施形態の電力供給システム1001では幹線電圧の変化が許容され、DC/DCコンバータ212の設定電圧は、少なくとも、供給側機器がその給電点の局所的な幹線711の電圧をもって決められる。DC/DCコンバータ213の設定電圧は、第1実施形態の電力供給システム1001では幹線電圧の変化が許容され、少なくとも、需要側機器がその受電点の局所的な幹線711の電圧をもって決められる。
第1実施形態の電力供給システム1001では、比較例の電力管理部961のような電力供給システム1006全体を管理する装置とは関係なく、各供給側機器の設定電圧および各需要側機器の設定電圧が自由に設定される。したがって、電力供給システム1001では、比較例において説明した、全体を管理する電力管理部961のような装置や管理者が必須でなくなる。また、各供給側機器や各需要側機器は、他の供給側機器や需要側機器の情報を取得する必要がなく、要求する直流電流の時間積分値の情報を用いて電力の融通量である電力融通量を決定すればよいため、電力供給システム1001を簡素化できる。この結果、電力供給システム1001の拡張や縮減が容易となり、電力の売買に新規事業者や個人が参加しやすくなる。また、各供給側機器では、給電したい電力の需要に応じて設定電圧が設定され、各需要側機器では、受電したい電力の需要に応じて設定電圧が設定されることにより、電力供給システム1001における電力融通に係る単位供給量の価値が経済的優位性をもって調整される。そのため、電力供給システム1001では、電力の相互利用や売買などの電力融通に必要な運用コストを抑制できる。
<第2実施形態>
図5は、第2実施形態としての電力供給システム1002の概略ブロック図である。第2実施形態の電力供給システム1002では、第1実施形態の電力供給システム1001と比較して、第1実施形態の車載蓄電池113の代わりに病院用蓄電池123が幹線721に接続している点、幹線721と交流電力線722とが接続されている点、および、各需要側機器と各供給側機器の情報を集めて電力供給システムで損失する電力量を算出する損失算出部921を備えている点が異なり、他の構成については第1実施形態の電力供給システム1001と同じである。そのため、第2実施形態では、第1実施形態と異なる構成等について説明し、第1実施形態と同じ構成等についての説明は省略する。
損失算出部921は、幹線721に接続している全ての供給側機器が供給する電力の合計と、幹線721に接続している全ての需要側機器が供給される電力の合計との差を、電力供給システム1002の電力損失として算出する。電力供給システム1002において、任意の時間での供給側機器が供給する電力と、需要側機器が供給される電力とは、電力の送電損失や接続損失が影響するため、必ずしも一致しない。総供給電力と総需要電力の差を電力供給システム1002の電力損失とみなすことにより、電力損失が簡単に算出され、電力供給システム1002の運用コストが低減される。
図5に示されるように、電力供給システム1002は、病院に電力を給電するために病院に併設された病院用蓄電池(需要側機器)123と、病院用蓄電池123に供給される直流電力を変換するDC/DCコンバータ(受電側電圧設定部、需要側算出部)223と、DC/DCコンバータ223と幹線721との接続を開閉する開閉器323と、交流電力が流れている交流電力線722と、交流電力線722へ供給する交流電力へ直流電力から変換するDC/ACインバータ(受電側電圧設定部、需要側算出部)226と、DC/ACコンバータ226と幹線721との接続を開閉する開閉器326と、を備えている。
第2実施形態では、幹線721の上限電圧と下限電圧とが設定される。幹線721の上限電圧が420V、下限電圧が360Vに設定される。そのため、第2実施形態では、各供給側機器及び各需要側機器の設定電圧は360V以上420V以下で設定されなければならない。あるいは、各供給側機器または各需要側機器の電圧設定部は360V未満の電圧または420Vを超える電圧では動作しない機構に設定されてもよい。
図5には、図2,3に示される第1実施形態と同じように、幹線721に接続している各装置が供給している又は要求している直流電力と、各装置の設定電圧とが示されている。図5に示されるように、DC/DCコンバータ211の設定電圧は400Vであり、DC/DCコンバータ212の設定電圧は380Vであり、DC/DCコンバータ214の設定電圧は360Vであり、AC/DCコンバータ215の直流側設定電圧は380Vであり、第1実施形態の図2に示される状況と同じである。さらに、DC/DCコンバータ223の設定電圧は380Vで、DC/ACインバータ226の直流側設定電圧は380Vである。
図5に示される状況では、第1太陽電池パネル群111は、幹線721へと直流電力の電流40Aを給電しようとしている。第2太陽電池パネル群112は、幹線721へと直流電力の電流40Aを給電しようとしている。ガスタービン発電機115は、幹線721へと直流電力の電流100Aで給電しようとしている。住居用蓄電池114は、幹線721から直流電流60Aで受電しようとしている。交流電力線722は、幹線721から直流電流100Aで受電しようとしている。病院用蓄電池123は、幹線721から直流電流60Aで受電しようとする。
図5に示される状況では、幹線721に直流電力を供給する第1太陽電池パネル群111と、第2太陽電池パネル群112と、ガスタービン発電機115とのうち、設定電圧が最も高い第1太陽電池パネル群111が給電時に優位になる。一方で、幹線721から直流電力を受電しようとする病院用蓄電池123と、住居用蓄電池114と、交流電力線722とのうち、設定電圧が最も低い住居用蓄電池114が受電時に優位になる。
この場合に、供給側の総給電電流量が需要側の総受電電流量よりも少ない状況になるので、次のようなことがおこる。給電側では、第1太陽電池パネル群111から幹線721へ40Aの直流電力を給電し、第2太陽電池パネル群112から幹線721へ40Aの直流電力を給電し、ガスタービン発電機115から幹線721へと100Aの電力を給電する。一方、受電側では、設定電圧が最も低い住宅用蓄電池114が、受電時に優位になるので、幹線721から住宅用蓄電池114へと60Aの直流電力を優先的に受電する。一方で、設定電圧が同じで優先順位が劣る病院用蓄電池123と交流電力線722とは、幹線721から合わせて120Aの直流電力を受電することになる。
ここで、病院用蓄電池123が幹線721から60Aを受電できたと仮定すると、住居用蓄電池114が電力換算として21.6kW(=360V×60A)の電力を受電する。また、病院用蓄電池123が22.8kW(=380V×60A)の電力を受電し、交流電力線722が22.8kW(=380V×60A)の電力を受電する。すなわち、住居用蓄電池114は、電力が供給される機会を失うことは無い。しかし、病院用蓄電池123は、幹線721から住居用蓄電池114と同じ受電直流電流60Aを受電できると仮定した場合に比べ、幹線721から60Aを受電すると1.2kW(=22.8kW-21.6kW)少ない電力を受電したことになる。もちろん、病院用蓄電池123は、交流電力線722と電力の需要機会が競合しているので、仮定のように一方的に60Aを受電することはできない。病院用蓄電池123は、電力が供給される機会を失わないようにするためには、病院用蓄電池123のDC/DCコンバータ223の設定電圧を交流電力線722のDC/ACインバータ226の直流側設定電圧よりも低く設定する必要がある。
図5に示される電力供給システム1002において、病院用蓄電池123が幹線721から60Aを受電できたと仮定すると、幹線721に接続している全ての需要側機器が受電した電力の合計は、67.2kW(=21.6kW+22.8kW+22.8kW)である。一方で、幹線721に接続している全ての供給側機器が給電した電力の合計は、69.2kW(=16.0kW+15.2kW+38.0kW)である。そのため、第2実施形態の損失算出部921は、電力供給システム1002の電力損失を2.0kW(=69.2kW-67.2kW)として算出する。
図6は、図5に示される状況から一部の設定電圧を変えた場合の電力供給システム1002の説明図である。図6に示される状況では、病院用蓄電池123に接続されているDC/DCコンバータ223の設定電圧が、380Vから370Vへと低くなっている。この結果、病院用蓄電池123に接続しているDC/DCコンバータ223の設定電圧(370V)が交流電力線722に接続されているDC/ACインバータ226の設定電圧(380V)よりも低くなる。これにより、病院用蓄電池123は、交流電力線722と競合せずに優先的に直流電力を受電できるようになる。ただし、病院用蓄電池123に接続されているDC/DCコンバータ223の設定電圧が380Vから370Vに下がったため、病院用蓄電池123が受電する電力は、22.2kW(=370V×60A)となる。この結果、図5に示される状況よりも、病院用蓄電池123が幹線721から60Aを受電する場合の電力は0.6kW(=22.8kW-22.2kW)少なくなる。病院用蓄電池123は、電力が供給される機会を確実に得るために、同じ直流電流が供給されるに当たり0.6kWの電力を失わざるを得なかったことになる。
図7は、図6に示される状況から直流電流の供給状況が変化した際に一部の設定電圧を変化させた場合の電力供給システム1002の説明図である。図7に示される状況では、第1太陽電池パネル群111からの給電電流が0Aに変化し、ガスタービン発電機115からの給電電流が50Aに変化した。その結果、図6で示される状況において幹線721から60A受電できていた病院用蓄電池123はDC/DCコンバータ223の設定電圧が370Vのままでは、60Aを受電できなくなる。つまり、需要側機器の優先順位が高い方から、住宅用蓄電池114、病院用蓄電池123、交流電力線722のままであるので、幹線721から、住宅用蓄電池が60Aを受電し、病院用蓄電池123が残りの30Aを受電することになる。
このとき、病院用蓄電池123の受電機会を確保するために、DC/DCコンバータの設定電圧をより低くして優先度を上げようとしても、住宅用蓄電池114のDC/DCコンバータ214の設定電圧が360Vと、設定された幹線721の下限電圧であるため、病院用蓄電池123の優先度を住宅用蓄電池114の優先度より上げることができない。
そこで、病院用蓄電池123を特定の需要側機器とみなした場合に、第1太陽電池パネル群111からの給電電流が0Aになり、ガスタービン発電機115からの給電電流が減ったことを、予め設定された条件とする。予め設定された条件が満たされた場合、病院用蓄電池123のDC/DCコンバータ223設定電圧が、他の前記需要側機器における前記設定電圧の下限の電圧よりも低い電圧に設定される、あるいは、幹線721の設定した下限電圧より低い電圧に設定される。
図7で示される状況では、DC/DCコンバータ223設定電圧を350Vに変化させた。これにより、病院用蓄電池123は、予め設定された条件において、受電の優先順位が一番高くなり、優先的に受電できるようになる。
この構成によれば、予め設定された条件が満たされた場合に、特定の需要側機器の受電電圧が他の需要側機器の設定電圧の下限よりも低く設定されるため、あるいは、幹線の設定した下限電圧より低い電圧に設定されるため、特定の需要側機器は、他の需要側機器よりも優先的に、あるいは専有的に電力を受電できる。これにより、例えば緊急時に優先的に電力を受電したい施設である病院、官公庁、放送局、および通信機器などが特定の需要側機器として予め設定されることにより、優先的に電力を必要とする特定の需要側機器に電力を供給できる。
図8は、図6に示される状況から直流電流の供給状況が変化した際に一部の設定電圧を変化させた場合の電力供給システム1002の説明図である。図8に示される状況では、第1太陽電池パネル群111からの給電電流が0Aに変化し、ガスタービン発電機115からの給電電流が50Aに変化した。その結果、図6で示される状況において幹線721から60A受電できていた病院用蓄電池123はDC/DCコンバータ223の設定電圧が370Vのままでは、60Aを受電できなくなる。つまり、需要側機器の優先順位が高い方から、住宅用蓄電池114、病院用蓄電池123、交流電力線722のままであるので、住宅用蓄電池114が幹線721から60Aを受電し、病院用蓄電池123が幹線721から残りの30Aを受電することになる。
このとき、病院用蓄電池123の受電機会を確保するために、DC/DCコンバータの設定電圧をより低くして優先度を上げようとしても、住宅用蓄電池114のDC/DCコンバータ214の設定電圧が360Vと、設定された幹線721の下限電圧であるため、病院用蓄電池123の優先度を住宅用蓄電池114の優先度より上げることができない。そこで、第2実施形態では、病院用蓄電池123を特定の需要側機器とみなした場合に、第1太陽電池パネル群111からの給電電流が0Aになり、ガスタービン発電機115からの給電電流が減ったことを、予め設定された条件として設定している。予め設定された条件が満たされた場合、第2実施形態の電力供給システム1002では、病院用蓄電池123のDC/DCコンバータ223設定電圧と、ガスタービン発電機(特定の供給側機器)115のAC/DCコンバータ215の直流側設定電圧とが、幹線721に設定された下限電圧より低い電圧に設定される。そのため、図8で示される状況では、DC/DCコンバータ223設定電圧が320Vに変化し、AC/DCコンバータ215の直流側設定電圧が340Vに変化した。これにより、病院用蓄電池123は、ガスタービン発電機115の電力を専有的に利用できるようになり、必要とする直流電流60Aを受電することができるようになる。
この構成によれば、予め設定された条件が満たされた場合に、特定の需要側機器の受電電圧と特定の供給側機器の給電電圧が幹線の下限電圧よりも低く設定されるため、特定の需要側機器は、専有的に特定の供給側機器からの電力を受電できる。第2実施形態の電力供給システム1002により、この状態を実現するために、電力供給システム1002全体を管理する必要は無く、特定の供給側機器と特定の需要側機器のみが制御すれば良いため、運用コストを抑制できる。これにより、例えば緊急時に優先的に電力を受電したい施設である病院、官公庁、放送局、および通信機器などが特定の需要側機器として予め設定されることにより、専有的に電力を必要とする特定の需要側機器に電力を供給できる。
<第3実施形態>
図9は、第3実施形態としての電力供給システム1003の概略ブロック図である。
第3実施形態の電力供給システム1003は、第1太陽電池パネル群(供給側機器)111と、第2太陽電池パネル群(供給側機器)112と、第3太陽電池パネル群(供給側機器)133と、第1太陽電池パネル群111が供給する直流電力を変換するDC/DCコンバータ(給電側電圧設定部、供給側算出部)211と、DC/DCコンバータ211と幹線731との接続を開閉する開閉器311と、第2太陽電池パネル群112が供給する直流電力を変換するDC/DCコンバータ(給電側電圧設定部、供給側算出部)212と、DC/DCコンバータ212と幹線731との接続を開閉する開閉器312と、第3太陽電池パネル群133が供給する直流電力を変換するDC/DCコンバータ(給電側電圧設定部、供給側算出部)233と、DC/DCコンバータ233と幹線731との接続を開閉する開閉器333と、第1電気自動車に搭載された第1車載蓄電池(供給側機器、需要側機器)134と、第1車載蓄電池134が要求する直流電力を変換する双方向DC/DCコンバータ(給電側電圧設定部、受電側電圧設定部、供給側算出部、需要側算出部)234と、双方向DC/DCコンバータ234と幹線731との接続を開閉する開閉器334と、第2電気自動車に搭載された第2車載蓄電池(供給側機器、需要側機器)135と、第2車載蓄電池135が需給する直流電力を変換する双方向DC/DCコンバータ(給電側電圧設定部、受電側電圧設定部、供給側算出部、需要側算出部)235と、双方向DC/DCコンバータ235と幹線731との接続を開閉する開閉器335と、第3電気自動車に搭載された第3車載蓄電池(供給側機器、需要側機器)136と、第3車載蓄電池136が要求する直流電力を変換する双方向DC/DCコンバータ(給電側電圧設定部、受電側電圧設定部、供給側算出部、需要側算出部)236と、双方向DC/DCコンバータ236と幹線731との接続を開閉する開閉器336と、交流電力が流れている交流電力線722と、交流電力線722から供給される交流電力を直流電力へと変換する又は交流電力線722へ供給される直流電力を交流電力へと変換する双方向AC/DCコンバータ(給電側電圧設定部、受電側電圧設定部、供給側算出部、需要側算出部)237と、双方向AC/DCコンバータ237と幹線731との接続を開閉する開閉器337と、交流電力を発生させるガスタービン発電機(供給側機器)115と、ガスタービン発電機115により発生した交流電力を直流電力に変換するAC/DCコンバータ(給電側電圧設定部、供給側算出部)215と、AC/DCコンバータ215と幹線731との接続を開閉する開閉器315と、水素と酸素とを反応させることにより発電する燃料電池(供給側機器)138と、燃料電池138により供給される直流電力を変換するDC/DCコンバータ(給電側電圧設定部、供給側算出部)238と、DC/DCコンバータ238と幹線731との接続を開閉する開閉器338と、損失算出部931と、を備えている。
第1車載電池134、第2車載電池135、および第3車載電池136は、蓄電と放電とを繰り返すことができ、需要側機器および供給側機器として機能する。交流電力線722は、幹線731から受電して交流電力線722に給電したり、交流電力線722から受電して幹線731に給電したりすることができ、需要側機器および供給側機器として機能する。
図9に示される電力供給システム1003において、幹線731の電圧を一定に保持することを必要としていないので、個々の車載蓄電池134、135、136が自由に給電時の設定電圧を決めて幹線731へ給電できるし、受電時の設定電圧を決めて受電できる。車載蓄電池134,135,136の設定電圧は給電中または受電中に変更されても良く、開閉器で遮断されても良い。
第3実施形態の電力供給システム1003では、給電受電の動作にかかわらず、供給側機器から供給された又は供給側機器から放電された電荷量または電流値の時間積分値、または需要側機器で消費した又は需要側機器に蓄電した電荷量または電流値の時間積分値をもって電力融通量とみなしているので、幹線731の電圧を一定に保持しなくても電力融通量は分かる。すなわち、電力供給システム1003では、直流電力が流れる幹線731の電圧を一定に保持することを必要とせず、電荷量または電流値の時間積分値をもって電力融通量としているので、電力の相互利用や売買などの電力融通に必要な運用コストを下げることができる。
<第4実施形態>
図10は、第4実施形態としての電力供給システム1004の概略ブロック図である。
第4実施形態の電力供給システム1004は、第1太陽電池パネル群(供給側機器)111と、第2太陽電池パネル群(供給側機器)112と、第1太陽電池パネル群111が供給する直流電力を変換するDC/DCコンバータ(給電側電圧設定部、供給側算出部)211と、DC/DCコンバータ211と幹線741との接続を開閉する開閉器311と、第2太陽電池パネル群112が供給する直流電力を変換するDC/DCコンバータ(給電側電圧設定部、供給側算出部)212と、DC/DCコンバータ212と幹線741との接続を開閉する開閉器312と、住居用蓄電池(需要側機器)114と、住居用蓄電池114に供給される直流電力を変換するDC/DCコンバータ(受電側電圧設定部、需要側算出部)214と、DC/DCコンバータ214と幹線741との接続を開閉する開閉器314と、病院用蓄電池(需要側機器)123と、病院用蓄電池123に供給される直流電力を変換するDC/DCコンバータ(受電側電圧設定部、需要側算出部)223と、DC/DCコンバータ223と幹線741との接続を開閉する開閉器323と、交流電力線722と、交流電力線722から供給される交流電力を直流電力へと変換する又は交流電力線722へ供給される直流電力を交流電力へと変換する双方向AC/DCコンバータ237(給電側電圧設定部、受電側電圧設定部、供給側算出部、需要側算出部)と、双方向AC/DCコンバータ237と幹線741との接続を開閉する開閉器337と、図示されていない車両に搭載された車載蓄電池(供給側機器、需要側機器)143が幹線741と需給する直流電力を変換する双方向DC/DCコンバータ(給電側電圧設定部、受電側電圧設定部、供給側算出部、需要側算出部)243と、双方向DC/DCコンバータ243と幹線741との接続を開閉する開閉器343と、需要側機器と供給側機器とのいずれにも接続されていない開閉器344~346と、損失算出部941と、を備えている。
図10に示されるように、車載蓄電池143は、接続している開閉器343を介して幹線741から直流電力を受給している。車載蓄電池143は、搭載された車両と共に移動して、開閉器344~346のいずれかに接続されることにより、幹線741に接続する地点を変更した上で、開閉器を介して幹線741から直流電力を受給できる。すなわち、開閉器343~346は、車載蓄電池143を充放電するための設備として機能させている。
第4実施形態では、車載蓄電池143は、放電可能なあるいは蓄電可能な電力量を管理する装置を有している。幹線741との直流電力の需給の際には、双方向DC/DCコンバータ243が幹線741側の電圧設定を行う。幹線741との電力融通に伴う電流の時間積分または電荷量の管理は、車載蓄電池143と、双方向DC/DCコンバータ243との少なくとも何れかが行う。
第4実施形態では、車載蓄電池143は、開閉器344~346のいずれかと接続できる場所であれば、どのような時間帯でも幹線741から直流電力を受給できる。また、車載蓄電池143に対する電力融通量は、直流電流の時間積分または電荷量により算出されるため、幹線741の電圧が一定に管理されていなくても算出される。また、車載蓄電池143は、予め設定された1つの場所以外で受給電しても、予め設定された特定の時間以外で受給電しても、車載蓄電池143が幹線741と需給した直流電力の時間積分または電荷量によって電力融通量が決まる。これにより、第4実施形態の電力供給システム1004では、比較例のような電力供給システム1006全体を管理する装置等がなくても、車載蓄電池143に対する電力融通量が算出され、電力の相互利用や売買などに必要な電力供給システム1004の運用コストを下げることができる。
<第5実施形態>
図11は、第5実施形態としての電力供給システム1005の概略ブロック図である。第5実施形態の電力供給システム1005では、第4実施形態の電力供給システム1004に対して、住居用蓄電池114とDC/DCコンバータ214と開閉器314とを備えない点、および、車載蓄電池143と双方向DC/DCコンバータ243と開閉器343~346の代わりに車載蓄電池(供給側機器、需要側機器)153と双方向AC/DCコンバータ653と非接触受給電機器453~455,553と双方向AC/DCコンバータ253~255とを備える点が主に異なる。そのため、第5実施形態では、第4実施形態の電力供給システム1004と異なる構成および制御等について説明し、第4実施形態と同じ構成および制御等についての説明は省略する。
図11に示されるように、電力供給システム1005は、車両に搭載された蓄電池である車載蓄電池153と、幹線751から車載蓄電池153へ受電する際に直流電力を交流電力に又は車載蓄電池153から幹線751へ給電する際に交流電力を直流電力に変換する双方向AC/DCコンバータ(給電側電圧設定部、受電側電圧設定部、供給側算出部、需要側算出部)253と、非接触式で給電可能および受電可能な非接触受給電機器453,553と、非接触受給電機器を介して供給する交流電力へ直流電力を変換して車載蓄電池153から供給する又は非接触受給電機器を介して要求される交流電力を直流電力に変換して車載蓄電池153へと要求する双方向AC/DCコンバータ653と、幹線751に接続された双方向AC/DCコンバータ254,255と、双方向AC/DCコンバータ254,255のそれぞれに接続された非接触受給電機器454,455と、を備えている。
図11に示される状態では、車載蓄電池153は、非接触受給電機器453,553を介して幹線751と直流電力を給電および受電している。車載蓄電池153を搭載している車両は、図11に示される矢印DRに沿って移動している。車両が移動した結果、車載蓄電池153と有線で接続されている非接触受給電機器553が、非接触受給電機器453と対向しなくなって別の非接触受給電機器454と対向すると、非接触受給電機器454を介して幹線751と直流電力を給電および受電する。なお、車載蓄電池153を搭載する車両は、非接触受給電機器454などに対向する位置と対向しない位置とのいずれの位置で停止してもよい。また、図11に示されない開閉器があり、開閉器の遮断制御によって、車載蓄電池153に対する給電が制御されてもよい。すなわち、第5実施形態の車載蓄電池153は、車載蓄電池153に接続している非接触給電機器553が給電可能な非接触受給電機器453~455のいずれかに対向していれば、幹線751から直流電力を給電および受電する。非接触受給電する場合、一般的に非接触受給電機器に発生する電圧が電力の需給状況により大きく変化するため、給電電力量または受電電力量を把握するためには複雑な計測機器が必要である。それに対し、第5実施形態の電力供給システム1005では、車載蓄電池153に対する電力融通量は、電流の時間積分または電荷量により算出されるため、簡単な機器で計測でき、加えて、幹線751の電圧が一定に管理されていなくても算出される。これにより、第5実施形態の電力供給システム1005では、比較例のような電力供給システム1006全体を管理する装置等がなくても、車載蓄電池153が給電および受電した電力融通量が算出される。そのため、電力の相互利用や売買などに必要な電力供給システム1005の運用コストを下げることができる。
<上記実施形態の変形例>
本発明は上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
[変形例1]
上記第1実施形態ないし第5実施形態の電力供給システム1001~1005は、一例であって、電力供給システム1001~1005が備える構成および各種制御については種々変形可能である。電力供給システムは、直流電力が流れる幹線と、幹線に接続されて幹線へ直流電力を供給する供給側機器と、幹線に接続されて幹線から直流電力が供給される需要側機器とを備え、供給側機器の給電電圧を供給側で、需要側機器受電電圧を需要側で設定でき、供給側機器から直流電力幹線に供給した電荷量または電流値の時間積分値、及び需要側機器で直流電力幹線から供給された電荷量または電流値の時間積分値をもって電力の融通量とみなす範囲で、変形可能である。
上記第1実施形態の電力供給システム1001は、複数の需要側機器としての車載蓄電池113および住居用蓄電池114と、複数の供給側機器としての第1太陽電池パネル群111および第2太陽電池パネル群112とを備えていたが、少なくとも1つの需要側機器と、直流と交流とに関わらず幹線711へと直流電力を供給する少なくとも1つの供給側機器とを備えていればよい。例えば、電力供給システム1001は、幹線711へ電力を供給するガスタービン発電機115と、車載蓄電池113とのみを備えていてもよい。
[変形例2]
第4実施形態の車載蓄電池143が制御装置を有していてもよく、この制御装置が幹線741から受電可能または幹線741へと給電可能な電力融通量および時間と、実際に受電した又は実際に給電した電力融通量とを管理してもよく、これら3つの要素以外を管理してもよいし、これら3つの要素を管理しなくてもよい。例えば、車載蓄電池143が有する制御装置は、車載蓄電池143が蓄電している電力としての給電可能な電力融通量のみを管理していてもよい。
上記実施形態では、車載蓄電池が給電する又は受電する電力融通量が直流電流の時間積分によって決まるため、車載蓄電池が直流電力を供給する又は要求するために、特定の時間かつ幹線における特定の場所に接続する必要がない。そのため、変形例の車載蓄電池は、例えば、交流電力が流れる比較例の電力供給システム1006内で給電または受電を行うバーチャルパワープラント(VPP:Virtual Power Plant)のような制約を受けずに済む。すなわち、変形例の電力供給システムでは、電力供給システムが簡素化され、電力の相互利用や売買などの電力融通に必要な運用コストが抑制される。
[変形例3]
上記第2実施形態の損失算出部921は、幹線721に接続している全ての供給側機器が給電した電力の合計と、幹線721に接続している全ての需要側機器が受電した電力の合計との差を、電力供給システム1001の電力損失として算出したが、電力損失の計算方法は種々変形可能である。損失算出部921は、全ての供給側機器が給電した電荷量合計と、全ての需要側機器が受電した電荷量の合計との差を、電力供給システムの電力損失として算出してもよい。電力損失の算出には、周知の技術を適用できる。また、損失算出部921と異なる構成としての損失算出部が、電力供給システム1002における電力損失を算出してもよい。
第2実施形態では、幹線721の上限電圧と下限電圧が設定され、病院用蓄電池123と住居用蓄電池114と交流電力線722とのそれぞれに接続されているDC/DCコンバータ223、214とDC/ACインバータ226の幹線721側直流電力の電圧が各々設定されている。また、病院用蓄電池123に接続しているDC/DCコンバータ223は、予め設定された条件としての所定値以上の直流電力の電流を病院用蓄電池123に供給できなくなった場合に、DC/DCコンバータ223の設定電圧をさらに低い電圧に設定していたが、設定電圧の制御方法については種々変形可能である。
また、第2実施形態の病院用蓄電池123に接続しているDC/DCコンバータ223の設定電圧は、所定の条件を満たすか否かに関わらず、変化しない所定の範囲内の電圧であってもよい。また、所定の条件は、種々変形可能であり、例えば、病院用蓄電池123が既に受電した電力融通量または電荷量が所定値以上か未満かによって判定される条件でもよい。上記第1実施形態では、DC/DCコンバータ等が接続している需要側機器へと供給される又は供給側機器から供給する直流電力の設定電圧を設定していたが、他の装置が設定電圧を制御してもよい。
上記第4実施形態の車載蓄電池143(図10)は、搭載された車両と共に移動して、開閉器343~346のいずれかを介して、幹線741に接続する地点を変更できたが、上記第1実施形態ないし第3実施形態の需要側機器のように接続地点を変更できなくてもよい。接続地点を変更できる需要側機器は、車載蓄電池143,153に限られない。例えば、第1実施形態の住居用蓄電池114の接続コードが、延長コードを介して異なる地点に接続されてもよい。また、需要側機器ではなく、例えば車両のルーフに取り付けられた供給側機器としての太陽電池パネルが、幹線741に接続する地点が変更可能であってもよい。
なお、上記実施形態は、下記のように言い換えることもできる。
直流電力幹線に繋がる、直流出力可能な機器である供給側機器が、前記直流電力幹線に繋がる直流入力可能な機器である需要側機器に、電力を供給できる電力供給システムであって、
前記供給側機器が前記直流電力幹線へ直流電力を給電する際の給電電圧を設定する給電側電圧設定部と、
前記供給側機器が前記直流電力幹線へ供給した直流電流の時間積分と、前記供給側機器が前記直流電力幹線へ供給した電荷量とのいずれか一方を、前記供給側機器から前記直流電力幹線への電力融通量として算出する供給側算出部と、
前記需要側機器が前記直流電力幹線から直流電力を受電する際の受電電圧を設定する受電側電圧設定部と、
前記需要側機器が前記直流電力幹線から供給された直流電流の時間積分と、前記需要側機器が前記直流電力幹線から供給された電荷量とのいずれか一方を、前記直流電力幹線から前記需要側機器への電力融通量として算出する需要側算出部と、を備えている。
以上、実施形態、変形例に基づき本態様について説明してきたが、上記した態様の実施の形態は、本態様の理解を容易にするためのものであり、本態様を限定するものではない。本態様は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得ると共に、本態様にはその等価物が含まれる。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することができる。
111…第1太陽電池パネル群(供給側機器)
112…第2太陽電池パネル群(供給側機器)
113…車載蓄電池(需要側機器)
114…住居用蓄電池(需要側機器)
115…ガスタービン発電機(供給側機器)
123…病院用蓄電池(需要側機器)
133…第3太陽電池パネル群(供給側機器)
134…第1車載蓄電池(供給側機器、需要側機器)
135…第2車載蓄電池(供給側機器、需要側機器)
136…第3車載蓄電池(供給側機器、需要側機器)
138…燃料電池(供給側機器)
143…車載蓄電池(供給側機器、需要側機器)
153…車載蓄電池(供給側機器、需要側機器)
161…火力発電所
162…水力発電所
163…太陽電池発電所
164…燃料電池発電所
211,212,233,238…DC/DCコンバータ(給電側電圧設定部、供給側算出部)
213,214,223…DC/DCコンバータ(受電側電圧設定部、需要側算出部)
215…AC/DCコンバータ(給電側電圧設定部、供給側算出部)
226…DC/ACインバータ(受電側電圧設定部、需要側算出部)
234,235,236,243…双方向DC/DCコンバータ(給電側電圧設定部、受電側電圧設定部、供給側算出部、需要側算出部)
237,253,254,255…双方向AC/DCコンバータ(給電側電圧設定部、受電側電圧設定部、供給側算出部、需要側算出部)
261…AC/DCコンバータ,
262,263…DC/ACインバータ
311,312,313,314,315,361,323,326,333,334,335,336,337,338,343,344,345,346,362,363,364,365…開閉器
453,454,455,553…非接触受給電機器
461…インバータ
561,562…誘電モータ機器
563…交流モータ機器
653…双方向AC/DCコンバータ
661…超高圧変電所
662…一次変電所
663…配電用変電所
711,721,731,741,751…幹線(直流電力幹線)
722…交流電力線
761…超高圧送電系統
762…一次送電系統
763…二次送電系統
764…配電系統
921,931,941,951…損失算出部
961…電力管理部
1001,1002,1003,1004,1005,1006…電力供給システム
DR…矢印

Claims (10)

  1. 直流電力幹線に繋がる直流出力可能な機器である供給側機器が、前記直流電力幹線に繋がる直流入力可能な機器である需要側機器に、電力を供給できる電力供給システムにおいて、
    前記供給側機器の給電電圧を供給側で設定でき、
    前記需要側機器の受電電圧を需要側で設定でき、
    前記供給側機器から前記直流電力幹線に供給された電荷量または電流値の時間積分値、及び前記直流電力幹線から前記需要側機器に供給された電荷量または電流値の時間積分値をもって電力融通量とみなし、
    前記需要側機器、及び前記供給側機器に、前記電力融通量を算出する電力融通量算出部を設けたことを特徴とする、電力供給システム。
  2. 請求項1に記載された電力供給システムであって、
    前記直流電力幹線の電圧を時間平均電圧の5%以上高い上限電圧と、5%以上低い下限電圧とを設定する、電力供給システム。
  3. 請求項1または請求項2に記載された電力供給システムであって、
    複数の前記供給側機器と、
    複数の前記需要側機器と、を備え、
    一部の前記供給側機器または一部の前記需要側機器が前記直流電力幹線に接続する地点を変更、あるいは電力融通中に移動できる、電力供給システム。
  4. 請求項1から請求項3までのいずれか一項に記載された電力供給システムであって、
    複数の前記供給側機器と、
    複数の前記需要側機器と、を備え、
    前記供給側機器は、他の前記供給側機器や他の前記需要側機器の状態に関係無く、前記直流電力幹線への直流電力の供給の開始、停止、または変更をでき、
    前記需要側機器は、他の前記供給側機器や他の前記需要側機器の状態に関係無く、前記直流電力幹線からの直流電力の需要の開始、停止、または変更ができる、電力供給システム。
  5. 請求項1から請求項4までのいずれか一項に記載された電力供給システムであって、さらに、
    前記供給側機器が前記直流電力幹線へと給電可能な前記電力融通量と、前記供給側機器が前記直流電力幹線へと直流電力を供給可能な時刻時間との少なくとも一方と、前記供給側機器が実際に給電した前記電融通量と、前記需要側機器が前記直流電力幹線から受電可能な前記電融通量と、前記需要側機器が前記直流電力幹線から直流電力を要求可能な時刻時間との少なくとも一方と、前記需要側機器が実際に供給された前記電融通量と、を管理する電力管理部を備えている、電力供給システム。
  6. 請求項1から請求項5までのいずれか一項に記載された電力供給システムであって、さらに、
    前記電力供給システム内の電力損失を算出する損失算出部と、
    前記直流電力幹線に接続された複数の前記供給側機器と、
    前記直流電力幹線に接続された複数の前記需要側機器と、を備え、
    前記損失算出部は、前記直流電力幹線に接続している全ての前記供給側機器から給電された電力の合計と、前記直流電力幹線に接続している全ての前記需要側機器が受電した電力の合計との差を、前記システム内の電力損失として算出する、電力供給システム。
  7. 請求項1から請求項6までのいずれか一項に記載された電力供給システムであって、さらに、
    前記直流電力幹線に接続された複数の前記需要側機器と、
    各前記需要側機器が前記直流電力幹線から直流電力を受電する際の設定電圧を設定する受電側電圧設定部と、を備え、
    前記受電側電圧設定部は、前記設定電圧を予め設定された上限の電圧から下限の電圧までの範囲に設定し、
    前記直流電力幹線に接続された前記複数の前記需要側機器のうち、少なくとも1つの特定の前記需要側機器の前記受電側電圧設定部は、予め設定された条件が満たされた場合に、前記特定の需要側機器の前記設定電圧を、他の前記需要側機器における前記設定電圧の下限の電圧よりも低い電圧に設定する、電力供給システム。
  8. 請求項1から請求項7までのいずれか一項に記載された電力供給システムであって、さらに、
    前記直流電力幹線に接続された複数の前記需要側機器と、
    各前記需要側機器が前記直流電力幹線から直流電力を受電する際の設定電圧を設定する受電側電圧設定部と、
    を備え、
    前記直流電力幹線の電圧は、所定の下限の電圧よりも高く設定され、
    前記受電側電圧設定部は、前記設定電圧を予め設定された上限の電圧から下限の電圧までの範囲に設定し、
    前記直流電力幹線に接続された前記複数の前記需要側機器のうち、少なくとも1つの特定の前記需要側機器の前記受電側電圧設定部は、予め設定された条件が満たされた場合に、前記特定の需要側機器の前記設定電圧を、接続している前記直流電力幹線に設定された下限の電圧よりも低い電圧に設定する、電力供給システム。
  9. 請求項7または請求項8に記載された電力供給システムであって、さらに、
    前記直流電力幹線に接続された複数の前記供給側機器と、
    各前記供給側機器が前記直流電力幹線に直流電力を供給する際の設定電圧を設定する給電側電圧設定部と、
    前記直流電力幹線に接続された複数の前記需要側機器と、
    各前記需要側機器が前記直流電力幹線に直流電力を要求する際の設定電圧を設定する受電側電圧設定部と、
    を備え、
    前記給電側電圧設定部は、前記供給側機器に設定される設定電圧を予め設定された上限の電圧から下限の電圧までの範囲に設定し、
    前記受電側電圧設定部は、前記需要側機器に設定される設定電圧を予め設定された上限の電圧から下限の電圧までの範囲に設定し、
    前記直流電力幹線に接続された前記複数の前記供給側機器のうち、少なくとも1つの特定の前記供給側機器の前記給電側電圧設定部と、前記直流電力幹線に接続された前記複数の前記需要側機器のうち、少なくとも1つの特定の前記需要側機器の前記受電側電圧設定部は、予め設定された条件が満たされた場合に、前記特定の供給側機器に設定される設定電圧と、前記特定の需給側機器に設定される前記設定電圧を、他の前記需要側機器に設定された設定電圧の下限の電圧よりも低い電圧に設定する、電力供給システム。
  10. 請求項7から請求項9までのいずれか一項に記載された電力供給システムであって、さらに、
    前記直流電力幹線に接続された複数の前記供給側機器と、
    各前記供給側機器が前記直流電力幹線に直流電力を供給する際の設定電圧を設定する給電側電圧設定部と、
    前記直流電力幹線に接続された複数の前記需要側機器と、
    各前記需要側機器が前記直流電力幹線に直流電力を要求する際の設定電圧を設定する受電側電圧設定部と、を備え、
    前記給電側電圧設定部は、前記供給側機器に設定される設定電圧を予め設定された上限の電圧から下限の電圧までの範囲に設定し、
    前記受電側電圧設定部は、前記需要側機器に設定される設定電圧を予め設定された上限の電圧から下限の電圧までの範囲に設定し、
    前記直流電力幹線に接続された前記複数の前記供給側機器のうち、少なくとも1つの特定の前記供給側機器の前記給電側電圧設定部と、前記直流電力幹線に接続された前記複数の前記需要側機器のうち、少なくとも1つの特定の前記需要側機器の前記受電側電圧設定部は、予め設定された条件が満たされた場合に、前記特定の供給側機器に設定される前記設定電圧と、前記特定の需給側機器に設定される前記設定電圧を、前記直流電力幹線に設定された下限の電圧より低い電圧に設定する、電力供給システム。
JP2021012704A 2021-01-29 2021-01-29 電力供給システム Active JP7264181B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021012704A JP7264181B2 (ja) 2021-01-29 2021-01-29 電力供給システム
US17/554,905 US11894717B2 (en) 2021-01-29 2021-12-17 Voltage setting system for power distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021012704A JP7264181B2 (ja) 2021-01-29 2021-01-29 電力供給システム

Publications (2)

Publication Number Publication Date
JP2022116512A JP2022116512A (ja) 2022-08-10
JP7264181B2 true JP7264181B2 (ja) 2023-04-25

Family

ID=82611682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021012704A Active JP7264181B2 (ja) 2021-01-29 2021-01-29 電力供給システム

Country Status (2)

Country Link
US (1) US11894717B2 (ja)
JP (1) JP7264181B2 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012165615A (ja) 2011-02-09 2012-08-30 Ntt Data Intellilink Corp 電源供給システム
JP2013201859A (ja) 2012-03-26 2013-10-03 Toyota Industries Corp 車両用充電システムおよび方法
US20140285010A1 (en) 2011-05-24 2014-09-25 D. Kevin CAMERON System and method for integrating and managing demand/response between alternative energy sources, grid power, and loads
WO2015145971A1 (ja) 2014-03-28 2015-10-01 パナソニックIpマネジメント株式会社 電力変換装置及び電力変換方法
JP2016063639A (ja) 2014-09-18 2016-04-25 株式会社Nttファシリティーズ 電源システム、給電管理装置、給電管理方法、及びプログラム
JP2018038126A (ja) 2016-08-30 2018-03-08 株式会社アイケイエス 電力融通システム
JP2019146314A (ja) 2018-02-19 2019-08-29 サンケン電気株式会社 蓄電システム及び蓄電装置
JP2020198736A (ja) 2019-06-04 2020-12-10 河村電器産業株式会社 直流連携システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339118A (ja) 2002-05-22 2003-11-28 My Way Giken Kk 分散電源システム
JP6085544B2 (ja) 2013-09-19 2017-02-22 三菱重工業株式会社 電気自動車用急速充電設備、充電設備のエネルギーマネジメント方法および充電設備システム
GB2600416A (en) * 2020-10-27 2022-05-04 Rolls Royce Plc Electrical power systems

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012165615A (ja) 2011-02-09 2012-08-30 Ntt Data Intellilink Corp 電源供給システム
US20140285010A1 (en) 2011-05-24 2014-09-25 D. Kevin CAMERON System and method for integrating and managing demand/response between alternative energy sources, grid power, and loads
JP2013201859A (ja) 2012-03-26 2013-10-03 Toyota Industries Corp 車両用充電システムおよび方法
WO2015145971A1 (ja) 2014-03-28 2015-10-01 パナソニックIpマネジメント株式会社 電力変換装置及び電力変換方法
JP2016063639A (ja) 2014-09-18 2016-04-25 株式会社Nttファシリティーズ 電源システム、給電管理装置、給電管理方法、及びプログラム
JP2018038126A (ja) 2016-08-30 2018-03-08 株式会社アイケイエス 電力融通システム
JP2019146314A (ja) 2018-02-19 2019-08-29 サンケン電気株式会社 蓄電システム及び蓄電装置
JP2020198736A (ja) 2019-06-04 2020-12-10 河村電器産業株式会社 直流連携システム

Also Published As

Publication number Publication date
JP2022116512A (ja) 2022-08-10
US20220247206A1 (en) 2022-08-04
US11894717B2 (en) 2024-02-06

Similar Documents

Publication Publication Date Title
Tran et al. An efficient energy management approach for a solar-powered EV battery charging facility to support distribution grids
US9817423B2 (en) Renewable energy system with integrated home power supply system
KR101746177B1 (ko) 전기 자동차 배터리 충전장치 및 방법
EP2889176B1 (en) Battery exchange station and method of operating battery exchange station
US9099893B2 (en) Power control device for a power grid, comprising a control unit for controlling an energy flow between the power generation unit, the energy storage unit, the consumer unit and/or the power grid
EP2385606B1 (en) System for interchanging electric energy between a battery and an electric grid and respective method.
US20120019203A1 (en) Energy storage and vehicle charging system and method of operation
CN103828171A (zh) 功率调节器系统和蓄电功率调节器
US11205902B2 (en) Energy storage system
US11241975B2 (en) Electric vehicle home microgrid power system
EP3971024A1 (en) Electric power system, server, charge-and-discharge controller, and power demand-and-supply adjustment method
JP5608615B2 (ja) 充電用の電力管理システムおよびその電力管理装置
US11411400B2 (en) DC power supply system
JP5396549B1 (ja) 充給電器および充給電管理装置、エネルギーマネジメントシステム、並びに充給電管理方法
JP2013172488A (ja) 充給電器および充給電管理装置、エネルギーマネジメントシステム、並びに充給電管理方法
Onar et al. Modeling, controls, and applications of community energy storage systems with used EV/PHEV batteries
WO2015001767A1 (ja) 制御装置、電力管理システム
EP2744065B1 (en) Electric vehicle charging system and electric vehicle charging apparatus
JP2013141374A (ja) 電気鉄道用電力供給システム
JP7264181B2 (ja) 電力供給システム
Hamidi et al. A distributed control system for enhancing smart-grid resiliency using electric vehicles
Bampoulas et al. A novel dynamic demand control of an electric vehicle integrated in a solar nanogrid with energy storage
CN116231833B (zh) 一种多能耦合无扰动不间断交直流供电系统
CN113437743B (zh) 供电系统
KR102639224B1 (ko) V2b 다중 직렬 연결 시스템 및 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230327

R150 Certificate of patent or registration of utility model

Ref document number: 7264181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150